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Abstract: Photosynthetically active radiation (PAR) is a fundamental physiological 22 

variable for research in the ecological, agricultural, and global change fields. In this 23 

study, we produced a 35-year (1984‒2018) high-resolution (3 h, 10 km) global gridded 24 

PAR dataset using an effective physical-based model. The main inputs of the model 25 

were the latest International Satellite Cloud Climatology Project (ISCCP) H-series 26 

cloud products, MERRA-2 aerosol data, ERA5 surface routine variables, and MODIS 27 

and CLARRA-2 albedo products. Our gridded PAR product was evaluated against 28 

surface observations measured at seven experimental stations of the SURFace 29 

RADiation budget network (SURFRAD), 42 experimental stations of the National 30 

Ecological Observatory Network (NEON), and 38 experimental stations of the Chinese 31 

Ecosystem Research Network (CERN). Instantaneous PAR was validated against 32 

SURFRAD and NEON data; mean bias errors (MBE) and root mean square errors 33 

(RMSE) were, on average, 5.8 W m-2 and 44.9 W m-2, respectively, and correlation 34 

coefficient (R) was 0.94 at the 10 km scale. When upscaled to 30 km, the errors were 35 

markedly reduced. Daily PAR was validated against SURFRAD, NEON, and CERN 36 

data, and the RMSEs were 13.2 W m-2, 13.1 W m-2, and 19.6 W m-2, respectively at the 37 

10 km scale. The RMSEs were slightly reduced when upscaled to 30 km. Compared 38 

with the well-known global satellite-based PAR product of the Earth's Radiant Energy 39 

System (CERES), our PAR product was found to be a more accurate dataset with higher 40 

resolution. This new dataset is now available 41 

at https://doi.org/10.11888/RemoteSen.tpdc.271909 (Tang, 2021).  42 
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1. Introduction 44 

Plants rely on chlorophyll to absorb solar radiation in the visible wavelength range 45 

(400–700 nm) for photosynthesis (Huang et al., 2020), and sunlight in this band is 46 

commonly referred to as photosynthetically active radiation (PAR). Thus, PAR is the 47 

source of energy for biomass formation and may directly affect the growth, 48 

development, yield, and product quality of vegetation (Zhang et al., 2014; Ren et al., 49 

2021), modulating energy exchange between Earth’s surface and the atmosphere 50 

(Zhang et al., 2021). Therefore, a high-quality PAR dataset is indispensable for studies 51 

of ecosystems, agriculture, and global change (Frouin et al., 2018).  52 

However, measurements of PAR are not routinely conducted at weather stations 53 

or radiation stations. For example, PAR is not routinely observed at the Baseline 54 

Surface Radiation Network (BSRN, Ohmura et al., 1998) or at the China 55 

Meteorological Administration (CMA, Tang et al., 2013) weather/radiation stations. 56 

Long-term PAR observations are only provided by a few ecological experimental 57 

observation networks, such as the Chinese Ecosystem Research Network (CERN, Wang 58 

et al., 2016), the AmeriFlux network (https://ameriflux.lbl.gov/), the SURFace 59 

RADiation budget network (SURFRAD, 60 

https://www.esrl.noaa.gov/gmd/grad/surfrad/), and the National Ecological 61 

Observatory Network (NEON, https://www.neonscience.org/). To compensate for the 62 

lack of PAR observations, a number of methods have been developed over recent 63 

decades to estimate PAR. These methods can be roughly divided into two categories: 64 

station-based methods and satellite-based methods (Tang et al., 2017).  65 

Station-based methods mainly estimate PAR using other available variables 66 

measured at stations using empirical or physical methods. Empirical methods usually 67 

use the observed PAR and other variables to build an empirical relationship to conduct 68 

https://www.esrl.noaa.gov/gmd/grad/surfrad/
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PAR estimation. One such method is the well-known power law equation, which 69 

usually uses the cosine of the solar zenith angle and the clearness index as inputs. The 70 

clearness index, defined as the ratio of the solar radiation at the surface to that at the top 71 

of the atmosphere (TOA), roughly reflects the solar light attenuation degree caused by 72 

clouds, aerosols, water vapor, and other atmospheric compositions. A number of such 73 

empirical methods based on the power law equation have been developed in the last 74 

two decades (Alados et al., 1996; Xia et al., 2008; Hu et al. 2010; Hu and Wang 2014; 75 

Yu et al. 2015; Wang et al., 2015, 2016). In addition, artificial neural network (ANN) 76 

methods have also been used to estimate PAR from surface solar radiation (SSR) and 77 

other meteorological variables (e.g., air temperature, relative humidity, dew point, 78 

water vapor pressure, and air pressure) in a variety of ecosystems in China (Wang et al., 79 

2016). Generally, the aforementioned empirical methods can work well when calibrated 80 

with local PAR observations, but the parameters in these methods are station-dependent 81 

and their performance at locations where observations are not available will deteriorate. 82 

Physical methods of PAR estimation generally consider various attenuations in the 83 

atmosphere through parameterization approximation to complicated radiative transfer 84 

processes. For example, Gueymard (1989a, 1989b, 2008) developed three physical 85 

methods for the estimation of PAR, but these only work under clear-sky conditions. To 86 

obtain all-sky PAR, Qin et al. (2012) further extended these methods to cloudy skies by 87 

importing the measurements of sunshine duration that are usually conducted at most 88 

meteorological stations. Tang et al. (2013) used the PAR method of Qin et al. (2012) to 89 

estimate the daily PAR at more than 700 CMA routine weather stations, and found its 90 

accuracy was comparable to those of local calibrated methods. Nevertheless, the PAR 91 

method of Qin et al. (2012) can only be used to estimate daily PAR, and strictly can 92 

only be applied at weather stations where the observation of sunshine duration is 93 
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available.  94 

Alternatively, satellite-based methods can be used to map spatially continuous 95 

PAR, but compared to SSR, little attention has been paid to PAR estimation using 96 

remote sensing data (Van Laake and Sanchez-Azofeifa, 2004; Liang et al., 2006). There 97 

are a few algorithms for estimating PAR using satellite data, and these algorithms may 98 

be grouped into two categories: methods based on look-up tables (LUTs) based and 99 

parameterization methods. 100 

LUT-based methods can circumvent complicated radiative transfer calculations 101 

(Huang et al., 2019) to estimate PAR directly from the satellite’s signal by searching 102 

pre-calculated LUTs. Since first proposed by Pinker and Laszlo (1992), several similar 103 

LUT-based methods (Liang et al., 2006; Zhang, et al., 2014; Huang, et al., 2016) have 104 

emerged to estimate PAR from regional to global scales with different satellite sources. 105 

However, LUT-based methods are more vulnerable to various uncertainties due to their 106 

“black-box” nature, and they are also difficult to port across different satellite platforms.  107 

In contrast, parameterization methods do not rely on satellite platforms. 108 

Essentially, they comprise a simplification of the radiative transfer processes, and thus 109 

require various land and atmospheric products from satellite retrievals as inputs to 110 

estimate PAR. To some extent, the accuracy of these methods depends on the accuracy 111 

of the input data. On the other hand, the uncertainty of parameterization methods comes 112 

mainly from the treatment of clouds; this is because the clear-sky part of the method is 113 

relatively mature with uncertainty less than 10% compared with the rigorous radiative 114 

transfer calculation (Huang et al., 2020). There has been little attention paid to specific 115 

cloud parameterization for PAR estimation except for the work of Van-Laake and 116 

Sanchez-Azofeifa (2004), Sun et al. (2017), and Huang et al. (2020). Sun et al. (2017) 117 

used one (UV–visible) of their two broadbands (UV–visible and near infrared) model 118 
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(a physical-based parameterization scheme for the estimation of SSR), to estimate all-119 

sky PAR. By further considering the multiple scattering and reflection of clouds, Huang 120 

et al. (2020) developed a more complicated cloud parameterization scheme and 121 

combined this with the clear-sky PAR model of Gueymard (1989a) to estimate all-sky 122 

PAR. Although their accuracies are both acceptable, there is no corresponding PAR 123 

product currently being produced for relevant scientific research.  124 

In the past, a few global PAR products have been developed, such as the global 125 

gridded PAR products of the International Satellite Cloud Climatology Project (ISCCP-126 

PL, Pinker and Laszlo,1992), the Clouds and the Earth's Radiant Energy System 127 

(CERES, Su et al., 2007), the Global LAnd Surface Satellite products (GLASS, Zhang 128 

et al. 2014), the MODIS (MCD18A2 product, Wang et al., 2020), the Breathing Earth 129 

System Simulator (BESS, Ryu et al., 2018), and a product from Hao et al. (2019) based 130 

the observations from the Earth Polychromatic Imaging Camera (EPIC) onboard the 131 

Deep Space Climate Observatory (DSCOVR,  Burt and Smith, 2012). However, these 132 

global PAR products are either too coarse in spatial resolution to meet refined analyses, 133 

too low in temporal resolution to reflect daily variations, or too short in time series to 134 

meet the demand of climate change studies. As a result, a high-resolution long-term 135 

global gridded PAR product is urgently needed in the scientific community.  136 

In this study, a high-resolution 35-year global gridded PAR product was developed 137 

using an effective physical PAR estimation model, driven mainly by the latest high-138 

resolution ISCCP H-series cloud products, the aerosol product of the Modern-Era 139 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis 140 

data, and water vapor, surface pressure, and ozone amount products of the ERA5 141 

reanalysis data. We also evaluated the performance of our PAR product using in-situ 142 

observations measured across three experimental observation networks in the United 143 
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States and China, and compared its performance with another common global satellite 144 

product. The rest of the article is organized as follows. In Section 2, we introduce the 145 

method used to map the global gridded PAR product. The input data for estimating the 146 

global gridded PAR product, and the in-situ data for evaluating the performance of our 147 

estimated global gridded PAR product are described in Section 3. Section 4 presents 148 

the validation results of our global gridded PAR product and compares this with the 149 

well-known satellite-based global PAR product of CERES. Section 5 describes data 150 

availability, and our summary and conclusions are given in Section 6.   151 

 152 

2 Estimation of PAR 153 

The algorithm used to map global gridded PAR in this study was the 154 

parameterization method developed by Tang et al. (2017), who combined the physical-155 

based clear-sky PAR model of Qin et al. (2012) and the parameterization scheme for 156 

cloud transmittance of Sun et al. (2012). In calculating the surface PAR, the algorithm 157 

takes into account various attenuation processes in the atmosphere, such as absorption 158 

of water vapor and ozone, Rayleigh scattering, and absorption and scattering of cloud 159 

and aerosol. In addition, the algorithm also considers the multiple reflections between 160 

the surface and the atmosphere. The parametric expressions for the PAR algorithm are 161 

all converted from the extensive radiative transfer calculations, and thus it is a physical 162 

and efficient method that does not require calibration with ground-based observations. 163 

The inputs of the PAR algorithm mainly include aerosol optical depth, cloud 164 

optical depth, water vapor, ozone amount, surface albedo, and surface air pressure. 165 

Tang et al. (2017) used the developed PAR algorithm to estimate instantaneous PAR 166 

using the atmosphere and land products of the Moderate Resolution Imaging 167 

Spectroradiometer (MODIS), and the estimated instantaneous PAR was evaluated 168 
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against in-situ observations collected by the SURFRAD network. It was found that this 169 

algorithm performs better than previous algorithms and the estimated instantaneous 170 

PAR can have a root mean square error (RMSE) of about 40 W m−2. Wang et al. (2021) 171 

have compared five representative methods for estimating downward shortwave 172 

radiation, and found that the parameterization method performed best among them. This 173 

increases our confidence in estimating PAR with physical parameterization method. 174 

Therefore, we expect good performance from our algorithm in mapping global gridded 175 

PAR. Interested readers can refer to our earlier article (Tang et al., 2017) for further 176 

details.  177 

 178 

3 Data 179 

3.1 Input data 180 

To produce a long-term (from 1984 to 2018) high-resolution global gridded PAR 181 

product using the PAR algorithm presented above, we used input data from four 182 

different sources. 183 

The first source of input data was the latest level-2 H-series pixel-level global 184 

(HXG) cloud products of the ISCCP, here referred to as ISCCP-HXG; these were 185 

publicly available, spanned the period July 1983 to December 2018, had a spatial 186 

resolution of 10 km, and a temporal resolution of 3 hours. The ISCCP-HXG cloud 187 

products were produced by a series of cloud-related algorithms based on global gridded 188 

two-channel radiance data (visible, 0.65 μm and infrared, 10.5 μm) merged from 189 

different geostationary and polar orbiting meteorological satellites. We must bear in 190 

mind that the 3-hour ISCCP-HXG cloud products denote instantaneous data at a given 191 

moment every three hours, not a mean of 3 hours. We used four variables from the 192 

ISCCP-HXG cloud products; these were cloud mask, cloud top temperature, and the 193 
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optical depths of water cloud or ice cloud retrieved based on the visible radiance. The 194 

sky condition (clear or cloudy) of a pixel was distinguished by the cloud mask data, and 195 

the cloud phase (liquid or ice) of a cloudy pixel was roughly determined by the cloud 196 

top temperature. If the cloud top temperature (TC) of a cloudy pixel was greater than 197 

or equal to 253.1 K, it was regarded as water cloud; otherwise, it was classed as ice 198 

cloud. For more detailed information on the ISCCP-HXG cloud products, the reader 199 

may refer to the cloud products article of Young et al. (2018). The uncertainties in cloud 200 

detection and cloud property can be found in the official  Climate Algorithm Theoretical 201 

Basis Document (C-ATBD, 202 

https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-203 

ISCCP/AlgorithmDescription_01B-29.pdf). The accuracies of these cloud parameters 204 

in the latest ISCCP-H series are considered to be more reliable than those of cloud 205 

parameters in the previous ISCCP-D series. 206 

The second source of input data was the aerosol product of the MEERA-2 207 

reanalysis data, which can be downloaded from the Goddard Earth Sciences Data and 208 

Information Services Center of the National Aeronautics and Space Administration 209 

(NASA). MERRA-2 assimilates ground-observed aerosol optical depth (AOD) 210 

measured at the AERONET (Holben et al., 1998), and satellite-retrieved AOD from the 211 

MODIS Aqua and Terra sensors, MISR sensor, and AVHRR sensor (Randles et al. 212 

2017). The MERRA-2 hourly aerosol product used in this study was called 213 

“tavg1_2d_aer_Nx”, having a spatial resolution of 0.5° × 0.625°, a temporal resolution 214 

of 1 hour, and a time period of 1980 to present. Two variables of the MERRA-2 aerosol 215 

product were used in this study; these were the total AOD at 550 nm and the total 216 

aerosol Ångström parameter (470‒870 nm). To map the global gridded PAR product 217 

with a spatial resolution of 10 km, we re-sampled the MERRA-2 aerosol product to a 218 

https://ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf
https://ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf
https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf
https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf
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spatial resolution of 10 km. Gueymard and Yang (2020) have validated the MERRA-2 219 

AOD product against 793 AERONET stations worldwide, and also compared with 220 

other aerosol products. It was found that the averaged RMSE for the MERRA-2 AOD 221 

at 550 nm was about 0.126, which was generally lower than those of other aerosol 222 

products. 223 

The third source of input data was the routine weather variables of the ERA5 224 

reanalysis data, which mainly included total column ozone, total column water vapor, 225 

and surface pressure, with a spatial resolution of 25 km and a temporal resolution of 1 226 

hour. Total column ozone and total column water vapor were used to calculate the 227 

transmittance due to ozone absorption and water vapor absorption, respectively. 228 

Surface pressure was used to calculated the Rayleigh scattering in the atmosphere. To 229 

maintain consistency with the spatial resolution of the ISCCP-HXG cloud product, 230 

these three routine weather variables of the ERA5 reanalysis data were re-sampled to 231 

10 km. 232 

The fourth source of input data was albedo data from the MODIS MCD43A3 233 

product (Schaaf et al., 2002) and from the Satellite Application Facility on Climate 234 

Monitoring (CM‒SAF) (CLARA-A2-SAL, Karlsson et al., 2017), to take into account 235 

the multiple scattering effect between the land surface and atmosphere on the 236 

calculation of PAR. The spatial resolutions of MODIS and CM-SAF were both 5 km, 237 

and thus we downscaled them to 10 km. The MODIS albedo product was used after 238 

2000, the date when it first became available, and the CM-SAF albedo product was 239 

used before 2000 (when MODIS was unavailable). The use of different albedo products 240 

will lead to inconsistent accuracy for the final global gridded PAR product, and thus 241 

caution should be exercised when performing trend analyses.  242 

 243 
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3.2 In-situ measurements 244 

In-situ PAR measurements collected across three networks from the United States 245 

and China were used to validate our global gridded PAR product. PAR measurements 246 

at those networks are all quantified as photosynthetic photo flux density (μ mol m-2 s-247 

1), and McCree's conversion factor with a value of approximately 4.6 (McCree, 1972) 248 

was used to convert the quantum units of PAR into energy units (W m−2) of PAR. The 249 

first network used was SURFRAD (Augustine et al., 2000) of the National Oceanic and 250 

Atmospheric Administration (NOAA), which contains seven experimental stations 251 

(Goodwin Greek, Fort Peek, Bondville, Desert Rock, Sioux Falls, Table Mountain, and 252 

Penn State) in different climatic regions (red pentagrams in Fig. 1). LI-COR Quantum 253 

sensors were used to measure PAR at the SURFRAD network. The standards of 254 

instrument calibration for the Baseline Surface Radiation Network (BSRN) were 255 

adopted and the quality of radiation data at SURFRAD were considered to be 256 

comparable to those of the BSRN. Many previous studies have used SURFRAD 257 

radiation data to evaluate their algorithms for estimation of different radiation 258 

components. The PAR observations at 1-minute temporal resolution from 2009 to 2016 259 

at the seven SURFRAD stations were used. 260 

The second network used was NEON (Metzger et al., 2019), and 42 terrestrial 261 

tower stations (denoted by red triangles in Fig. 1) in the network were used in this study. 262 

Generally, measurements of the PAR vertical profile at multiple vertical levels were 263 

conducted at each tower station and the tower-top PAR measurements were used to 264 

validate our global gridded PAR product. Kipp & Zonen PQS 1 quantum sensors with 265 

an uncertainty within 4% (Blonquist and Johns, 2018) were used to measure PAR across 266 

the NEON. The sensors sampled with frequency of 1 Hz, recorded PAR values every 267 

minute, and were calibrated every year. The starting times of PAR observations at the 268 
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42 NEON stations are different to each other, and thus here we used PAR observations 269 

from the starting time of each site to the end of 2018. 270 

The third network used was CERN, and 38 stations (marked with red circles in Fig. 271 

1) across diverse terrestrial ecosystems were used in this study. These 38 CERN stations 272 

were distributed across different climatic zones and belonged to eight different 273 

ecosystems: agriculture, forest, desert, marine, grassland, lake, marsh wetland, and 274 

urban. LI-190SA quantum sensors with an uncertainty of approximately 5% (Hu et al., 275 

2007) were used to measure PAR across CERN, and the spectrometer and standard 276 

radiative lamp were adopted to centralized calibrate and compare among the quantum 277 

sensors. The PAR observations were recorded hourly and thus we only validated our 278 

daily PAR product against CERN due to the mismatch between the hourly observed 279 

data and the satellite-based instantaneous retrievals. The daily mean PAR datasets from 280 

the 38 CERN stations during 2005 - 2015 were publicly shared by Liu et al. (2017) and 281 

used herein. The PAR observations collected at the CERN network were quality 282 

controlled by the data sharers, more details about the quality control procedure can be 283 

found in the article of Liu et al. (2017). 284 

 285 

4 Results and Discussion 286 

Based on the above inputs and the physical-based PAR algorithm, we produced a 287 

long-term (from 1984 to 2018) high resolution (10 km spatial resolution and 3 hours 288 

temporal resolution) global gridded PAR product, here referred to as the ISCCP-ITP 289 

PAR product. In-situ observations from three networks were used to evaluate the 290 

performance of our ISCCP-ITP PAR product at instantaneous and daily scales. In 291 

addition, a widely used global gridded PAR product of the CERES (SYN1deg-1hour, 292 

edition 4A), with a spatial resolution of 1o × 1o and a temporal resolution of 1 hour, was 293 
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used to provide a comparison with our ISCCP-ITP PAR product. Here, we directly 294 

compared the ground-based observations with the estimated PAR values of the 295 

corresponding satellite pixel. The comparison process would introduce some 296 

uncertainty in the results. This is also an issue of site representativeness.  If a site is 297 

representative of the corresponding satellite pixel, then the uncertainty in the validation 298 

result is negligible, otherwise the uncertainty is non-negligible. Generally, the 299 

representativeness of a site over flat area can greater than 25 km for downward 300 

shortwave radiation according to Schwarz et al. (2017) and Huang et al. (2019). In this 301 

study, most of the experimental stations are over flat areas, and thus the uncertainty in 302 

the validation result of this study is negligible. To discuss the influence of spatial 303 

resolution on the accuracy of our global gridded PAR product, we also evaluated the 304 

estimated PAR at different spatial resolutions from 10 km to 110 km. The estimated 305 

PAR at spatial resolutions from 30 km to 110 km were calculated by averaging the 306 

corresponding original PAR at the 10 km scale. Here, the three statistical metrics of 307 

mean bias error (MBE), RMSE, and correlation coefficient (R), were used to evaluate 308 

the performance of our ISCCP-ITP PAR product and the CERES PAR product. 309 

 310 

4.1 Validation of instantaneous PAR 311 

In this study, the instantaneous PAR was validated against the observed hourly 312 

PAR, which was calculated by averaging the 1-minute PAR over the time period of 30 313 

minutes before and after satellite overpass. Our estimated instantaneous PAR was firstly 314 

validated against in-situ data measured at the seven SURFRAD stations. Figure 2 315 

presents the validation results for the instantaneous PAR at spatial resolutions of 10 km 316 

and 30 km, and the validation result for the CERES hourly PAR with a spatial resolution 317 

of approximately 100 km. It can be seen that the accuracy of the instantaneous PAR at 318 
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10 km spatial resolution (MBE = 5.6 W m–2, RMSE = 44.3 W m–2, R = 0.94) is 319 

comparable to that of the CERES hourly PAR at 100 km spatial resolution (MBE = 4.9 320 

W m–2, RMSE = 44.1 W m–2, R = 0.93). However, when the instantaneous PAR at 10 321 

km spatial resolution was averaged to 30 km, its accuracy was markedly improved; 322 

RMSE decreased from 44.3 to 36.3 W m–2 and R increased from 0.94 to 0.96, and thus 323 

its accuracy at 30 km spatial resolution is clearly higher than that of the CERES product.    324 

Table 1 shows the accuracies of our estimated instantaneous PAR at different 325 

spatial resolutions from 10 km to 110 km. It can be seen that the accuracy at the original 326 

10 km spatial resolution was clearly lower than at all other resolutions (30‒110 km), 327 

and the accuracy was highest at a resolution of 50‒70 km. This may be due to the 328 

following two reasons. Firstly, the representativeness of ground-based observational 329 

stations may be greater than 10 km. Secondly, there is time mismatch between satellite-330 

based and surface-based observations because the last generation of geostationary 331 

meteorological satellites (e.g., the Geostationary Operational Environmental Satellite 332 

(GOES)) require approximately half an hour to complete a disk scan. Spatially 333 

averaging the instantaneous PAR to a larger area could partially eliminate this time 334 

mismatch. 335 

 The instantaneous PAR was also evaluated against the 42 NEON stations (Figure 336 

3 and Table 2). The performance against NEON was slightly worse than that against 337 

SURFRAD. At the 10 km scale, the former produced a 1.2 W m-2 larger RMSE than the 338 

latter, and both produced a positive MBE of approximately 6 W m-2 and R of 0.94. 339 

Similar to the situation at SURFRAD, the accuracy at NEON was markedly improved 340 

at 30 km spatial resolution, reached a peak at 50 km resolution, and then started to 341 

decrease slightly at 70 km resolution. Compared to the performance of the CERES 342 

hourly PAR at NEON, the accuracy of our estimated instantaneous PAR was higher at 343 
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all scales from 10 km to 110 km. More importantly, the spatial resolution of our PAR 344 

product (10 km) is much finer than that of the CERES PAR product (100 km).  345 

Due to the significant improvement when our estimated PAR was upscaled to 30 346 

km spatial resolution, we used a 3 × 3 spatial window to smooth the raw PAR to derive 347 

our final global grided PAR product. Thus, we here present the spatial distributions of 348 

MBE and RMSE (Figure 4) for our estimated PAR with a spatial resolution of 30 km 349 

across seven SURFRAD and 42 NEON stations in the USA. The MBE values range 350 

from −11.2 to 19.8 W m-2, with a negative MBE at 5 of the 49 stations. From an MBE 351 

point of view, 42 stations fall into the range −10 to 10 W m-2, and among these 22 352 

stations fall within −5 to 5 W m-2. The RMSE values range from 24.2 to 52.3 W m-2, 353 

with RMSE ≤ 35 W m-2 at 18 stations, RMSE between 35 and 40 W m-2 at 19 stations, 354 

RMSE between 40 and 50 W m-2 at 12 stations, and RMSE > 50 W m-2 at only one 355 

station. The largest MBE and RMSE both occur at the Great Smoky Mountains National 356 

Park (GRSM) station, which is situated in the mountains of southeastern Tennessee. 357 

Similar large errors at this station were also found for the CERES PAR product. The 358 

relatively large errors at this station could be caused by the poor representativeness of 359 

the mountain observational station.  360 

 361 

4.2 Validation of daily PAR 362 

Our estimated daily PAR (ISCCP-ITP) was derived by averaging the instantaneous 363 

PAR of eight moments in the day, and validated against the three networks of 364 

SURFRAD, NEON, and CERN. Similar to the validation results for the instantaneous 365 

PAR, the performance of our estimated daily PAR at 10 km spatial resolution was 366 

comparable to that of the CERES product at SURFRAD and NEON, and when upscaled 367 

to ≥ 30 km, our daily PAR product performed slightly better than that of CERES. 368 
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Therefore, here we do not give validation results for the CERES daily PAR at 369 

SURFRAD and NEON, but only give validation results for the CERES daily PAR at 370 

CERN. 371 

Validation results for our estimated daily PAR against in-situ data collected at 372 

SURFRAD are shown in Figure 5 and Table 3. The MBE, RMSE, and R values were 373 

0.4 W m-2, 13.2 W m-2, and 0.96, respectively, for daily PAR at 10 km spatial resolution. 374 

When upscaled to 30 km spatial resolution, these statistical metrics changed to 0.6 W 375 

m-2, 11.2 W m-2, and 0.97, respectively. When upscaled to ≥50 km, the RMSE gradually 376 

decreased to approximately 10 W m-2. The MBE and R changed to 0.5 W m-2 and 0.98, 377 

respectively.   378 

Validation results for our estimated daily PAR against NEON are shown in Figure 379 

6 and Table 4. The RMSE for daily PAR at 10 km spatial resolution was 13.1 W m-2, 380 

and this value decreased to 11.6 W m-2 for 30 km spatial resolution. The R for daily 381 

PAR was 0.96 and 0.97 for 10 km and 30 km spatial resolution, respectively. When 382 

upscaled to ≥ 50 km, these statistical metrics remained almost unchanged. The 383 

performance against NEON is comparable to that against SURFRAD for our daily PAR 384 

product. 385 

Figure 7 shows the spatial distributions of MBE and RMSE for our estimated daily 386 

PAR with a spatial resolution of 30 km against seven SURFRAD and 42 NEON stations 387 

in the USA. The largest negative and positive MBE values were −5.3 W m-2 and 9.3 W 388 

m-2, respectively. There were seven stations with MBE < 0 W m-2, 41 stations with 389 

MBE values between −5 W m-2 and 5 W m-2, 31 stations with MBE values between −3 390 

W m-2 and 3 W m-2, and only eight stations with absolute MBE > 5 W m-2. The largest 391 

and smallest RMSE values were 17.6 W m-2, and 6.9 W m-2, respectively. There were 392 

12 stations with RMSE < 10 W m-2, 19 stations with RMSE between 10 W m-2 and 12 393 
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W m-2, 12 stations with RMSE between 12 W m-2 and 13 W m-2, and only six stations 394 

with RMSE > 13 W m-2. Likewise, the largest MBE and RMSE values were found at 395 

the GRSM station with the main reason again likely being due to the poor 396 

representativeness of this station.  397 

Finally, we validated our daily PAR and the CERES daily PAR products against 398 

in-situ data collected across CERN (Figure 8). The performance of our daily PAR 399 

product at the 10 km scale (MBE = 1.4 W m–2, RMSE = 19.6 W m–2, R = 0.89) was 400 

slightly worse than that of the CERES daily PAR product (MBE = −1.3 W m–2, RMSE 401 

= 18.7 W m–2, R = 0.90). However, when upscaled to ≥ 30 km, the accuracies of our 402 

estimated daily PAR were comparable to, or slightly better than, those of the CERES 403 

daily PAR. Another phenomenon we noticed was that the RMSEs against CERN data 404 

were approximately 7−8 W m–2 greater than those against SURFRAD and NEON data 405 

for both our daily PAR and the CERES PAR products. This could be attributed to the 406 

fact that the quality of PAR observations at CERN is slightly worse than that at 407 

SURFRAD and NEON, but further evidence is required to support this speculation. 408 

Another possible reason could be the effect of aerosols because aerosols are a major 409 

attenuation factor affecting the clear-sky PAR (Qin et al., 2012; Tang et al. 2013). 410 

Because the aerosol optical depth (AOD) over China is much greater than that over the 411 

USA (Li et al., 2011), greater uncertainty in the aerosol data over China would lead to 412 

larger errors in PAR estimation over China.  413 

Figure 9 presents the spatial distributions of MBE and RMSE for our estimated 414 

daily PAR with a spatial resolution of 30 km against the 38 CERN stations. The MBE 415 

values at most of the stations were between −10 W m–2 and 10 W m–2. The stations with 416 

negative MBE were mainly located in northwestern China, and the stations with 417 

positive MBE were mainly located in southeastern China. The RMSE values at most of 418 
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the stations were < 23 W m–2, and there were only five stations where the RMSE was > 419 

25 W m–2. Stations with an absolute MBE > 10 W m–2 were mainly located in four 420 

forested areas (Beijing, Xishuangbanna, Heshan, and Ailao Mountain), one agricultural 421 

area (Huanjiang), one lake area (Taihu), and one Desert area (Fukang). Likewise, the 422 

RMSE values at these seven stations were relatively large. Similar large errors at these 423 

stations were also found for the CERES PAR product. The large errors at these stations 424 

could be caused by the poor representativeness at some mountain stations, large 425 

uncertainty in the inputs at some stations, or uncertainty in observational data.  426 

 427 

4.3 Spatial distribution of multi-year average PAR 428 

Figure 10 shows the global spatial distribution of multi-year annual average PAR 429 

(ISCCP-ITP) during the period 2001–2018, and comparison with that of the CERES 430 

PAR is also shown. The spatial pattern of our ISCCP-ITP PAR product is quite 431 

consistent with that of the CERES PAR product, whose spatial resolution was far 432 

coarser than that of our PAR product. There were some finer patterns that the CERES 433 

PAR product could not distinguish, but our PAR product could clearly capture. This 434 

defect in the CERES PAR product was especially evident in mountainous areas, such 435 

as the Tibetan Plateau. The annual average PAR was generally high in latitudinal zones 436 

lying between 30o N and 30o S, and low in other regions. In addition, there were some 437 

high-altitude regions with high PAR values, such as the Tibetan Plateau and Bolivian 438 

Plateau.  439 

Figure 11 displays the global spatial distributions of multi-year seasonal average 440 

PAR (ISCCP-ITP) during the period 2001–2018. The four panels in the figure reflect 441 

the process of seasonal change and exhibit different spatial distribution characteristics. 442 

Compared to mid- and high-latitude areas, more PAR was received around the equator 443 
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and low latitudes (30o N-30o S) in all four seasons. Over the latitudinal zone between 444 

30o S and 90 o S in southern hemisphere, PAR received by the surface gradually 445 

increased from spring to winter, with the lowest values in spring and summer, a 446 

relatively larger value in autumn, and the largest value in winter. Over the latitudinal 447 

zone between 30o N and 90 o N in northern hemisphere, the situation was very different. 448 

PAR received by the surface was largest in summer, lowest in autumn and winter, and 449 

intermediate in spring. 450 

 451 

5 Data availability 452 

Our long-term global gridded PAR product is available at the National Tibetan 453 

Plateau Data Center (https://doi.org/10.11888/RemoteSen.tpdc.271909, Tang, 2021), 454 

Institute of Tibetan Plateau Research, Chinese Academy of Sciences. 455 

 456 

6 Summary and Conclusions 457 

A long-term (1984‒2018) global high-resolution (10 km spatial resolution, 3 h 458 

temporal resolution) gridded PAR product was produced using our previously published 459 

physical-based PAR parametrization scheme. The main inputs for this PAR model were 460 

the latest ISCCP H-series cloud product, ERA5 routine meteorological data (water 461 

vapor, surface pressure, and ozone), MERRA-2 aerosol product, and albedo products 462 

from MODIS (after 2000) and CLARRA-2 (before 2000). The generated PAR product 463 

was validated globally against in-situ data measured across three observational 464 

networks in the USA and China. For the instantaneous PAR at original the scale (10 465 

km), the overall MBE, RMSE, and R were 5.8 W m-2, 44.9 W m-2 and 0.94, respectively. 466 

When smoothed to ≥ 30 km, the accuracy was markedly improved, with RMSE 467 

decreasing to 37.1 W m–2 and R increasing to 0.96. For the daily PAR at spatial 468 
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resolutions of 10 km and 30 km, the RMSE values were approximately 13.1 W m–2 and 469 

11.4 W m–2, respectively, in the USA. Validation results in China showed a greater 470 

RMSE than in the USA. Due to the marked improvement when our PAR products were 471 

upscaled to ≥ 30 km, we applied a 3×3 spatial smoothing window to the original PAR 472 

data to produce the final PAR product.  473 

Our estimated PAR product was also compared with the CERES PAR product; we 474 

found that the accuracy of our estimated PAR product at the original scale (10 km) was 475 

generally comparable to, or higher than, that of the CERES PAR product. When it was 476 

upscaled to ≥ 30 km, the accuracy advantage of our product over the CERES PAR 477 

product became more evident. Another clear advantage of our PAR product was the 478 

increased spatial resolution it offered compared to the CERES PAR product. We expect 479 

that our PAR product will contribute to the future understanding and modeling of the 480 

global carbon cycle and ecological processes. In future work, we will attempt to 481 

separate the components of direct and diffuse PAR from the total PAR because light use 482 

efficiency is mainly controlled by diffuse PAR. 483 
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Figure captions 730 

Figure 1 Distribution of observation stations within the three observation networks, 731 

where measurements of PAR were carried out. The red circles denote the 732 

locations of the 38 CERN stations, the red triangles denote the 42 NEON 733 

stations, and the red pentagrams denote the seven SURFRAD stations. 734 

Figure 2 Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at 735 

spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES 736 

SYN1deg (edition 4.1) with observed PAR collected at seven SURFRAD 737 

stations. 738 

Figure 3 Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at 739 

spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES 740 

SYN1deg (edition 4.1) with observed PAR collected at 42 NEON stations. 741 

Figure 4 Spatial distribution of (a) MBE (W m-2) and (b) RMSE (W m-2) for our 742 

estimated instantaneous PAR product (ISCCP-ITP, 30 km) at seven 743 

SURFRAD stations and 42 NEON stations. 744 

Figure 5 Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial 745 

resolutions of (a) 10 km and (b) 30 km with observed PAR collected at seven 746 

SURFRAD stations. 747 

Figure 6 Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial 748 

resolutions of (a) 10 km and (b) 30 km with observed PAR collected at 42 749 

NEON stations. 750 

Figure 7 Same as Figure 4, but for our estimated daily PAR product (ISCCP-ITP, 30 751 

km). 752 

Figure 8 Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial 753 

resolutions of (a) 10 km, (b) 30 km, and (c) daily PAR of the CERES 754 



30 
 

SYN1deg (edition 4.1) with observed PAR collected at 38 CERN stations. 755 

Figure 9 Spatial distribution of (a) MBE (W m-2) and (b) RMSE (W m-2) for our 756 

estimated daily PAR product (ISCCP-ITP, 30 km) at 38 CERN stations. 757 

Figure 10 Spatial distribution of annual mean PAR between 2001 and 2018, derived 758 

from (a) our estimated PAR product (ISCCP-ITP), and (b) the CERES PAR 759 

product. The unit of PAR is W m-2.  760 

Figure 11 Spatial distribution of seasonal mean PAR between 2001 and 2018 derived 761 

from our estimated PAR product (ISCCP-ITP). The unit of PAR is W m-2. 762 



31 
 

 763 

Figure 1 Distribution of observation stations within the three observation networks, 764 

where measurements of PAR were carried out. The red circles denote the 765 

locations of the 38 CERN stations, the red triangles denote the 42 NEON 766 

stations, and the red pentagrams denote the seven SURFRAD stations.  767 
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 768 

Figure 2 Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at 769 

spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES 770 

SYN1deg (edition 4.1) with observed PAR collected at seven SURFRAD 771 

stations. 772 
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 773 

Figure 3 Comparisons of our estimated instantaneous PAR product (ISCCP-ITP) at 774 

spatial resolutions of (a) 10 km, (b) 30 km, and (c) hourly PAR of the CERES 775 

SYN1deg (edition 4.1) with observed PAR collected at 42 NEON stations. 776 
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 777 

Figure 4 Spatial distribution of (a) MBE (W m-2) and (b) RMSE (W m-2) for our 778 

estimated instantaneous PAR product (ISCCP-ITP, 30 km) at seven 779 

SURFRAD stations and 42 NEON stations. 780 

 781 
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 782 

Figure 5 Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial 783 

resolutions of (a) 10 km and (b) 30 km with observed PAR collected at seven 784 

SURFRAD stations. 785 

 786 
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 787 

Figure 6 Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial 788 

resolutions of (a) 10 km and (b) 30 km with observed PAR collected at 42 789 

NEON stations. 790 
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 791 

Figure 7 Same as Figure 4, but for our estimated daily PAR product (ISCCP-ITP, 30 792 

km). 793 
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 794 

Figure 8 Comparisons of our estimated daily PAR product (ISCCP-ITP) at spatial 795 

resolutions of (a) 10 km, (b) 30 km, and (c) daily PAR of the CERES 796 

SYN1deg (edition 4.1) with observed PAR collected at 38 CERN stations. 797 
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 798 

Figure 9 Spatial distribution of (a) MBE (W m-2) and (b) RMSE (W m-2) for our 799 

estimated daily PAR product (ISCCP-ITP, 30 km) at 38 CERN stations. 800 
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 801 

Figure 10 Spatial distribution of annual mean PAR between 2001 and 2018, derived 802 

from (a) our estimated PAR product (ISCCP-ITP), and (b) the CERES PAR 803 

product. The unit of PAR is W m-2.  804 
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 805 

Figure 11 Spatial distribution of seasonal mean PAR between 2001 and 2018 derived 806 

from our estimated PAR product (ISCCP-ITP). The unit of PAR is W m-2. 807 
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Table captions 808 

Table 1. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 809 

estimated instantaneous PAR product (ISCCP-ITP) compared to observations 810 

at the seven SURFRAD stations.  811 

Table 2. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 812 

estimated instantaneous PAR product (ISCCP-ITP) compared to observations 813 

at the 42 NEON stations. 814 

Table 3. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 815 

estimated daily PAR product (ISCCP-ITP) compared to observations at the 816 

seven SURFRAD stations. 817 

Table 4. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 818 

estimated daily PAR product (ISCCP-ITP) compared to observations at the 819 

42 NEON stations.  820 

Table 5. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 821 

estimated daily PAR product (ISCCP-ITP) compared to observations at the 822 

38 CERN stations.  823 
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Table 1. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 824 

estimated instantaneous PAR product (ISCCP-ITP) compared to observations 825 

at the seven SURFRAD stations.  826 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-ITP  10 km 5.6 44.3 0.94 

ISCCP-ITP 30 km 6.1 36.3 0.96 

ISCCP-ITP 50 km 6.0 35.0 0.96 

ISCCP-ITP 70 km 5.9 35.1 0.96 

ISCCP-ITP 90 km 6.0 35.5 0.96 

ISCCP-ITP 110 km 5.9 36.0 0.96 

 827 
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Table 2. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 828 

estimated instantaneous PAR product (ISCCP-ITP) compared to observations 829 

at the 42 NEON stations.  830 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-ITP  10 km 5.9 45.5 0.94 

ISCCP-ITP 30 km 6.2 37.9 0.96 

ISCCP-ITP 50 km 6.3 37.0 0.96 

ISCCP-ITP 70 km 6.2 37.4 0.96 

ISCCP-ITP 90 km 6.2 38.0 0.96 

ISCCP-ITP 110 km 6.1 38.6 0.95 
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Table 3. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 831 

estimated daily PAR product (ISCCP-ITP) compared to observations at the 832 

seven SURFRAD stations.  833 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-ITP  10 km 0.4 13.2 0.96 

ISCCP-ITP 30 km 0.6 11.2 0.97 

ISCCP-ITP 50 km 0.5 10.5 0.98 

ISCCP-ITP 70 km 0.5 10.1 0.98 

ISCCP-ITP 90 km 0.5 9.9 0.98 

ISCCP-ITP 110 km 0.5 9.8 0.98 

 834 

 835 
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Table 4. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 836 

estimated daily PAR product (ISCCP-ITP) compared to observations at the 837 

42 NEON stations.  838 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-ITP  10 km 2.8 13.1 0.96 

ISCCP-ITP 30 km 3.0 11.6 0.97 

ISCCP-ITP 50 km 3.0 11.4 0.97 

ISCCP-ITP 70 km 3.0 11.5 0.97 

ISCCP-ITP 90 km 3.0 11.7 0.97 

ISCCP-ITP 110 km 2.9 11.8 0.97 

 839 
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Table 5. Effect of spatial resolution (from 10 km to 110 km) on accuracy of our 840 

estimated daily PAR product (ISCCP-ITP) compared to observations at the 841 

38 CERN stations.  842 

 Spatial resolution MBE (W m-2) RMSE (W m-2) R 

ISCCP-ITP  10 km 1.4 19.6 0.89 

ISCCP-ITP 30 km 1.3 18.6 0.90 

ISCCP-ITP 50 km 1.2 18.3 0.90 

ISCCP-ITP 70 km 1.2 18.3 0.90 

ISCCP-ITP 90 km 1.1 18.2 0.90 

ISCCP-ITP 110 km 1.1 18.3 0.90 

 843 


