

1 **Mapping long-term and high-resolution global gridded photosynthetically active**
2 **radiation using the ISCCP H-series cloud product and reanalysis data**

3 Wenjun Tang¹, Jun Qin², Kun Yang³, Yaozhi Jiang³, Weihao Pan¹

4 1. National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan
5 Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan
6 Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.

7 2. State Key Laboratory of Resources and Environmental Information System, Institute
8 of Geographic Sciences and Natural Resources Research, Chinese Academy of
9 Sciences, Beijing 100101, China.

10 3. Department of Earth System Science, Ministry of Education Key Laboratory for
11 Earth System Modeling, Institute for Global Change Studies, Tsinghua University,
12 Beijing 100084, China.

13

14

15 Corresponding author and address:

16 Dr. Wenjun Tang

17 Institute of Tibetan Plateau Research, Chinese Academy of Sciences
18 Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China

19 Email: tangwj@itpcas.ac.cn

20 Tel: +86-10-84097046

21 Fax: +86-10-84097079

22 **Abstract:** Photosynthetically active radiation (PAR) is a fundamental physiological
23 variable for research in the ecological, agricultural, and global change fields. In this
24 study, we produced a 35-year (1984–2018) high-resolution (3 h, 10 km) global gridded
25 PAR dataset using an effective physical-based model. The main inputs of the model
26 were the latest International Satellite Cloud Climatology Project (ISCCP) H-series
27 cloud products, MERRA-2 aerosol data, ERA5 surface routine variables, and MODIS
28 and CLARRA-2 albedo products. Our gridded PAR product was evaluated against
29 surface observations measured at seven experimental stations of the SURFace
30 RADiation budget network (SURFRAD), 42 experimental stations of the National
31 Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese
32 Ecosystem Research Network (CERN). Instantaneous PAR was validated against
33 SURFRAD and NEON data; mean bias errors (MBE) and root mean square errors
34 (RMSE) were, on average, 5.8 W m^{-2} and 44.9 W m^{-2} , respectively, and correlation
35 coefficient (R) was 0.94 at the 10 km scale. When upscaled to 30 km, the errors were
36 markedly reduced. Daily PAR was validated against SURFRAD, NEON, and CERN
37 data, and the RMSEs were 13.2 W m^{-2} , 13.1 W m^{-2} , and 19.6 W m^{-2} , respectively at the
38 10 km scale. The RMSEs were slightly reduced when upscaled to 30 km. Compared
39 with the well-known global satellite-based PAR product of the Earth's Radiant Energy
40 System (CERES), our PAR product was found to be a more accurate dataset with higher
41 resolution. This new dataset is now available
42 at <https://doi.org/10.11888/RemoteSen.tpdc.271909> (Tang, 2021).

43 **Keywords:** PAR; Dataset; High-resolution; Long-term

44 **1. Introduction**

45 Plants rely on chlorophyll to absorb solar radiation in the visible wavelength range
46 (400–700 nm) for photosynthesis (Huang et al., 2020), and sunlight in this band is
47 commonly referred to as photosynthetically active radiation (PAR). Thus, PAR is the
48 source of energy for biomass formation and may directly affect the growth,
49 development, yield, and product quality of vegetation (Zhang et al., 2014; Ren et al.,
50 2021), modulating energy exchange between Earth's surface and the atmosphere
51 (Zhang et al., 2021). Therefore, a high-quality PAR dataset is indispensable for studies
52 of ecosystems, agriculture, and global change (Frouin et al., 2018).

53 However, measurements of PAR are not routinely conducted at weather stations
54 or radiation stations. For example, PAR is not routinely observed at the Baseline
55 Surface Radiation Network (BSRN, Ohmura et al., 1998) or at the China
56 Meteorological Administration (CMA, Tang et al., 2013) weather/radiation stations.
57 Long-term PAR observations are only provided by a few ecological experimental
58 observation networks, such as the Chinese Ecosystem Research Network (CERN, Wang
59 et al., 2016), the AmeriFlux network (<https://ameriflux.lbl.gov/>), the SURFace
60 RADiation budget network (SURFRAD, <https://www.esrl.noaa.gov/gmd/grad/surfrad/>), and the National Ecological
61 Observatory Network (NEON, <https://www.neonscience.org/>). To compensate for the
62 lack of PAR observations, a number of methods have been developed over recent
63 decades to estimate PAR. These methods can be roughly divided into two categories:
64 station-based methods and satellite-based methods (Tang et al., 2017).

66 Station-based methods mainly estimate PAR using other available variables
67 measured at stations using empirical or physical methods. Empirical methods usually
68 use the observed PAR and other variables to build an empirical relationship to conduct

69 PAR estimation. One such method is the well-known power law equation, which
70 usually uses the cosine of the solar zenith angle and the clearness index as inputs. The
71 clearness index, defined as the ratio of the solar radiation at the surface to that at the top
72 of the atmosphere (TOA), roughly reflects the solar light attenuation degree caused by
73 clouds, aerosols, water vapor, and other atmospheric compositions. A number of such
74 empirical methods based on the power law equation have been developed in the last
75 two decades (Alados et al., 1996; Xia et al., 2008; Hu et al. 2010; Hu and Wang 2014;
76 Yu et al. 2015; Wang et al., 2015, 2016). In addition, artificial neural network (ANN)
77 methods have also been used to estimate PAR from surface solar radiation (SSR) and
78 other meteorological variables (e.g., air temperature, relative humidity, dew point,
79 water vapor pressure, and air pressure) in a variety of ecosystems in China (Wang et al.,
80 2016). Generally, the aforementioned empirical methods can work well when calibrated
81 with local PAR observations, but the parameters in these methods are station-dependent
82 and their performance at locations where observations are not available will deteriorate.

83 Physical methods of PAR estimation generally consider various attenuations in the
84 atmosphere through parameterization approximation to complicated radiative transfer
85 processes. For example, Gueymard (1989a, 1989b, 2008) developed three physical
86 methods for the estimation of PAR, but these only work under clear-sky conditions. To
87 obtain all-sky PAR, Qin et al. (2012) further extended these methods to cloudy skies by
88 importing the measurements of sunshine duration that are usually conducted at most
89 meteorological stations. Tang et al. (2013) used the PAR method of Qin et al. (2012) to
90 estimate the daily PAR at more than 700 CMA routine weather stations, and found its
91 accuracy was comparable to those of local calibrated methods. Nevertheless, the PAR
92 method of Qin et al. (2012) can only be used to estimate daily PAR, and strictly can
93 only be applied at weather stations where the observation of sunshine duration is

94 available.

95 Alternatively, satellite-based methods can be used to map spatially continuous
96 PAR, but compared to SSR, little attention has been paid to PAR estimation using
97 remote sensing data (Van Laake and Sanchez-Azofeifa, 2004; Liang et al., 2006). There
98 are a few algorithms for estimating PAR using satellite data, and these algorithms may
99 be grouped into two categories: methods based on look-up tables (LUTs) based and
100 parameterization methods.

101 LUT-based methods can circumvent complicated radiative transfer calculations
102 (Huang et al., 2019) to estimate PAR directly from the satellite's signal by searching
103 pre-calculated LUTs. Since first proposed by Pinker and Laszlo (1992), several similar
104 LUT-based methods (Liang et al., 2006; Zhang, et al., 2014; Huang, et al., 2016) have
105 emerged to estimate PAR from regional to global scales with different satellite sources.
106 However, LUT-based methods are more vulnerable to various uncertainties due to their
107 "black-box" nature, and they are also difficult to port across different satellite platforms.

108 In contrast, parameterization methods do not rely on satellite platforms.
109 Essentially, they comprise a simplification of the radiative transfer processes, and thus
110 require various land and atmospheric products from satellite retrievals as inputs to
111 estimate PAR. To some extent, the accuracy of these methods depends on the accuracy
112 of the input data. On the other hand, the uncertainty of parameterization methods comes
113 mainly from the treatment of clouds; this is because the clear-sky part of the method is
114 relatively mature with uncertainty less than 10% compared with the rigorous radiative
115 transfer calculation (Huang et al., 2020). There has been little attention paid to specific
116 cloud parameterization for PAR estimation except for the work of Van-Laake and
117 Sanchez-Azofeifa (2004), Sun et al. (2017), and Huang et al. (2020). Sun et al. (2017)
118 used one (UV-visible) of their two broadbands (UV-visible and near infrared) model

119 (a physical-based parameterization scheme for the estimation of SSR), to estimate all-
120 sky PAR. By further considering the multiple scattering and reflection of clouds, Huang
121 et al. (2020) developed a more complicated cloud parameterization scheme and
122 combined this with the clear-sky PAR model of Gueymard (1989a) to estimate all-sky
123 PAR. Although their accuracies are both acceptable, there is no corresponding PAR
124 product currently being produced for relevant scientific research.

125 In the past, a few global PAR products have been developed, such as the global
126 gridded PAR products of the International Satellite Cloud Climatology Project (ISCCP-
127 PL, Pinker and Laszlo, 1992), the Clouds and the Earth's Radiant Energy System
128 (CERES, Su et al., 2007), the Global LAnd Surface Satellite products (GLASS, Zhang
129 et al. 2014), the MODIS (MCD18A2 product, Wang et al., 2020), the Breathing Earth
130 System Simulator (BESS, Ryu et al., 2018), and a product from Hao et al. (2019) based
131 the observations from the Earth Polychromatic Imaging Camera (EPIC) onboard the
132 Deep Space Climate Observatory (DSCOVR, Burt and Smith, 2012). However, these
133 global PAR products are either too coarse in spatial resolution to meet refined analyses,
134 too low in temporal resolution to reflect daily variations, or too short in time series to
135 meet the demand of climate change studies. As a result, a high-resolution long-term
136 global gridded PAR product is urgently needed in the scientific community.

137 In this study, a high-resolution 35-year global gridded PAR product was developed
138 using an effective physical PAR estimation model, driven mainly by the latest high-
139 resolution ISCCP H-series cloud products, the aerosol product of the Modern-Era
140 Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis
141 data, and water vapor, surface pressure, and ozone amount products of the ERA5
142 reanalysis data. We also evaluated the performance of our PAR product using in-situ
143 observations measured across three experimental observation networks in the United

144 States and China, and compared its performance with another common global satellite
145 product. The rest of the article is organized as follows. In Section 2, we introduce the
146 method used to map the global gridded PAR product. The input data for estimating the
147 global gridded PAR product, and the in-situ data for evaluating the performance of our
148 estimated global gridded PAR product are described in Section 3. Section 4 presents
149 the validation results of our global gridded PAR product and compares this with the
150 well-known satellite-based global PAR product of CERES. Section 5 describes data
151 availability, and our summary and conclusions are given in Section 6.

152

153 **2 Estimation of PAR**

154 The algorithm used to map global gridded PAR in this study was the
155 parameterization method developed by Tang et al. (2017), who combined the physical-
156 based clear-sky PAR model of Qin et al. (2012) and the parameterization scheme for
157 cloud transmittance of Sun et al. (2012). In calculating the surface PAR, the algorithm
158 takes into account various attenuation processes in the atmosphere, such as absorption
159 of water vapor and ozone, Rayleigh scattering, and absorption and scattering of cloud
160 and aerosol. In addition, the algorithm also considers the multiple reflections between
161 the surface and the atmosphere. The parametric expressions for the PAR algorithm are
162 all converted from the extensive radiative transfer calculations, and thus it is a physical
163 and efficient method that does not require calibration with ground-based observations.

164 The inputs of the PAR algorithm mainly include aerosol optical depth, cloud
165 optical depth, water vapor, ozone amount, surface albedo, and surface air pressure.
166 Tang et al. (2017) used the developed PAR algorithm to estimate instantaneous PAR
167 using the atmosphere and land products of the Moderate Resolution Imaging
168 Spectroradiometer (MODIS), and the estimated instantaneous PAR was evaluated

169 against in-situ observations collected by the SURFRAD network. It was found that this
170 algorithm performs better than previous algorithms and the estimated instantaneous
171 PAR can have a root mean square error (RMSE) of about 40 W m^{-2} . Wang et al. (2021)
172 have compared five representative methods for estimating downward shortwave
173 radiation, and found that the parameterization method performed best among them. This
174 increases our confidence in estimating PAR with physical parameterization method.
175 Therefore, we expect good performance from our algorithm in mapping global gridded
176 PAR. Interested readers can refer to our earlier article (Tang et al., 2017) for further
177 details.

178

179 **3 Data**

180 **3.1 Input data**

181 To produce a long-term (from 1984 to 2018) high-resolution global gridded PAR
182 product using the PAR algorithm presented above, we used input data from four
183 different sources.

184 The first source of input data was the latest level-2 H-series pixel-level global
185 (HXG) cloud products of the ISCCP, here referred to as ISCCP-HXG; these were
186 publicly available, spanned the period July 1983 to December 2018, had a spatial
187 resolution of 10 km, and a temporal resolution of 3 hours. The ISCCP-HXG cloud
188 products were produced by a series of cloud-related algorithms based on global gridded
189 two-channel radiance data (visible, $0.65 \mu\text{m}$ and infrared, $10.5 \mu\text{m}$) merged from
190 different geostationary and polar orbiting meteorological satellites. We must bear in
191 mind that the 3-hour ISCCP-HXG cloud products denote instantaneous data at a given
192 moment every three hours, not a mean of 3 hours. We used four variables from the
193 ISCCP-HXG cloud products; these were cloud mask, cloud top temperature, and the

194 optical depths of water cloud or ice cloud retrieved based on the visible radiance. The
195 sky condition (clear or cloudy) of a pixel was distinguished by the cloud mask data, and
196 the cloud phase (liquid or ice) of a cloudy pixel was roughly determined by the cloud
197 top temperature. If the cloud top temperature (TC) of a cloudy pixel was greater than
198 or equal to 253.1 K, it was regarded as water cloud; otherwise, it was classed as ice
199 cloud. For more detailed information on the ISCCP-HXG cloud products, the reader
200 may refer to the cloud products article of Young et al. (2018). **The uncertainties in cloud**
201 **detection and cloud property can be found in the official Climate Algorithm Theoretical**
202 **Basis Document (C-ATBD,**
203 [https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-
204 ISCCP/AlgorithmDescription_01B-29.pdf](https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf)). The accuracies of these cloud parameters
205 in the latest ISCCP-H series are considered to be more reliable than those of cloud
206 parameters in the previous ISCCP-D series.

207 The second source of input data was the aerosol product of the MEERA-2
208 reanalysis data, which can be downloaded from the Goddard Earth Sciences Data and
209 Information Services Center of the National Aeronautics and Space Administration
210 (NASA). MERRA-2 assimilates ground-observed aerosol optical depth (AOD)
211 measured at the AERONET (Holben et al., 1998), and satellite-retrieved AOD from the
212 MODIS Aqua and Terra sensors, MISR sensor, and AVHRR sensor (Randles et al.
213 2017). The MERRA-2 hourly aerosol product used in this study was called
214 “tavg1_2d_aer_Nx”, having a spatial resolution of $0.5^\circ \times 0.625^\circ$, a temporal resolution
215 of 1 hour, and a time period of 1980 to present. Two variables of the MERRA-2 aerosol
216 product were used in this study; these were the total AOD at 550 nm and the total
217 aerosol Ångström parameter (470–870 nm). To map the global gridded PAR product
218 with a spatial resolution of 10 km, we re-sampled the MERRA-2 aerosol product to a

219 spatial resolution of 10 km. Gueymard and Yang (2020) have validated the MERRA-2
220 AOD product against 793 AERONET stations worldwide, and also compared with
221 other aerosol products. It was found that the averaged RMSE for the MERRA-2 AOD
222 at 550 nm was about 0.126, which was generally lower than those of other aerosol
223 products.

224 The third source of input data was the routine weather variables of the ERA5
225 reanalysis data, which mainly included total column ozone, total column water vapor,
226 and surface pressure, with a spatial resolution of 25 km and a temporal resolution of 1
227 hour. Total column ozone and total column water vapor were used to calculate the
228 transmittance due to ozone absorption and water vapor absorption, respectively.
229 Surface pressure was used to calculate the Rayleigh scattering in the atmosphere. To
230 maintain consistency with the spatial resolution of the ISCCP-HXG cloud product,
231 these three routine weather variables of the ERA5 reanalysis data were re-sampled to
232 10 km.

233 The fourth source of input data was albedo data from the MODIS MCD43A3
234 product (Schaaf et al., 2002) and from the Satellite Application Facility on Climate
235 Monitoring (CM-SAF) (CLARA-A2-SAL, Karlsson et al., 2017), to take into account
236 the multiple scattering effect between the land surface and atmosphere on the
237 calculation of PAR. The spatial resolutions of MODIS and CM-SAF were both 5 km,
238 and thus we downscaled them to 10 km. The MODIS albedo product was used after
239 2000, the date when it first became available, and the CM-SAF albedo product was
240 used before 2000 (when MODIS was unavailable). The use of different albedo products
241 will lead to inconsistent accuracy for the final global gridded PAR product, and thus
242 caution should be exercised when performing trend analyses.

243

244 **3.2 In-situ measurements**

245 In-situ PAR measurements collected across three networks from the United States
246 and China were used to validate our global gridded PAR product. PAR measurements
247 at those networks are all quantified as photosynthetic photo flux density ($\mu\text{ mol m}^{-2}\text{ s}^{-1}$), and McCree's conversion factor with a value of approximately 4.6 (McCree, 1972)
248 was used to convert the quantum units of PAR into energy units (W m^{-2}) of PAR. The
249 first network used was SURFRAD (Augustine et al., 2000) of the National Oceanic and
250 Atmospheric Administration (NOAA), which contains seven experimental stations
251 (Goodwin Greek, Fort Peek, Bondville, Desert Rock, Sioux Falls, Table Mountain, and
252 Penn State) in different climatic regions (red pentagrams in Fig. 1). LI-COR Quantum
253 sensors were used to measure PAR at the SURFRAD network. The standards of
254 instrument calibration for the Baseline Surface Radiation Network (BSRN) were
255 adopted and the quality of radiation data at SURFRAD were considered to be
256 comparable to those of the BSRN. Many previous studies have used SURFRAD
257 radiation data to evaluate their algorithms for estimation of different radiation
258 components. The PAR observations at 1-minute temporal resolution from 2009 to 2016
259 at the seven SURFRAD stations were used.

261 The second network used was NEON (Metzger et al., 2019), and 42 terrestrial
262 tower stations (denoted by red triangles in Fig. 1) in the network were used in this study.
263 Generally, measurements of the PAR vertical profile at multiple vertical levels were
264 conducted at each tower station and the tower-top PAR measurements were used to
265 validate our global gridded PAR product. Kipp & Zonen PQS 1 quantum sensors with
266 an uncertainty within 4% (Blonquist and Johns, 2018) were used to measure PAR across
267 the NEON. The sensors sampled with frequency of 1 Hz, recorded PAR values every
268 minute, and were calibrated every year. The starting times of PAR observations at the

269 42 NEON stations are different to each other, and thus here we used PAR observations
270 from the starting time of each site to the end of 2018.

271 The third network used was CERN, and 38 stations (marked with red circles in Fig.
272 1) across diverse terrestrial ecosystems were used in this study. These 38 CERN stations
273 were distributed across different climatic zones and belonged to eight different
274 ecosystems: agriculture, forest, desert, marine, grassland, lake, marsh wetland, and
275 urban. LI-190SA quantum sensors with an uncertainty of approximately 5% (Hu et al.,
276 2007) were used to measure PAR across CERN, and the spectrometer and standard
277 radiative lamp were adopted to centralized calibrate and compare among the quantum
278 sensors. The PAR observations were recorded hourly and thus we only validated our
279 daily PAR product against CERN due to the mismatch between the hourly observed
280 data and the satellite-based instantaneous retrievals. The daily mean PAR datasets from
281 the 38 CERN stations during 2005 - 2015 were publicly shared by Liu et al. (2017) and
282 used herein. **The PAR observations collected at the CERN network were quality**
283 **controlled by the data sharers, more details about the quality control procedure can be**
284 **found in the article of Liu et al. (2017).**

285

286 **4 Results and Discussion**

287 Based on the above inputs and the physical-based PAR algorithm, we produced a
288 long-term (from 1984 to 2018) high resolution (10 km spatial resolution and 3 hours
289 temporal resolution) global gridded PAR product, here referred to as the ISCCP-ITP
290 PAR product. In-situ observations from three networks were used to evaluate the
291 performance of our ISCCP-ITP PAR product at instantaneous and daily scales. In
292 addition, a widely used global gridded PAR product of the CERES (SYN1deg-1hour,
293 edition 4A), with a spatial resolution of $1^\circ \times 1^\circ$ and a temporal resolution of 1 hour, was

294 used to provide a comparison with our ISCCP-ITP PAR product. Here, we directly
295 compared the ground-based observations with the estimated PAR values of the
296 corresponding satellite pixel. The comparison process would introduce some
297 uncertainty in the results. This is also an issue of site representativeness. If a site is
298 representative of the corresponding satellite pixel, then the uncertainty in the validation
299 result is negligible, otherwise the uncertainty is non-negligible. Generally, the
300 representativeness of a site over flat area can greater than 25 km for downward
301 shortwave radiation according to Schwarz et al. (2017) and Huang et al. (2019). In this
302 study, most of the experimental stations are over flat areas, and thus the uncertainty in
303 the validation result of this study is negligible. To discuss the influence of spatial
304 resolution on the accuracy of our global gridded PAR product, we also evaluated the
305 estimated PAR at different spatial resolutions from 10 km to 110 km. The estimated
306 PAR at spatial resolutions from 30 km to 110 km were calculated by averaging the
307 corresponding original PAR at the 10 km scale. Here, the three statistical metrics of
308 mean bias error (MBE), RMSE, and correlation coefficient (R), were used to evaluate
309 the performance of our ISCCP-ITP PAR product and the CERES PAR product.

310

311 **4.1 Validation of instantaneous PAR**

312 In this study, the instantaneous PAR was validated against the observed hourly
313 PAR, which was calculated by averaging the 1-minute PAR over the time period of 30
314 minutes before and after satellite overpass. Our estimated instantaneous PAR was firstly
315 validated against in-situ data measured at the seven SURFRAD stations. Figure 2
316 presents the validation results for the instantaneous PAR at spatial resolutions of 10 km
317 and 30 km, and the validation result for the CERES hourly PAR with a spatial resolution
318 of approximately 100 km. It can be seen that the accuracy of the instantaneous PAR at

319 10 km spatial resolution ($MBE = 5.6 \text{ W m}^{-2}$, $RMSE = 44.3 \text{ W m}^{-2}$, $R = 0.94$) is
320 comparable to that of the CERES hourly PAR at 100 km spatial resolution ($MBE = 4.9$
321 W m^{-2} , $RMSE = 44.1 \text{ W m}^{-2}$, $R = 0.93$). However, when the instantaneous PAR at 10
322 km spatial resolution was averaged to 30 km, its accuracy was markedly improved;
323 $RMSE$ decreased from 44.3 to 36.3 W m^{-2} and R increased from 0.94 to 0.96, and thus
324 its accuracy at 30 km spatial resolution is clearly higher than that of the CERES product.

325 Table 1 shows the accuracies of our estimated instantaneous PAR at different
326 spatial resolutions from 10 km to 110 km. It can be seen that the accuracy at the original
327 10 km spatial resolution was clearly lower than at all other resolutions (30–110 km),
328 and the accuracy was highest at a resolution of 50–70 km. This may be due to the
329 following two reasons. Firstly, the representativeness of ground-based observational
330 stations may be greater than 10 km. Secondly, there is time mismatch between satellite-
331 based and surface-based observations because the last generation of geostationary
332 meteorological satellites (e.g., the Geostationary Operational Environmental Satellite
333 (GOES)) require approximately half an hour to complete a disk scan. Spatially
334 averaging the instantaneous PAR to a larger area could partially eliminate this time
335 mismatch.

336 The instantaneous PAR was also evaluated against the 42 NEON stations (Figure
337 3 and Table 2). The performance against NEON was slightly worse than that against
338 SURFRAD. At the 10 km scale, the former produced a 1.2 W m^{-2} larger $RMSE$ than the
339 latter, and both produced a positive MBE of approximately 6 W m^{-2} and R of 0.94.
340 Similar to the situation at SURFRAD, the accuracy at NEON was markedly improved
341 at 30 km spatial resolution, reached a peak at 50 km resolution, and then started to
342 decrease slightly at 70 km resolution. Compared to the performance of the CERES
343 hourly PAR at NEON, the accuracy of our estimated instantaneous PAR was higher at

344 all scales from 10 km to 110 km. More importantly, the spatial resolution of our PAR
345 product (10 km) is much finer than that of the CERES PAR product (100 km).

346 Due to the significant improvement when our estimated PAR was upscaled to 30
347 km spatial resolution, we used a 3×3 spatial window to smooth the raw PAR to derive
348 our final global gridded PAR product. Thus, we here present the spatial distributions of
349 MBE and RMSE (Figure 4) for our estimated PAR with a spatial resolution of 30 km
350 across seven SURFRAD and 42 NEON stations in the USA. The MBE values range
351 from -11.2 to 19.8 W m^{-2} , with a negative MBE at 5 of the 49 stations. From an MBE
352 point of view, 42 stations fall into the range -10 to 10 W m^{-2} , and among these 22
353 stations fall within -5 to 5 W m^{-2} . The RMSE values range from 24.2 to 52.3 W m^{-2} ,
354 with $\text{RMSE} \leq 35 \text{ W m}^{-2}$ at 18 stations, RMSE between 35 and 40 W m^{-2} at 19 stations,
355 RMSE between 40 and 50 W m^{-2} at 12 stations, and $\text{RMSE} > 50 \text{ W m}^{-2}$ at only one
356 station. The largest MBE and RMSE both occur at the Great Smoky Mountains National
357 Park (GRSM) station, which is situated in the mountains of southeastern Tennessee.
358 Similar large errors at this station were also found for the CERES PAR product. The
359 relatively large errors at this station could be caused by the poor representativeness of
360 the mountain observational station.

361

362 **4.2 Validation of daily PAR**

363 Our estimated daily PAR (ISCCP-ITP) was derived by averaging the instantaneous
364 PAR of eight moments in the day, and validated against the three networks of
365 SURFRAD, NEON, and CERN. Similar to the validation results for the instantaneous
366 PAR, the performance of our estimated daily PAR at 10 km spatial resolution was
367 comparable to that of the CERES product at SURFRAD and NEON, and when upscaled
368 to ≥ 30 km, our daily PAR product performed slightly better than that of CERES.

369 Therefore, here we do not give validation results for the CERES daily PAR at
370 SURFRAD and NEON, but only give validation results for the CERES daily PAR at
371 CERN.

372 Validation results for our estimated daily PAR against in-situ data collected at
373 SURFRAD are shown in Figure 5 and Table 3. The MBE, RMSE, and R values were
374 0.4 W m^{-2} , 13.2 W m^{-2} , and 0.96, respectively, for daily PAR at 10 km spatial resolution.
375 When upscaled to 30 km spatial resolution, these statistical metrics changed to 0.6 W
376 m^{-2} , 11.2 W m^{-2} , and 0.97, respectively. When upscaled to $\geq 50 \text{ km}$, the RMSE gradually
377 decreased to approximately 10 W m^{-2} . The MBE and R changed to 0.5 W m^{-2} and 0.98,
378 respectively.

379 Validation results for our estimated daily PAR against NEON are shown in Figure
380 6 and Table 4. The RMSE for daily PAR at 10 km spatial resolution was 13.1 W m^{-2} ,
381 and this value decreased to 11.6 W m^{-2} for 30 km spatial resolution. The R for daily
382 PAR was 0.96 and 0.97 for 10 km and 30 km spatial resolution, respectively. When
383 upscaled to $\geq 50 \text{ km}$, these statistical metrics remained almost unchanged. The
384 performance against NEON is comparable to that against SURFRAD for our daily PAR
385 product.

386 Figure 7 shows the spatial distributions of MBE and RMSE for our estimated daily
387 PAR with a spatial resolution of 30 km against seven SURFRAD and 42 NEON stations
388 in the USA. The largest negative and positive MBE values were -5.3 W m^{-2} and 9.3 W
389 m^{-2} , respectively. There were seven stations with $\text{MBE} < 0 \text{ W m}^{-2}$, 41 stations with
390 MBE values between -5 W m^{-2} and 5 W m^{-2} , 31 stations with MBE values between -3
391 W m^{-2} and 3 W m^{-2} , and only eight stations with $\text{absolute MBE} > 5 \text{ W m}^{-2}$. The largest
392 and smallest RMSE values were 17.6 W m^{-2} , and 6.9 W m^{-2} , respectively. There were
393 12 stations with $\text{RMSE} < 10 \text{ W m}^{-2}$, 19 stations with RMSE between 10 W m^{-2} and 12

394 W m^{-2} , 12 stations with RMSE between 12 W m^{-2} and 13 W m^{-2} , and only six stations
395 with $\text{RMSE} > 13 \text{ W m}^{-2}$. Likewise, the largest MBE and RMSE values were found at
396 the GRSM station with the main reason again likely being due to the poor
397 representativeness of this station.

398 Finally, we validated our daily PAR and the CERES daily PAR products against
399 in-situ data collected across CERN (Figure 8). The performance of our daily PAR
400 product at the 10 km scale ($\text{MBE} = 1.4 \text{ W m}^{-2}$, $\text{RMSE} = 19.6 \text{ W m}^{-2}$, $R = 0.89$) was
401 slightly worse than that of the CERES daily PAR product ($\text{MBE} = -1.3 \text{ W m}^{-2}$, RMSE
402 $= 18.7 \text{ W m}^{-2}$, $R = 0.90$). However, when upscaled to $\geq 30 \text{ km}$, the accuracies of our
403 estimated daily PAR were comparable to, or slightly better than, those of the CERES
404 daily PAR. Another phenomenon we noticed was that the RMSEs against CERN data
405 were approximately $7\text{--}8 \text{ W m}^{-2}$ greater than those against SURFRAD and NEON data
406 for both our daily PAR and the CERES PAR products. This could be attributed to the
407 fact that the quality of PAR observations at CERN is slightly worse than that at
408 SURFRAD and NEON, but further evidence is required to support this speculation.
409 Another possible reason could be the effect of aerosols because aerosols are a major
410 attenuation factor affecting the clear-sky PAR (Qin et al., 2012; Tang et al. 2013).
411 Because the aerosol optical depth (AOD) over China is much greater than that over the
412 USA (Li et al., 2011), greater uncertainty in the aerosol data over China would lead to
413 larger errors in PAR estimation over China.

414 Figure 9 presents the spatial distributions of MBE and RMSE for our estimated
415 daily PAR with a spatial resolution of 30 km against the 38 CERN stations. The MBE
416 values at most of the stations were between -10 W m^{-2} and 10 W m^{-2} . The stations with
417 negative MBE were mainly located in northwestern China, and the stations with
418 positive MBE were mainly located in southeastern China. The RMSE values at most of

419 the stations were $< 23 \text{ W m}^{-2}$, and there were only five stations where the RMSE was $>$
420 25 W m^{-2} . Stations with an absolute MBE $> 10 \text{ W m}^{-2}$ were mainly located in four
421 forested areas (Beijing, Xishuangbanna, Heshan, and Ailao Mountain), one agricultural
422 area (Huanjiang), one lake area (Taihu), and one Desert area (Fukang). Likewise, the
423 RMSE values at these seven stations were relatively large. Similar large errors at these
424 stations were also found for the CERES PAR product. The large errors at these stations
425 could be caused by the poor representativeness at some mountain stations, large
426 uncertainty in the inputs at some stations, or uncertainty in observational data.

427

428 **4.3 Spatial distribution of multi-year average PAR**

429 Figure 10 shows the global spatial distribution of multi-year annual average PAR
430 (ISCCP-ITP) during the period 2001–2018, and comparison with that of the CERES
431 PAR is also shown. The spatial pattern of our ISCCP-ITP PAR product is quite
432 consistent with that of the CERES PAR product, whose spatial resolution was far
433 coarser than that of our PAR product. There were some finer patterns that the CERES
434 PAR product could not distinguish, but our PAR product could clearly capture. This
435 defect in the CERES PAR product was especially evident in mountainous areas, such
436 as the Tibetan Plateau. The annual average PAR was generally high in latitudinal zones
437 lying between 30° N and 30° S , and low in other regions. In addition, there were some
438 high-altitude regions with high PAR values, such as the Tibetan Plateau and Bolivian
439 Plateau.

440 Figure 11 displays the global spatial distributions of multi-year seasonal average
441 PAR (ISCCP-ITP) during the period 2001–2018. The four panels in the figure reflect
442 the process of seasonal change and exhibit different spatial distribution characteristics.
443 Compared to mid- and high-latitude areas, more PAR was received around the equator

444 and low latitudes (30° N- 30° S) in all four seasons. Over the latitudinal zone between
445 30° S and 90° S in southern hemisphere, PAR received by the surface gradually
446 increased from spring to winter, with the lowest values in spring and summer, a
447 relatively larger value in autumn, and the largest value in winter. Over the latitudinal
448 zone between 30° N and 90° N in northern hemisphere, the situation was very different.
449 PAR received by the surface was largest in summer, lowest in autumn and winter, and
450 intermediate in spring.

451

452 **5 Data availability**

453 Our long-term global gridded PAR product is available at the National Tibetan
454 Plateau Data Center (<https://doi.org/10.11888/RemoteSen.tpdc.271909>, Tang, 2021),
455 Institute of Tibetan Plateau Research, Chinese Academy of Sciences.

456

457 **6 Summary and Conclusions**

458 A long-term (1984–2018) global high-resolution (10 km spatial resolution, 3 h
459 temporal resolution) gridded PAR product was produced using our previously published
460 physical-based PAR parametrization scheme. The main inputs for this PAR model were
461 the latest ISCCP H-series cloud product, ERA5 routine meteorological data (water
462 vapor, surface pressure, and ozone), MERRA-2 aerosol product, and albedo products
463 from MODIS (after 2000) and CLARRA-2 (before 2000). The generated PAR product
464 was validated globally against in-situ data measured across three observational
465 networks in the USA and China. For the instantaneous PAR at original the scale (10
466 km), the overall MBE, RMSE, and R were 5.8 W m^{-2} , 44.9 W m^{-2} and 0.94, respectively.
467 When smoothed to ≥ 30 km, the accuracy was markedly improved, with RMSE
468 decreasing to 37.1 W m^{-2} and R increasing to 0.96. For the daily PAR at spatial

469 resolutions of 10 km and 30 km, the RMSE values were approximately 13.1 W m^{-2} and
470 11.4 W m^{-2} , respectively, in the USA. Validation results in China showed a greater
471 RMSE than in the USA. Due to the marked improvement when our PAR products were
472 upscaled to $\geq 30 \text{ km}$, we applied a 3×3 spatial smoothing window to the original PAR
473 data to produce the final PAR product.

474 Our estimated PAR product was also compared with the CERES PAR product; we
475 found that the accuracy of our estimated PAR product at the original scale (10 km) was
476 generally comparable to, or higher than, that of the CERES PAR product. When it was
477 upscaled to $\geq 30 \text{ km}$, the accuracy advantage of our product over the CERES PAR
478 product became more evident. Another clear advantage of our PAR product was the
479 increased spatial resolution it offered compared to the CERES PAR product. We expect
480 that our PAR product will contribute to the future understanding and modeling of the
481 global carbon cycle and ecological processes. In future work, we will attempt to
482 separate the components of direct and diffuse PAR from the total PAR because light use
483 efficiency is mainly controlled by diffuse PAR.

484

485 **Author contributions.** All authors discussed the results and contributed to the
486 manuscript. WT calculated the dataset, analyzed the results, and drafted the manuscript.

487

488 **Competing interests.** The authors declare that they have no conflicts of interest.

489

490 **Acknowledgments.** The in-situ observations of PAR at CERN were shared by Liu et
491 al. (2017) and are available online via <http://www.sciedb.cn/dataSet/handle/326>.
492 The observed PAR data at SURFRAD and NEON are available online from their
493 official websites (<https://www.esrl.noaa.gov/gmd/grad/surfrad/> and

494 <http://data.neonscience.org>). The ISCCP H-series cloud products were provided by the
495 NOAA's National Centers for Environmental Information (NCEI). The ERA5 routine
496 weather data, MODIS albedo data, and MERRA-2 aerosol data are available from their
497 official websites (<https://www.ecmwf.int>, <https://ladsweb.modaps.eosdis.nasa.gov>, and
498 <https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/>). The authors would like to thank the
499 staff members at these observational networks and data production centers for their
500 valuable work.

501

502 **Financial support.** This work was supported by the National Key Research and
503 Development Program of China (Grant No. 2017YFA0603604), and the National
504 Natural Science Foundation of China (Grant No. 42171360).

505

506 **References**

507 Alados, I., Foyo-Moreno, I., Alados-Arboledas, L., 1996. Photosynthetically active
508 radiation: measurements and modelling. Agric. For. Meteorol. 78, 121–131.
509 [http://dx.doi.org/10.1016/0168-1923\(95\)02245-7](http://dx.doi.org/10.1016/0168-1923(95)02245-7).

510 Augustine, J.A., DeLuisi, J.J., Long, C.N., 2000. SURFRAD—A national surface
511 radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 81,
512 2341–2357. [https://doi.org/10.1175/1520-0477\(2000\)081<2341:SANSRB>2.3.CO;2](https://doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2).

513 Blonquist, M., Johns, J., 2018. Accurate PAR Measurement: Comparison of Eight
514 Quantum Sensor Models. <https://www.apogeeinstruments.com/content/Comparison-of-Eight-Quantum-Sensor-Models.pdf>.

515 Burt, J., Smith, B., 2012. Deep space climate observatory: the DSCOVR mission. IEEE
516 Aerosp. Conf. <https://doi.org/10.1109/AERO.2012.6187025>.

519 Frouin, R., Ramon, D., Boss, E., Jolivet, D., Compi`egne, M., Tan, J., Bouman, H.,
520 Jackson, T., Franz, B., Platt, T., Sathyendranath, S., 2018. Satellite radiation
521 products for ocean biology and biogeochemistry: needs, state-of-the-art, gaps,
522 development priorities, and opportunities. *Front. Mar. Sci.* 5, 1–20. <https://doi.org/10.3389/fmars.2018.00003>.

524 Gueymard, C., 1989a. An atmospheric transmittance model for the calculation of the
525 clear sky beam, diffuse and global photosynthetically active radiation. *Agric. For.*
526 *Meteorol.* 45, 215–229. [http://dx.doi.org/10.1016/0168-1923\(89\)90045-2](http://dx.doi.org/10.1016/0168-1923(89)90045-2).

527 Gueymard, C., 1989b. A two-band model for the calculation of clear sky solar irradiance,
528 illuminance, and photosynthetically active radiation at the earth's surface. *Sol.*
529 *Energy* 43, 253–265. [http://dx.doi.org/10.1016/0038-092X\(89\)90113-8](http://dx.doi.org/10.1016/0038-092X(89)90113-8).

530 Gueymard, C.A., 2008. REST2: High-performance solar radiation model for cloudless-
531 sky irradiance, illuminance, and photosynthetically active radiation—Validation
532 with a benchmark dataset. *Sol. Energy* 82, 272–285.
533 <http://dx.doi.org/10.1016/j.solener.2007.04.008>.

534 Gueymard, C. A., and Yang, D. (2020), Worldwide validation of CAMS and MERRA-
535 2 reanalysis aerosol optical depth products using 15 years of AERONET
536 observations. *Atmospheric Environment*, 225, 117216.

537 Hao, D., Asrar, G.R., Zeng, Y., Zhu, Q., Wen, J., Xiao, Q., Chen, M., 2019. Estimating
538 hourly land surface downward shortwave and photosynthetically active radiation
539 from DSCOVR/EPIC observations. *Remote Sens. Environ.* 232, 111320.
540 <https://doi.org/10.1016/j.rse.2019.111320>.

541 Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E.,
542 Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A.,
543 1998. AERONET—a federated instrument network and data archive for aerosol

544 characterization. *Remote Sens. Environ.* 66, 1–16. [https://doi.org/10.1016/S0034-4257\(98\)00031-5](https://doi.org/10.1016/S0034-4257(98)00031-5).

545

546 Hu, B., Wang, Y., Liu, G., 2007. Spatiotemporal characteristics of photosynthetically
547 active radiation in China. *J. Geophys. Res.* 112 (D14).
548 <http://dx.doi.org/10.1029/2006JD007965>.

549 Hu, B., Wang, Y., Liu, G., 2010. Long-term trends in photosynthetically active radiation
550 in Beijing. *Adv. Atmos. Sci.* 27, 1380–1388. <http://dx.doi.org/10.1007/s00376-010-9204-2>.

551

552 Hu, B., Wang, Y., 2014. Comparison of multi-empirical estimation models of
553 photosynthetically active radiation under all sky conditions in Northeast China.
554 *Theor. Appl. Climatol.* 116, 119–129. <http://dx.doi.org/10.1007/s00704-013-0941-x>.

555

556 Huang, G. H., Li, X., Ma, M. G., Li, H. Y., and Huang, C. L., 2016. High resolution
557 surface radiation products for studies of regional energy, hydrologic and ecological
558 processes over Heihe river basin, northwest China, *Agricultural and Forest
559 Meteorology*, vol. 230, pp. 67-78.

560 Huang, G., Li, Z., Li, X., Liang, S., Yang, K., Wang, D., and Zhang, Y., 2019: Estimating
561 surface solar irradiance from satellites: Past, present, and future perspectives.
562 *Remote Sensing of Environment*, 233, 111371.

563 Huang, G. H., Li, X., Lu, N., Wang, X., and He, T., 2020. A General Parameterization
564 Scheme for the Estimation of Incident Photosynthetically Active Radiation under
565 Cloudy Skies, *IEEE Trans. Geosci. Remote Sens.*, vol. 58 (9), pp. 6255 – 6265.

566 Karlsson, Karl-Göran; Anttila, Kati; Trentmann, Jörg; Stengel, Martin; Meirink, Jan
567 Fokke; Devasthale, Abhay; Hanschmann, Timo; Kothe, Steffen; Jääskeläinen,
568 Emmihenna; Sedlar, Joseph; Benas, Nikos; van Zadelhoff, Gerd-Jan; Schlundt,

569 Cornelia; Stein, Diana; Finkensieper, Stephan; Håkansson, Nina; Hollmann,
570 Rainer; Fuchs, Petra; Werscheck, Martin (2017): CLARA-A2: CM SAF cLoud,
571 Albedo and surface RAdiation dataset from AVHRR data - Edition 2, Satellite
572 Application Facility on Climate Monitoring,
573 DOI:10.5676/EUM_SAF_CM/CLARA_AVHRR/V002, https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002.
574

575 Li, Z., et al. (2011), East Asian Studies of Tropospheric Aerosols and their Impact on
576 Regional Climate (EAST-AIRC): An overview, *J. Geophys. Res.*, 116, D00K34,
577 doi:10.1029/2010JD015257.

578 Liang, S., Zheng, T., Liu, R. G., Fang, H. L., Tsay, S. C., and Running, S.: Estimation
579 of incident photosynthetically active radiation from Moderate Resolution Imaging
580 Spectrometer data, *J. Geophys. Res.*, 111, D15208, doi:10.1029/2005JD006730,
581 2006.

582 Liu, H., et al., (2017), CERN photosynthetically active radiation dataset from 2005 to
583 2015, China Scientific Data, 2017, 2(1), 1 – 10. DOI:
584 10.11922/csdata.170.2016.0100.

585 McCree, K.J., 1972. Test of current definitions of photosynthetically active radiation
586 against leaf photosynthesis data. *Agric. Meteorol.* 10, 443-453.
587 [http://dx.doi.org/10.1016/0002-1571\(72\)90045-3](http://dx.doi.org/10.1016/0002-1571(72)90045-3).

588 Metzger S, Ayres E, Durden D, Florian C, Lee R, Lunch C, Luo H, Pingintha-Durden
589 N, Roberti JA, SanClements M, Sturtevant C, Xu K, Zulueta RC (2019) From
590 NEON feld sites to data portal: a community resource for surface-atmosphere
591 research comes online. *Bull Am Meteorol Soc* 100 (11):2305–2325.

592 Ohmura, A., et al.: Baseline Surface Radiation Network (BSRN/WCRP): New
593 precision radiometry for climate change research, *Bull. Am. Meteorol. Soc.*, 79,

594 2115 – 2136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2, 1998.

595 Pinker, R. T., and Laszlo, I., 1992. Global Distribution of Photosynthetically Active
596 Radiation as Observed from Satellites, *Journal of Climate*, vol. 5, pp. 56-65.

597 Qin, J., Yang, K., Liang, S., Tang, W., 2012. Estimation of daily photosynthetically
598 active radiation under all-sky conditions from sunshine duration data. *J. Appl.*
599 *Meteorol. Climatol.* 51:150–160. <http://dx.doi.org/10.1175/JAMC-D-10-05018.1>.

600 Randles, C.A., Silva, A.M.d., Buchard, V., Colarco, P.R., Darmenov, A., Govindaraju,
601 R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., Flynn, C.J., 2017.
602 The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: system description and
603 data assimilation evaluation. *J. Clim.* 30, 6823–6850. <https://doi.org/10.1175/jcli-d-16- 0609.1>.

604

605 Ren, Y., Yang, K., Wang, H., Zhao, L., Chen, Y., Zhou, X., & La, Z. (2021). The South
606 Asia monsoon break promotes grass growth on the Tibetan Plateau. *Journal of*
607 *Geophysical Research: Biogeosciences*, 126, e2020JG005951.
608 <https://doi.org/10.1029/2020JG005951>.

609 Ryu, Y., Jiang, C., Kobayashi, H., Detto, M., 2018. MODIS-derived global land
610 products of shortwave radiation and diffuse and total photosynthetically active
611 radiation at 5 km resolution from 2000. *Remote Sens. Environ.* 204, 812–825.
612 <https://doi.org/10.1016/j.rse.2017.09.021>.

613 Schaaf, C. B., et al.: First operational BRDF, albedo nadir reflectance products from
614 MODIS, *Remote Sens. Environ.*, 83, 135–148, doi:10.1016/S0034-
615 4257(02)00091-3, 2002.

616 Schwarz, M., Folini, D., Hakuba, M. Z., & Wild, M. (2017). Spatial representativeness
617 of surface-measured variations of downward solar radiation. *Journal of*
618 *Geophysical Research: Atmospheres*, 122, 13,319–13,337.

619 <https://doi.org/10.1002/2017JD027261>.

620 Su, W., Charlock, T.P., Rose, F.G., Rutan, D., 2007. Photosynthetically active radiation
621 from Clouds and the Earth's Radiant Energy System (CERES) products. *J.
622 Geophys. Res. Biogeosci.* 112, 1–11. <https://doi.org/10.1029/2006JG000290>.

683 Sun, Z., Liu, J., Zeng, X., and Liang, H.: Parameterization of instantaneous global
684 horizontal irradiance: Cloudy sky component, *J. Geophys. Res.*, 117, D14202,
685 doi:10.1029/2012JD017557, 2012.

686 Sun, Z., Liang, H., Liu, J., and Shi, G., 2017. Estimation of photosynthetically active
687 radiation using solar radiation in the UV–visible spectral band. *Sol. Energy* 153,
688 611–622. <http://dx.doi.org/10.1016/j.solener.2017.06.007>.

689 Tang, W. (2021). A long-term and high-resolution global gridded photosynthetically
690 active radiation product (1984–2018). National Tibetan Plateau Data Center, DOI:
691 10.11888/RemoteSen.tpdc.271909. CSTR: 18406.11.RemoteSen.tpdc.271909.

692 Tang, W., Qin, J., Yang, K., Niu, X., Zhang, X., Yu Y., and Zhu X.: Reconstruction of
693 Daily Photosynthetically Active Radiation and its Trends over China, *J. Geophys.
694 Res. Atmos.*, 118(23), 13,292–13,302, doi:10.1002/2013JD020527, 2013.

695 Tang, W. J., Qin, J., Yang, K., Niu, X. L., Min, M., and Liang, S. L.: An efficient
696 algorithm for calculating photosynthetically active radiation with MODIS
697 products, *Remote Sensing of Environment*, vol. 194, pp. 146–154, 2017.

698 Van Laake, P.E., Sanchez -Azofeifa, G.A., 2004. Simplified atmospheric radiative
699 transfer modelling for estimating incident PAR using MODIS atmosphere
700 products. *Remote Sens. Environ.* 91, 98–113.

701 Wang, D., Liang, S., Zhang, Y., Gao, X., Brown, M.G.L., Jia, A., 2020. A new set of
702 MODIS land products (MCD18): downward shortwave radiation and
703 photosynthetically active radiation. *Remote Sens.* 12, 168.

704 https://doi.org/10.3390/rs12010168.

705 Wang, D., Liang, S., Li, R., and Jia, A., (2021), A synergic study on estimating surface
706 downward shortwave radiation from satellite data. *Remote Sensing of*
707 *Environment*, 264, 112639.

708 Wang, L., Gong, W., Feng, L., Lin, A., Hu, B., Zhou, M., 2015. Estimation of hourly
709 and daily photosynthetically active radiation in Inner Mongolia, China, from 1990
710 to 2012. *Int. J. Climatol.* 35, 3120–3131. https://doi.org/10.1002/joc.4197.

711 Wang, L., Kisi, O., Zounemat-Kermani, M., Hu, B., and Gong, W., Modeling and
712 comparison of hourly photosynthetically active radiation in different ecosystems.
713 *Renew Sust Energy Rev*, 2016, 56:436–453.

714 Xia, X., Li, Z., Wang, P., Cribb, M., Chen, H., Zhao, Y., 2008. Analysis of
715 photosynthetic photon flux density and its parameterization in Northern China.
716 *Agric. For. Meteorol.* 148 (6), 1101–1108.
717 <http://dx.doi.org/10.1016/j.agrformet.2008.02.008>.

718 Young, A.H., Knapp, K.R., Inamdar, A., Hankinns, W., and Rossow, W.B.: The
719 International Cloud Climatology Project H-Series climate data record product.
720 *Earth Syst. Sci. Data*, 10, 583–593, 2018.

721 Yu, X., Wu, Z., Jiang, W., Guo, X., 2015. Predicting daily photosynthetically active
722 radiation from global solar radiation in the Contiguous United States. *Energy*
723 *Convers. Manage.* 89, 71–82. <http://dx.doi.org/10.1016/j.enconman.2014.09.038>.

724 Zhang, H., Dong, X., Xi, B., Xin, X., Liu, Q., He, H., Xie, X., Li, L., and Yu, S.:
725 Retrieving high-resolution surface photosynthetically active radiation from the
726 MODIS and GOES-16 ABI data, *Remote Sens. Environ.*, 260, 112436, 2021.

727 Zhang, X., Liang, S., Zhou, G., Wu, H., and Zhao, X.: Generating Global LAnd Surface
728 Satellite incident shortwave radiation and photosynthetically active radiation

730 **Figure captions**

731 **Figure 1** Distribution of observation stations within the three observation networks,
732 where measurements of PAR were carried out. The red circles denote the
733 locations of the 38 CERN stations, the red triangles denote the 42 NEON
734 stations, and the red pentagrams denote the seven SURFRAD stations.

735 **Figure 2** Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at
736 spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES
737 SYN1deg (edition 4.1) with observed PAR collected at seven SURFRAD
738 stations.

739 **Figure 3** Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at
740 spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES
741 SYN1deg (edition 4.1) with observed PAR collected at 42 NEON stations.

742 **Figure 4** Spatial distribution of (a) MBE (W m^{-2}) and (b) RMSE (W m^{-2}) for our
743 estimated instantaneous PAR product (ISCCP-ITP, 30 km) at seven
744 SURFRAD stations and 42 NEON stations.

745 **Figure 5** Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial
746 resolutions of (a) 10 km and (b) 30 km with observed PAR collected at seven
747 SURFRAD stations.

748 **Figure 6** Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial
749 resolutions of (a) 10 km and (b) 30 km with observed PAR collected at 42
750 NEON stations.

751 **Figure 7** Same as **Figure 4**, but for our estimated daily PAR product (ISCCP-ITP, 30
752 km).

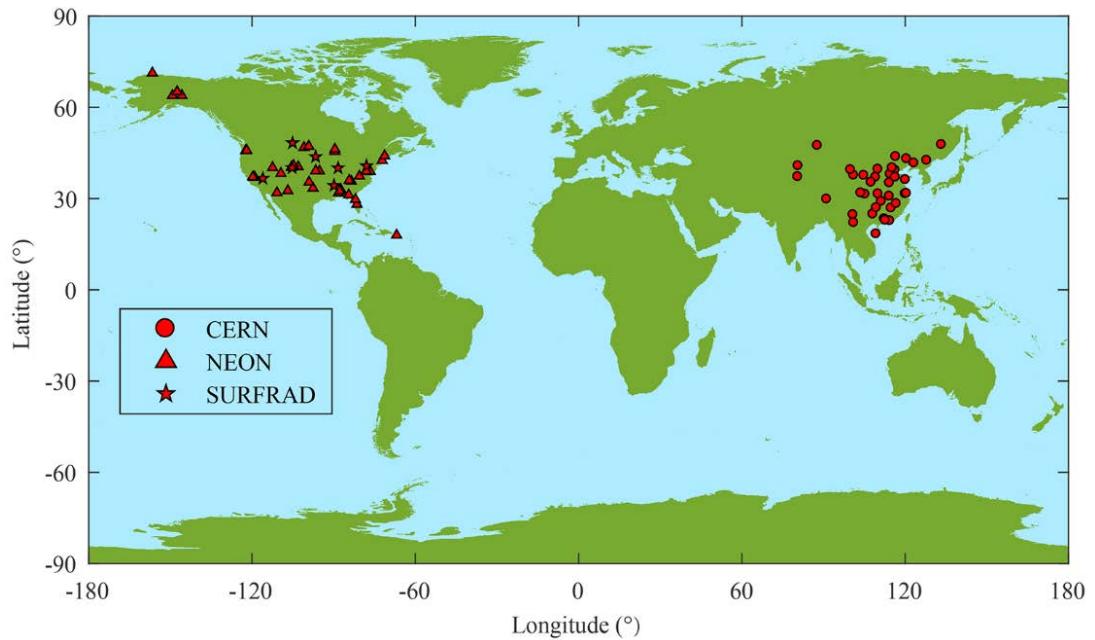
753 **Figure 8** Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial
754 resolutions of (a) 10 km, (b) 30 km, and (c) daily PAR of the CERES

755 SYN1deg (edition 4.1) with observed PAR collected at 38 CERN stations.

756 **Figure 9** Spatial distribution of (a) MBE (W m^{-2}) and (b) RMSE (W m^{-2}) for our
757 estimated daily PAR product (ISCCP-ITP, 30 km) at 38 CERN stations.

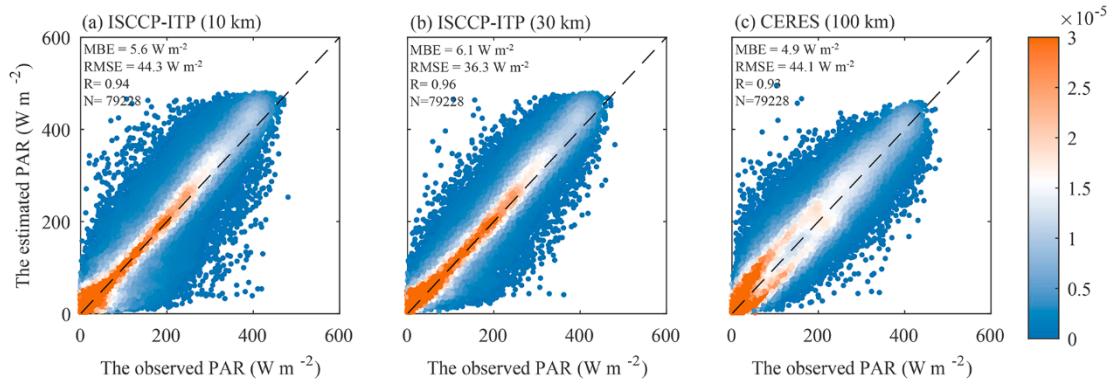
758 **Figure 10** Spatial distribution of annual mean PAR between 2001 and 2018, derived
759 from (a) our estimated PAR product (ISCCP-ITP), and (b) the CERES PAR
760 product. The unit of PAR is W m^{-2} .

761 **Figure 11** Spatial distribution of seasonal mean PAR between 2001 and 2018 derived
762 from our estimated PAR product (ISCCP-ITP). The unit of PAR is W m^{-2} .



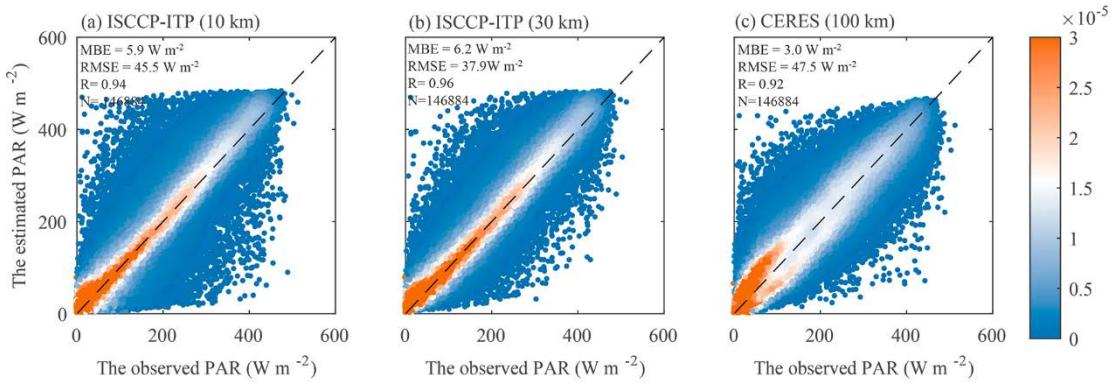
763

764 **Figure 1** Distribution of observation stations within the three observation networks,
 765 where measurements of PAR were carried out. The red circles denote the
 766 locations of the 38 CERN stations, the red triangles denote the 42 NEON
 767 stations, and the red pentagrams denote the seven SURFRAD stations.



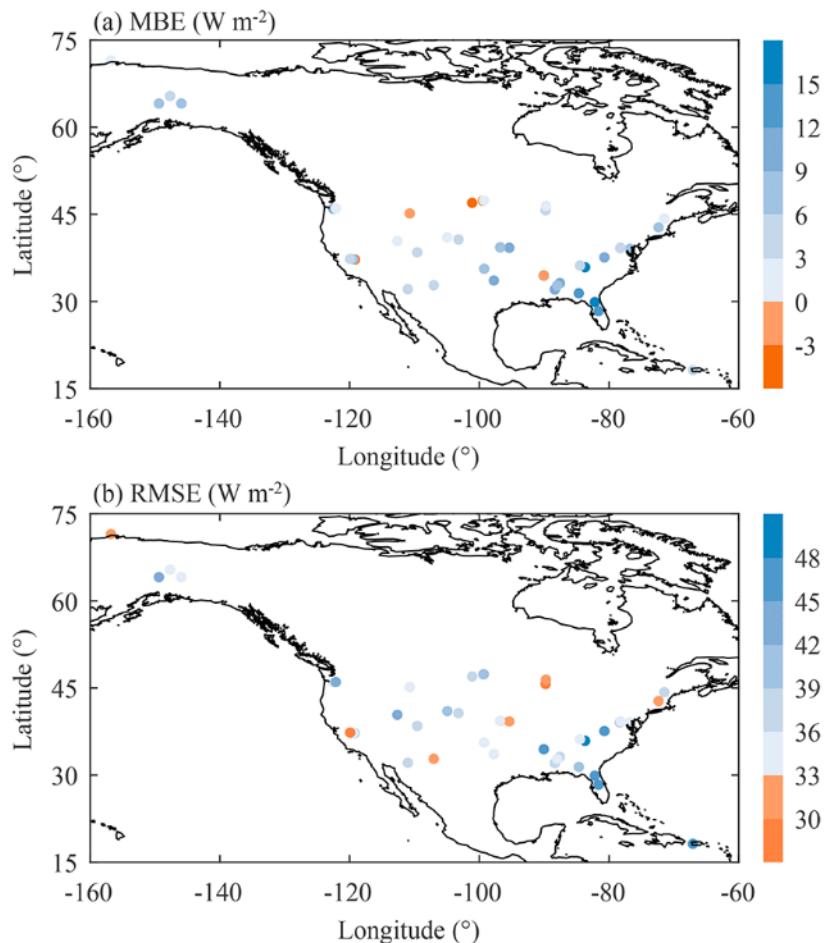
768

769 **Figure 2** Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at
 770 spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES
 771 SYN1deg (edition 4.1) with observed PAR collected at seven SURFRAD
 772 stations.



773

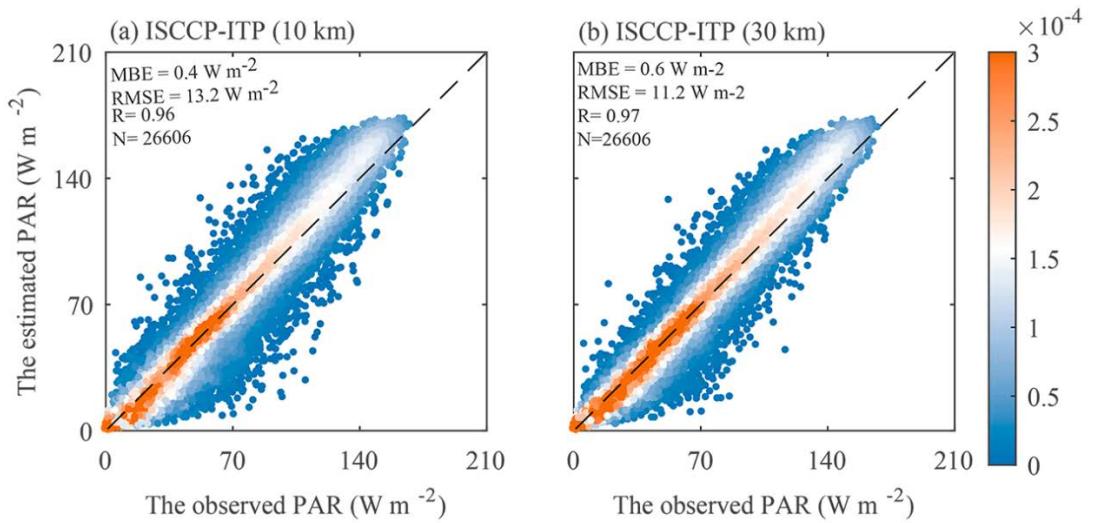
774 **Figure 3** Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at
 775 spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES
 776 SYN1deg (edition 4.1) with observed PAR collected at 42 NEON stations.



777

778 **Figure 4** Spatial distribution of (a) MBE (W m^{-2}) and (b) RMSE (W m^{-2}) for our
 779 estimated instantaneous PAR product (ISCCP-ITP, 30 km) at seven
 780 SURFRAD stations and 42 NEON stations.

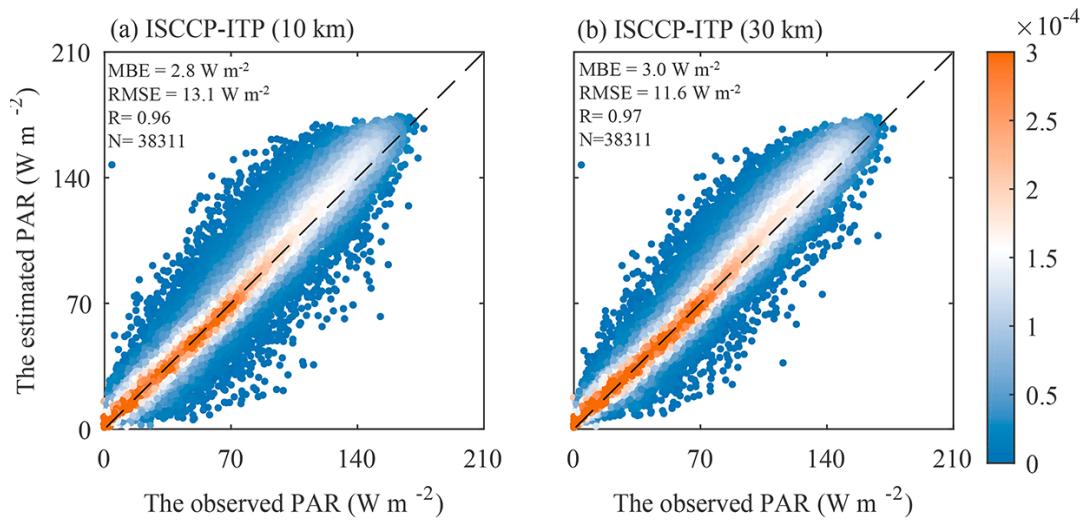
781



782

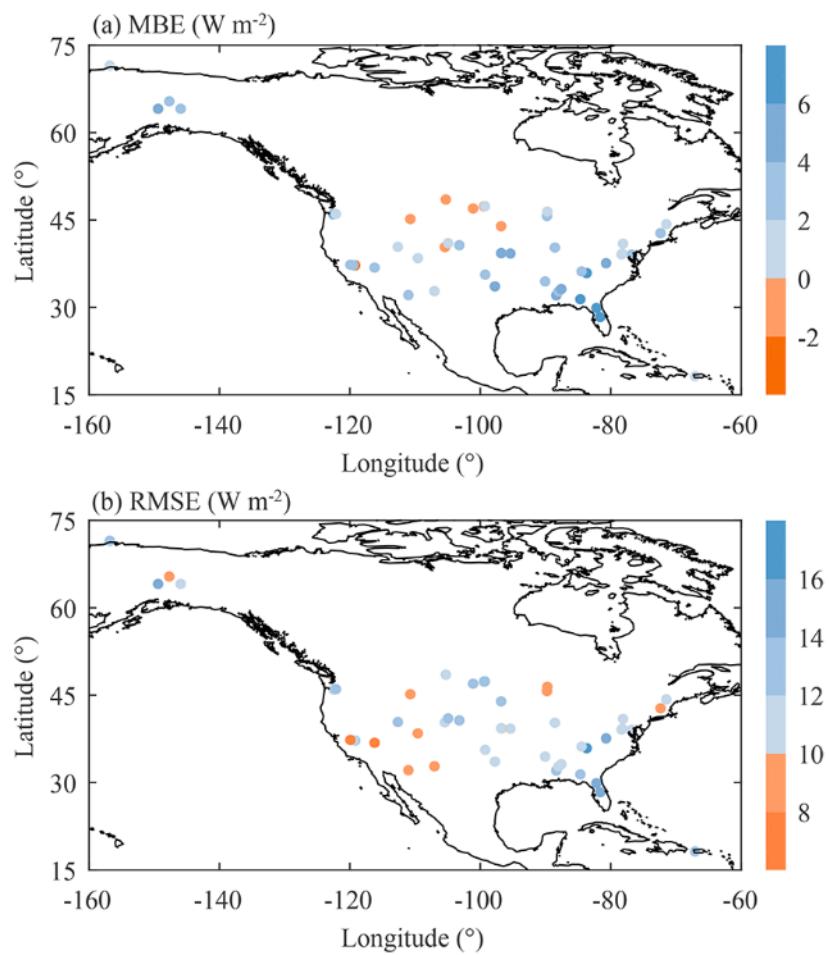
783 **Figure 5** Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial
 784 resolutions of (a) 10 km and (b) 30 km with observed PAR collected at seven
 785 SURFRAD stations.

786



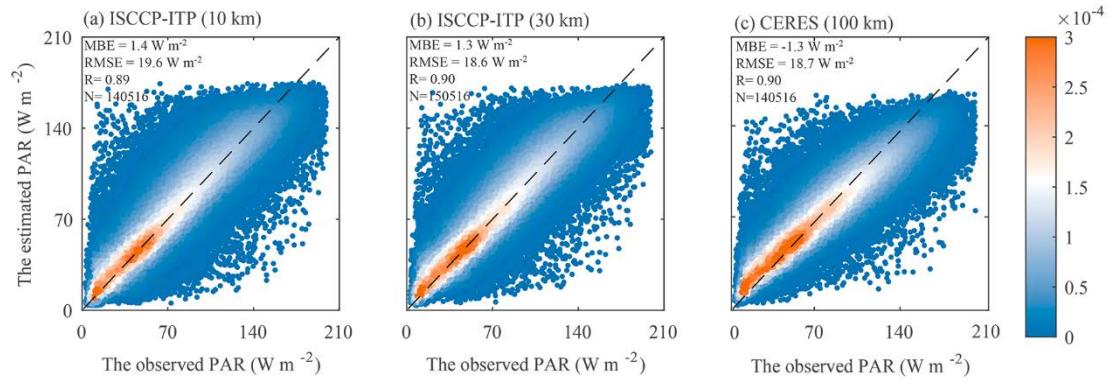
787

788 **Figure 6** Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial
 789 resolutions of (a) 10 km and (b) 30 km with observed PAR collected at 42
 790 NEON stations.



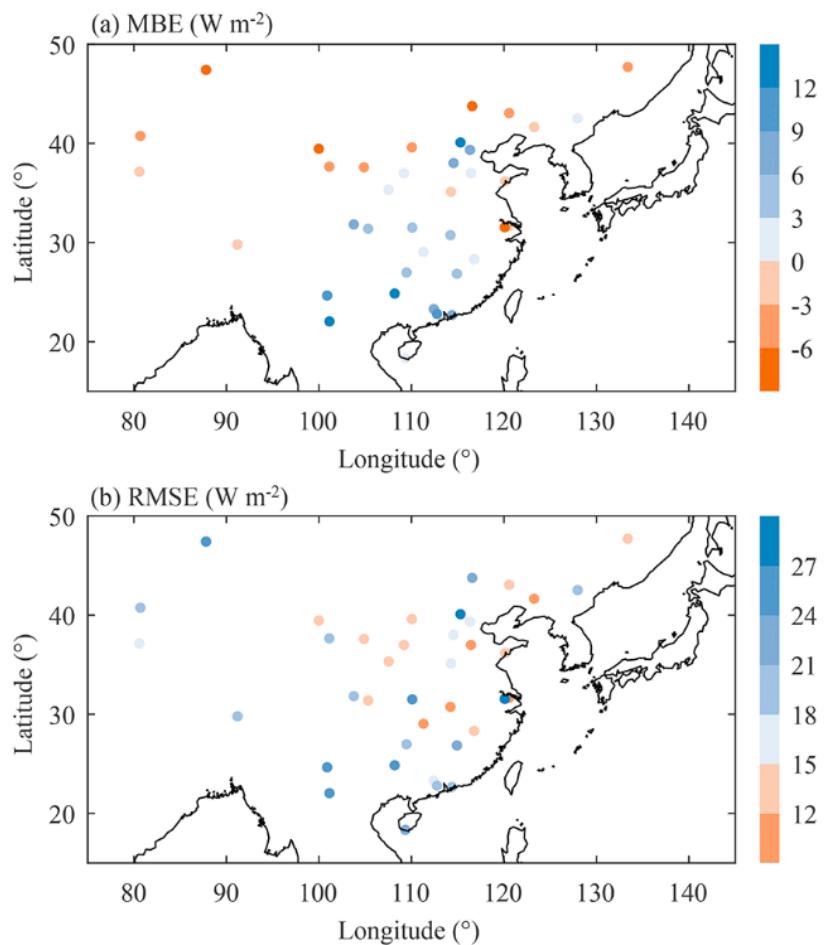
791

792 **Figure 7** Same as **Figure 4**, but for our estimated daily PAR product (ISCCP-ITP, 30
 793 km).

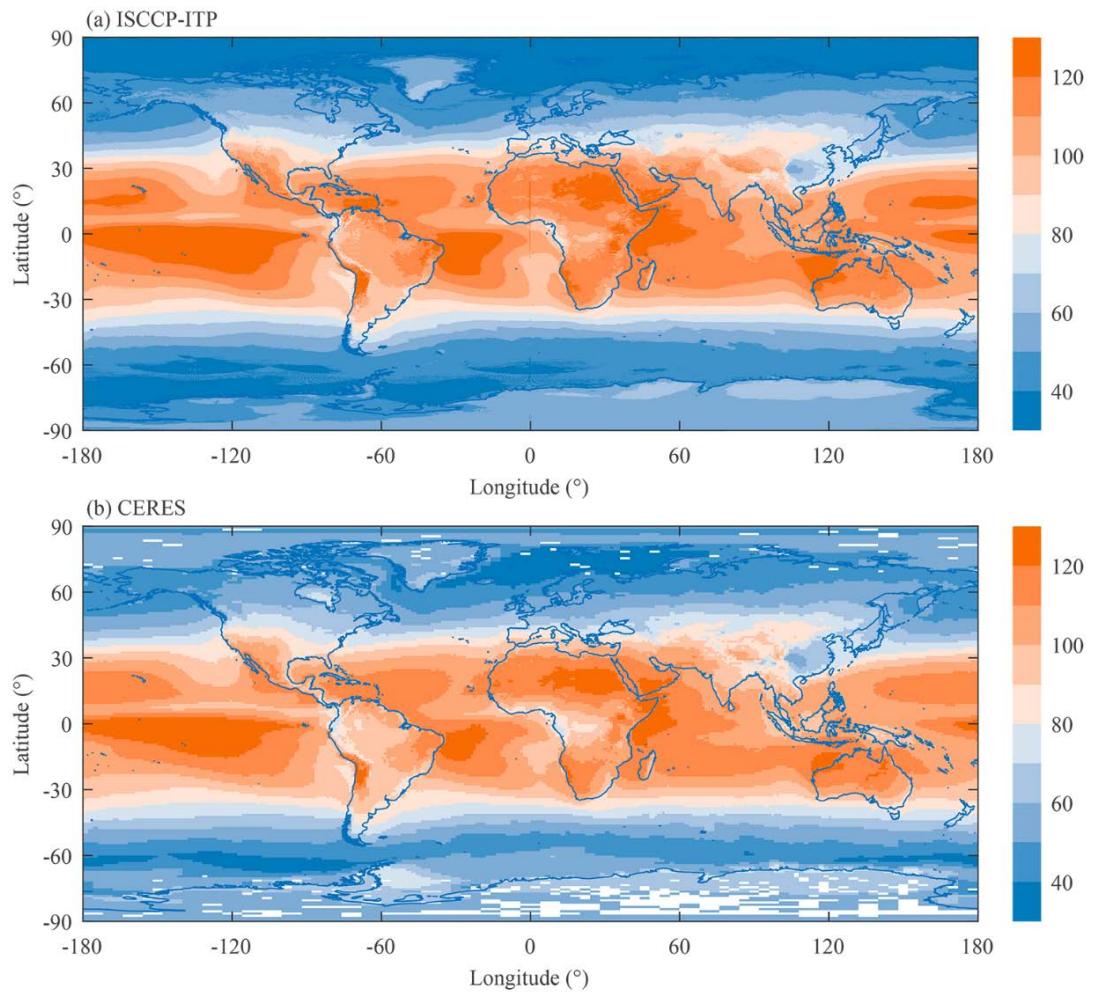


794

795 **Figure 8** Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial
 796 resolutions of (a) 10 km, (b) 30 km, and (c) daily PAR of the CERES
 797 SYN1deg (edition 4.1) with observed PAR collected at 38 CERN stations.

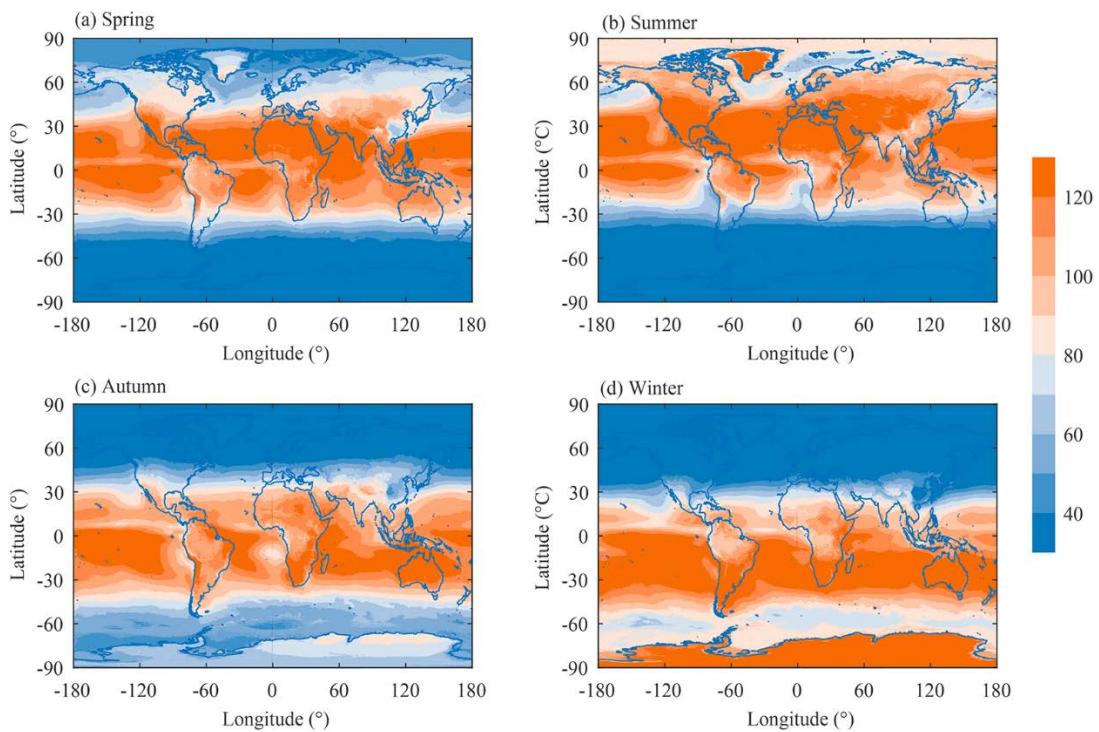


799 **Figure 9** Spatial distribution of (a) MBE (W m^{-2}) and (b) RMSE (W m^{-2}) for our
800 estimated daily PAR product (ISCCP-ITP, 30 km) at 38 CERN stations.



801

802 **Figure 10** Spatial distribution of annual mean PAR between 2001 and 2018, derived
 803 from (a) our estimated PAR product (ISCCP-ITP), and (b) the CERES PAR
 804 product. The unit of PAR is W m^{-2} .



805

806 **Figure 11** Spatial distribution of seasonal mean PAR between 2001 and 2018 derived
 807 from our estimated PAR product (ISCCP-ITP). The unit of PAR is W m^{-2} .

808 **Table captions**

809 **Table 1.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
810 estimated instantaneous PAR product (ISCCP-ITP) compared to observations
811 at the seven SURFRAD stations.

812 **Table 2.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
813 estimated instantaneous PAR product (ISCCP-ITP) compared to observations
814 at the 42 NEON stations.

815 **Table 3.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
816 estimated daily PAR product (ISCCP-ITP) compared to observations at the
817 seven SURFRAD stations.

818 **Table 4.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
819 estimated daily PAR product (ISCCP-ITP) compared to observations at the
820 42 NEON stations.

821 **Table 5.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
822 estimated daily PAR product (ISCCP-ITP) compared to observations at the
823 38 CERN stations.

824 **Table 1.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
825 estimated instantaneous PAR product (ISCCP-ITP) compared to observations
826 at the seven SURFRAD stations.

	Spatial resolution	MBE (W m^{-2})	RMSE (W m^{-2})	R
ISCCP-ITP	10 km	5.6	44.3	0.94
ISCCP-ITP	30 km	6.1	36.3	0.96
ISCCP-ITP	50 km	6.0	35.0	0.96
ISCCP-ITP	70 km	5.9	35.1	0.96
ISCCP-ITP	90 km	6.0	35.5	0.96
ISCCP-ITP	110 km	5.9	36.0	0.96

827

828 **Table 2.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
829 estimated instantaneous PAR product (ISCCP-ITP) compared to observations
830 at the 42 NEON stations.

	Spatial resolution	MBE (W m^{-2})	RMSE (W m^{-2})	R
ISCCP-ITP	10 km	5.9	45.5	0.94
ISCCP-ITP	30 km	6.2	37.9	0.96
ISCCP-ITP	50 km	6.3	37.0	0.96
ISCCP-ITP	70 km	6.2	37.4	0.96
ISCCP-ITP	90 km	6.2	38.0	0.96
ISCCP-ITP	110 km	6.1	38.6	0.95

831 **Table 3.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
832 estimated daily PAR product (ISCCP-ITP) compared to observations at the
833 seven SURFRAD stations.

	Spatial resolution	MBE (W m^{-2})	RMSE (W m^{-2})	R
ISCCP-ITP	10 km	0.4	13.2	0.96
ISCCP-ITP	30 km	0.6	11.2	0.97
ISCCP-ITP	50 km	0.5	10.5	0.98
ISCCP-ITP	70 km	0.5	10.1	0.98
ISCCP-ITP	90 km	0.5	9.9	0.98
ISCCP-ITP	110 km	0.5	9.8	0.98

834

835

836 **Table 4.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
837 estimated daily PAR product (ISCCP-ITP) compared to observations at the
838 42 NEON stations.

	Spatial resolution	MBE (W m^{-2})	RMSE (W m^{-2})	R
ISCCP-ITP	10 km	2.8	13.1	0.96
ISCCP-ITP	30 km	3.0	11.6	0.97
ISCCP-ITP	50 km	3.0	11.4	0.97
ISCCP-ITP	70 km	3.0	11.5	0.97
ISCCP-ITP	90 km	3.0	11.7	0.97
ISCCP-ITP	110 km	2.9	11.8	0.97

839

840 **Table 5.** Effect of spatial resolution (from 10 km to 110 km) on accuracy of our
841 estimated daily PAR product (ISCCP-ITP) compared to observations at the
842 38 CERN stations.

	Spatial resolution	MBE (W m^{-2})	RMSE (W m^{-2})	R
ISCCP-ITP	10 km	1.4	19.6	0.89
ISCCP-ITP	30 km	1.3	18.6	0.90
ISCCP-ITP	50 km	1.2	18.3	0.90
ISCCP-ITP	70 km	1.2	18.3	0.90
ISCCP-ITP	90 km	1.1	18.2	0.90
ISCCP-ITP	110 km	1.1	18.3	0.90

843