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Abstract. This study proposes a comprehensive benchmark dataset for streamflow forecasting, WaterBench-Iowa, that 

follows FAIR data principles that is prepared with a focus on convenience for utilizing in data-driven and machine learning 

studies, and provides benchmark performance for state-of-art deep learning architectures on the dataset for comparative 10 

analysis. By aggregating the datasets of streamflow, precipitation, watershed area, slope, soil types, and evapotranspiration 

from federal agencies and state organizations (i.e., NASA, NOAA, USGS, and Iowa Flood Center), we provided the 

WaterBench-Iowa for hourly streamflow forecast studies. This dataset has a high temporal and spatial resolution with rich 

metadata and relational information, which can be used for a variety of deep learning and machine learning research. We 

defined a sample benchmark task of predicting the hourly streamflow forecasting task for the next 120 hoursfive days for 15 

future comparative studies, and provided performance benchmarksbenchmark results on this task with sample linear 

regression and deep learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and S2S 

(Sequence-to-sequence). Our benchmark model results show a median NSE of 0.74 and a median KGE of 0.79 among 125 

watersheds for the 120-hr ahead streamflow prediction task. WaterBench-Iowa makes up for the lack of unified benchmarks 

in earth science research, and can be accessed at GitHub https://github.com/uihilab/WaterBench or Zenodo 20 

https://doi.org/10.5281/zenodo.7011838. and can be accessed at Zenodo https://doi.org/10.5281/zenodo.7087806.  

1 Introduction 

Deep learning, a set of artificial neural networks (ANN) based algorithms for supervised and unsupervised modeling, has been 

widely used and recognized as a powerful approach within many scientific disciplines for technological and predictive progress 

(Goodfellow et al., 2016). As conventional machine learning techniques were deemed limited in learning the representations 25 

of high-dimensional datasets from their raw form, by providing universal approximator models (Cybenko, 1989; Hornik et al., 

1989; Leshno et al., 1993), deep neural networks increased scientists' ability to model both linear and non-linear problems 

without time-intensive data engineering processes by domain experts (LeCun et al., 2015). Deep learning's predictive modeling 

capabilities have led to improvements in various fields, including image recognition and synthesis (Demiray et al., 2021), 

speech recognition, language modeling, and time-series prediction. 30 

https://doi.org/10.5281/zenodo.7087806
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Flooding is a significant concern for many areas in the world as it is on an upward trend due to climate change. The 1998 

Bangladesh flood, the Iowa flood of 2008, and the 2013 North India floods show how catastrophic and both economically and 

psychologically devastating floods can be for populations in respective regions. In order to maximize the preparedness for 

floods and minimize their effects after the disaster (Yildirim and Demir, 2021), weather and flood forecasting stands as a 

perennial research interest for hydrologists and data scientists. Streamflow prediction and runoff modeling are research efforts 35 

where the water from the land or channel over time is being modeled and forecasted using previous data points for a location 

or nearby locations with similar characteristics. Although this effort is conventionally carried out with physically based models 

that require extensive computational (Agliamzanov et al., 2020) and data resources, it is critical for flood mitigation and 

decision support (Xu et al., 2020). 

Being a time-series prediction task, in essence, flood forecasting takes advantage of the practicality and efficacy that deep 40 

learning brings to predictive modeling. Both time-series adaptations of deep learning models intended for natural language 

processing, and time-series focused deep neural network implementations make this possible by proposing methodologies that 

put the sequential nature of time-series datasets into good use. Recurrent neural network (RNN) architectures such as Long 

short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) and Gated recurrent unit (GRU) networks (Chung 

et al., 2014), and Attention based sequence-to-sequence networks (Vaswani et al., 2017) are pronounced starting point for deep 45 

neural network architectures for most time-series forecasting tasks. 

Supervised learning, whether it be deep or not, is the most common form of machine learning (LeCun et al., 2015), and 

supervised learning tasks, such as flood forecasting, need a dataset of previously recorded or labeled entries for the task. That 

dataset typically consists of X and y values where X values are the input that the model expects, and y values are the output 

values the model returns. A supervised learning model is trained using a loss function that measures the similarity or difference 50 

of the y values from the dataset (actual ys) and the outputs of the model (predicted ys). During a typical training process, 

predicted ys get closer to the actual ys in time, hence the name training. As a quintessential part of any supervised learning 

task, training neural network models on established datasets is common among deep learning practitioners and researchers 

(Goodfellow et al., 2016). For most tasks that deep learning researchers tackle today, there are vast amounts of benchmark 

datasets available freely for research. While computer vision datasets such as Imagenet (Deng et al., 2009), Ms-celeb-1m (Guo 55 

et al., 2016), Adobe-240fps (Su et al., 2017), and Vimeo-90K (Xue et al., 2019) and similarly time-series datasets namely, 

automobile parts demand dataset Parts (Seeger et al., 2016), electricity and traffic (Yu et al., 2016) have been widely used to 

test proposed neural network architectures, to the best of our knowledge. There are not many specific datasets that are published 

for geoscience studies (Ebert-Uphoff et al., 2017) and specifically for flood and streamflow forecasting. 

The number of studies in hydrology and water resources, and particularly in flood forecasting that employ deep learning, has 60 

been gaining interest in the last several years (Sit et al., 2020). Flood forecasting studies in the literature, due to the 

aforementioned sequential nature, have vastly employed RNNs and LSTMs. Kratzert et al. (2018) utilize LSTM networks for 

daily runoff prediction using meteorological datasets. Furthermore, Kratzert et al. (2019) applied a similar approach for 

ungauged US locations. Bai et al. (2019) incorporate a stack autoencoder with LSTM for daily streamflow measurements from 
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data for a week. Xiang et al. (2020) predict the next 24-hours of hourly streamflow rate by utilizing an encoder-decoder 65 

sequence-to-sequence neural network that also uses rainfall products. Xiang and Demir (2020), moreover, extend their study 

and develop a model that forecasts the hourly streamflow rate for the next five days using three days of historic data. They 

also incorporate upstream sensors into their proposed network. Using the same dataset, Xiang et al. (2021), explore the 

generalization of sequence-to-sequence encoder-decoder networks in flood forecasting. Sit and Demir (2019) predict hourly 

sensor measurements for 24 hours using data from the upstream sensor network and historic stage height measurements. And 70 

finally Sit et al. (2021a), utilize graph neural networks for streamflow forecasting for a small watershed in Iowa. To sum up, 

deep learning models such as LSTM have been used in meteorology and hydrology studies of soil moisture modeling (Fang 

et al., 2017), water table depth prediction (Zhang et al., 2018), rainfall-runoff modeling (Hu et al., 2018; Kratzert et al., 2018), 

streamflow forecasting (Xiang et al., 2020), etc. As is presented by perspective studies (Reichstein et al. 2019), deep learning 

models such as LSTM can extract spatial-temporal features automatically to gain further process understanding of Earth system 75 

science problems. Therefore, we pay great attention to the application of LSTM and its variant models in this research. 

Most of the studies mentioned here acquire several raw data products, whether in terms of rainfall measurements, physical 

features of the studied area, or stage height/discharge measurements, from authorities and build their own dataset benefiting 

from their expertise in the area. There are several datasets and benchmarks in other earth science studies, i.e., air quality 

forecast dataset, 3D cloud detection dataset, and LANL earthquake prediction dataset. One of the early user-friendly datasets 80 

in earth science is the Beijing PM2.5 Data. It was published in 2017, and it includes the hourly air quality PM2.5 data from 

the U.S. Embassy in Beijing and meteorological data from Beijing Capital International Airport. After the dataset have 

released, researchers developed different novel machine learning and deep learning models, including support vector machines 

(Zhu et al., 2018, Liu et al., 2019), recurrent neural networks (Athira et al., 2018), attention-based LSTM (Li et al., 2019), 

interpretable deep learning (Guo et al., 2018), hybrid deep learning (Du et al., 2018), convolutional networks (Tao et al., 2019), 85 

and stacked LSTM (Sagheer and Kotb, 2019) on this specific dataset. This dataset solves the difficulty of data acquisition and 

does not require knowledge of the domain of meteorology.While knowledge of the application domain is essential to find 

scientifically robust ways to prepare the input data and to interpret the results of machine learning models, such knowledge is 

not always accessible to deep learning experts. If there are well-defined benchmark datasets with a clear description of the 

machine learning task to solve and have well-defined and domain-science informed evaluation metrics, then it becomes 90 

possible for non-domain experts to solve such challenges and introduce novel machine learning methods to the field. 

Furthermore, these papers used the same dataset, and therefore, the results are comparable. Thus, scientists could focus more 

on modeling and improving on the basis of existing papers rather than collecting their own datasets. A benchmark in hydrology 

will no doubt enhance the application and development speed of deep learning studies in the water resources field. 

Scientific advancement, intrinsically, is supposed to be cumulative, and in order to have better generalizedFor improved 95 

generic deep learning-based flood forecasting models, scientists need to build and improvemust expand on what their fellow 

researchers have done. We believe that previous work, and this could onlycan be done by usingwith the same testing set 

up,setup and a common testingevaluation mechanism that is most directly achieved by using the same dataset for the same 
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region. There are some studies in the literature of hydrology in limited numbers that construct their neural network architecture 

around the CAMELS dataset (Newman et al., 2014). CAMELS is a vast dataset that includes meteorological and observed 100 

streamflow data points for the United States, albeit not in an easy-to-use and ideal format for deep learning research. It contains 

671 catchments in the contiguous US that are minimally impacted by human activities. It includes features such as topography, 

climate, streamflow, land cover, soil, and geology on a watershed scale, and the hydrometeorological time-series data ranges 

from 1980 to 2014 on a daily basis. The data is generated from different sources, including Daymet, NLDAS, and Maurer. 

CAMELS aggregated these datasets at the watershed level. The researchers also did the model simulation using physically-105 

based models such as the NWS model, and SNOW-17/SAC-SMA; however these modeling results are not shared as a 

benchmark. Even though there is a dataset that could be used for predictive deep learning rainfall-runoff modeling, there is 

still a lack of accessible datasets for benchmarking purposes (Masley et al., 2020). There remains a need for a dataset that is 

more convenient to use in deep learning research given that most of the deep learning researchers are not domain experts. The 

limited usage of CAMELS in the literature also predicates the challenges the CAMELS dataset presents for deep learning 110 

research. 

Another dataset for flood forecasting is FlowDB (Godfried et al., 2020). Unlike CAMELS, there are not many studies that 

report their performance over FlowDB yet as the dataset is recently published. FlowDB is an hourly precipitation and river 

flow dataset that also includes a subset dataset for flash floods. The subset dataset includes injury costs and damage estimations 

for flash flood events. FlowDB gathers river flow data from the USGS and precipitation data from many agencies, including 115 

the USGS, NOAA, and ASOS. Additionally, the data FlowDB provides regarding flash floods uses NSSL Flash by NOAA. 

This study proposes a flood forecasting dataset that is prepared with a focus on convenience for utilizing in data-driven and 

machine learning studies and provides benchmark performance for state-of-art deep learning architectures on the dataset for 

comparative analysis. Our dataset follows FAIR data principles, (Wilkinson et al., 2016), which means it is findable and 

accessible through DOI, and the data is richly described with references. WaterBench provides data from 125 catchments in 120 

the state of Iowa. The precipitation time-series data ranges from October 2011 to September 2018 along with catchment-based 

features such as topography, soil type, and slopes. Even though the dataset was designed in a way to eliminate most of the 

preprocessing and data engineering tasks out of the way for machine learning applications and research, it could be used in 

other studies with similar goals, such as physically based modeling. Similarly, the dataset could be used by combining it with 

other benchmark datasets such as IowaRain (Sit et al., 2021b) utilizing cloud-based rainfall products (Seo et al., 2019). 125 

WaterBench is different from CAMELS with a higher temporal resolution. In addition, it focuses on the state of Iowa, and 

many large catchments in WaterBench contain multiple USGS gauges, which helps to better represent the river structure, and 

upstream-downstream relations in deep learning algorithms. The rest of this paper is structured as follows; the dataset 

preparation phase and methodology employed in that phase are discussed in section 2. Section 3 gives a list of tasks that could 

be tackled using this dataset and presents the performance of several neural network implementations in flood forecasting 130 

tasks. In the last section, conclusions are discussed. 
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2 Methodology and Dataset 

2.1. Study Area 

The State of Iowa is located in the Midwest of the United States. It has abundant and diversified water resources with 71,655 

miles of rivers and streams from border to border (Iowa DNR, 2004). In 2008, the Eastern Iowa was devastated with flooding 135 

which caused over $6 billion in property losses. Streamflow monitoring and forecasting are consequently critical for Iowa for 

better water resources and disaster management. In addition, agricultural-based activities in Iowa have a low pavement rate 

with limited human influence, which makes it a suitable area for rainfall-runoff studies. 

 

Figure 1. The location of 125 USGS gauges in the State of Iowa for upstream sub-basins (green dot) and large downstream basins 140 
(red dot). 

The United States Geological Survey (USGS) has over a hundred streamflow gauges in the state of Iowa for monitoring the 

streamflow rate in different streams. The measurements from the USGS are typically recorded at 15- to 60- minute intervals 

in Iowa. Due to the site maintenance or shutdowns, the coverage of the USGS streamflow gauges changes over the years. In 
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this dataset, we selected all USGS gauges in the State of Iowa with available data from October 1st, 2011 (the water year 2012) 145 

to September 30th, 2018 (the water year 2018). 

As shown in Figure 1, red dots are located at the outlets of larger basins with multiple USGS gauges, which are divided into 

several smaller upstream sub-basins. The green dots are located at the outlets of the most upstream sub-basins. Thus, 

considering the connectivity of the streams, the relationship of these gauges in one watershed can be represented as a tree 

structure.  150 

2.2. Dataset Features  

WaterBench includes detailed metadata and time-series features for each catchment. These datasets are available in .csv format 

for each catchment. The details of the datasets with data source, type, resolution and units are shown in Table 1. The statistics 

of the data, including the watershed size, concentration-time (the longest streamflow path in the catchment), slope, and four 

soil types, are shown in Table 2 and Figure 2. For each catchment, we provide static data (area, slope, travel time, etc.) as well 155 

as time-series for streamflow, precipitation, and ET. 

 

Table 1. The details of datasets with data source, type, resolution and units 

Datasets Data Type Sources Resolution Unit 

Spatial Temporal  

Area GIS shapefile IFC (Krajewski et 

al., 2017) 

Station based constant km2 

Slope Hillslope data Hillslope based constant % 

Travel time Reach shapefile Station based constant hour 

ET Estimation from historical 

data 

State based monthly mm / 

month 

Soil types Soil data NASA (Post et al., 

2000) 

0.5-degree grid constant % 

 

Streamflow Rate USGS gage measurement  USGS Station based 15-60 mins ft3/s 

Precipitation Stage IV multi-sensor 

measurement 

NOAA (Lin, 2011) 4km grid hourly mm/hr 

 

Table 2. The minimum, maximum, median, and standard deviation (SD) of the watershed area, concentration time, average slope, 160 
and percentage of soil types including loam, silt, sandy clay loam, and silty clay loam among 125 USGS gauges in the State of Iowa.  

  Area 

(km2) 

Concentration 

Time (hr) 

Slope Loam Silt Sandy clay 

loam 

Silty clay 

loam 

Min 6 2 0.38% 0% 0% 0% 0% 

Max 36,453 315 4.32% 98% 100% 84% 93% 
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Mean 5,405 77 1.97% 33% 31% 18% 18% 

Median 1,918 53 1.80% 33% 21% 4% 7% 

SD 8,320 68 0.80% 28% 30% 24% 23% 

 

 

 

Figure 2. Histograms of the catchment area (a), concentration time (b), average slope (c), and percentage of soil types including loam 165 
(d), silt (e), sandy clay loam (f), and silty clay loam (g) for 125 USGS gauges in the State of Iowa.  

Table 3. Summary statistics for precipitation and streamflow among 125 catchments from water year 2012 to 2018. Missing rate as 

a limitation. 

  Annual Total 

Precipitation 

(mm) 

Max. Hourly 

Precipitation 

(mm) 

Annual Mean 

Streamflow (m3/s) 

Missing Rate of 

Precipitation 

(Raw Data) 

Missing Rate of 

Streamflow 

(Raw Data) 

Min 794 9.1 3 0.02% 0.69% 

Max 1,056 60.0 12,963 0.04% 33.14% 

Mean 952 24.8 1,926 0.02% 15.16% 

Median 961 22.2 608 0.02% 16.14% 

SD 57 10.3 2,864 0.01% 6.4% 

 

As it is shown in Table 3, all 125 catchments share similar precipitation ranges from 794 to 1056, with a small standard 170 

deviation of 57. Geologically, all the catchments are located in two HUC watersheds, the Upper Mississippi and Missouri, and 
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the study results may not be applicable to other regions in the U.S. However, the modeling algorithms and the neural network 

architectures normally apply to a broad spectrum of problems, and they would be useful in other regions. WaterBench-Iowa is 

also subject to a relatively high missing data rate for streamflow since the reliable hourly dataset is limited by the USGS for 

some of the watersheds in Iowa. In the following sections, we will discuss the details of specific datasets and features. 175 

2.2.1 Area 

In the water cycle, precipitation is the main driving force of the streamflow. Based on the 90m digital elevation model (DEM), 

only the precipitation in a certain area will contribute to a stream. Each measuring station has its corresponding area, which 

can be calculated from the watershed boundary shapefiles. Since the total precipitation amount is the product of precipitation 

intensity and area, in the same watersheds, upstream sub-basins typically have lower streamflow rates than the larger basins. 180 

In WaterBench, the boundary shapefiles of each watershed are obtained from the Iowa Flood Information System (IFIS), a 

system operated by the Iowa Flood Center (IFC). Moreover, the area is calculated from the shapefiles in the unit of square 

kilometers. Thus, the area contains one value per station, and it is available in the column of “area” in the 

“{station_id}_data.csv” files. 

2.2.2 Time of Concentration 185 

The time of concentration provides the dimension of stream length for a watershed. In WaterBench, the time of concentration 

is defined as the longest length over the velocity, which is the time the water concentrates from the most distant point from the 

watershed outlet. The velocity used in this study is a constant value of 0.75 m/s, which was found appropriate for Iowa 

catchments (Mandapaka et al., 2009; Mantilla et al., 2011), and has been successfully used in many hydrologic models (Fonley 

et al., 2016; Sloan et al., 2017). Thus, for a long and narrow watershed, it may have a small watershed area but a large time of 190 

concentration. In WaterBench, the time of concentration is obtained from the IFIS with the unit of hours. Thus, the time of 

concentration contains one value per station, and it is available in the column of “travel_time” in the “{station_id}_data.csv” 

files. 

2.2.3 Slope 

The slope is one of the topographic features that represents the slope gradient in percentage. A steep slope may cause a higher 195 

velocity and lower infiltration rate, which normally causes a larger streamflow rate during a precipitation event. The original 

file, hillslope map, is calculated by IFC (Sit et al., 2019), which split the land of Iowa into over 600,000 hydrologic units using 

the algorithm developed by Mantilla and Gupta (2005). In WaterBench, the average slope is calculated from the mean value 

of the hillslopes in each catchment (Gericke and Du, 2012). Thus, the slope is a constant value per watershed, and it is available 

in the column of “slope” in the “{station_id}_data.csv” files. 200 
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2.2.4 Soil Type 

Soil type is one of the topographic features that represents the proportions of 12 different soil types on the land. Normally, the 

sandy soil has the largest infiltration rate, and the clay has the least infiltration rate. The original file, global soil types, is 

available from NASA (Post et al., 2000). It is a 2-D map with a spatial resolution of 0.5 degrees. The soil type proportion is 

then calculated using the weighted average for each watershed. It needs attention that four dominant soil types, including the 205 

loam, silt, sandy clay loam, and silty clay loam, contribute to 99.91% of the area in Iowa. Thus, only these four soil types are 

considered in the dataset. The percentage of each soil type is constant in the time series dataset for each station in the columns 

of “loam”, “silt”, “sandy_clay_loam”, and “silty_clay_loam” in the “{station_id}_data.csv” files. 

2.2.5 Streamflow Rate 

The streamflow rate is a variable measured by the USGS in the unit of cubic feet per second. The data was acquired from the 210 

USGS National Water Information System. There are nearly 200 real-time streamflow measuring stations in Iowa. After 

removing the stations established after 2011 or permanently closed before 2018, a total of 125 stations are selected, as shown 

in Figure 1. For each station, streamflow data was aggregated to hourly values. The original data contains a few missing values 

due to station system failures or internet outages. For the stations located in the northern part of Iowa, the river may freeze and 

have no flow rate measurement over the winter, and all missing values were reported as -9999 by the USGS. In the dataset, 215 

each watershed has two columns, with the first column representing the timestamp from 2011/10/01 00:00 to 2018/9/30 23:00, 

and the second column representing the the streamflow values. Thus, the streamflow rate contains 61,368 values per station, 

and they are available in the column of “discharge” in the “{station_id}_data.csv” files. 

2.2.6 Precipitation Volume 

Many station-based and satellite datasets have been measuring precipitation over the years. After comparisons, it is found that 220 

NOAA’s Stage IV multi-sensor measurement is the most accurate (Seo et al., 2018) in the state of Iowa. The Stage IV multi-

sensor provides the hourly precipitation amount with a 4km-grid spatial resolution. The catchment level average precipitation 

is then calculated at each hour. Since there is no rainfall or snowfall most of the time, most precipitation values in the dataset 

are 0. In the dataset, we provide the hourly catchment-averaged precipitation data for each station from 2011/10/01 00:00 to 

2018/9/30 23:00. Thus, the precipitation data contains 61,368 values per station, and they are available in the column of 225 

“precipitation” in the “{station_id}_data.csv” files. 

2.2.7 Evapotranspiration (ET)  

ET represents the evaporation and plant transpiration from the land in the water cycle. It is one of the major losses of 

precipitated water. Since there is no high-resolution real-time ET dataset available, we used the monthly estimation from the 

historical measurement data in the past decades (Krajewski et al., 2017) as an empirical dataset. This is a monthly-based dataset 230 
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for the entire state of Iowa, and successfully captures the seasonal effects in the state of Iowa. In the dataset, we applied the 

ET value for each timestamp from 2011/10/01 00:00 to 2018/9/30 23:00. Thus, the ET data contains 61,368 values for all 

stations, and they are available in the column of “et” in the “{station_id}_data.csv” files. 

2.2.8 Watershed Relationship 

Since many USGS measurement gauges are in the same watershed, many catchments in WaterBench-Iowa are not independent, 235 

and a relationship tree is given in the “catchment_relationship.csv”. The csv file represents a disconnected directed graph with 

each row representing an edge. 63 out of 125 catchments have one or more upstream, as shown in the relationship, which are 

relatively large catchments. The remaining 62 catchments are specified as the very upstream catchments which have only one 

stream gage. Since these catchments have no overlapping area, the catchments in our dataset form a disconnected graph. Since 

the catchments have overlapping areas, the watershed ID 646 has the largest connected subgraph with 27 upstream catchments. 240 

With upstream-downstream relationships, WaterBench-Iowa supports the cutting-edge studies such as graph neural networks. 

3. Benchmark Tasks and Metrics 

In this section, we define a sample benchmark task of predicting the hourly streamflow for the next five days for future 

comparative studies. This is a task that simulates rainfall forecasts in real life like the future hourly floods at each hour as 

National Water Model does. At each hour t, we predict the streamflow for the next 5 days from hour t+1 to t+120 using all the 245 

data we can obtain at time t. In this task, we ignore the errors in the rainfall forecast, and use all the data including the topology 

data, past three days’ precipitation and streamflow data, and the future five days’ precipitation data as input, to predict the 

streamflow for the next 120 hours at the watershed outlet. Thus, we made 5-day predictions at each hour in the training and 

test datasets, and evaluated the results on different lead times from hour 1 to hour 120. This task is a typical regression modeling 

of time series data. Therefore, we suggest the traditional Ridge regression model and three deep learning models for modeling 250 

in this benchmark. Please refer to the recent studies for the detailed model structures such as LSTM (Kratzert et al., 2018), 

GRU (Gao et al., 2020) and S2S (Xiang & Demir, 2020). 

We take two separate approaches to tackle this problem. The first approach involves a separate deep learning model for each 

of the available watersheds, while the second one is to build a single large regional model that carries out the same task for all 

available watersheds. For this specific task, we selected the last water year as the test set, and the rest as the training set. We 255 

further formatted the original dataset into a ready-to-use structure for each watershed with four files named as train_x, train_y, 

test_x, test_y. Thus, a total of 500 files for 125 watersheds are provided for this specific task. Since general statistics such as 

mean squared error (MSE) and root mean squared error (RMSE) are not dimensionless, the metrics for this study are Nash-

Sutcliffe efficiency (NSE) and Kling-Gupta efficiency (KGE). They are both dimensionless statistics that are widely used in 

hydrological studies, and can be used to compare between watersheds. Both NSE and KGE range from negative infinity to 1, 260 

and the closer to 1 the better. The equations 1 and 2 for NSE and KGE are shown below: 
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NSE = 1 −
∑ (𝑌𝑖−Ŷ𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖−𝜇𝑌)
2𝑛

𝑖=1

        Eq. 1 

KGE = 1 − √(𝑟 − 1)2 + (
𝜎Ŷ

𝜎𝑌
− 1)2 + (

𝜇Ŷ

𝜇𝑌
− 1)2    Eq. 2 

where: Y𝑖 is the observation at the time i; Ŷ𝑖 is the model result at the time i; n is the total number of observations; r is the 

Pearson correlation coefficient; σ is the standard deviation; μ is the mean; 𝜎𝑌 is the standard deviation of all the observations; 265 

𝜎Ŷ is the standard deviation of model forecasts; 𝜇Y is the mean of all the observations; and 𝜇Ŷ is the mean of all model forecasts. 

Both NSE and KGE are dimensionless and in the range of (-∞,1]. For both metrics, the closer to 1, better the model performs. 

We calculate the NSE and KGE based on the test year for each prediction hour. Since we predict the streamflow for the next 

120 hours at each hour, there will be 120 different NSE and KGE values for different hours at each watershed for the lead time 

from 1 to 120 hours. It should be noted that since the watersheds here are not filtered, it is possible for some watersheds to be 270 

greatly affected by human activities, including mitigation, construction, irrigation, urban drainage, etc. activities in watersheds. 

Thus, a median value of all 125 watersheds is meaningful to report as a widely employed practice within other hydrology 

studies (Kratzert et al., 2018, Xiang et al., 2020). In addition, since the prediction accuracy typically decreases when the lead 

time increases, the median NSE and KGE of 125 stations at the 120-hr ahead predictions are the lowest. Thus, the 120-hr ahead 

prediction scores are the most important metric that can represent the overall model performance on this task.  275 

4. Benchmark Results and Discussion 

To provide baseline results over the sample benchmark task and two approaches defined in the previous section, we employed 

a linear regression model using Ridge regression, and three deep learning models using LSTM, GRU, and sequence-to-

sequence (S2S) network architectures. For the first approach, we considered each watershed independent and trained one 

model for each watershed. Thus, the relationship between the watersheds is not used in this benchmark. The median NSE and 280 

KGE scores among 125 watersheds at each hour are shown in Figure 3 and Table 4. As shown in the figure and the table, the 

Ridge regression has a high accuracy in the first 24 hours since the streamflow rates normally do not change too much in one 

day, and they are relatively easy to predict. The metrics for the medium-range show that the model using GRU has the best 

performance. The NSE and KGE histograms of GRU show that for most of the watersheds the GRU model performs well and 

only in a limited number of watersheds the GRU model give negative scores. The standard deviations show a relatively stable 285 

results in all prediction hours using deep learning models. However, the Ridge model shows higher standard deviations and 

lower model performance than deep learning models over 48 hours. 

 



 

12 

 

 

Figure 3. The median NSE and KGE among 125 watersheds in 125 different models at the prediction of the next 1 to 120 hours. 290 

Table 4. The median (standard deviation) NSE and KGE among 125 watersheds at the prediction hours 1, 6, 12, 24, 48, 72, 96, and 

120 in 125 different models. 

 NSE KGE 

Hour Ridge GRU LSTM S2S Ridge GRU LSTM S2S 

1 1(0.05) 0.85(0.49) 0.84(0.72) 0.91(0.2) 1(0.04) 0.88(0.34) 0.84(0.34) 0.77(0.21) 

6 0.97(0.56) 0.84(0.47) 0.82(0.7) 0.88(0.41) 0.97(0.23) 0.87(0.32) 0.84(0.33) 0.78(0.25) 

12 0.91(1.35) 0.83(0.48) 0.81(0.66) 0.84(0.57) 0.93(0.4) 0.86(0.31) 0.85(0.32) 0.76(0.29) 

24 0.81(2.44) 0.83(0.47) 0.79(0.61) 0.79(0.72) 0.85(0.58) 0.85(0.3) 0.85(0.3) 0.74(0.34) 

48 0.69(2.91) 0.8(0.46) 0.77(0.59) 0.76(0.9) 0.77(0.66) 0.83(0.28) 0.83(0.29) 0.75(0.38) 

72 0.62(2.89) 0.79(0.45) 0.76(0.65) 0.72(0.91) 0.74(0.66) 0.84(0.28) 0.82(0.3) 0.74(0.41) 

96 0.62(2.7) 0.76(0.43) 0.75(0.56) 0.69(0.95) 0.71(0.63) 0.82(0.28) 0.8(0.29) 0.74(0.42) 

120 0.6(2.6) 0.74(0.43) 0.74(0.51) 0.65(0.93) 0.69(0.62) 0.79(0.28) 0.79(0.3) 0.7(0.41) 
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Figure 4. Histogram of the GRU model performance. 295 

 

Figure 5. Cumulative probability curve of the NSE and KGE at the 120hr ahead predictions. 

Figure 5 shows the cumulative distribution of the NSE and KGE among the 125 catchments at the lead time of 120 hours in 

addition to the median value for all 125 catchments. The results suggest that there is a large standard deviation between 

catchments, and that negative NSE and KGE values occur in 10% of the catchments. These catchments with negative NSE or 300 

KGE values are small (Figure 7), so it is very challenging to predict the streamflow over five days. 

As for the second approach, we attempted to develop single regional models for all 125 watersheds since they share similar 

physical attributes. As shown in Figure 6, a single model on all 125 watersheds is possible with the physical features 
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including area, slope, travel time, and soil types using the customized NSE loss function (Xiang et al., 2021). Among four 

models, similar to the first approach, the performance of Ridge regression is hard to beat at first. Nevertheless, the deep 305 

learning model S2S starts to show a better performance starting the second day. Table 5 shows the detailed results of the 

regional model. Regional modeling using deep learning is more difficult as seen by the decline in model performance and 

greater standard deviations compared to the basin modeling results in Table 4.

 

Figure 6. The median NSE and KGE among 125 watersheds using one regional model at the prediction of the next 1 to 120 hours. 310 

 

Table 5. The median (standard deviation) NSE and KGE among 125 watersheds at the prediction hour 1, 6, 12, 24, 48, 72, 96, and 

120 using one regional model. 

 NSE KGE 

Hour Ridge GRU LSTM S2S Ridge GRU LSTM S2S 

1 1(0.1) 0.83(0.4) 0.81(0.48) 0.79(216.13) 1(0.1) 0.75(0.25) 0.8(0.39) 0.52(27.69) 

6 0.97(3.99) 0.83(0.45) 0.77(0.6) 0.72(155.71) 0.97(0.8) 0.77(0.24) 0.75(0.4) 0.48(23.37) 

12 0.91(16.86) 0.73(0.45) 0.65(0.79) 0.68(160.17) 0.93(1.84) 0.75(0.23) 0.68(0.42) 0.49(23.58) 

24 0.74(62.36) 0.58(0.47) 0.48(1.37) 0.65(165.67) 0.83(4.01) 0.67(0.25) 0.55(0.46) 0.5(23.82) 

48 0.48(189.98) 0.38(0.71) 0.24(2.91) 0.61(167.32) 0.67(7.84) 0.57(0.32) 0.46(0.6) 0.49(23.25) 

72 0.34(320.38) 0.29(0.88) 0.09(4.83) 0.58(171.55) 0.53(11.16) 0.5(0.36) 0.34(0.76) 0.51(23.11) 

96 0.28(448.45) 0.21(1.01) -0.04(6.83) 0.54(173.72) 0.44(14.2) 0.48(0.39) 0.23(0.91) 0.53(23.17) 

120 0.22(568) 0.15(1.23) -0.24(8.91) 0.49(178.42) 0.37(16.81) 0.43(0.45) 0.16(1.05) 0.51(23.22) 
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 315 

Figure 7. The distribution of the 120-hr ahead prediction using the best model in our benchmark (GRU for the single station). 

 

As shown in the results, there are two major limitations. First, the model efficiency is low on the first day. It is shown in Figure 

3 and Table 4 that the deep learning models do not show a higher accuracy in the first several hours compared to the Ridge 

model. Some hydrological studies have also shown that the basic persistence model (Streamflow t+n = Streamflow t) is hard-320 

to-beat for short-range predictions when n is smaller than 12 hours (Krajewski et al., 2020). Thus, it is hard to make both short-

range and medium-range predictions accurate in one model. The second limitation is the scale effect, where the large basins 

have better model performance on the streamflow forecast and the small basins are hard to predict. The results show that as 

watersheds get larger, the predictions become easier and better. This means the small watersheds, typically representing the 

middle and upper reaches, are harder to predict. Figure 7 shows the drainage area and 120-hr ahead prediction performance in 325 

NSE for 125 watersheds. The scale effect observed in our benchmark indicates the prediction in small watersheds is still a 

challenge. 

Although a lot of metadata is provided in our dataset, as a benchmark, our study does not consider complex pretreatment nor 

models with domain knowledge in hydrology. Some recent studies have shown that the moving average for smoothing, the 

consideration of time lag, the consideration of watershed upstream-downstream connections, and other deep learning model 330 

architectures may be effective for a better prediction. However, these studies are based on their own datasets, and the results 

cannot be directly compared. We encourage researchers to conduct comparisons based on the WaterBench-Iowa. 



 

16 

 

5. Conclusion 

In this study, by aggregating the datasets of watershed area, slope, soil types, streamflow, precipitation, and ET from NASA, 

NOAA, USGS, and IFC, we presented a dataset, namely WaterBench-Iowa, that is prepared for an hourly streamflow forecast 335 

task. This dataset has a high temporal resolution with abundant geographic and relational information, which can be used for 

a variety of deep learning and machine learning application research. We defined a sample streamflow forecasting task for the 

next 120 hours and provided example benchmark results on this task with a traditional linear and three custom deep learning 

models.  

WaterBench-Iowa is not filtered and thus represents an actual streamflow forecast problem as much as possible. Although the 340 

data is limited to the Midwest, we believe that any studies on this dataset could provide insights for other streamflow 

forecasting and rainfall-runoff modeling studies in other watersheds. With the open-source release of WaterBench-Iowa 

(https://github.com/uihilab/WaterBench), this work provides a comparable benchmark, which to some extent makes up for the 

lack of a unified benchmark in hydrological and water resources research. We highly encourage other researchers to use the 

WaterBench-Iowa in their hydrological modeling research studies. 345 

6. Data and Code Availability 

The data and codes that support this study are openly available in our open-source GitHub repository at 

https://github.com/uihilab/WaterBench (Demir et al., 2022a). Users can also access our dataset from 

https://doi.org/10.5281/zenodo.7011838 (Demir et al., 2022b).Zenodo at https://doi.org/10.5281/zenodo.7087806  (Demir et 

al., 2022a). The dataset covers the 125 catchments in Iowa, U.S. with seven different features, including precipitation, 350 

streamflow rate and ET with available data from October 1st, 2011 (the water year 2012) to September 30th, 2018 (the water 

year 2018). The original files of the dataset, metadata, and sample codes can be downloaded from archive files. Four 

different models, including Ridge, LSTM, GRU, S2S, used in our paper are provided with ready-to-run Python Jupyter 

Notebooks as well (Demir et al., 2022). The most recent code version can be found at https://github.com/uihilab/WaterBench 

(Demir et al., 2022b). It is welcome to send us feedback by filing an issue on the repository. 355 
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