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Abstract. Plant litter decomposition in terrestrial ecosystems involves the physical and chemical breakdown of organic 

matter. Development of databases is a promising tool for achieving a predictive understanding of organic matter degra-

dation at regional and global scales. In this paper we present aridec: a comprehensive open database containing litter-

mass loss data from aridlands across the world. We describe in detail the structure of the database and discuss general 

patterns in the data. Then, we explore what are the most appropriate model structures to integrate with data on litter 15 
decomposition from the database by conducting a collinearity analysis. The database includes 184 entries from aridlands 

across the world, representing a wide range of climates. For the majority of the data gathered in aridec it is possible to fit 

models of litter decomposition that consider initial organic matter as a homogenous reservoir (one pool models), as well 

as models with two distinct types of organic compounds that decompose at different speeds (two pool models). Moreover, 

these two carbon pools can either decompose without interaction (parallel models), or with matter transfer from a labile 20 
pool to a slow-decomposing pool after transformation (series models). Although most entries in the database can be used 

to fit these models, we suggest potential users of this database to test identifiability for each individual case as well as the 

number of degrees of freedom. Other model applications that were not discussed in this publication might also be suitable 

for use with this database. Lastly, we give some recommendations for future decomposition studies to be potentially 

added to this database. The extent of the information included in aridec in addition to its open-science approach makes it 25 
a great platform for future collaborative efforts in the field of aridland biogeochemistry. The aridec version 1.0.1 is ar-

chived and publicly available at https://doi.org/10.5281/zenodo.6025969 (Sarquis et al., 2022), and the database is man-

aged under a version-controlled system and centrally stored in GitHub (https://github.com/AgustinSarquis/aridec, last 

access: 9 February 2022). 

1 Introduction 30 

Plant litter decomposition has a central role in the balance between carbon (C) storage and losses in terrestrial ecosystems. 

This process involves the physical and chemical breakdown of organic matter. Together with soil organic matter 

decomposition, this process is the main route of carbon dioxide (CO2) efflux to the atmosphere in terrestrial ecosystems 

(Chapin et al., 2011). It also plays a key role in the formation and stabilization of soil organic carbon (SOC; Cotrufo et 

al., 2013). Therefore, in the context of current global change, a thorough understanding of decomposition is crucial for 35 
future C budget and storage predictions (Davidson and Janssens, 2006). 

Arid ecosystems (hereafter aridlands) are variously defined as water-limited ecosystems, where the scarcity and 

unpredictability of precipitation drive most processes (Noy-Meir, 1973). They are also defined as regions where 

evaporation is higher than precipitation, which in turn limits ecosystem productivity (Jafari et al., 2018). Moreover, 

aridlands can be classified based on an Aridity Index as hyper arid, arid, semi-arid, and dry subhumid ecosystems (United 40 
Nations Environment Programme, 1997). Around 41% of the global land area are considered as aridlands (Safriel and 

Adeel, 2005) and these systems are expanding due to global change (Feng and Fu, 2013; Reynolds et al., 2007; Yao et al., 

2020). Despite their comparatively low productivity, some aridlands can have a potentially large impact on global CO2 

dynamics (Ahlström et al., 2015; Poulter et al., 2014). The wide extent of aridland cover and their influence on regional 

and global biogeochemical cycles make the study of aridlands a priority. 45 
In particular, plant litter decomposition in aridlands is still not well understood (Austin, 2011). Litter mass loss in the field 

is mainly studied using the litterbag method or some variant (Harmon et al., 1999). The vast majority of litterbag studies 

come from temperate forests favored by the ease of litter collection and the concentration of researchers close to these 

study sites. There are fewer studies in aridlands, and few efforts have been made towards synthesizing aridland 

decomposition literature (Austin, 2011; Cepeda-Pizarro, 1993) or to examine patterns of decomposition in global 50 
aridlands (Zhang and Wang, 2015). Nonetheless, substantive literature has already been produced, which would allow for 

the compilation of a comprehensive database on plant litter decomposition in aridlands that could help boost our 

understanding of these ecosystems.  

Development of databases is a promising tool for achieving a predictive understanding of organic matter degradation at 

regional and global scales (Luo et al., 2016). This predictive understanding can be obtained through mathematical models, 55 
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but there is substantial uncertainty with respect to which models to use. For litter decomposition, some efforts have been 

made, by fitting models with multiple C pools of different quality that decompose at different rates (Adair et al., 2008), 

as well as incorporating the effect of abiotic stressors like photodegradation on C dynamics (Adair et al., 2017; Chen et 

al., 2016; Foereid et al., 2011). Taken together, increased data availability and global representativity of well-constructed 

databases with our current most complex modeling tools could help us achieve a better understanding of the land C cycle 60 
with a higher predictive power. 

Once a database of observations has been constructed, there exists the possibility of fitting complex models from these 

data, although this should be approached with caution. A common issue with mechanistic models used in environmental 

sciences is that they are poorly identifiable (Brun et al., 2001), meaning that different parameter sets of a model generate 

similar probability distributions for the observed data (Sierra et al., 2015). In other words, it is impossible to identify a 65 
unique set of parameters that explains model behavior. One reason behind this issue is that the information one would 

like to learn from models is often of a much higher complexity than the information content of the observed data (Brun 

et al., 2001). It is possible to detect identifiability issues by carrying out collinearity analyses (Sierra et al., 2015; Soetaert 

and Petzoldt, 2010), among other techniques. Thus, in addition to applying current ecological knowledge about underlying 

mechanistic processes in model construction, it is important to avoid identifiability problems when fitting these models 70 
with real data. 

Another important aspect when developing this type of database is to follow an Open Science approach (Hampton et al., 

2015). Open Science entails the practice of making all stages of scientific knowledge freely available and presented in a 

transparent and reproducible way for the whole scientific community to use. Such an approach has the potential to enhance 

the quality of research products and to speed up scientific progress through collaborative work. Particularly, the 75 
development of databases can benefit greatly from an open science perspective by allowing self-motivated reviewers to 

make comments and by allowing scientists from outside of the core research group to make their own contributions to the 

database, among other benefits. This latter aspect is key to ensure databases stay updated as new studies get published.  

In this paper we present aridec: a comprehensive open-science database that comprises time series of litter mass loss 

(decomposition) data from aridlands across the globe. First, we describe in detail the structure of the database and discuss 80 
general patterns in the data. Second, we run a collinearity analysis on the database to explore what might be the most 

appropriate model structures to fit. We chose a group of models of organic matter loss provided in the R package SoilR 

as potential models, including models of one, two and three pools with and without matter transfers between them (Sierra 

et al., 2012). Third, we present an example of applied usage of the database. Lastly, we discuss the scope of the database 

and give outlines on good field decomposition experimental practices stemming from this work. 85 
 

2 Methods 

2.1 Database description 

We conducted a Scopus search on February 17th, 2021, for field decomposition studies of all times from aridlands 

published in peer-reviewed journals. We used the search words ‘arid OR "dry season" AND decomposition’ and excluded 90 
results from unrelated subjects. This search produced a list of 1142 publications. To be included in the database, studies 

additionally needed to fulfil certain criteria: a) field studies in which leaf, shoot or root litter of terrestrial plants was used, 

and b) minimum of three time points of mass loss data. We did not include wood or dung decomposition studies. We also 

included publications from our personal libraries. In total, this left us with a list of 184 eligible publications.  

We named the database aridec and uploaded it to a repository in GitHub (GitHub, 2022; Sarquis et al., 2022). From each 95 
selected publication, we created a database entry consisting of three separate files: a file containing time series of mass 

loss (timeSeries.csv), a file containing metadata of the study site and the experimental setup (metadata.yaml) and a file 

with relevant information of the initial characteristics of the litter at the beginning of the experiment (initConditions.csv). 

We saved each entry in an individual folder named after the last name of the first author and the year of publication. If 

there was more than one paper per author and year, we added lowercase letters to differentiate them (e.g.: Austin2006a 100 
and Austin2006b). We included all entries inside the data folder. Other folders in the repository include the Rpkg folder 

containing an R package for querying and manipulating the database, a test folder with scripts for testing the integrity of 

the data and the R package, and an additional folder with miscellaneous scripts that demonstrate additional functionality. 

The overall structure of the database is similar to the structure of SIDb (Schädel et al., 2020) a database of soil incubation 

time series, and contains the following folder structure:  105 
- aridec 

- Rpkg 

- test 

- scripts 

- data 110 
 - single entry 

  - metadata.yaml 

  - initConditions.csv 

  - timeSeries.csv 
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The timeSeries.csv file includes litter mass loss over time as reported in the original publication. It is a csv type file 115 
(“comma-separated values”) with column names in the first row. The first column name is always the variable Time and 

the first value in this column is always “0” (zero). Successive time values should be specified according to each sampling 

date reported in the study. Time units accepted are days, weeks, months, and years. Starting from the second column, 

column names should be unique variable identifiers. Below these names, mass loss data should be included as a percentage 

of the initial value, which is always 100. When data in the paper are reported in graph form, it is necessary to extract data 120 
point values with software tools such as WebPlotDigitizer (Rohatgi, 2020). Acceptable mass loss units are percentage of 

remaining dry weight, dry organic matter, dry ash-free mass, or C. For remaining mass data as well as for time, units 

should be specified in the metadata.yaml file described below.  

The metadata.yaml file includes additional information reported in the original paper. It is a yaml type file (“YAML ain’t 

markup language”), which allows us to write lists of items in a hierarchical form and is both machine and human readable. 125 
It includes four main sections: entry identification data, the siteInfo, the experimentInfo and the variables sections. A 

template for this file with a full description of how to complete it is available inside the data folder. The first part includes 

the citationKey which is a unique identifier for the whole entry in the format LastnameYEAR (lowercase letters must be 

added when there are two or more entries by the same author and year, i.e.: LastnameYEARa and LastnameYEARb). 

This citationKey name should be the exact same as the folder name. Next is the doi, which stands for the Digital Object 130 
Identifier where data is published. entryAuthor and contactName are both first and last name of the person who wrote the 

entry file and their supervisor (only if applicable), respectively. If the entry author works independently of a supervisor, 

both fields should be filled with the same name. contactEmail should be filled with the supervisor’s e-mail address. 

entryCreationDate stands for the date when the file was created, following the format: YYYY-MM-DD. entryNote should 

include any notes or comments related to this entry, such as missing data or additional data sources used to complete this 135 
file. Lastly, study requires a short study description in not more than one sentence. 

The second part of the metadata.yaml file is the siteInfo section, which includes environmental information of ecological 

interest from the study site. First is the site field that requires an identification name for the site (not necessarily the site’s 

real name). If the study includes more than one site, an array format should be used in this field and the rest of the items 

in this section should be arrays of equal length. The coordinates field should be completed using decimal units, checking 140 
for the negative sign that denotes southern and western hemispheres. If absent from the publication, coordinates can be 

approximately obtained from Google Earth (Google LLC, 2020). The country field should be completed avoiding full 

names (e.g.: “China” instead of “People’s Republic of China” or “USA” instead of “United States of America”). Mean 

annual temperature (° C) and mean annual precipitation (mm) should be entered in the fields MAT and MAP, respectively. 

When climatologic data are absent from the paper, they can be retrieved from other databases like the POWER database 145 
[NASA Langley Research Center (LaRC)]. The rainySeason field should be filled with either one of five options: whole 

year, spring, summer, autumn, winter; if precipitation does not follow a unimodal pattern, this item is left blank. Elevation 

of the study site in m a.s.l. should be entered under the elevation field, which if absent from the publication can be retrieved 

from other sources such as Google Earth. The type of vegetation cover of the site should be specified in landCover, with 

possible options: marsh, greenbelt, farmland, mangrove forest, subalpine, shrubland, urban, sandland, forest, steppe, 150 
desert, grassland, and savanna. The item vegNote should include a short description of not more than one sentence of the 

species or functional type composition at the site, if available. The cover item should be completed with percentage values 

of total plant cover or with cover values for specific plant functional types, as available. Lastly, the soilTaxonomy item 

must be completed using the taxonomic classification of the soil at the site. If the classification system used in the paper 

is unknown, it is better to leave this section blank, for exact equivalences between soil classification systems are unlikely.  155 
The third part of the metadata.yaml file is the experimentInfo section which includes information regarding the 

experimental design of the study. incDesc stands for incubation description and must include a short list of treatments and 

sampling points in time. The number of replicates should be specified, paying attention to occasional pseudo-replication 

in decomposition studies. Experiment duration in days should be completed with the maximum time length that samples 

stayed in the field. The month in which the experiment started should be specified under startingMonth. The name of the 160 
litter used for the experiment should be specified under litter, and it should match the name used in the initConditions.csv 

file (see below). Under the litterbag field, many sub-fields for different characteristics of interest should be completed, 

such as mesh material, mesh size (one side of a square in mm), dimensions (in cm), mesh transmittance (as a percentage 

of full sunlight) and litterbag position (full list of options available in the template file). A general rule for the 

experimentInfo section is that when there is more than one option for a field they should be considered as different levels 165 
of a treatment. In this case that field should be left blank in this section, and a new field should be created in the variables 

section by replacing the experimentalTreatment placeholder in each variable (see below) 

The last section of the metadata.yaml file is the variables section, which serves as a link between columns in the 

timeSeries.csv file and metadata. Thus, this section should have as many variables as columns in the timeSeries.csv file. 

The first variable (V1) must always be called “Time” and only time units should be modified accordingly. The rest of the 170 
variables (V2 to Vn) must be adequately edited to represent treatment application as described in the original publication. 

Variable names should match column names in the timeSeries.csv file. Litter mass loss units should be expressed either 

in (dry) mass remaining, organic matter (or ash-free dry mass) remaining, or C remaining. Under varDesc (as in variable 

description) one should write a brief sentence indicating specific treatment levels applied to this variable. The site field 

should be completed using the same site name entered in the siteInfo section. The experimentalTreatment item is a place 175 
holder for treatments with multiple levels. It should be replaced by any of the listed variables in experimentInfo and 
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completed with an appropriate treatment level. In compTreat complementary treatments not included in the rest of the 

metadata items should be indicated using key words (e.g.: grazed/ungrazed, water addition, control, etc.). Finally,  

 

 180 
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Figure 1: A guiding flowchart of the entry-submitting process for potential contributors of aridec. 
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transmittance and wavelength threshold (nm) data for radiation filters should be indicated under filter. This sub-section 

should be completed only for photodegradation studies. 

The last file in the data folder is the initConditions.csv file which contains details on the plant litter substrate used for 

each experiment. The first row contains column names. The first column name is species and is the only mandatory item, 185 
nonetheless we strongly recommend completing all items if possible. We suggest checking for the correctness of scientific 

names in the Global Biodiversity Information Facility database (GBIF.org, 2022). Names in the species column should 

be used to complete the litter item in the metadata.yaml file. Four options are valid for the type column: deciduous or 

evergreen (for woody plants) and forb or graminoid (for herbaceous plants). For the N-fixer item we recommend 

consulting the NodDB database (Tedersoo et al., 2018).  Units for the sample amount column are in g, for the nutrients 190 
and fibers in percentage and for SLA (specific leaf area) in mm2 mg-1. When litter quality traits are not provided in the 

original paper, they can be obtained upon request from the TRY database (Kattge et al., 2020). We created a template for 

the initConditions.csv and a README.md file with further instructions in the data folder. Special attention should be 

made to the material section of the README.md file, for litter substrates are highly variable among studies and this is 

key for database consistency. In Fig. 1, we present a flowchart with the full process of entry submitting for potential 195 
contributors. 

We generated a Global Aridity Index (GAI) map with the study sites from the database. We retrieved GAI data from the 

Consortium for Spatial Information global climate data sets (CGIAR-CSI; Trabucco & Zomer 2018). This index is 

calculated after dividing mean annual precipitation by mean annual reference evapotranspiration. The raster data set we 

used is based on WorldClim2 database (Fick & Hijmans, 2017). We chose this dataset because it encompasses a relatively 200 
long period of time (from 1970 to 2000) and it has a high spatial resolution (~1 km at the Equator). We then classified 

each study site by its GAI value as hyper-arid (0 - 0.05), arid (0.05 - 0.2), semi-arid (0.2 - 0.5), dry sub-humid (0.5 - 0.65) 

and humid (0.65<; United Nations Environment Programme, 1997). Complementarily, to explore how representative our 

sites in aridec are of the whole climatic range of aridlands, we first made a random point-sampling of 6793 pixel units 

separated at least 1 km away from each other within the range of aridlands (GAI: 0 - 0.65). For each sample, we averaged 205 
mean monthly temperatures from WorldClim2 to obtain mean annual temperature values. We did the same for our aridec 

coordinates and plotted both sets of data together to evaluate how well aridlands are represented in our database. We used 

the QGIS software to process data and create a map (QGIS Development Team, 2021).  

 

2.2 Model fitting and collinearity analysis 210 

A central application of this database is the development of models of litter decomposition for aridlands. In an attempt to 

explore what are the most appropriate model structures to integrate with data from the database, we selected different 

structures of decomposition models based on recent theory of models of organic matter decomposition (Sierra and Müller, 

2015). These model structures are already implemented in the SoilR package (Sierra et al., 2012), and we provide here an 

interface between our database and this R package. SoilR is a modelling framework that contains a wide set of functions 215 
and tools to model soil organic matter decomposition within the R computing platform (R Core Team, 2020).  

Organic matter decomposition in SoilR is represented by systems of linear differential equations that generalize most 

compartment-based models. A simple general structure to represent litter decay with no inputs follows Equation 1: 

 
𝑑𝐶(𝑡)

𝑑𝑡
=  𝐴 𝐶(𝑡)                                                                                                                                                                     (1) 220 

 

𝐶(𝑡) = [Cpool 1, …, Cpool m]T 

 

𝐴 = [

−𝑘1 ⋯ 𝑎1𝑖

⋮ ⋱ ⋮
𝑎𝑗1 ⋯ −𝑘𝑚

] 

 225 
Where C(t) is a m x 1 vector with m pools of litter mass observed at time t, and A is a square m x m matrix that contains 

decomposition rates (km) for each pool and transfer rates (aij) between them. These different pools may correspond to 

different ways in which the quality of the litter is expressed in different studies. For example, they may correspond to 

different compounds obtained from a specific extraction method (e.g., water soluble sugars, or acid detergent lignin), or 

they can be defined by general decay classes such as fast and slow decay compounds. These pools have different 230 
decomposition rates, pool 1 being the fastest decomposing pool and pool m being the slowest. The linear dynamical 

system represented by Eq. (1), has many different solutions, but we are only interested in the solution that satisfies 

 

C (t = 0) = C0 = [total C0 ∙ p1, …, total C0 ∙ pm]T                                                                                                               (2) 

 235 
where C0 is a m×1 vector with the value of initial litter mass content in the different compartments m. Total C0 is set to 

be 100% in SoilR for our database and resulting parameters pm are the initial proportions of litter in m pools. Using this 

framework, we chose to fit a total of five different models with an increasing number of parameters (Table 1).  
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Model structure m Parameters 

Two-pool parallel  2 k1, k2, and p1 

Two-pool series  2 k1, k2, p1, and a21 

Two-pool with feedback  2 k1, k2, p1, a21, and a12 

Three-pool parallel  3 k1, k2, k3, p1, and p2 

Three-pool series 3 k1, k2, k3, p1, p2, a21, and a32 
Table 1: fitted model structures and parameters. m: number of C pools. k1, k2, k3: decomposition rates of pools 1, 2 and 3, 240 
respectively. p1, p2: initial proportions of C in pools 1 and 2, respectively. a21: transfer rate from pool 1 to pool 2. a12: transfer 

rate from pool 2 to pool 1. a32: transfer rate from pool 2 to pool 3. 

For this set of models, we performed an identifiability analysis following the procedure described by Soetaert & Petzoldt 

(2010). Non-identifiability is a common issue with inverse-modelling approaches. It is a type of model 

overparameterization that makes precisely determining parameter values virtually impossible, thus parameters are “non-245 
identifiable”. When parameters are functionally related, changes in one parameter can be compensated by changes in 

others. This produces different parameter sets that have similar probability distributions, thus the inability to determine a 

single parameter set for the model (Sierra et al., 2015). Analyzing for parameter identifiability in models fitted with aridec 

data allowed us to assess which model structures are the most appropriate to use in this context.  

This identifiability analysis is based on the calculation of the collinearity index (Brun et al., 2001). This index is a measure 250 
of the degree to which changes in one parameter are compensated by changes in other parameters for a certain model 

structure and data set. We used the modCost function from the FME R package to first adjust a model cost function 

(Soetaert and Petzoldt, 2010). This function estimates weighted residuals of the model output versus the observed data 

and calculates sums of squared residuals, according to the formula:  

 255 

𝑟𝑒𝑠𝑘,𝑙 =
𝑀𝑜𝑑𝑘,𝑙−𝑂𝑏𝑠𝑘,𝑙

𝑒𝑟𝑟𝑜𝑟𝑘,𝑙 ∙𝑛𝑙
                                                                                                                                                          (3) 

 

where Modk,l and Obsk,l are the modeled and observed values for any data point, k, of a variable l, respectively. errork,l is 

a weighing factor that makes the term non-dimensional.  

The model cost function, together with a set of pre-set initial parameter values, is then used as an input to calculate a 260 
matrix of sensitivity functions using the sensFun function from FME. This function estimates the sensitivity of the model 

output to the parameter values using the expression: 

 

𝑆𝑖𝑗 =
𝜕𝑟𝑖

𝜕Θ𝑗
∙

𝑤Θ𝑗

𝑤𝑟𝑖

                                                                                                                                                                      (4) 

 265 
where Si,j represents each entry of the matrix, ri are model residuals calculated from the cost function, Θj is a model 

parameter, wri is the scaling of ri, and wΘj is the scaling of parameter Θj (Soetaert and Petzoldt, 2010). 

The final step in this analysis is calculating the collinearity index γ. The collin function from FME uses the sensitivity 

matrix as an input to calculate γ for every combination of parameters. γ is defined as 

 270 

𝛾 =
1

√𝑚𝑖𝑛(𝐸𝑉[Ŝ𝑇Ŝ])

                                                                                                                                                                 (5) 

 

where 

 

Ŝ𝑖𝑗 =
𝑆𝑖𝑗

√𝛴𝑗𝑆𝑖𝑗
2
                                                                                                                                                                          (6) 275 

 

where Ŝij contains the columns of the sensitivity matrix that correspond to the parameters included in the set and EV 

estimates the eigenvalues. The collinearity index equals 1 if the columns are orthogonal, and the set is identifiable. The 

index equals infinity if columns in the sensitivity matrix are linearly dependent (Soetaert and Petzoldt, 2010). The 

interpretation of the collinearity index is thus: a change in the residuals caused by a change in one of the parameters can 280 
be compensated by a proportional change 1/γ in another parameter. For practical purposes, if γ>20 the parameter 

combination is considered non-identifiable (Sierra et al., 2015).  

For the identifiability analysis, we first selected a representative group of 30 entries from the database ranging from 3 to 

19 time points (Table 2). The number of data points in time limits the number of parameters that can be fitted because it 

affects the number of degrees of freedom. Thus, models with more parameters require longer data sets. This meant that, 285 
a priori, not all entries could be used to fit all model structures. On the other hand, it is possible to test identifiability for 

restricted model versions, that is models with some of their parameters fixed to a known value. This implies there are less 

parameters to be determined, thus it allows to use shorter time series. The details of all the models tested are reported in 

Table 3. From this first analysis, we noticed that two pool parallel and series structure models with a restricted initial 
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proportion of litter in pool 1 (p1) were the two models more likely to meet identifiability with our data. Because of this, 290 
we tested collinearity for all the 184 entries in the database, but only for these two models and for the respective models 

with the full set of parameters, for comparison. R code for this analysis can be found in the collinearity.R script inside the 

scripts folder of aridec. 

 

Number of time points aridec Citation Key Publication DOI or URL 

3 Classen2007 10.1111/j.1365-2745.2007.01297.x 

Correa2016 10.3832/ifor1459-008 

Dominguez2010 10.1016/j.still.2010.06.008 

Gehrke1995 10.2307/3546223 

Gliksman2018a 10.1111/1365-2435.13018 

4 Bernaschini2019 10.1016/j.jaridenv.2015.11.009 

delCid2019 10.1556/168.2019.20.3.10 

Dipman2019 10.1016/j.apsoil.2019.07.005 

Glassman2018 10.1073/pnas.1811269115 

Henry2008 10.1007/s10021-008-9141-4 

5 Almagro2015 10.1016/j.soilbio.2015.08.006 

Almagro2017 10.1007/s10021-016-0036-5 

Brandt2010 10.1007/s10021-010-9353-2 

Bucher2003 10.1017/S0266467403003377 

Campos2017 10.1007/s11104-017-3221-1 

6 Bosco2016 10.1007/s11104-016-2864-7 

Canessa2021 10.1111/1365-2745.13516 

Chuan2018 10.1007/s10021-018-0221-9 

Connin2001 10.1016/S0038-0717(00)00113-9 

DiedhiouSall2013 10.2136/sssaj2012.0284 

7 Araujo2012 10.1007/s00442-011-2063-4 

Austin2006a 10.1007/s10021-005-0039-0 

Bates2007 10.1016/j.jaridenv.2006.12.015 

Brandt2007 10.1111/j.1365-2486.2007.01428.x 

Hou2019 10.1080/03650340.2019.1639156 

8 Day2018 10.1111/gcb.14438 

SanchezAndres2010 10.1016/j.ecss.2010.07.005 

Xie2020 10.1002/ece3.6264 

13 Arriaga2007 10.1007/s11258-006-9178-4 

19 Ilangovan1996 http://www.jstor.org/stable/43582052 
Table 2: aridec entries used in the identifiability analysis with their corresponding DOI o URL. The number of time points 295 
refers to the number of sampling dates at each study plus the initial date. 

 

Model 

structure 

2-pool models 3-pool models 

T P D C T P D  C 

Parallel 3 3 30 120 6 5 15 390 

Series 4 4 25 275 8 7 5 935 

Feedback 6 5 15 390 - - - - 

Table 3: Minimum number of time points in data sets fitted to each model structure T, number of parameters for each 

model structure P, number of data sets used for each model structure D, and possible number of combinations of 

parameters to identify with specific combinations of available data C. 300 

2.3 Applied Example 

Our collinearity analysis (see below) showed that although most entries could be used to fit two-pool parallel and series 

models with a fixed p1 parameter (i.e., the initial proportion of litter in pool 1), this was dependent on each data set. 

Restricting the p1 parameter is a sensible way of achieving identifiability because it is common to find information on 

https://doi.org/10.5194/essd-2022-54

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 21 February 2022
c© Author(s) 2022. CC BY 4.0 License.



   

 

9 

 

litter lignin content in decomposition publications, and this can be used as an initial proportion value for the slow-305 
decomposing litter pool (i.e.: p2). Since 

p1 + p2 = 1,                                                                                                                                                                      (7) 

then it is possible to estimate the p1 as the complementary value of p2.   

To give a practical example of what can be done with this database, we chose to fit these models using one of the entries 

where both the models were identifiable, and the initial proportion of litter lignin was available. Together with these 310 
models, we fit a simple one pool model for comparison. We used variable 2 (V2) from the Day2018 entry which 

corresponds to Simmondsia chinensis (Link) C. K. Schneid. leaf litter decomposed under full sunlight treatment in the 

field (Day et al., 2018). The initial proportion of lignin (p2) was 0.09. We used the Bias Corrected Akaike Information 

Criteria (AICc) to assess model fit (Shumway and Stoffer, 2017).  

3 Results 315 

3.1 Data overview 

 
Figure 2: GAI map generated using data from WorldClim 2 database.  Hyper-arid: 0 - 0.03. Arid: 0.03 - 0.2. Semi-arid: 0.2 - 

0.5. Dry sub-humid: 0.5 - 0.65. Humid: 0.65<. Green points represent study sites in the aridec database. 

The 184 studies in the database included data for 212 unique study sites around the world. Twenty-four of these sites were 

repeated in two or more studies. According to the GAI (), ~3.6% of sites were classified as hyper-arid (0 - 0.05), ~35.9% 

as arid (0.05 - 0.2), ~43% as semi-arid (0.2 - 0.5), ~6% as dry sub-humid (0.5 - 0.65), and ~12% as humid (0.65<). We 320 
recognize humid sites do not classify as aridlands, but we included them nonetheless because these sites had marked dry 

seasons according to the original publications. A total of 33 countries were represented in our database. Top-five countries 

with the biggest amount of study sites were China (58 sites), USA (49 sites), Argentina (32 sites), Israel (22 sites) and 

Brazil (12 sites). Most sites in the database correspond to arid regions were mean annual temperatures are above zero 

degrees Celsius, with a very low representativity of colder regions (Fig. 3) 325 
Out of the 184 database entries, we retrieved 1752 series of litter mass loss over time. The oldest publication in the 

database is from 1975 and the newest from 2021, and there has been a considerable growth in the number of publications 

per year (Fig. 4a). Study duration in the database ranged from 18 days to 10 years, with a median of 365 and a mean of 

430 days (Fig. 4b). The number of sample harvests from the field went from 2 to 23, with a mean of ~6 and a median of 

5 (Fig. 4c). Sampling frequency ranged from 0.08 to 11.1 samples per month, with a median of 0.4 and a mean of 0.8 330 
samples per month (Fig 3d). Elevation at the study sites varied from -375 to 4000 m a.s.l., with median and mean values 

of 557 and ~811 m a.s.l., respectively (Fig. 4e). Mean annual temperature ranged from -0.45 to 29.5 °C at the study sites 

with a mean value of 14.9 °C and median of 15.6 °C (Fig. 4f). Mean annual precipitation in aridec ranged from 2 to 1700 

mm, with median and mean values of ~375 and ~494 mm, respectively (Fig. 4g). Out of all sites, 23 % were reported by 

the authors to be deserts, 17 % forests, 16 % agroecosystems, 12% grasslands, 10 % shrublands, 10 % steppes, 8 % 335 
savannas, 2 % coastal ecosystems, and 2 % urban sites (Fig. 4h).  
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Figure 3: Climate representativity of the aridec database. GAI plotted against Mean annual temperature (°C). WorldClim2 

points were generated via a random sampling of 6793 pixels in QGIS. All data comes from WorldClim2 database. Horizontal 

dashed lines represent the breaks in GAI between aridland categories: hyper-arid, 0 - 0.03; arid, 0.03 - 0.2; semi-arid, 0.2 - 0.5; 340 
dry sub-humid, 0.5 - 0.65; humid, 0.65<. 

3.2 Identifiability analysis 

Figure 5 shows results from the first identifiability analysis carried out on a subset of 30 entries. For the two-pool parallel 

model structure four parameter combinations were compared: a full three parameter model and three alternative models 

with one restricted parameter each. There were 30 points for the full model with 62.1 % of values below the collinearity 345 
index 𝛾 = 20 threshold, i.e.: almost 40 % of the models were not identifiable. For the models restricted to two parameters, 

95.6 % out of the 90 models compared were identifiable. When specifically looking at the model with a restricted p1 value, 

100 % of the models were identifiable. This was expected because usually the fewer the parameters to be estimated, the 

lower the collinearity in models.  

The two-pool series model structure analysis included: a full four parameter model and ten alternative models with one 350 
or two restricted parameters each. From a total of 25 full parameter models, 48 % were identifiable according to their 𝛾 

values. Out of 150 models with two restricted parameters, 94.7 % of models were identifiable, while for models with only 

one restricted parameter, 68.3 % of models were identifiable. When specifically checking for the collinearity index in 

models with a restricted p1 parameter, 84.6 % of them were identifiable. The non-identifiable values in this last case  
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 355 
Figure 4: aridec data overview including number of publications per year (a), study duration in days (b), number of sample 

harvests (c), study sampling frequency as number of samplings per month (d), study site altitude in m a.s.l. (e), mean annual 

temperature in °C (f), mean annual precipitation in mm (g), and number of studies per type of land cover (h). Dashed lines 

represent the mean and dotted lines represent the median in each panel. 

corresponded to four entries with four time points each. That means that 100% of models with >5 time points were 360 
identifiable for the restricted p1 model version. This highlights the importance of having longer time series available for 

modelling.   

The case of the two-pool model structure with feedback included: a full parameter model and 24 other model variants 

with one, two and three restricted parameters each. The analysis of 15 models with all five parameters showed 100 % of 

non-identifiable results. The results for the restricted model version with four parameters showed 100 % of non-365 
identifiable models out of 75 data points, while only 4.7 % of the 150 data points with three parameters gave 𝛾 values  
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Figure 5: Collinearity index (𝜸)  comparison for different model structures using entries from aridec. 𝜸  values were log10 

transformed and horizontal lines at log10 (20) denote the maximum value of 𝜸 for a model to be considered identifiable. Infinite 

𝜸 values were not plotted. Each panel shows data for a different model structure. The number of entries from the database used 

for each model structure is reported in Table 3. Each point represents 𝜸 for a model structure fitted for a specific data set with 

different parameter combinations. The color scale for data points shows the number of data points in each data set (i.e.: the 

number of sampling dates plus the initial date). Values with >8 time points were grouped for easier interpretation. The number 

of model variants fitted for each model structure and database entry were: n=30 for the two pool parallel model with all three 

parameters and n=90 with one restricted parameter (a); n=25 for the two pool series model with all four parameters, n=150 

with two restricted parameters, and n=100 with one restricted parameter (b); n=15 for the two pool model with feedback and 

all five parameters, n=150 with two and three restricted parameters, and n=75 with one restricted parameter (c); n=15 for the 

three pool parallel model with all five parameters, n=150 with two and three restricted parameters, and n=75 with one restricted 

parameter (d); n=5 for the three pool series model with all 7 parameters, n=250 with five restricted parameters, n=300 with 

four restricted parameters, n=230 with three restricted parameters, n= 115 with two restricted parameters, and n=35 with one 

restricted parameter (e). 

lower than 20. The analysis of the restricted model version with 2 estimated parameters generated 57.3 % of identifiable 

results out of 150 models.  

When testing for the three-pool parallel model structure, we used one full model with five parameters and 24 model 370 
variations comprising from two to four parameters each. None of the full model data points showed collinearity index 

values lower than 20. Out of the restricted four parameter models only 34.7 % of them could be identifiable. When we 

specifically looked at the models where either p1 or p2 were fixed, none of them were identifiable. Restricted models with 
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three parameters produced a 68 % of identifiable results. Further, restricted models that only had k values were not 

identifiable. Finally, 89.3 % of models restricted to two parameters were identifiable according to our analysis.  375 
The last model structure analyzed was the three-pool series structure which produced comparisons for models with all 

seven parameters, plus 118 other model variants with different restricted parameters. None of the models with all seven 

parameters were identifiable. Only 5.7 % of the models with six parameters were identifiable, none of which corresponded 

to the models were either p1 or p2 were fixed. Models restricted to five parameters produced 10.5% of identifiable results. 

Specifically looking at models with both fixed p1 and p2, 100 % of those were not identifiable. Restricting models to four 380 
parameters generated 28 % of results with 𝛾 > 20. Models with three estimated parameters produced 54.9 % of identifiable 

results. Lastly, 84.8 % of models restricted to only two parameters were identifiable.  

Because two-pool parallel and series models with a fixed p1 parameter showed the highest percentage of identifiable cases 

in this first analysis, we did a second test with the whole database for these models and for their respective full-parameter 

versions for comparison (Fig. 6). For the two-pool parallel model with the full set of parameters 58.7 % of entries were 385 
identifiable, whereas restricting the p1 parameter yielded 99.5 % of identifiable entries. For the more complex series 

models the percentages of identifiable entries were much lower, with only 20.1 % for the restricted version and none 

identifiable cases for the version with a full set of parameters. Clearly, restricting the number of parameters to be estimated 

decreases collinearity, but the results are highly variable and dependent on each particular data set.  

 390 

 
Figure 6: Collinearity index (γ) comparison for four different model structures using the entire database. The full parameter 

combination includes k1, k2, p1 and a12 (the latter only for the series model). The restricted parameter combination excludes 

p1. γ values were log10 transformed and horizontal lines at log10 (20) denote the maximum value of γ for a model to be considered 

identifiable. Infinite γ values were not plotted. Each panel shows data for a different model structure. Each point represents γ 

for a model structure fitted for a specific data set with different parameter combinations (n = 184, for each model structure). 

The color scale for data points shows the number of data points in each data set (i.e.: the number of sampling dates plus the 

initial date). Values with >8 time points were grouped for easier interpretation.  

3.3 Applied example 

The previous analysis of collinearity index (Fig. 6) shows that from the proposed model structures to be fitted, our data 

in most cases can be fitted to two pool parallel and series structure models with a restricted initial proportion of litter in 

pool 1, aside from single pool models. Figure 7 shows the results from the simulation of the dynamics of organic matter 395 
loss from leaf litter fitted from the Day2018 entry. The one-pool model showed how a single reservoir of organic matter 

from leaf litter decomposed at a k rate of 0.0142 month-1 (Fig. 7a). At the end of the almost three-year period the remaining 

percentage of total organic matter was 61.02 %. The two-pool parallel model showed a fast-decomposing organic matter 

pool with a k1 of 0.0158 month-1 (Fig. 7b). This pool went from representing 91 % of total organic matter to 52.4 % after 

almost three years. On the other hand, the slow-decomposing pool, which we defined as the initial lignin content of litter, 400 
had a value of k2 of 1.5 x 10-16 month-1. We defined this pool as 9 %, and it remained unchanged after two years, which 

was expected from a k2 of nearly zero. Lastly, the two-pool series model showed a fast-decomposing pool with a k1 of 

0.11 month-1 (Fig. 7c). This pool went from 91 % of total organic matter to 1.7 % at the end of the experiment. The slow-
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decomposing pool in this case had a k2 of 0.02 month-1. This model also had a transfer coefficient from the fast-

decomposing pool to the slow pool of 1 (i.e.: 100 % of organic matter in the fast pool that decomposed in a month 405 
transformed into more recalcitrant forms, adding to the slow-decomposing pool). Then, the slow decomposing pool went 

from 9 % at the start of the simulation to 54.08 % after almost three years. Judging by their AICc values, the three models 

were similarly supported by the data. 

  

 410 

 
Figure 7: Comparison of three different decomposition model structures fitted with time series of organic matter loss from the 

Day2018 entry: one pool model (a), two pool model with a parallel structure (b), two pool model with a series structure (c). 

AICc: Akaike Information Criteria, Bias Corrected.  

4 Discussion 415 

4.1 The aridec database 

The aridec database is a comprehensive database with a wide range of information on decomposition studies from 

aridlands worldwide, which includes litter mass loss data, litter traits and experimental design information. Our exhaustive 

bibliographic search gave us close to two hundred papers that fulfilled our criteria. Notably, we did not limit our work to 
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studies published in English: aridec includes also papers in Spanish, Portuguese, and Mandarin. This widens the scope of 420 
our work to achieve a more inclusive database. 

From a geographic perspective, study sites included in aridec cover most of the main aridlands of the world (Fig. 2). As 

expected, countries like China, USA, and Argentina, had the largest number of studies, which might be related to the 

extension of aridlands in these countries, since China has 6.07 x 106 km2 of drylands (Huang et al., 2019), and around 40% 

and 69% of USA and Argentina territories are considered as drylands, respectively (Verbist et al., 2010; White and 425 
Nackoney, 2003). In contrast, some of the biggest deserts in the world, such as the Sahara, the Kalahari, the Australian 

Outback, and the Arabian desert are underrepresented, if not absent, in our database. Future efforts should focus on this 

information void, and the aridec database will be available to include these coming studies in our framework. 

Study sites in the database represent a big part of the climate range where aridlands occur, from hyper arid deserts to dry 

sub-humid ecosystems (Fig. 2). Some of the study sites (~12%) were classified as humid according to the GAI. We chose 430 
to include them because those studies reported marked dry seasons at the study sites and focused on seasonal patterns of 

litter decomposition. The range of climatic variables such as mean annual temperature and precipitation, physical 

variables like altitude, along with land cover types are also very well represented in this database (Fig. 4). This wide 

representativity of climates in aridec is a crucial asset if the database is to be used to answer global-scale questions. 

Nonetheless, dry sub-humid lands but mainly hyper-arid deserts are the least represented in the database, suggesting more 435 
studies should be developed in these areas. Moreover, there is a void in the colder end of the climatic range of aridlands 

(Fig. 3). This might be related to the lack in aridec of sites of ecosystems like tundra where the GAI is mostly low, but a 

bibliographical search like ours could not retrieve the studies in those areas. There is clearly big room for expanding our 

database and increasing its potential applications.  

One of the advantages of the aridec database is that its files are compatible with R and, specifically, with the SoilR library 440 
(Sierra et al., 2012). In addition to the fact that this database is an open-source and open-code project, there is huge 

potential for broadening the extent of the information in aridec and for developing code to work with it. Nonetheless we 

should mention that the formats included in the database are not R-exclusive and can be used with most commonly 

available software. YAML files can be read and edited from any text processor and CSV files can also be opened with 

any spreadsheet software. Although statistical analysis on R scripts cannot be used elsewhere, raw data itself can be freely 445 
processed with any statistical software. 

The aridec database can be used on its own, but we recommend complementing our information with other publicly 

available databases to expand the application possibilities. Metadata are not always fully reported in publications, so it is 

possible to fill these gaps with climate and altitude data from databases like NASA Prediction of Worldwide Energy 

Resources (POWER; NASA Langley Research Center (LaRC)). Leaf litter traits are a big part of the database that are 450 
sometimes poorly reported in publications. A general source of litter traits data can be obtained upon request from the 

TRY database (Kattge et al., 2020). Another more specific source of information is the NODdb where nodulating-N-fixing 

plant genera are detailed (Tedersoo et al., 2018).  

4.2 Model fitting within aridec 

Based on our collinearity analyses (Fig. 5 and 6), we suggest that before fitting any models to our data it is crucial to 455 
check the identifiability of the parameters with each database entry. We assume that all entries can be fitted to a one-pool 

model since there is only one parameter to estimate. As for the more complex models, the situation is highly dependent 

on which data entry is being used. For instance, although most entries could be used to fit two-pool models with parallel 

and series structures, there are some exceptions. Moreover, in most cases fitting these models is only possible by 

restricting the parameters estimated to only decomposition constants and transfer coefficients. We suggest restricting 460 
models to these parameters because it is more likely to find data on initial proportion of lignin or cellulose to be used as 

proxies for parameters p1 or p2. Not only might they be more difficult to find in the literature but estimating values for 

decomposition constants and transfer coefficients might be altogether a better use of this database. Further, we recognize 

that for some specific combinations of parameters and data sets the more complex models might be identifiable (data 

points below the log10 (γ=20); Fig. 5). Besides collinearity, the number of degrees of freedom will restrict which models 465 
can be fitted to the data so these two aspects should be considered together. We provide an R script in the database to test 

collinearity for individual data sets.  

Again, interconnection between datasets like aridec and others like TRY (Kattge et al., 2020) is a key workaround to the 

collinearity problem by providing data for parameter restriction (Sierra et al., 2015). We recognize limitations in data 

available from field studies ultimately limits our capability to model more complex models (Brun et al., 2001). Moving 470 
forward, new decomposition studies should consider making more measurements and including data on litter initial 

chemical quality. This will allow for the detection and modeling of finer-scaled dynamics of organic matter (see Appendix 

A).  

The applied example in Fig. 7 serves as a glimpse of the potential of this database. Choosing which model to fit with 

decomposition data is not a minor question. For instance, none of the three models was supported as the best model from 475 
their AICc, which suggests they all must be considered when making conclusions from this simulation (Anderson and 

Burnham, 2004). Depending on our input data one could end up choosing different model structures from their AICc 
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values. Nonetheless, ecological theory may come into play here instead of applying purely statistical reasoning. As has 

been pointed out recently, litter decomposition is not as much a process of “what is lost” but more of “what is left” 

(Prescott and Vesterdal, 2021). A balance between statistical fit and theoretical support should be found when choosing 480 
which model is best for each study case.  

The aridec database is available for open access and download at github.com/AgustinSarquis/aridec (Sarquis et al., 2022). 

Our hope is that newer studies on dryland litter decomposition will be added to the database by new collaborators (see 

Appendix A). It is important to follow our user guidelines to ensure consistency, all of which are available in the database 

itself. File templates for uploading new entries to the database are given and further details can be found in them. Addi-485 
tionally, users will find in the database a README file, scripts to test file consistency and many examples on how to 

apply functions and to fit models using R code.  

To our knowledge, the aridec database is unique. Other databases that focus on land C studies include the Soil Incubation 

Database (SIDb; Schädel et al., 2020); a peatland productivity and decomposition parameter database compiled by Natural 

Resources Canada (Bona et al., 2018); and the Chilean Soil Organic Carbon Database (CHLSOC; Pfeiffer et al., 2020). 490 
Although they all intend to assess questions related to C budgets in terrestrial ecosystems to some extent, not all of them 

present decomposition data (i.e.: Pfeiffer et al., 2020). Moreover, only SIDb (Schädel et al., 2020) and aridec contain time 

series of organic matter loss. This is a unique asset that allows for future studies to make new assessments of 

decomposition without having to worry about inconsistencies in the calculation of k parameters. Finally, none of these 

other databases is centered around plant litter decomposition in aridlands like aridec.   495 
The extent of the information included in aridec in addition to its open-science approach makes it a great platform for 

future collaborative efforts in the field of aridland biogeochemistry. In this sense, the main purpose of this database is to 

further our understanding of C dynamics at the earth system level. Complete datasets like aridec are necessary to test 

which model structures and parameters best explain decomposition processes and to help develop more realistic 

representations of the global C cycle in drylands (Luo et al., 2016). A potential application of our database is to combine 500 
ecological data with climatic data in Earth System Models, which is a promising framework to assess future global change 

stresses and their effects on the biosphere (Bonan and Doney, 2018). 

APPENDIX A 

Recommendations for future decomposition field studies 

Compiling published studies for the database led us to come up with a set of recommendations that scientists working on 505 
field decomposition studies may take into consideration if order to incorporate future entries in aridec.  

-  Coordinates: From the database, 7.6 % of entries had errors in their site coordinates and 8.7 % had no coordinates at 

all. That means that for 16.3 % of entries we had to either look for coordinates in other publications or search for the 

approximate location on Google Earth. Exact coordinates are a must for a study to be incorporated in geospatially explicit 

databases. Since nearly half of the problematic entries corresponded to typographic errors, we recommend authors and 510 
reviewers to check for the correctness of coordinates. Further, we suggest providing coordinates as exact as possible and 

to avoid using vaguely broad coordinates (e.g., reporting coordinates of the closest town to the study site).  

- Soil classification: Out of all entries only 29.3 % reported soil taxonomy from the study site correctly. An additional 

7.1 % of entries provided a classification for the soil, but they did not specify the classification system they used (i.e.  

FAO, WRB, or USDA). This is important because names of soil taxa are not always exclusive to a single classification 515 
system and their definitions are most unlikely interchangeable (Hughes et al., 2017). For the most part of studies this 

information might not be available, but for those where it is we suggest reporting it. Otherwise, making inference from 

soil types would be impossible.  

- Mesh transmittance: Only 13.6 % of entries in aridec had measured the light transmittance of the mesh they used to 

construct litter bags. Light interception by mesh can be very high: as much as 50% of total radiation, photosynthetically 520 
active radiation, or ultra-violet radiation, as seen in our database. Considering the established importance of sunlight as a 

decomposition driver in aridland ecosystems (Austin et al., 2016), studies with mesh materials that block a significant 

proportion of light might be inducing unwanted effects, and underestimating effects of photodegradation. We recommend, 

if possible, choosing high-transmittance materials (the highest in our database has a 95 % transmittance of total radiation), 

measuring mesh transmittance and reporting these values in the manuscript.  525 

- Sampling dates: The matter of choosing when to pick up samples from the field is complex. Ideally, the total amount of 

sampling dates and the amount of time between those dates should only depend on the hypothesis. The reality is that 

logistics has a huge impact on what scientists do, especially for field ecological studies. How researchers chose to set 

their sampling dates will determine the scale of the patterns that they will be able to detect from their experiments. For 

example, in some aridlands where decomposition is very slow, litter might take years to fully decompose, and short 530 
experiments are not able to capture this part of the process. Most of the studies in aridec lasted around a year, with only 
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a few studies lasting longer (Fig. 4b). Further, in some systems leaching can have a big impact during the first days to 

weeks of decomposition, and more frequent sampling at the beginning of the experiment may allow to detect this. In our 

database, most studies made measurements less than once a month (Fig. 4d), meaning that only monthly to yearly 

processes could be detected. These limitations extrapolate to modelling challenges: it is not possible to fit data to models 535 
that represent patterns that went undetected due to the study design. To accurately estimate decomposition rates (k), it is 

thought that litter at the last sampling date needs to have lost at least 50% of mass. As such, this suggests that the number 

of samplings and extension in time of the study should reflect these goals. We suggest that researchers are aware of all 

these issues, and that also they have enough pickups to actually be able to calculate slopes of the relationships, which 

increases enormously the power of inference.  540 

- Corrections of mass loss measurements: After collection from the field, samples in most cases carry with them moisture 

and inorganic matter from the site. This of course can underestimate measurements of litter mass loss. Once in the 

laboratory, samples should be cleaned of any extraneous material and their moisture content measured. After this, a portion 

of each sample should be used for quantifying the proportion of ashes (Harmon et al., 1999). This should be done as well 

for samples that were not taken to the field and are used for measurements of initial litter traits. All mass loss analysis 545 
should be done on an oven-dried ash-free basis.  

- Time series: A large number of studies could not be included in aridec because they only published decomposition rates. 

As much as this is a common practice, it limits the possibilities for incorporation into databases like ours and for further 

analysis that might need temporal dynamics data as input. We suggest not only providing averaged values of mass loss 

over time, but also raw data as supplemental material. This helps bridge the reproducibility gap in ecological studies and 550 
represents a step forward to an Open Science approach (Hampton et al., 2015). 

- Initial litter quality: The characterization of litter chemical and physical traits at the beginning of experiments is an 

important tool for answering research-specific questions of decomposition studies. However, from our results it was 

evident that these initial litter traits are also useful to decrease model collinearity (Fig. 6). Particularly, the initial content 

of litter components that constitute a big part of total mass like cellulose, acid detergent lignin or water-soluble sugars 555 
can be used as proxies for the initial proportion of litter mass in pools of different decomposition rates. Unfortunately, not 

even half of the studies in aridec reported initial lignin content for each litter type. We managed to complete up to 48 % 

of lignin content data by averaging across database entries of the same species and by requesting data from TRY database. 

To our surprise, we only found lignin values for 3 out of 236 litter types that we searched in TRY database. This leads us 

to suggest that not only should authors measure and report these characteristics of interest, but they should also contribute 560 
their data to open access databases from which other scientists can benefit. 

Data availability 

Version 1.0.1 of aridec is publicly available at https://doi.org/10.5281/zenodo.6025969 (Sarquis et al., 2022). Documentation 

of the project and the R package are presented on the project’s website (https://github.com/AgustinSarquis/aridec, last access: 9 

February 2022). The database is open for reuse, and the usage license follows the GPL-3 license 565 
(https://opensource.org/licenses/GPL-3.0, last access: 9 February 2022). When using the database or R package, users should 

cite this definition publication and consider citing individual studies (publication or dataset). 

Code availability 

All scripts necessary to obtain figures in this publication are included in the database inside the “scripts” folder.  

Conclusions 570 

The aridec database is a comprehensive database with a wide range of information on decomposition studies from 

aridlands worldwide. Study sites included in aridec cover most of the main aridlands of the world and represent well the 

range of climatic conditions that characterize aridlands. We found that although many studies have been conducted in arid 

lands, there is low representativity in cold arid regions, where new studies should be performed to obtain a more 

comprehensive understanding of decomposition in arid lands worldwide.  575 
Our identifiability analysis showed that the information content in litter decomposition studies can only inform simple 

models with one or two pools. More complex models can be obtained for datasets with multiple data points, and a well 

characterized initial litter mass quality (such as lignin or cellulose content), which will result in low collinearity index 

values and will allow for enough degrees of freedom.  
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One of the best assets of the aridec database is that its files are compatible with R and the SoilR package, making 580 
collaborative work more direct and approachable. Although our application suggestions are based on the use of the SoilR 

package, we recognize that other approaches might be suitable for the use of this database.  

To our knowledge, the aridec database is unique and the extent of the information included here in addition to its open-

science approach makes it a great platform for future collaborative efforts in the field of aridland biogeochemistry. 
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