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Abstract. Wildfire behaviour depends on complex interactions between fuels, topography and weather, over a wide range of 17 

scales, being important for fire research and management applications. To allow for a significant progress towards better fire 18 

management, the operational and research communities require detailed open data on observed wildfire behaviour. Here, we 19 

present the Portuguese Large Wildfire Spread Database (PT-FireSprd) that includes the reconstruction of the spread of 80 large 20 

wildfires that occurred in Portugal between 2015 and 2021. It includes a detailed set of fire behaviour descriptors, such as rate-21 

of-spread (ROS), fire growth rate (FGR), and fire radiative energy (FRE). The wildfires were reconstructed by converging 22 

evidence from complementary data sources, such as satellite imagery/products, airborne and ground data collected by fire 23 

personnel, official fire data and information in external reports. We then implemented a digraph-based algorithm to estimate 24 

the fire behaviour descriptors and combined it with MSG-SEVIRI fire radiative power estimates. A total of 1197 observations 25 

of ROS and FGR were estimates were calculated estimated along with 609 FRE estimates. The extreme fires of 2017 were 26 

responsible for the maximum observed values of ROS (8956 8900 m/h) and FGR (4436 4400 ha/h). Combining both 27 

descriptors, we defined describe the 6 fire behaviour distribution using six percentile intervals classes that can be easily 28 

communicated to both research and management communities and support a wide number of applications. Analysis of the 29 

database also showed that the area burned by aextent wildfire is mostly determined by its FGR rather than by its forward 30 

speedROS. Finally, we explored a practical example to show how the PT-FireSprd database can be used to study the dynamics 31 

of individual wildfires and to build robust case studies for training and capacity building. 32 

The PT-FireSprd is the first open access fire progression and behaviour database in Mediterranean Europe, dramatically 33 

expanding the extant information. Updating the PT-FireSprd database will require a continuous joint effort by researchers and 34 
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fire personnel. PT-FireSprd data are publicly available through https://doi.org/10.5281/zenodo.7495506 (last access: 30th 35 

December 2022) and have a large potential to improve current knowledge on wildfire behaviour and support better decision-36 

making (Benali et al. 2022). 37 

 38 
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1 Introduction 41 

Wildfire behaviour is broadly defined as the way a free-burning fire ignites, develops and spreads through the landscape (Albini 42 

1984; Rothermel 1972). It depends on complex interactions between fuels, topography and weather, over a wide range of 43 

temporal and spatial scales (Santoni et al., 2011; Countryman, 1972). Wildfire behaviour can be described using common 44 

metrics such as the spread rate, propagation mode, area growth rate, perimeter, rate of energy release and flame size length 45 

(Albini 1984). Fire behaviour data information is important for fire research and management applications (Finney et al., 46 

2021).  47 

 48 

To allow for a significant progress towards better fire management, the operational and research communities require detailed 49 

open data on observed wildfire behaviour (Gollner et al., 2015). In this context, systematic mapping of the fire front progression 50 

through space and time is critical to address existing needs, particularly for of wildfires burning under a wide range of 51 

environmental conditions, including extreme ones (Storey et al., 2021; Gollner et al., 2015). Compiling quality fire behaviour 52 

information is paramount important to develop reliable and well-suited fire spread models and for a much-needed extensive 53 

evaluation of fire behaviour predictions, which is crucial paramount for its ultimate aim:to support the decision-making process 54 

(Alexander and Cruz, 2013a; Scott and Reinhardt, 2001). This includes planning pre-suppression activities and defining 55 

resources dispatch to wildfires, delineating safe and effective fire suppression strategies and tactics during a wildfire, and for 56 

early alert and evacuation purposes  (Finney et al., 2021). Comprehensive fire progression and behaviour information is also 57 

useful to develop burned area/fire perimeter mapping algorithms (Valero et al., 2018), understand fire effects (Collins et al., 58 

2009), fire danger rating (Parisien et al., 2011), fire hazard mapping and risk analysis (Alcasena et al., 2021, Palaiologou et 59 

al., 2020), planning and implementation of preventive fuel treatments (Salis et al., 2018), and also to foster robust training of 60 

operative personnel and researchers improving their learnings from past wildfires (Alexander and Thomas, 2003). 61 

Unfortunately, reliable quality information on the progression and behaviour of wildfires, especially those burning under 62 

extreme conditions, is difficult to collect (Gollner et al., 2015). 63 

 64 

Fire behaviour data can be collected from laboratory experiments, experimental fires, prescribed fires or wildfires. A large 65 

number of laboratory-scale experiments have been made for the development of semi-empirical rate-of-spread (ROS) models 66 

(Rothermel 1972; Catchpole et al., 1998). Experimental fires have been set up to collect fireline data, estimate fire behaviour 67 

descriptors and develop empirical fire spread models (Forestry Canada Fire Danger Group 1992; Fernandes et al., 2009; Cruz 68 

et al., 2015; Gollner et al., 2015), requiring significant time and resources. Neither laboratory-scale nor experimental fires 69 

represent the spatial and temporal variability of environmental conditions under which uncontrolled wildfires most often burn 70 

(e.g. Gollner et al., 2015). 71 

 72 
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Due to the unpredictability of their timing and location, conventional measurements on wildfires are difficult to perform and 73 

lead to slow accumulation of data (Alexander & Cruz 2013b). Generally, they are of poor quality or incomplete (Duff et al., 74 

2013), although outstanding reconstruction examples exist (e.g. Wade & Ward 1973; Alexander & Lanoville 1987; Cheney 75 

2010). Dedicated efforts do exist (Vaillant et al., 2014), but wildfire behaviour estimates often result from opportunistic 76 

observations (e.g. Santoni et al., 2011) or post-fire interviews (e.g. Butler and Reynolds, 1997). Some authors have made 77 

relevant efforts in compiling a large amount of direct field observations on wildfire behaviour (Alexander and Cruz, 2006; 78 

Cheney et al., 2012), some combined with experimental fire data (Cruz and Alexander, 2013, 2019; Anderson et al., 2015; 79 

Cruz et al., 2018, 2021, 2022; Khanmohammadi et al., 2022). An additional limitation lies on the fact that some of the existing 80 

fire behaviour datasets are not freely available for to the operational and research communities (Gollner et al., 2015). 81 

 82 

Remote sensing technology, either through airborne or satellite platforms, can provide relevant data to document wildfires 83 

propagation. Manned or unmanned airborne visible and infrared (IR) images have been collected used to document map fire 84 

progression , and in some cases to retrieve fire radiative power estimates (Schag et al., 2021; Storey et al., 2020, 2021; Coen 85 

& Riggan 2014; Sharples et al., 2012). Satellite data provide easy-to-use, autonomous, synoptic observations of fire activity 86 

throughout the entire globeworldwide. Recent advances in satellite technology have made available a panoply of open-access 87 

imagery and products with capabilities to monitor wildfires over the entire globe. Their characteristics vary in resolution, 88 

ranging from high (10-30 m) to low (4-5 km), and frequency of overpass, ranging from 5-15 days to every 15 minutes. To 89 

monitor wildfire progression, satellites provide imagery and products that identify where a fire is actively burning at the time 90 

of overpass (“thermal anomalies” or “active fire” products). that range from moderate to high spatial resolution, and from 91 

every 5 days to sub-daily frequency. Several authors have used satellite data to map daily fire progression at the country-level 92 

(Parks et al., 2014; Veraverbeke et al., 2014, Briones-Herrera et al., 2020; Sá et al., 2017) and at the global scale (Artés et al., 93 

2019; Oom et al., 2016). Some have estimated fire behaviour metrics, such as ROS (Humber et al., 2022; Frantz et al., 2017; 94 

Andela et al., 2019). Recently, Chen et al., (2022) improved this line of research line by using Visible Infrared Imaging 95 

Radiometer Suite (VIIRS) data to automatically reconstruct sub-daily fire progression at a higher resolution. Other authors 96 

exploited the capabilities of geostationary satellites to monitor wildfires and estimate fire behaviour descriptors (Sifakis et al., 97 

2011; Storey et al., 2021). 98 

 99 

The different data sources used to characterise wildfire progression and behaviour have inherent limitations and potentialities. 100 

Ground-collected data can be characterised by large uncertainties, particularly when taken by fire personnel whose focus is on 101 

suppression and not on data collection (Alexander and Thomas, 2003). In addition, ground-collected data have poor synoptic 102 

capability and provide a limited representation of fire behaviour variability. For example,  distribution, distribution of ROS 103 

values for single fire runs are seldom available (Cruz, 2010). Airborne data can provide wider coverage of the fire progression, 104 

howeveralthough, have limited temporal acquisition windows (e.g. USFS National Infrared Operations - NIROPS - provides 105 
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data once per night) and in some cases require manual digitization of fire perimeters (Stow et al. 2014; Veraverbeke et al., 106 

2014; Storey et al. 2021).  107 

 108 

The tradeoff between spatial and temporal resolution of satellite data, as well as the presence of clouds and thick smoke can 109 

significantly limit their fire monitoring capability. In addition, the correct location of a wildfire cannot be determined inside a 110 

burning pixel whose size varies with viewing geometry and sensor properties (Wolfe et al., 1998). Daily or sub-daily satellite-111 

derived fire progressions can also fail to reflect the influence of extreme conditions in fire behaviour due to the effect of 112 

averaging over relatively long periods (Collins et al., 2009).  113 

 114 

Considering that all data sources have limitations and provide information for very limited time framesperiods, combining 115 

different sources is key to capture the spread and behaviour variability of wildfires. The example provided in Figure 1 116 

highlights the potential of combining different data sources to overcome inherent acquisition gaps, particularly in the afternoon, 117 

when both field and airborne data overcome the satellite gap, and during dawn, when ground-collected and satellite data 118 

complement each other. Note that observation frequencies of ground and airborne data strongly depend on daily fire activity 119 

patterns. 120 

 121 

(Figure 1 near here) 122 

 123 

Systematic multi-source acquisition of wildfire data collection was recently done by Kilinc et al., (2012) and Storey et al., 124 

(2020, 2021) for Australia, by Crowley et al., (2019) for Canada (only satellite data) and by Fernandes et al., (2020) at the 125 

global scale. The pursuit of this goal requires a monitoring framework and a concerted joint effort between research and 126 

operational communities (Stocks et al., 2004; McCaw et al., 2012, Storey et al., 2020, 2021). Additional data on constantly 127 

evolving wildfires, accompanied by robust replicable methods, is needed, namely in southern Europe where there is a 128 

substantial data gap is manifest (Fernandes et al., 2018).  129 

 130 

Here, we present the Portuguese Large Wildfire Spread Database (PT-FireSprd), which that combines data from multiple 131 

sources, using a “convergence of evidence” approach to characterise in detail the progression and behaviour of large wildfires 132 

in Portugal. Fire behaviour is described in sensu stricto, thus analysis of its drivers, namely weather and fuel,  and effects is 133 

beyond the scope of the current work. The work results from a joint co-creation effort between researchers and fire personnel, 134 

integrating data collected from airborne and ground operational resources.  135 
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2 Data and Methods 136 

2.1 Overview 137 

We first collected data for all the large wildfires (>100 ha) that occurred in mainland Portugal   between 2015 and 2021. Out 138 

of 14,973 wildfires that occurred during this period, 793 (about 5%) had an extent larger than 100 ha. These large wildfires 139 

were responsible for almost 1 million hectares burned during this period, of which half occurred in the extreme fire season of 140 

2017. About 90% of the total burned area resulted from the 760 larger largest wildfires. 141 

Multi-source input data (L0, section 2.2) were collected and only wildfires with good quality data and representative data of 142 

its spread were kept. Fire progressions were reconstructed from the input data and fire behaviour metrics were estimated. The 143 

PT-FireSprd database was then organised in three levels:  144 

● L1: Wildfire Progression progression (section 2.3), representing the spatial and temporal evolution of the wildfire 145 

spread (i.e. where and when). 146 

● L2: Wildfire behaviour (section 2.4), including quantitative behaviour descriptors of  how a wildfire burned, such as 147 

the rate-of-spread (ROS), fire growth rate (FGR), fire radiative energy (FRE), and FRE flux; 148 

● L3: Simplified Wildfire wildfire behaviour (section 2.5), averaging fire behaviour descriptors over longer periods  149 

that represent relatively homogenous fire runs. 150 

The data from the different levels is were composed by a large set of maps that can be useful for several applications and target 151 

users. For example, L1 data can be used by fire analysts or researchers to evaluate suppression strategies and understand the 152 

fire spread drivers or to evaluate burned area/fire perimeter mapping algorithms. L2 data is are useful, for example, to calibrate 153 

existing or build better fire spread models, while potential applications of L3 are improving fire danger rating, fire hazard 154 

mapping and risk analysis. The overall flow of the data and methods is described in Figure 2. 155 

 156 

(Figure 2 near here) 157 

 158 

2.2 Input Data (L0) 159 

To reconstruct the wildfire progressions, we used data acquired by satellites, from airborne sources and in the field by fire 160 

personnel. Most of this these data is are currently integrated in a near-real time operational WEB-GIS fire monitoring platform 161 

(in Portuguese “FEB Monitorização”, hereafter FEBMON) developed in 2018 by the Civil Protection Special Force (FEPC) 162 

and the Portuguese National Authority for Emergency and Civil Protection (ANEPC). The data were complemented with 163 

official fire data (e.g., ignition date and location) and information from external reports. Table A1 summarizes the different 164 

data sources used and their main characteristics. 165 

 166 
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2.2.1 Satellite data 167 

Satellite data was used to support the reconstruction of past wildfire spread. Currently, there are many sources of open-access 168 

satellite data with capabilities to monitor wildfires over the entire globe. Their characteristics vary in resolution, ranging from 169 

high (10-30 m) to low (4-5 km), and frequency of overpass, ranging from 5-15 days to every 15 minutes. To monitor wildfire 170 

progression, satellites provide imagery and products that identify the location where a fire is actively burning at the time of 171 

overpass (“thermal anomalies” or “active fire” products).  172 

 173 

The Sentinel-2 Multispectral Instrument (MSI) and the Landsat 8\/9 Operational Land Imager (OLI) provide images of the 174 

Earth’s surface on average every 5 days and every 16 days, respectively when combined. Their, with a spatial resolution ranges 175 

ranging between 10 and 60 m depending on the spectral band. PROBA-V has a lower number of spectral bands (4) when 176 

compared with other satellites used and provides daily images at 300 m of spatial resolution, and every 5 days with a 100 m 177 

spatial resolution. The VIIRS instrument aboard the NPP and NOAA-20 satellites, collects data on average twice per day with 178 

a resolution varying of between 375 m to and 750 m, depending on the spectral band. The Moderate-Resolution Imaging 179 

Spectroradiometer (MODIS) is an instrument on board the TERRA and AQUA satellites with spatial resolutions ranging from 180 

250 m to 1000 m, depending on the spectral bands,, providing on average four daily revisits when combined. Sentinel-3 181 

satellites have onboard the Sea and Land Surface Temperature Radiometer (SLSTR) and the Ocean and Land Color Instrument 182 

(OLCI), with spatial resolutions ranging between 500 and 1000 m for the former, and 300 m for the latter. Data is are acquired 183 

on average twice per day on average, but the OLCI does not retrieve night-timenighttime data.  184 

 185 

We used L2 atmospherically corrected (L2) satellite imagery from the above-mentioned sensors to create false colour 186 

composites that could highlight burned areas (low NIR, high SWIR reflectance), active flaming areas (high SWIR and/or TIR 187 

reflectance) and unburned vegetation (high NIR reflectance). The bands used in the false colour composites depend on spectral 188 

characteristics of each sensor. Typical false colour composites contain use bands 12-8A-4 of Sentinel-2, bands 7-2-1 for 189 

MODIS and bands 1-2-4 for PROBA-V. Most imagery were downloaded from Sentinel EO Browser (https://apps.sentinel-190 

hub.com/eo-browser/), Worldview (https://worldview.earthdata.nasa.gov/) and VITO-EODATA (https://www.vito-191 

eodata.be/PDF/) which allow easy and fast access to historical L2 data.  192 

 193 

To complement the satellite imagery, we used the thermal anomaly products of VIIRS (VNP14IMGML-C1, Schroeder et al., 194 

2014, 2017) and MODIS (MCD14ML-C6, Giglio et al., 2003, 2016), with 375 m and 1 km resolution at nadir, respectively. 195 

Data is are available at fuoco.geog.umd.edu and FIRMS (https://firms.modaps.eosdis.nasa.gov/). These products allow 196 

estimating the approximate location and timing of an active wildfire, and also provide an estimate of the fire radiative power 197 

(FRP), a proxy of the radiant energy released per time unit, and a proxy for fuel consumption and fireline intensity. In addition, 198 

coarse resolution data (~4 km) from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat 199 
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Second Generation (MSG) geostationary satellite, was used to characterise the temporal evolution of fire activity using FRP 200 

estimates every 15 min’ (Wooster et al., 2015). Data is are available at https://landsaf.ipma.pt/en/products/fire-201 

products/frpgrid/. The FRP detections associated with each wildfire were identified using a spatial-temporal nearest distance 202 

algorithm. An empirical threshold derived from the analysis of a selected number of wildfires was used to account for the 203 

satellite pixel geolocation and temporal reporting uncertainties. For each wildfire, tThe Fire Radiative Energy (FRE), and 204 

associated uncertainties, were was estimated based on the FRP detections,  byassuming a constant rate of energy release every 205 

15 min,  integrating FRP detections over 30’ periods and by assuming a constant rate of energy release and then aggregated in 206 

30 min bins (Eq. 1): 207 

𝐹𝑅𝐸𝑖  =  0.0009 × (∑ 𝐹𝑅𝑃𝑘
2
𝑘=1 ),         (1) 208 

where index i indicates the a 30 min’ bin, index k indicates the 15’ 15 min FRP value in MW, and the 0.0009 factor converts 209 

the sum into TJ (Pinto et al. 2017).. 210 

2.2.2 Airborne data 211 

Some aeroplanes and helicopters that operate during wildfires collect photos and videos. Data are collected during the initial 212 

attack (i.e. up to 90 min after the alert) by the heli-brigades of the National Guard (GNR) using their mobile phones, and 213 

occasionally, during extended attack. Aeroplanes, operated by FEPC\/ANEPC since 2018 (AVRAC), are equipped with a 214 

gimbal that containscarry visible and thermal cameras that , collecting photos and videos during extended attack covering the 215 

entire active fire perimeter. In addition, helicopters that coordinate aerial suppression,suppression also collect valuable 216 

information regarding fire progressionphotos and videos. Both data sources collect data only during daytime (, with a very 217 

small number fewof exceptions), at relatively low altitudes.  218 

 219 

These aAirborne data are systematically uploaded in real-time in FEBMON since 2018, providing high quality information 220 

regarding the probable location of the fire start, active flaming zones, and specially wildfire progression. It is noteworthy to 221 

mention that airborne footage is not synoptic, as different parts of the wildfire (e.g. left flank vs. right flank) are captured at 222 

different moments, which . These, depending on the fire extent and operational priorities, can result in be characterised by 223 

significantlarge acquisition time lags.  224 

2.2.3 Ground data 225 

The FEBMON system is linked to user-friendly portable tools devices that allow collectingon of georeferenced ground data 226 

during wildfires. These tools are typically installed in mobile phones and tablets and are used by fire personnel from several 227 

organisationsentities (e.g., fire fighters, forest service). Ground-collected data consists of three main types: i) photos and 228 

videos; ii) points that identify active flaming combustion, inactive flaming or smouldering or locations requiring mop-up 229 

activities; iii) polygons that delineate an area burned until the time of acquisition (i.e. fire progression). 230 
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 231 

Besides the data automatically linked to FEBMON, valuable ad-hoc information can bewas used to reconstruct wildfire spread, 232 

such as additional photos\ and videos captured on the ground, and post-fire interviews. In sum, data collected by fire personnel 233 

in the field provided valuable spatiotemporal information regarding wildfire spread, ignition and/or wildfire re-activation.  234 

2.2.4 Official fire data 235 

The Forest Service (in Portuguese, “Instituto da Conservação Natureza e das Florestas” - ICNF) provides a fire database with 236 

the The final burned area perimeters for the entire country were provided by ICNF ( Instituto da Conservação da Natureza e 237 

das Florestas), derived from a combination of fieldwork and satellite data (https://geocatalogo.icnf.pt/). We found some eErrors 238 

in the final burned area perimeters that were corrected manually with using Sentinel-2 or Landsat 8/9 post-fire false colour 239 

composites (see section 2.2.1). For a very limited number of very large multi-day wildfires, In addition, for a very limited 240 

number of very large multi-day wildfires, we used burned area perimetersareas (resolution of 1.5 m) provided by the 241 

Copernicus Emergency Management Service (https://emergency.copernicus.eu/mapping/)..  242 

 243 

Regarding ignition data, we used the The Forest Service also provides information regarding thofficiale wildfire wildfire start 244 

location, typically derived from post-fire investigation (ICNF, mostly based on post-fire investigation done by GNR personnel 245 

(SGIF, https://fogos.icnf.pt/sgif2010/), the ignition location provided by first responders and time of alert (ANEPC).. Ignition 246 

data have several known issues (Pereira et al., 2011) the most relevant of which, for the purposes of the present study, is the 247 

accuracy of its exact location.  248 

 249 

Finally, we analysed the official wildfire time logs from ANEPC, which seldom contain useful contextual information on 250 

wildfire location at a given date/hour. 251 

 252 

 253 

ANEPC manages the Operation Decision Support System (SADO) that includes information, such as i) date/hour of the 254 

wildfire alert; ii) ignition location provided by first responders; and iii) a time log that seldom contains useful contextual 255 

information on wildfire location at a given date/hour.  256 

2.2.4 5 Reports of 2017 large wildfires 257 

We also used ignition and fire progression data published in reports on the dynamics of the very large wildfires of June 2017, 258 

including the Pedrogão Grande wildfire, and of October 2017 (Guerreiro et al., 2017, 2018; Viegas et al., 2019). Regarding 259 

Guerreiro et al. (2017, 2018), the primary data sources used to reconstruct the fire progression were satellite imagery, thermal 260 

anomaly active fire data and burned area perimeters provided by the Copernicus Emergency Management Service (see 2.2.1). 261 

Reports from ANEPC and the Portuguese Institute for the Sea and the Atmosphere (IPMA, showing the fire plume evolution), 262 

https://emergency.copernicus.eu/mapping/
https://fogos.icnf.pt/sgif2010/
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GNR and the Association for the Development and Industrial Aerodynamics (ADAI), were also used to identify fire arrival 263 

times and active firelines. Additionally, other data sources allowed to the reconstruction of wildfire spread, such as: the official 264 

wildfire time log (see 2.2.4) , interviews (fire personnel involved in  suppression, local residents), field work to identify the 265 

forward fire spread direction based on scorched or charred foliage orientation, and other relevant data such as photos and 266 

videos. The fire spread isochrones were determined through spatial interpolation methods (spline and inverse distance 267 

weighting), on high densityhigh-density point clouds and experts’ knowledge.  268 

 269 

Viegas et al., (2019) reconstructed the extreme wildfires of October 2017 based on fieldwork, interviews, photos/videos and 270 

information contained in the official wildfire time log.  Since the fire progression data were not provided by the authors, here 271 

we used only very limited information regarding ignition location\time and general fire spread patterns, mostly to complement 272 

data provided by Guerreiro et al., (2017, 2018).  273 

 274 

PWe chose to include these fire progressions in our database, because they represent the most extreme wildfires that occurred 275 

in mainland Portugal, under persistent cloud cover conditions that limitedhindered the June and October 2017 wildfires 276 

progression mapping with the acquisition of satellite data., Nonetheless, given the relevance of these wildfires we decided to 277 

include these  fire progressions in our database because they represent some of the largest and most extreme wildfires that ever 278 

occurred in mainland Portugal. and for that reason they constitute relevant case studies, which otherwise would not be 279 

represented. 280 

 281 

2.3 Wildfire Progression (L1) 282 

Wildfire progression characterises the spatial and temporal evolution of the area burned in a specific fire event. It also contains 283 

information regarding the ignition time and location, as well as, flaming zones that correspond to active areas during the 284 

wildfire. These include spot fires and reactivation/rekindling areas. In Portugal, a rekindle is a reactivation of the wildfire after 285 

its official conclusion and is considered a new incident. For simplicity, we will consider rekindles as reactivations throughout 286 

the rest of the manuscript. 287 

 288 

To robustly reconstruct wildfire progression, we combined the maximum available data from the different sources mentioned 289 

above, with the aim of obtaining convergence of evidence. This allowed reducing the limitations and uncertainties of each 290 

individual data source and building higher confidence in the derived wildfire progression. 291 

 292 

L1 data also contains information regarding the ignition time and location, as well as, flaming zones that correspond to active 293 

areas during the wildfire spread. These include spot fires and reactivation/rekindling areas. Combining all the available data , 294 

we manually delimited the extent and time of the ignition, fire progression and active flaming zones of each wildfire. The 295 
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reconstruction was always made chronologically, i.e. starting from ignition and ending with the progression prior to wildfire 296 

containment. Sentinel-2 and Landsat 8/9 pre-fire images were used to identify areas burned shortly before the wildfire, and 297 

post-fire images were used to correct each progression polygon. As an example, Figure 3 shows how different data sources 298 

were combined to derive the spread of the Castro Marim (2021) wildfire. All wildfire progressions items (L1) were defined as 299 

polygons, each with a set of different attributes (explained below). 300 

 301 

(Figure 3 near here) 302 

 303 

Ignition location was defined as an area (vector polygon), instead of a point, to account for spatial uncertainties in its location 304 

and to have a common data typology for the entire database, in this case, vector polygons. To define ignition location wWe 305 

used mostly official ignition data, ignition location provided by first responders and initial attack airborne photos to define its 306 

location. This was complemented with expert knowledge and information from fire personnel to better define ignition location. 307 

For a small set of wildfires (mostly with nighttime ignitions), we also used satellite imagery and active-fire data to identify 308 

map the approximate ignition arealocation. All ignitions were compared with later fire spread patterns and with the final burned 309 

area to reduce errors and guarantee consistency (e.g. ignition was contained in the final burned area). Regarding ignition time, 310 

tThe official time of alert was compared with high 15 min frequency MSG-SEVIRI FRP detectionsdata, to confirm the alert 311 

time or, in a very few cases, to anticipate the ignition time if energy was released before the official ignition time. In addition, 312 

MSG-SEVIRI FRP data were also useful to identify (or confirm) the timing of reactivation(s). An clear example is shown in 313 

Figure 3, where the significant release of energy around 11:30, combined with ground data, allowed identifying the location 314 

and time of the reactivation zone. 315 

 316 

Active flaming zones were mostly derived from ground, airborne data and/or high spatial resolution satellite imagery. 317 

Alternatively, they were defined based on visual interpretation of multiple moderate resolution satellite imagery and often 318 

combined with active fire data (mostly VIIRS due to its higher spatial resolution). Inconclusive visual interpretations were 319 

discarded, as well as active zones that did not lead to any relevant subsequent fire spread. The ignition zone and all active 320 

flaming zones were always contained within the subsequent fire spread polygon. 321 

 322 

Wildfire progression was represented by a series of consecutive polygons delineating the temporal evolution of the area burned 323 

by the wildfire. The number of polygons depended on fire size and data availability. The progression polygons were built using 324 

as many data sources as possible, complementing each other in both space and time (see Figure 1). The variety of input data 325 

used have different associated uncertainties. When delineating the progression polygons priority was given to input data with 326 

higher spatial resolution, free from smoke and cloud contamination, and with the most complete view of the entire active part 327 

of the wildfire. Typically, the first priority level data (i.e. highest confidence) were Sentinel-2 and Landsat 8/9 images, and 328 

AVRAC aeroplane photos/videos. The second priority level was composed of ground data, VIIRS active-fires, PROBA-V and 329 
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Sentinel 3 images (both at 300 m resolution) and helicopter photos/videos. The third priority level were images and active-fire 330 

data from moderate resolution satellites (MODIS and Sentinel 3). The fourth, and last priority level (i.e. lowest confidence) 331 

were composed by FRP data from MSG-SEVIRI and the official wildfire time logs. The data from the large 2017 wildfires 332 

reports were handled separately. The progression polygons from Guerreiro et al., (2017, 2018) were deemed as high confidence 333 

data and were complemented with data and information from Viegas et al. (2019) and, at times, with satellite data. 334 

 335 

A common challenge found in the delineation of the wildfire progression were the uncertainties associated with the correct 336 

time an entire progression polygon burned. These uncertainties were present in almost all data sources. For example, a polygon 337 

derived by fire operatives on the ground could have stopped burning minutes or hours before data collection. Additionally, 338 

satellite active-fire data can depict areas that are hot minutes or hours after the fire front stopped progressing. The strategy to 339 

minimize such uncertainties was to use data from multiple sources, seeking convergence of evidence. As an example: , a 340 

common feature found in the data was a pronounced substantial fire spread during daytime, followed by very limited nighttime 341 

progression. In these cases, first, the nighttime fire progression was delineated using active fire data (mostly VIIRS) and 342 

complemented with ground data, when available. Second, satellite and/or airborne imagery acquired during the following 343 

morning were used to perform any necessary adjustments in the nighttime spread polygon(s). Satellite-derived FRE estimates 344 

based onof MSG-SEVIRI/MSG were also used to identify if any substantial fire activity occurred between VIIRS/MODIS 345 

nighttime overpass and daytime imagery (satellite and/or airborne). We assumed that fire activity decreased significantly when 346 

the wildfire released less than 0.5 TJ per 30’ 30 min period, and anticipated the date/hour of the fire spread polygon accordingly. 347 

In smaller wildfires (<500 ha) this threshold was set to 0.1 TJ. These Such thresholds were defined empirically (see Discussion 348 

section). The entire procedure reduced the uncertainties associated with the delineation of the nighttime spread 349 

polygonsdefinition of the end date/time of the progression polygons. It should be noted that the fire behaviour within the time 350 

span of each progression polygon was unknown and, therefore, it was assumed to be free burning in a homogeneous wayat a 351 

constant rate (Storey et al., 2021). When data were insufficient to determine when a given area burned, the spread polygon 352 

was flagged as “uncertain”.  353 

 354 

Ignitions/active flaming zones were linked to the resultant spread polygon(s), by assigning a numeric label to a field called 355 

“zp_link”, providing an explicit connection between both, and allowing to track the source of a given burned progression 356 

polygon. When information was insufficient, for example, the start of the progression polygon was unknown, zp_link was 357 

defined set as to “0”. After all ignition(s), fire progressions and active flaming zones were defined, each wildfire was divided 358 

into burning periods. We assumed that each burning period contained relatively homogeneous fire runs that:  359 

 360 

i) were ignited by the same set of ignitions or active flaming zones;  361 

ii) did not exhibit large fire spread direction shifts (less than 45° of variation);  362 

iii) were not impeded by barriers (e.g. previously burned area) and;  363 
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iv) did not exhibit significant changes in fire behaviour (e.g. large ROS variation).  364 

 365 

Regarding the latter criterion, for example daytime and nighttime runs were usually separated in different burning periods even 366 

if criteria (i)-() to (iii) were fulfilled. By definition, a new active flaming zone always marked the beginning of a new burning 367 

period; however, not all burning periods started with an ignition or active flaming zone, since this depended on data availability.  368 

 369 

When direct evidence of fire spotting was available (i.e. exact location/timing of the spot fire(s), typically from ground and/or 370 

airborne data), if the fire front(s) rapidly  (under 1 hour) coalesced with the original fire front, fire progression was merged 371 

into a single polygon. In the remaining cases, typically associated with medium distance spotting and/or slow burning fire 372 

fronts, the spotting location was defined as a new active flaming zone setting, defining a new burning period. When the exact 373 

location/timing of the spot fire was not available, evidence of spotting consisted of observations of non-contiguous burned 374 

areas that resulted from the same wildfire. These were typically separated by rivers, lakes and settlements. In these cases, due 375 

to lack of data, the polygons separated from the major fire run were defined with zp_link=0 if the distance was larger than 200 376 

m. No fire behaviour descriptors were calculated for these burned areaspolygons. 377 

 378 

The definition of the burning period was always dependent on data availability and, in some cases, was subjective. For the 379 

progressions derived using only satellite data, the length of the burning period was mostly determined by the timing of the 380 

satellite overpass(es) and the FRE’s temporal evolution. For the progressions derived from more detailed data, the above-381 

mentioned criteria were easier to fulfil. In a few cases, uncertainties in fire progressions led to slightly overlapping periods. 382 

An example is shown in the Results section and implications are addressed in the Discussion section. 383 

  384 

After collecting input data for a large number of wildfires, only those with at least one valid progression and a valid 385 

ignition/active flaming zone were kept. We eliminated all suspicious cases where uncertainties were large, for example, due 386 

to the presence of persistent smoke or clouds in the satellite/airborne images or absence of valid ground data. The L1 wildfire 387 

progression database was defined by a set of polygons with attribute fields (details in section 35). The date/hour of each 388 

ignition(s), fire spread and active flaming zones (if applicable) were approximated to the nearest 30 min’ period. Fire 389 

progression data from external reports were adapted to the rationale of the fire database described above. Findings from 390 

different reports for the same wildfire were compared and satellite data was used to complement and improve the original fire 391 

progressions.  392 

 393 

2.4 Wildfire behaviour (L2) 394 

The estimation of fire Fire behaviour descriptors was were estimated using supported by the use of spatial graphs. A graph is 395 

a mathematical structure composed of nodes (N) and edges (E), which connect the nodes (Dale and Fortin, 2010). Based on 396 
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the fire spread polygons (L1) (Figure 4a), we built a spatial directed graph (or digraph) where each node refers to a spread 397 

polygon, and each edge connects two spread polygons (i.e nodes), with a valid link (i.e. zp_link>0). These two nodes burned 398 

at different times, one earlier (ti) and the other later (tj). The value of each edge was defined as the time elapsed between two 399 

nodes (Δtij) (Figure 4b). A node can have an inward edge (where fire is being transmitted from) and an outward edge (where 400 

fire is being transmitted to). 401 

 402 

First, the nodes were connected only if the associated fire progression polygons were contiguous, had the same zp_link value 403 

and burned at different timings. Second, only the edges corresponding to the shortest elapsed time between two nodes were 404 

kept. The digraph allowed to formally structure the connections between fire spread polygons, enabling the calculation of fire 405 

behaviour descriptors.  406 

 407 

To allow for a better understanding of the methods used, a brief explanation based on the Ourique (2019) wildfire is provided. 408 

In Figure 4, the number of the polygons on the left matches the number of nodes on the right. After its start (1), the wildfire 409 

spread fast  to the south and burned the area delimited by polygon 2 in about 120 min’. Fire behaviour changed after the head 410 

run, and the left flank became the head and subsequently made a run to the southeast, burning the area represented by polygons 411 

4, 5, 6 and 7, in about 180 min’. This fire behaviour change observed at t=120’ 120 min determined the definition of two 412 

burning periods: one corresponding to the initial head run, the other corresponding to head run from the left flank. The digraph 413 

was built with 7 nodes and 6 edges with values ranging between 30’ 30min and 120’120 min. 414 

 415 

(Figure 4 near here) 416 

 417 

Based on the fire progression (L1) and the corresponding di-graph, we calculated the following set of fire behaviour descriptors 418 

(L2): forward ROS (m/h), direction of forward spread direction (° from North), FGR (ha/h), and FRE (TJ). The polygons 419 

referring to areas burned shortly before the fire analysed were removed from L2. 420 

 421 

ROS was calculated for each node (Nj) with a valid inward edge (Eij) connecting it to a prior node (Ni). By definition, the 422 

forward ROS refers to the head of the fire and was calculated considering the longest distance line connecting two consecutive 423 

fire progression polygons (i.e. nodes). representing the fastest spread (Storey et al., 2021). The ground distance (Dij) between 424 

each pair of polygons was calculated as follows:  425 

 426 

● All ground distances between the polygon vertices of Ni and Nj were calculated, using the European Digital Elevation 427 

Model (EU-DEM v1.1, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1) resampled to 50 m spatial 428 

resolution; 429 
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● For each vertex of the Nj polygon, only the shortest distance was kept and the corresponding pair of vertices, from 430 

Ni and Nj, were stored; 431 

● Dij was defined as the maximum of all shortest distances between vertices. 432 

 433 

The ROS was calculated by dividing the distance (Dij) by the time elapsed between the pair of polygons (Δtij) and expressed 434 

in m/h. We divided the ROS calculation in two distinct measures: 435 

 436 

● Partial ROS (hereafter, ROSp) calculated between two consecutive polygons; 437 

● Mean ROS (hereafter, ROSi), calculated between the ignition (or active flaming front) and a given spread polygon. 438 

 439 

The spread direction was calculated using trigonometric rules considering the two above-mentioned vertices between two 440 

polygons. The spread direction was calculated both for ROSp and ROSi, where the difference lies only on the origin polygon. 441 

FGR was calculated dividing the burned area by each polygon/node (Aj) by the time elapsed between polygons (Δtij) and was 442 

expressed in ha/h. An example of the calculation of these fire behaviour descriptors is shown in Figure 5. 443 

 444 

(Figure 5 near here) 445 

 446 

In addition to the standard fire behaviour descriptors, we also estimated the FRE for each progression polygon. This procedure 447 

raised additional challenges. First, MSG-SEVIRI is affected by clouds and smoke, which can hinder the estimation of FRE for 448 

some periods of the wildfires, or for their entire duration. Second, due to the coarse resolution of MSG-SEVIRI it was not 449 

possible to calculate the FRE for each polygon directly. To circumvent this, FRE was calculated for each 30 min’ bin from 450 

ignition until the date/hour of the last wildfire spread polygon. In parallel, we estimated the area burned in each spread polygon 451 

every 30 min’, using its start/end dates and assuming a constant FGR. Then, for each 30 min ’ bin, the total FRE was divided 452 

by weighting its value by the proportion of area burned in each spread polygon. Finally, for each spread polygon the 30’ min 453 

FRE estimates were summed only if they covered  more than 70% of its duration (Δtij), to ensure that the total FRE was 454 

representative. 455 

 456 

We also estimated the FRE flux rate (GJ ha-1 h-1) for each spread polygon by dividing the estimated FRE by the corresponding 457 

burned area extent and its duration (Δtij). As FRE is highly dependent on the extent burning at in a given time window, the 458 

FRE flux rate can provide estimates closer to “instantaneous” values required useful for other applications. 459 
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2.5 Simplified Wildfire behaviour (L3) 460 

We calculated simplified metrics representing a mean fire behaviour across each burning period. This enables higher-level 461 

analysis of the data, but at the cost of losing detail and making simplifications to the calculation of the fire behaviour metrics. 462 

 463 

The simplified ROS corresponded to the ROSi estimated for the last spread polygon of a given burning period i.e., the average 464 

ROS between the start and the end of each burning period. FGR was defined as the sum of the area burned in the period divided 465 

by its duration. The total FRE was calculated considering all energy released by the polygons burning within the burning 466 

period, if FRE estimates covered more than 70% of the area burned. 467 

2.6 Quality Control and Quality Assurance (QC/QA) 468 

All L1 to L2, and L2 to L3 processing was done using Matlab scripts complemented with quality controls checks to identify 469 

errors in the original L1 data. These included simple checks to incorrect field names, incoherent data format (e.g., date/hour), 470 

and consistency on the fire spread structure defined by the di-graphs, as for example: i) time elapsed between node was always 471 

positive;and  ii) every spread polygon with a positive zp_link>0 was always associated with a predecessor valid node (either 472 

of “z” or “p” type), among others. 473 

 474 

During the processing of L1 data to L2, we did frequent quality checks to identify potential errors, for example, null values of 475 

ROS or FGR associated with valid fire spread polygons, fire progression polygons that did not have a known start/end date, or 476 

did not have a known link to a preceding fire source (e.g., active flaming zone). In addition, we selected some wildfires, and 477 

made independent calculations of the ROS and FGR and compared them with the onesthose estimated using the developed 478 

Matlab code developed. All these quality control steps assured that the data produced were reliable and of the best possible 479 

quality. The process was iterative, requiring frequent corrections to the L1 data and the re-running of the quality check. 480 

 481 

Finally, for each wildfire, we defined a confidence flag that provides an overall information of the how reliabilityle of the 482 

estimated fire progression data were. Although directly related to L1, ultimately it should also provide the user an estimate of 483 

the confidence associated with L2 and L3. This was defined empirically, based on the uncertainties that arose in the process 484 

of building the fire progression polygons and was graded into a 5-level system where 1 refers to the lower lowest quality and 485 

5 to the highest quality (Table A1A2). 486 
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3 Results 487 

3.1 Overview of the PT-FireSprd database 488 

The PT-FireSprd database contains data for 80 large wildfires that occurred between 2015 and 2021. The individual wildfire 489 

burned area extent ranges from 250 to 45,339 ha, with a mean and median area of 5,990 and 1,665 ha, respectively. The 80 490 

wildfires were distributed throughout mainland Portugal, covering a wide range of environmental conditions (Figure 6). The 491 

database spans a wide fire behaviour variability both between (e.g. Figure 6A, B, F) as well asand within each wildfire (e.g. 492 

Figure 6C, E, D). The total burned area extent of the wildfires contained in the database was is around 460,000 ha, which 493 

represents about half of the area burned in the 2015-2021 period. On average, progression was reconstructed for 93% of the 494 

area burned by the 80 wildfires, leaving 7% deemed “uncertain”. Wildfire behaviour descriptors were estimated for 88% of 495 

the burned area extent (ca. 400,000 ha). The time elapsed between two consecutive fire progression polygons ranged between 496 

30 min’ and 14h30m with an average value of 3h15m. The mean duration of the burning periods was around 8h00m, with a 497 

standard deviation of 4h50m.  498 

 499 

(Figure 6 near here) 500 

 501 

A total of 1,197 polygons with ROS and FGR estimates (L2) were derived from the progression data. We excluded very small 502 

polygons (<25 ha) from further analysis, resulting in a dataset with 874 observations. Out oOf the 1,197 polygons, only 609 503 

had FRE estimates. Regarding L3 data, ROS and FGR were calculated for 241 burning periods (L3) and total FRE was only 504 

estimated for 162 burning periods.  505 

 506 

Overall, confidence in the database was lower for the earlier years (2015-2016) because input data was were mostly from 507 

existent satellites. In 2017, the quality increased due to the integration of: i) ground data; and ii) data from 2017 large wildfires 508 

external reports that analysed the extreme wildfires of June and October. From 2018 onwards, the integration of the monitoring 509 

aeroplanesaircrafts, the creation of the FEBMON system, and the rapid availability of all the data that flows through it, 510 

significantly improved confidence of the derived fire progressions. 511 

 512 

The estimated forward ROS displayed a long-tail distribution (Figure 7, in log-scale) with a median value of 341 m/h and 513 

average ROS of 746 m/h, representing large variability (std = 1071 m/h, cv = 143%). About 20% of the ROS values were 514 

larger than 1,000 m/h and about 9 % were larger than 2,000 m/h. The maximum observed ROS was 8956 8,900 m/h in the 515 

Lousã wildfire of October 2017. The FGR distribution was highly skewed towards low values, with median and average values 516 

of 40 ha/h and 191 ha/h, respectively (sd = 438 ha/h, cv = 228%). About 10 % of the observations had FGR larger than 500 517 

ha/h and only about 5 % were larger than 1,000 ha/h. The maximum observed FGR was 4,40036 ha/h in the Pedrogão Grande 518 

wildfire of June (2017). 519 
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 520 

(Figure 7 near here) 521 

 522 

The ROS distributions of the L2 and L3 datasets were similar. The largest differences were located in the lower and upper 523 

tails, where the L3 ROS tends to be smoother due to the averaging procedure done over a longer time span. The FGR 524 

distributions for L2 and L3 were also very similar, probably because all the polygon areas within a burning period are summed, 525 

and the value does not result from an average. Differences were larger for more complex wildfires, for example with “finger 526 

runs” (e.g. areas resulting from rapid propagation in a different direction than the dominant fire front, often related with wind 527 

shifts). 528 

 529 

We compared the histograms of L2 ROS and FGR for three aggregated confidence levels. The distribution of ROS estimates 530 

for wildfires with lower confidence was slightly skewed towards lower values, when compared with higher confidence 531 

estimates (Figure B1). The ROS distributions peaked at 200 m/h, 500 m/h and 800 m/h for very low/low, moderate and 532 

high/very high confidence, respectively, showing a clear relationship between confidence and estimated ROS. Regarding FGR, 533 

very high values above 500 ha/h were prevalent in wildfires with high and very high confidence progressions (Figure B2). 534 

Results are similar if data from external reports for the extreme wildfires from June and October of 2017 are not included. 535 

 536 

Estimated ROS and FGR were compared and percentiles 25, 50, 75, 90 and 97.5 were calculated separately for each variable 537 

independently (Figure 8). The percentile values were simplified to enable a clear communication of results, especially between 538 

researchers and fire personnel. The percentiles were translated into empirical classes, ranging from “very low” to “extreme” 539 

fire behaviour. In general, as ROS increases so does the FGR. However, the relationship between ROS and FGR depends on 540 

the morphology of the fire perimeter: elongated fast-spreading wildfires had relatively higher ROS and lower FGR (e.g. Figure 541 

6B, C), and while more complex burned area perimeters had relatively lower ROS and higher FGR (e.g. a flank run with an 542 

extensive active fireline; see Figure 6A and the last polygons of Figures 6E and 6F). The dispersion data scatter tends to 543 

increase with higher ROS/FGR values, suggesting a progressively larger dependence on the burned area extent/perimeter. 544 

Identification of the drivers factors determiningbehind such relationships is beyond the scope of this work. Nevertheless, 545 

wildfires at the extreme of the distribution with “Extreme” behaviour had both very high ROS and FGR values of ROS and 546 

FGR. 547 

 548 

(Figure 8 near here) 549 

 550 

Burned area extent is a relevant fire behaviour descriptor for researchers and fire management personnel. Analysis suggests 551 

shows that the area burned by a wildfire is mostly determined by its FGR (r=0.84) rather than by the speed of the forward 552 
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spread (r=0.62; Figure 9a,b). The (cor)relations were lower using L2 data. As expected, FRE is highly correlated with burned 553 

area extent (r=0.85, Figure 9c), and consequently of FGR. Correlation between ROS and average rate of energy release (TJ\/h) 554 

is lower (r=0.30, Figure 9d), howeveralthough, there is a general direct relation between both descriptors. 555 

 556 

(Figure 9 near here) 557 

 558 

23.2 Case study: The Castro Marim 2021 wildfire 559 

Here, we describe in detail the progression and behaviour of a specific wildfire to show how the PT-FireSprd database can be 560 

used, for example, to analyse case studies, something which is often done by researchers and fire analysts.  561 

 562 

The Castro Marim wildfire burned 5950 ha on the 16th and 17th of August of 2021. Figure 10 shows its reconstructed 563 

progression (a) and associated ROS (b). Ignition occurred at nighttime (01:00) and a single run occurred towards SE until 564 

approximately 08:30, defined as the first burning period. The mean ROS was 618 m/h, ranging between 321 and 957 m/h 565 

(Figure 10c). The estimated FGR for the burning period was 43 ha/h, ranging between 33 and 77 ha/h, and the total FRE was 566 

13 TJ (Figure 10d).  567 

 568 

(Figure 10 near here) 569 

 570 

Fire progression halted for about 3h until the wildfire reactivated around 11h30. It spread southwards until the head stopped 571 

in an agricultural area around 19h30. In this second burning period, fire behaviour was significantly different from the first. 572 

The mean ROS was ca. 1,500 m/h, reaching a maximum value of 3,720m/h between 16:30 and 17:30. On average,  the fire 573 

grew at a rate of 455 ha/h, however, significant variability was observed with values reaching 1,236 ha/h coinciding with the 574 

ROS peak. Framing the fire behaviour descriptors with the empirical classes represented in Figure 8, tThe behaviour in the 575 

second burning period was often framed in the “Very High” class, i.e. between percentiles 90 and 97.5. As a consequence of 576 

the behaviour exacerbation, the wildfire released around 38 TJ, with peaks of about 9 and 12 TJ observed during the afternoon. 577 

The energy flux rate was highest between 16:00 and 16:30, coinciding with an abrupt increase in ROS (Figure 10d).   578 

 579 

After the fire head stopped, a secondary head run stopped around 23:00 in a previously burned area (burning period 3). In the 580 

follow-up, two left flank runs were observed, one until 02:30 and the other one, resulting from a reactivation, until 06:00, with 581 

decreasing ROS, FGR and FRE. A secondary peak in the energy flux rate was estimated around 0:00, associated with an 582 

increase in ROS and FGR.  583 

 584 
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Finally, in the Castro Marim wildfire, burning periods 3 and 4 overlapped in time. A progression polygon in the rear/right 585 

flank was delimited by fire personnel at 02:30, however the prior contiguous progression was identified at 16:30, suggesting 586 

a very low burning flank, opposite to the fast burning part of the wildfire southwards. This overlap had no effect on the average 587 

ROS, and only a very slight effect on the estimated FGR and FRE. However, users must be aware that burning periods seldom 588 

overlap (~4% registered in the entire dataset), which may have implications in posterior subsequent analysisanalyses. 589 

4 Discussion 590 

4.1 The PT-FireSprd database 591 

The PT-FireSprd is the first open access fire progression and behaviour database in the entire Mediterranean Europe. The 592 

progression of 80 large wildfires that occurred in mainland Portugal between 2015-2021 is reconstructed and fire behaviour 593 

descriptors such as ROS, FGR and FRE are estimated, dramatically expanding the extant information (Palheiro et al., 2006; 594 

Rodriguez y Silva & Molina-Martínez 2012; Fernandes et al., 2016). Wildfire progression was derived by converging evidence 595 

from multiple data sources, which provides added credibility reliability to the database. Wide variability in fire behaviour is 596 

covered, tackling an important limitation pointed out by Cruz (2010). The approach presented will be used to update the 597 

database in the following years for Portugal, and can be replicated in other countries, depending on data availability. 598 

 599 

The large number of fire behaviour observations, both at the polygon level (L2) and at the burning period level (L3), provide 600 

enough information for a wide variety of potential applications. Combined with detailed information on the drivers, namely 601 

weather and fuel, and effects, For example, it can be used to: i) improve current knowledge on the drivers affecting the 602 

behaviour of large wildfires; ii) calibrate existing or new models which ultimately should help to better predict fire behaviour 603 

and support efficient fire management strategies (Alexander and Cruz, 2013a); iii) support the construction of case studies by 604 

fire analysts and contribute to better training of fire personnel (Alexander and Thomas, 2003); iv) contribute to improve 605 

operational fire suppression strategies; v) better understand how fire behaviour is linked to its effects (Collins et al., 2009), 606 

and v) improve fire danger rating (Wotton, 2009); and vi) better characterize fire regimes (Pereira et al. 2022). In addition, the 607 

fire behaviour classes described in Figure 8 can assist fire suppression operations, including resources dispatching and 608 

decisions to fight or flee, or offensive vs defensive strategies. 609 

 610 

For several reasons, it is easier to collect information for larger wildfires than for smaller ones. The wide range in fire sizes 611 

present in the PT-FireSprd database suggests that it is representative of wildfires burning under a broad range of conditions. 612 

However, smaller wildfires (between 100 and 500 ha) are slightly under-represented in the database creating a potential bias. 613 

This can be particularly relevant if one considers the high proportion of smaller wildfires that occur every year. Thus, fire 614 

behaviour descriptors may also be biased towards larger values which that may have an implication, for example, on the 615 

calculated fire behaviour classes percentiles (defined in Figure 8). Note that for typical fuel loads, say 15-20 t ha-1 (Fernandes 616 
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et al., 2016), the third class inROS between percentiles 50 and 75 Fig. 8 already corresponds to fires that are very difficult to 617 

control directly (Hirsch and Martell, 1996). Nevertheless, these classes should be considered as aThe ROS and FRR historical 618 

distribution are a first exploratory approach with the aim of creating a simple and clear communication baseline between 619 

researchers and fire personnel based on quantitative fire behaviour data. Ultimately, the database will allow framing the 620 

behaviour of new wildfires according to historical patterns. Adding smaller wildfires to the PT-FireSprd database will certainly 621 

help to better represent a wider range of fire behaviour patterns. 622 

 623 

Confidence in the wildfires of 2015-2016 was lower than for the most recent ones due to relevant advances in operational fire 624 

monitoring, resulting in better quality and higher quantity of fire data. Since 2018, the FEBMON system has improved and 625 

grown, providing larger quantity and higher quality data, thus leading to more reliable and detailed fire progression 626 

reconstructions. The distribution of the duration of the spread polygons between 2015 and 2021 (Figure B3) shows 627 

heterogeneity of the database across time, but also the evolution introduced by the implementation ofalong with the FEBMON 628 

system. Results suggest that estimates of ROS and FGR might may be underestimated predicted in wildfires with lower 629 

confidence, most probably due to the lack of data to thoroughly cover the afternoon, but especially the early night period (i.e. 630 

between VIIRS/MODIS day and nighttime overpasses, Figure 1). This issue is further discussed in section 5.2. The user must 631 

take into account the characteristics of the database and can choose to use the entire or part of the dataset based on the 632 

confidence flag or year of the wildfire. 633 

 634 

The PT-FireSprd database is flexible and open, allowing the users to subset the data based on their needs and requirements. 635 

For example, users can decide to work with fire behaviour descriptors at the polygon level (L2) or at the burning period (L3), 636 

or can create their own subset depending on their objectives. The dataset is heterogeneous which is reflected in two main 637 

components: the duration of the spread polygons and the burning periods, and the confidence flag associated with each wildfire.  638 

 639 

Regarding the duration, the average time elapsed between two progression polygons was 3h30 (L2) and 8h15 for the burning 640 

periods (L3). Durations were large in 2015 and 2016 (median values above 9h), decreased significantly in 2017 with the 641 

integration of hourly isochrones from Guerreiro et al., (2017, 2018), and have had median durations below 2h since 2019 642 

(Figure B3). Gollner et al., (2015) argued that fire progression observations need to be made in real-time with a 10-metre m 643 

spatial resolution every 10 min’ to meet the needs of fire behaviour forecasting. However, in operational context the current 644 

objective is to predict fire behaviour time intervals larger than or equal to 30 min’ (Cruz and Alexander, 2013). Considering 645 

the average duration of the burning periods, that represent a single fire run, the average time elapsed between progression 646 

observations represents a good compromise and a clear advance in current data. Regardless, users can subset the database 647 

based on the duration of either the progression polygons or the burning periods. L3 descriptors can be useful to provide more 648 

homogeneous and normalised fire behaviour descriptors, dampening the effect of the large variability in L2 durations, 649 

allowing, for example, a better comparison between wildfires. 650 
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 651 

Finally, preliminary results suggest that considering both ROS and FGR can improve understanding of wildfire dynamics. The 652 

relation between both is related tois dependent on perimeter morphology and extent (among others), and future work is needed 653 

to better understand the underlying factors. Most importantly, FGR was a better explanatory variable of burned area extent 654 

than ROS. The practical consequence is that large burned areas can be generated by wildfires with a moderate forward ROS 655 

but with large FGR of the entire perimeter, which in turn is highly influenced by spread duration and perimeter extent. This 656 

should have implications for both the research and operational communities. FRE was estimated for a lower number of spread 657 

polygons and burning periods when compared with ROS and FGR. This was most likely due to the impact of clouds and smoke 658 

on MSG-SEVIRI detections and the relatively conservative minimum number of observations threshold (75 %). FRE and 659 

burned area extent were closely related, however, relations between FRE and ROS were poor/moderate. One of the possible 660 

reasons may be related with the need to consider the effect of the active perimeter extent when comparing both descriptors.  661 

4.2 Limitations and future improvements 662 

The generic limitations of the input data have been thoroughly described in Section 1. In particular, for Portugal some 663 

limitations of the data must be pointed out. Fire progression perimeters and fire points collected in the ground by fire personnel 664 

have relevant spatio-temporal uncertainties. For example, there is often a lag between the date/hour a polygon is drawn in the 665 

ground and the actual date/hour it burned completely. Another relevant issue is that of data acquisition / reporting errors done 666 

by fire personnel, which may be reduced by improved training and experience. The number of users of the FEBMON system 667 

has been growing in recent years and, with adequate training, it is expected that the quality and quantity of ground data will 668 

increase in upcoming years. In fact, over 27,000 aerial and 2,500 ground photos were taken in the year of 2022, which 669 

represents a relevant increase compared to previous years. 670 

 671 

Regarding airborne data, the discussion can may be separated into two components. First, initial attack photos, which can be 672 

extremely useful to draw initial fire progression and infer probable ignition areas, are not collected for every wildfire to which 673 

a helicopter is dispatched, and sometimes are of poor quality. Additional training and increasing the awareness of fire personnel 674 

for the relevance of the data they collect is necessary. Second, aeroplane aircraft data are acquired at relatively low altitude, 675 

precluding a synoptic view of the wildfire. Time lags between data acquisition for different parts of the wildfire (e.g. left vs. 676 

right flanks) may be large and introduce relevant spatio-temporal uncertainties in the delineation of the fire progression. In 677 

addition, perimeters are drawn manually and depend on the training and experience of the fire expert. In upcoming years, the 678 

integration of new airborne sensors, specially with multispectral capability, the ability to perform high-altitude scans and the 679 

use of automatic perimeter delimitation procedures (e.g., Valero et al., 2018) should improve data quality and reduce the time 680 

lags of airborne fire observations. With this new capacity, it will be possible to integrate deep learning processes in the data 681 

analysis, increasing both the quantity and quality of the available fire data. This integration will also allow a well-organised 682 
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structure in data collection, management and analysis, improving decision-support systems. Finally, the use of UAVs during 683 

nighttime (pioneered in 2022 in Portugal) will complement aeroplane/helicopter data during periods of low data availability.  684 

 685 

Regarding official fire data, errors in the delineation of final burned area perimeters and in the ignition location, often located 686 

outside of the fire perimeter, need to be corrected to increase the quality of the PT-FireSprd database. Regarding satellite data, 687 

implementingImplementation of (semi-) automatic algorithms to delimit fire perimeters using satellite data (e.g., Chen et al., 688 

2022) will increase the data availability of fire perimeters and reduce the uncertainties associated with manual perimeter 689 

delimitationdelineation. Improvements in the spatial resolution geostationary satellites, such as the recently launched Meteosat 690 

Third Generation (MTG), will certainly improve fire behaviour estimates, as already observed in HIMAWARI-8 and last 691 

generation GOES satellites. 692 

 693 

Regarding Concerning methodological uncertainties, the major challenge was to assign the correct date/hour to a specific 694 

burned area. For example, when raw data sources indicated that an area burned but active areas were absent or small, there 695 

were always uncertainties as to when it actually burned completely, which could may lead to a relevant ROS/growth rateFGR 696 

underestimation. These uncertainties were larger between dusk until VIIRS overpass(es) and between the later and dawn. One 697 

approach to reduce these uncertainties was to use FRE data to monitor the daily cycle of fire activity and help to better define 698 

the start/end date of a progression polygon. The method was empirical and future work is needed to better define the thresholds 699 

for setting the ignition or reactivation times, as well as the end of a fire progression. Exploratory analysis done in a few 700 

wildfires of the PT-FireSprd database suggest that FRE has a significant drop after the head of the fire stops, which may take 701 

several minutes/hours until reaching the FRE thresholds used. This moment is commonly accompanied by a flank growth that 702 

burns slower and releases lower amounts of energy. These Such fire dynamics probably explain why ROS was likely 703 

underestimated in low confidence wildfires and why FGR was less affected by data confidence. Improvements can be achieved 704 

in the future, through the use of more sophisticated methods (e.g. change point detection), more ground observations during 705 

the head to flank run transition, and higher spatial resolution data from geostationary satellites. Part of these improvements 706 

can be used to partially update the 2015-2021 wildfires of the PT-FireSprd database. 707 

 708 

In terms of characterising uncertainties and its effects, future work should also adopt a metrological approach to propagate 709 

uncertainties to the descriptors, providing useful information to users. By providing an uncertainty assessment, the PT-FireSprd 710 

database would be on the pathway of to Fiducial Reference Measurement (FRM) compliance (Niro et al. 2021). 711 

 712 

The continuous update of the PT-FireSprd database will require a joint effort by researchers and fire personnel. The automation 713 

of data collection procedures (discussed above), as well as dedicated training to fire personnel, are key factors to guarantee 714 

both the quality as well as a sustainable update of the database. In the upcoming years, other fire behaviour descriptors could 715 

may be included such as type of spread (surface vs. crown fire), fireline intensity, flame sizelength, spotting (including 716 
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maximum distance) and/or PyroCb occurrence. Finally, methods described in the current work can be, at least partially, be 717 

applied to many other fire-prone areas of the globe and contribute to the much-needed data on observed wildfire behaviour. 718 

5 Data Availability 719 

The dataset contains generic metadata file with relevant information for each wildfire (Table A2A3), such as the fire ID, 720 

official incident ID (ANEPC, 13 digit number), fire name, municipality, civil parish, start date, duration (hours), extent (ha), 721 

among others. The fire name was defined as Municipality_DDMMYYYY, where DD is day, MM month and YYYY the year.  722 

In case that more than one wildfire occurred in the same municipality on the same day, we added an additional string at the 723 

end of the fire name (e.g. “_2”). 724 

 725 

The dataset is then divided in 3 Levels, with threein the corresponding folders: 726 

● Fire Spread (L1): Each year has a separate folder that contains one folder per wildfire labeledlabelled with the fire 727 

name. It contains a polygon shapefile with the attributes listed in Table A3A4.  728 

● Fire behaviour (L2): A single polygon shapefile that contains all wildfires and estimated fire behaviour metrics for 729 

each individual fire spread polygon. The attributes are listed and explained in Table A4A5. 730 

● Fire behaviour (L3): A single polygons shapefile that contains the simplified fire behaviour metrics calculated for 731 

each burning period. The attributes are described in Table A5A6.  732 

 733 

The generic metadata is connected to L1 data through the “fire name” field, and to L2 and L3 through the fire “ID” field. 734 

 735 

The data are freely available at https://doi.org/10.5281/zenodo.7495506 (last access: 30th December 2022; Benali et al. 2022). 736 

We intend to update the database annually with wildfires from the current fire season and implement continuous improvements 737 

to the procedure. Also, if additional information from past wildfires becomes available, we will update the database either by 738 

changing existing fire spread polygons or by adding new wildfires. Updates for future years depend on the availability of input 739 

data and associated funding.  740 

6 Conclusions 741 

The Portuguese Large Wildfire Spread Database (PT-FireSprd) is the first open access fire progression and behaviour database 742 

available within Mediterranean Europe. It includes the reconstruction of the progression of 80 large wildfires (>100 ha) that 743 

occurred in mainland Portugal between 2015 and 2021, that which was derived by seeking converging evidence from multiple 744 

data sources, which provides added credibility to the database. PT-FireSprd contains a very large number estimates of key fire 745 

behaviour observationsdescriptors, such as ROS, FGR and FRE. Based on the statistical distribution of ROS and FGR, we 746 
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defined 6 percentile intervals broad fire behaviour classes that can be easily communicated to both research and management 747 

communities and to support a wide number of applications, including better fire management strategies. The PT-FireSprd has 748 

a large potential to contribute to the development of better fire behaviour prediction tools, improve our current knowledge on 749 

wildfire dynamics, foster better operational training and contribute to better improve decision-making. The approach will be 750 

used to continuously update the database in the following years for Portugal and can be replicated in other countries/regions, 751 

depending on data availability. Improvements in data quality and the implementation of automated methods are key factors 752 

for the regular update of the PT-FireSprd database in the future. 753 

Appendix A: Supporting material for the Methods 754 

(Table A1, Table A2, Table A3, Table A4,  and Table A5 and Table A6 near here) 755 

Appendix B: Supporting material for the Results 756 

(Figure B1, Figure B2 and Figure B3 near here) 757 
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Figures 984 

 985 

 986 

Figure 1: Hourly frequency of observations in active wildfires acquisitions for satellite, field and airborne data. The data used refers 987 
to the year 2019 as an example. The frequency is normalised by dividing the number of observations by the total of each data source. 988 
Sentinel-2, Landsat and PROBA-V refer to the temporal windows and not the frequency, since all of the data are acquired in a very 989 
short window. The time windows of Sentinel-3 are similar to those of MODIS. MSG-SEVIRI data are not represented since it has a 990 
15’ frequency. Acronyms are described in the Data and Methods section. 991 

 992 
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 994 

Figure 2: Flowchart that represents an overview of the data and methods used in the development of the PT-FireSprd database. 995 

 996 

997 
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 999 

Figure 3: Example of multi-source data integration to derive fire perimeters and reconstruct the progression of the Castro Marim 1000 
(2021) wildfire. The lines represent different progression polygons. Photos A, B, C, D were kindly provided by ANEPC\FEPC 1001 
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Figure 4: Example of how the estimated fire progression (a) of the Ourique 2019 wildfire (a) was used to build the digraph (b). Each 1005 
node corresponds to a fire progression polygon, identified in (a), and the edges correspond to the time elapsed (in minutes) between 1006 
each node. 1007 

 1008 

 1009 

 1010 

Figure 5: Example of how the fire behaviour descriptors are calculated based on the Proença-a-Nova (2020) wildfire: a) partial fire 1011 
progression; b) procedure to calculate the distance for each vertex of the pair of consecutive polygons; and c) estimated main spread 1012 
axis and associated fire behaviour descriptors.1013 
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Figure 6: Overall spatial distribution of the wildfire perimeters in the PT-FireSprd database, with examples of ROS estimates for 6 

wildfires: A-Paredes de Coura (2016); B-Chaves (2020); C-Idanha-a-Nova (2020); D-Pedrógão Grande (2017); E-Aljezur (2020); F-

Alcobaça (2017).
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Figure 7: Histogram of theE estimated ROS and FGR distributions for L2 and L3 data (in log-scale). Each point represents the 

frequency in evenly spaced bins on a logarithmic scale. 
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Figure 8: Distribution of the estimated partial rate-of-spread (ROSp) and FGR (L2). Each point represents a wildfire progression 

with at least 25 ha of extent. The percentiles were calculated for each variable separately (n=874). Colors represent percentile 

intervals for both fire behaviour descriptors. 
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Figure 9: Comparison between simplified wildfire behaviour descriptors (L3): burned area extent and ROS (a), burned area extent 

and FGR (b), burned area extent and FRE (c), and ROS and average rate of energy release (d). The latter was calculated by dividing 

the total FRE by the burning period duration. 
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Figure 10: The Castro Marim (2021) wildfire progression (a). Wildfire behaviour descriptors include: the spatial distribution of 

ROS (b); the temporal distribution of ROS and FRE flux rate (c); and the temporal distribution of FRE and FGR (d). Plots (c) and 

(d) start at 01:00 of the 16th of August and end at 06:00 of the 17th of August.  
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Figure B1: Histogram of the estimated ROS (L2) for three aggregated levels of confidence. L2 ROS estimates were used and the 

confidence flags are explained in Table A1. 
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Figure B2: Histogram of the estimated FGR for three levels of confidence. L2 FGR estimates were used and the confidence flags are 

explained in Table A1. 
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Figure B3: Distribution of the duration of the progression polygons divided by years 
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Tables 

Table A1. Summary of major data sources and associated characteristics 
Source Description Type of data Temporal frequency Spatial Resolution 

Airborne Initial-attack heli-

brigades 

Visible imagery  Depends on fire occurrence; up to the first 

30min after wildfire alert  

na 

Airborne Aeroplane Visible, IR and thermal 

imagery and videos 

Depends on fire occurrence; up to four 

flights per days 

<1m* 

Airborne Coordination 

Helicopter 

Visible images Depends on fire occurrence na 

Satellite Sentinel-2 (S2) Visible and IR imagery Every 5 days 10m – 60m 

Satellite Landsat 8/9 Visible and IR imagery Every 5 days 30m 

Satellite PROBA_V Visible and IR imagery Daily** and every 5 days*** **300m; ***100m 

Satellite VIIRS NPP and  

NOAA-20 

Visible and IR imagery Up to 4 times per day 375m-750m 

Satellite VIIRS NPP and  

NOAA-20 

Thermal anomalies Up to 4 times per day 375m 

Satellite MODIS Terra and 

Aqua 

Visible and IR imagery Up to 4 times per day 250m-1000m 

Satellite MODIS Terra and 

Aqua 

Thermal anomalies Up to 4 times per day 1000m 

Satellite Sentinel 3 Visible and IR imagery Twice per day (SLSTR), once per day 

(OLCI) 

300-1000m 

Satellite MSG-SEVIRI Thermal anomalies Every 15 min 4000 m 

Ground Fire operatives Visible imagery and videos Depends on fire occurrence na 

Ground Fire operatives Georeferenced points and 

polygons 

Depends on fire occurrence na 

Official fire data Burned area Perimeters  annual na (derived from S2 

imagery) 

Official fire data Ignition  Point annual na (derived from S2 

imagery) 

Official fire data Time log Report Depends on fire occurrence na 

Reports of 2017 

large wildfires 

Guerreiro et al., (2017 

and 2018) 

Progression polygons hourly na 

* depends on aeroplane flight height and on the sensor (visible sensors have higher resolution than IR sensors) 
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Table A1A2. Confidence flag value, class and interpretation. The flag is defined for each wildfire. 

Flag value Flag Class Interpretation 

1  Very Low The major fire progressions were observed only with satellite data, with important associated 

uncertainties. 

2   Low The major fire progressions were observed only with satellite data with moderate uncertainties 

3 Moderate The major fire progressions were observed with satellite data with low/moderate uncertainties 

and complemented with other sources. 

4 High The major fire progressions were at least partially observed with ground and airborne data, with 

relevant uncertainties associated (e.g. the exact hour of an important progression, or a flank 

position, etc) 

5 Very High The major fire progressions were observed with ground and airborne data with low uncertainties 

 

 

  



49 

 

Table A2A3. Database metadata list for L1 
ID Fire Name Municipality Civil  

Parish 

Start  

Date 

End  

Date 

Extent 

(ha) 

Confidence 

flag 

ANEPC 

incident ID 

P1 P2 

1 Gouveia_10082015 Gouveia Mangualde da 

Serra 

2015-08-10 2015-08-12 2513 2 2015090024014 99 86 

2 Oleiros_03082015 Oleiros Alvaro 2015-08-03 2015-08-04 853 2 2015050020535 100 95 

3 VilaNovadeCerveira_08082015 Vila Nova de 

Cerveira 

Candemil 2015-08-08 2015-08-09 2988 3 2015160019994 87 87 

4 Agueda_08082016 Águeda Préstimo 2016-08-08 2016-08-12 7317 1 2016010058351 99 63 

5 Anadia_10082016 Anadia V.N. de 

Monsarros 

2016-08-10 2016-08-12 3370 2 2016010059055 97 80 

6 ArcosdeValdevez_08082016 Arcos de 

Valdevez 

Cabana Maior 2016-08-08 2016-08-11 5806 1 2016160022311 93 71 

7 Arouca_08082016 Arouca Janarde  2016-08-08 2016-08-14 23547 2 2016010058554 97 96 

8 Boticas_05092016 Boticas Codecoso 2016-09-05 2016-09-07 1694 3 2016170021732/ 

2016170021835 

97 97 

9 CabeceirasdeBasto_06092016 Cabeceiras de 

Basto 

Rio Douro 2016-09-06 2016-09-07 1336 2 2016030067614 100 100 

10 Caminha_09082016 Caminha Argela 2016-08-09 2016-08-11 1628 1 2016160022551 99 61 

11 Cinfaes_07082016 Cinfães Cinfães 2016-08-07 2016-08-08 567 1 2016180042605 95 95 

12 Cinfaes_08082016 Cinfães Oliveira do 

Douro 

2016-08-08 2016-08-09 756 2 2016180042656 100 100 

13 FreixodeEspadaaCinta_06092016 Freixo de 

Espada a Cinta 

Freixo Espada à 

Cinta e Mazouco 

2016-09-06 2016-09-07 5194 3 2016040027372 99 97 

14 Moncao_06092016 Monção Riba de Mouro 2016-09-06 2016-09-07 656 2 2016160025950 71 58 

15 Moncao_09082016 Monção Barroças e Taias 2016-08-09 2016-08-11 1115 1 2016160022460 77 77 

16 ParedesdeCoura_07082016 Paredes de 

Coura 

Meixedo 2016-08-07 2016-08-12 10457 2 2016160022456 100 96 

17 PontedeLima_08082016 Ponte de Lima Calheiros 2016-08-08 2016-08-09 739 1 2016160022390 91 75 

18 SeverdoVouga_09082016 Sever do Vouga Pessegueiro do 

Vouga 

2016-08-10 2016-08-12 1818 3 2016010058973 96 94 

19 VieiradoMinho_10082016 Vieira do Minho Rossas 2016-08-10 2016-08-11 1637 2 2016030060428 99 96 

20 Resende_17082017 Resende S. Martinho de 

Mouros 

2017-08-17 2017-08-21 544 1 2017180043566 84 38 

21 RibeiradePena_15082017 Ribeira de Pena Cerva 2017-08-15 2017-08-16 507 1 2017170021591 100 100 

22 CastroDaire_05102017 Castro Daire Almofala 2017-10-05 2017-10-05 701 2 2017180054022 99 99 

23 Mortagua_07102017 Mortagua Espinho 2017-10-07 2017-10-08 961 2 2017180054507 99 99 

24 Mirandela_16072017 Mirandela Alvites 2017-07-16 2017-07-17 949 2 2017040020105 100 88 

25 Pombal_06102017 Pombal Abiul 2017-10-06 2017-10-07 1225 2 2017100054724 100 100 

26 TorredeMoncorvo_18072017 Torre de 

Moncorvo 

Acoreira 2017-07-18 2017-07-18 1536 3 2017040020365 100 100 

27 Guarda_23082017 Guarda Fernão Joanes 2017-08-23 2017-08-25 3457 3 2017090026098 91 91 

28 Serta_08092017 Serta Pedrogao 

Pequeno 

2017-09-08 2017-09-09 4177 3 2017050027511 100 100 
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29 Abrantes_09082017 Abrantes Aldeia do Mato 2017-08-09 2017-08-10 4357 3 2017140045924 83 79 

30 CasteloBranco_23072017 Castelo Branco Santo André das 

Tojeiras 

2017-07-23 2017-07-28 4569 3 2017050023219 97 85 

31 Serta_15102017_2 Serta Pedrógão 

Pequeno 

2017-10-15 2017-10-16 2320 3 2017050030728 54 54 

32 CasteloBranco_13082017 Castelo Branco Louriçal do 

Campo 

2017-08-13 2017-08-15 6173 2 2017050025136 100 96 

33 PampilhosadaSerra_06102017 Pampilhosa da 

Serra 

Fajao 2017-10-06 2017-10-09 7217 2 2017060044928 97 96 

34 Guarda_17072017 Guarda Rochoso 2017-07-17 2017-07-18 7523 2 2017090021641 88 88 

35 FigueiradaFoz_15102017 Figueira da Foz Quiaios 2017-10-15 2017-10-17 15141 4 2017060046330 100 97 

36 Oleiros_23082017 Oleiros Cambas 2017-08-23 2017-08-25 7985 3 2017050026111 88 67 

37 Gois_17062017 Gois Alvares 2017-06-17 2017-06-22 15852 3 2017060026571 100 99 

38 Alcobaca_15102017 Alcobaca Pataias 2017-10-15 2017-10-16 18575 4 2017100056537 

/2017100056554 

100 100 

39 Arganil_15102017 Arganil Coja 2017-10-15 2017-10-16 31970 3 2017060046312 

/2017090031521 

100 99 

40 Serta_15102017 Serta Figueiredo 2017-10-15 2017-10-17 30974 4 2017050030693 97 97 

41 Alvaiazere_11082017 Alvaiazere Pussos 2017-08-11 2017-08-19 23715 2 2017100043917/ 

2017050025201 

99 52 

42 PedrogaoGrande_17062017 Pedrogao 

Grande 

Pedrogao Grande 2017-06-17 2017-06-19 29456 4 2017100032538 92 91 

43 Serta_23072017 Serta Várzea dos 

Cavaleiros 

2017-07-23 2017-07-27 33401 3 2017050023195 97 96 

44 Lousa_15102017 Lousã Vilarinho 2017-10-15 2017-10-17 45249 4 2017060046260 100 95 

45 Agueda_15102017 Agueda Albitelhe 2017-10-15 2017-10-16 9095 3 2017180056272 83 78 

46 OliveiraFrades_15102017 OliveiraFrades Varzielas 2017-10-15 2017-10-17 9297 3 2017180056290 99 97 

47 Monchique_03082018 Monchique Monchique 2018-08-03 2018-08-08 26227 3 2018080033743 93 82 

48 Agueda_05092019 Agueda Macinhata do 

Vouga 

2019-09-05 2019-09-06 1602 3 2019010072794 89 84 

49 Alijo_24072019 Alijo Vila Verde 2019-07-24 2019-07-24 574 5 2019170019467 100 100 

50 Baiao_04092019 Baião Teixeira 2019-09-05 2019-09-06 728 3 2019130150620 75 73 

51 Nisa_01082019 Nisa Tolosa 2019-08-01 2019-08-01 712 5 2019120016787 99 98 

52 Ourique_10062019 Ourique Monte Lavarjao 2019-06-10 2019-06-10 554 5 2019020015472 75 75 

53 Penedono_21072019 Penedono Beselga 2019-07-21 2019-07-23 736 4 2019180039496 99 99 

54 Sabugal_29082019 Sabugal Vale Mourisco 2019-08-29 2019-08-29 578 5 2019090029579 100 100 

55 Serta_13092019 Sertã Marmeleiro 2019-09-13 2019-09-14 676 4 2019050028005 100 90 

56 Tomar_03082019 Tomar São Pedro Tomar 2019-08-03 2019-08-03 511 4 2019140045796 86 73 

57 Valenca_04092019 Valença Cerdal 2019-09-04 2019-09-05 642 1 2019160026115 83 83 

58 Valpacos_13092019 Valpaços Ervões 2019-09-13 2019-09-13 738 2 2019170026369 56 56 

59 ViladeRei_20072019 Vila de Rei Fundada 2019-07-20 2019-07-22 9305 3 2019050022178 99 99 

60 MirandadoCorvo_13092019 Miranda do 

Corvo 

Moinhos 2019-09-13 2019-09-14 540 3 2019060042282 96 96 
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61 Fundao_07082020 Fundão Capinha 2020-08-07 2020-08-08 472 4 2020050018968 87 85 

62 Silves_06072020 Silves Boião 2020-07-06 2020-07-06 520 4 2020080025576 77 77 

63 Avis_21072020 Avis Montes Juntos 2020-07-21 2020-07-21 698 5 2020120014122 95 95 

64 IdanhaaNova_30062020 Idanha-a-Nova Salvaterra do 

Extremo 

2020-06-30 2020-06-30 728 4 2020050015270 100 100 

65 SaoJoaoPesqueira_10072020 São João da 

Pesqueira 

Riodades 2020-07-10 2020-07-11 770 4 2020180031783 97 94 

66 Fundao_06082020 Fundao Bogas Baixo 2020-08-06 2020-08-06 749 5 2020050018872 96 96 

67 PortoMos_06092020 Porto de Mós Codacal 2020-09-06 2020-09-07 998 4 2020100046280 97 91 

68 OliveiraFrades_07092020 Oliveira de 

Frades 

Antelas 2020-09-07 2020-09-08 1902 3 2020180044235 86 73 

69 Aljezur_19062020 Aljezur Bordeira 2020-06-19 2020-06-20 2243 5 2020080023014 99 93 

70 Sernancelhe_06082020 Sernancelhe Lapa 2020-08-06 2020-08-06 2213 5 2020180037681 100 100 

71 Chaves_30072020 Chaves Vila Verde da 

Raia 

2020-07-30 2020-07-31 2508 3 2020170018342 83 82 

72 Oleiros_25072020 Oleiros Sardeiras de 

Baixo 

2020-07-25 2020-07-27 5564 3 2020050017687 95 92 

73 ProencaaNova_13092020 Proenca-a-Nova Cunqueiros 2020-09-13 2020-09-14 14568 4 2020050022403 91 91 

74 CasteloBranco_29082020 Castelo Branco Ponsul 2020-08-29 2020-08-29 315 4 2020050021105 100 92 

75 CastroDaire_07092020 Castro Daire Cujo 2020-09-07 2020-09-07 452 4 2020180044155 76 76 

76 Odemira_18082021 Odemira João Martins 2021-08-18 2021-08-19 944 5 2021020019189 100 98 

77 CastroMarim_16082021 Castro Marim Pernadeira 2021-08-16 2021-08-17 5956 5 2021080035488 100 99 

78 Monchique_17072021 Monchique Tojeiro 2021-07-17 2021-07-18 1900 4 2021080029244 99 99 

79 FreixoEspadaaCinta_20082021 Freixo de 

Espada à Cinta 

Lagoaça 2021-08-20 2021-08-20 412 4 2021040023667 71 71 

80 Mogadouro_20072021 Mogadouro Tó 2021-07-20 2021-07-20 253 5 2021040019425 99 98 

p1: stands for percentage of known fire progression (%); p2: stands for percentage fire behaviour descriptors calculated (%) 
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Table A3A4. Attribute fields of the fire progressions (L1) 

Field Description Possible values 

id Polygon ID >0 

type Type of Spread Polygon p - wildfire progression ; z - ignition or active flaming zone ;  

a - previously burned area 

date_hour Date and hour of the polygon yyyy-mm-dd hh:mm; uncertain ; na (not applicable) 

source Source of the data fserv - forest service ; sat - satellite data ; airb - airborne data; fops - fire personnel; ek 

- expert knowledge; rep - external reports 

zp_link Numerical link between a ignition or 

active flaming zone (“z”) polygon and a 

wildfire progression (“p”) polygon 

1,2,3... - the link between types "p" and "z" with known dates and hours; 0 - used for 

type "a" or  when progression in "uncertain" or  when the link between "p" and "z" is 

unknown 

burn_period Burning period 1,2,3,..; 0 for the same cases as “zp_link”. 
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Table A4A5. Attribute fields of the fire behaviour database  (L2) 

Field Description Possible values 

fid Fire ID 1-80* 

fname Fire Name Municipality_StartDate (e.g. Gouveia_10082015) 

year Year 2015-2021* 

type Type of Spread Polygon p - wildfire progression ; z - ignition or active flaming zone ;  

a - previously burned area 

sdate Start date and hour of the polygon yyyy-mm-dd hh:mm; uncertain ; na (not applicable) 

edate End date and hour of the polygon yyyy-mm-dd hh:mm; uncertain ; na (not applicable) 

inidoy Start day-of-year of the polygon (hours in decimal values) 1 to 366; -1 for uncertain progression polygons, polygons with 

unknown zp_link and previously burned areas 

enddoy End day-of-year of the polygon (hours in decimal values) 1 to 366; -1 for uncertain progression polygons, polygons with 

unknown zp_link and previously burned areas 

source Source of the data fserv - forest service ; sat - satellite data ; airb - airborne data; fops 

- fire personnel; ek - expert knowledge; rep - external reports 

zp_link Numerical link between a ignition or active flaming zone 

(“z”) polygon and a wildfire progression (“p”) polygon 

1,2,3... - the link between types "p" and "z" with known dates and 

hours; 0 - used for type "a" or  when progression in "uncertain" or  

when the link between "p" and "z" is unknown 

burn_period Burning period 1,2,3,..; 0 for the same cases as “zp_link”. 

area Burned area extent (ha) > 0 for progression polygons, -1 for ignition or active flaming 

zones. 

growth_rate Fire growth rate (ha/h) >0 for progression polygons with zp_link value >0; -1 for 

previously burned areas or uncertain progression polygons 

ros_i Average rate-of-spread (m/h) calculated since ignition\active 

flaming areas or a progression marking the start of the 

burning period 

>0 for progression polygons with zp_link value >0; -1 for 

previously burned areas or uncertain progression polygons 

ros_p Parcial rate-of-spread (m/h) calculated between consecutive 

ignition\active flaming areas and progression polygon, or 

between two consecutive progression polygons  

>0 for progression polygons with zp_link value >0; -1 for 

previously burned areas or uncertain progression polygons 

spdir_i Spread direction associated with “ros_i” ( ° from North) 0 to 359.99; -1 for the same cases in “ros_i” 

spdir_p Spread direction associated with “ros_p” ( ° from North) 0 to 359.99;  -1 for the same cases in “ros_p” 
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duration_i Duration (hours) associated with the “ros_i” metric >0 known progression polygons; -1 for ignition\active flaming 

zones, previously burned áreas or uncertain progression polygons 

duration_p Duration (hours) associated with the “ros_p” metric >0 known progression polygons; -1 for ignition\active flaming 

zones, previously burned áreas or uncertain progression polygons 

qc Confidence flag for each wildfire See table A1 

FRE Fire Radiative Energy (TJ) >0 for known progressions with at least 70% of FRE observations 

between “sdate” and “edate”; - 1 for the remaining polygons 

FRE_flux Fire Radiative Energy flux (TJ ha-1 h-1) >0 for known progressions with at least 70% of FRE observations 

between “sdate” and “edate”; - 1 for the remaining polygons 

FRE_perc Percentage of FRE observations between “sdate” and “edate” Between 0 and 100 for known progression polygons; -1 for the 

remaining.  

* values will change when the database will be updated with new wildfires. 
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Table A5A6. Attribute fields of the simplified fire behaviour database  (L3) 

Field Description Possible values 

fid Fire ID 1-80* 

fname Fire Name Municipality_StartDate (e.g. Gouveia_10082015) 

burn_period Burning period ⩾1 

year Year 2015-2021* 

sdate Start date and hour of the burning period yyyy-mm-dd hh:mm; “na” for burning periods which only have progression 

polygons with unknown “zp_link” (see Table A4) 

edate End date and hour of the burning period yyyy-mm-dd hh:mm; “na” for burning periods which only have progression 

polygons with unknown “zp_link” (see Table A4) 

inidoy Start day-of-year of the burning period (hours in 

decimal values) 

1 to 366; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

enddoy End day-of-year of the burning period (hours in 

decimal values) 

1 to 366; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

qc Confidence flag for each wildfire See table A1 

area Burned area extent (ha) >0 

growth_rate Average fire growth rate (ha/h) >0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

ros Average rate-of-spread (m/h)  >0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

max_ros Maximum rate-of-spread (m/h) observed in the 

burning period 

>0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

spdir Spread direction associated with “ros_i” ( ° from 

North) 

0 to 359.99; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

duration Duration (hours) of the burning period >0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

FRE Fire Radiative Energy (TJ) >0 for known progressions with at least 70% of the area burned during the 

burning period covered with FRE estimates; - 1 for the remaining polygons 

FRE_flux Fire Radiative Energy flux (TJ ha-1 h-1) >0 for known progressions with at least 70% of the area burned during the 

burning period covered with FRE estimates; - 1 for the remaining polygons 

FRE_perc Percentage of FRE observations between “sdate” and 

“edate” 

Between 0 and 100 

* values will change when the database will be updated with new wildfires. 


