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Abstract 19 
 20 
Radiative sensitivity, i.e., the response of the radiative flux to climate perturbations, is essential 21 
to understanding climate change and variability. The sensitivity kernels computed by radiative 22 
transfer models have been broadly used for assessing the climate forcing and feedbacks for 23 
global warming. As these assessments are largely focused on the top of atmosphere (TOA) 24 
radiation budget, less attention has been paid to the surface radiation budget or the associated 25 
surface radiative sensitivity kernels. Based on the fifth generation European Center for Medium-26 
Range Weather Forecasts (ERA5) atmospheric reanalysis, we produce a new set of radiative 27 
kernels for both the TOA and surface radiative fluxes, which is made available at 28 
http://dx.doi.org/10.17632/vmg3s67568.3 (Huang and Huang, 2023). By comparing with other 29 
published radiative kernels, we find that the TOA kernels are generally in agreement in terms of 30 
global mean radiative sensitivity and analyzed overall feedback strength. The unexplained 31 
residual in the radiation closure tests is found to be generally within 10% of the total feedback, 32 
no matter which kernel dataset is used. The uncertainty in the TOA feedbacks caused by inter-33 
kernel differences, as measured by the standard deviation of the global mean feedback parameter 34 
value is much smaller than the inter-climate model spread of the feedback values. However, we 35 
find relatively larger discrepancies in the surface kernels. The newly generated ERA5 kernel 36 
outperforms many other datasets in closing the surface energy budget, achieving a radiation 37 
closure comparable to the TOA feedback decomposition, which affirms the validity of kernel 38 
method for the surface radiation budget analysis. In addition, by investigating the ERA5 kernel 39 
values computed from the atmospheric states of different years, we notice some apparent 40 
interannual differences, which demonstrates the dependence of radiative sensitivities on the 41 
mean climate state and partly explains the inter-dataset kernel value differences. In this paper, we 42 
provide a detailed description on how ERA5 kernels are generated and considerations to ensure 43 
proper use of them in feedback quantifications. 44 

 45 
 46 
  47 
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1. Introduction 48 
 49 

Radiative kernels measure the sensitivity of radiative fluxes to the perturbation of feedback 50 
variables, such as temperature, water vapor, albedo and cloud (e.g., Soden and Held, 2006; 51 
Huang et al., 2007; Shell et al., 2008; Previdi, 2010; Zelinka et al., 2012; Block and Mauritsen, 52 
2013; Yue et al., 2016; Huang et al., 2017; Pendergrass et al., 2018; Thorsen et al., 2018; Kramer 53 
et al., 2019b; Smith et al., 2020). Compared to the partial radiative perturbation method (e.g., 54 
Wetherald and Manabe, 1988), which is precise but computationally expensive, the kernel 55 
method deploys a set of precalculated radiative kernels with simple arithmetic multiplications in 56 
feedback quantification and thus is computationally highly efficient, which has greatly facilitated 57 
the analysis of radiative feedbacks in global climate models (GCM) (e.g., Soden and Held, 2006; 58 
Soden et al., 2008; Jonko et al., 2012; Vial et al., 2013; Zhang and Huang, 2014; Dong et al., 59 
2020; Zelinka et al., 2020; Chao and Dessler, 2021), as well as in observations (e.g., Dessler, 60 
2010; Kolly and Huang, 2018; Zhang et al., 2019; Huang, H. et al., 2021). These analyses have 61 
helped dissect and understand the climate sensitivity differences among the GCMs, such as those 62 
in Coupled Model Intercomparison Projects, CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et 63 
al., 2016). For example, Zelinka et al. (2020) attributed the higher climate sensitivity in the 64 
CMIP6 models to their more positive extratropical cloud feedback. The kernel-enabled feedback 65 
analyses have also provided insights in the energetics of the climate variations such as the El 66 
Nino and Southern Oscillation (ENSO, e.g., Dessler et al., 2010; Kolly & Huang 2018; Huang et 67 
al. 2021a), the Madden-Julian Oscillation (MJO, e.g., Zhang et al. 2019) and the Arctic sea ice 68 
interannual variability (e.g., Huang et al., 2019), despite the approximate nature of the kernel 69 
method and the known limits of its accuracy (e.g., Colman and Mcavaney, 1997; Huang and 70 
Huang, 2021).  71 

Multiple sets of radiative kernels have been developed to date, using different radiation 72 
codes and based on different atmospheric state datasets ranging from GCMs to global reanalysis 73 
and satellite datasets, for both non-cloud variables (e.g., Soden and Held, 2006; Shell et al., 74 
2008; Huang et al., 2017; Thorsen et al., 2018; Bright and O'halloran, 2019; Donohoe et al., 75 
2020) and cloud properties (e.g., Zelinka et al., 2012; Zhou et al., 2013; Yue et al., 2016; Zhang 76 
et al., 2021; Zhou et al., 2022). As the conventional feedback analyses are mostly concerned with 77 
the radiation energy budget change at the TOA, most existing kernels have been developed and 78 
tested to address that need, i.e., to measure the feedback contributions to the TOA radiation 79 
changes. Although the radiative sensitivity depends on the atmospheric states as well as the 80 
radiative transfer codes used to compute the kernel values (e.g., Collins et al., 2006; Huang and 81 
Wang, 2019; Pincus et al., 2020), it has been noted that the global mean TOA feedback 82 
quantification is insensitive to which kernel dataset is used, as the diagnosed feedback values are 83 
close to each other when measured by different kernel datasets (e.g., Soden et al., 2008; Jonko et 84 
al., 2012; Vial et al., 2013; Zelinka et al., 2020). However, as there is increasing interest in 85 
regional climate change and associated feedback (e.g., Kolly and Huang, 2018; Huang et al., 86 
2019; Zhang et al. 2019), it becomes important to know how the kernels (dis)agree at regional 87 
scales. The generation of the global radiative kernels usually requires radiative transfer 88 
computation based on a large number of instantaneous atmospheric profiles. Due to this 89 
computational cost, many kernel datasets are generated based on the atmospheric data from an 90 
arbitrary calendar year. Given the known interannual climate differences, e.g., between El Niño 91 
to La Niña years, this warrants investigations to ascertain whether the kernels may differ in 92 
important ways for regional feedback assessments.  93 
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On the other hand, fewer feedback studies have addressed the surface radiation budget, 94 
although its importance has been recognized for such problems as the precipitation change 95 
(Previdi, 2010; Pendergrass and Hartmann, 2014; Myhre et al., 2018) and oceanic energy 96 
transport (e.g., Zhang and Huang, 2014; Huang et al., 2017). The surface budget analysis 97 
requires the use of surface kernels, which are not always available from the published kernel 98 
datasets. Few of them have been subject to inter-comparisons or rigorous validation. As 99 
explained below in this paper, the computation and use of them require different care than the 100 
TOA kernels. Possibly due to the lack of such recognition, there exist considerable discrepancies 101 
between the existing surface kernels and some surface budget-centered analyses reported 102 
alarmingly large non-closure in their radiation budget analyses (e.g., Vargas Zeppetello et al., 103 
2019), calling into question the validity of kernel method for surface radiation budget analysis. 104 
Hence, we are motivated to examine the radiative sensitivity quantified by different kernels, 105 
especially for the surface budget.  106 

In this work, we produce a new set of radiative kernels for both the TOA and surface 107 
radiation fluxes based on the fifth generation European Center for Medium-Range Weather 108 
Forecasts atmospheric reanalysis (ERA5, Hersbach et al., 2020), which demonstrates superior 109 
accuracy in the quantification of various atmospheric states (e.g., Graham et al., 2019; Wright et 110 
al., 2020), and document the key considerations in the kernel computation procedure. We 111 
intercompare the kernels computed from ERA5 to the other previously generated ones, and 112 
investigate the interannual variation of the kernel values due to their atmospheric state 113 
dependency. In addition, applying a selected set of kernels to analyzing the feedback in the 114 
CMIP6 models, we intercompare the discrepancies in quantified feedbacks across the GCMs and 115 
across different kernels. 116 
 117 
 118 
2. Construction of ERA5 radiative kernels  119 
 120 
2.1 Radiative transfer model and atmospheric dataset 121 
 122 

We use the GCM version of the rapid radiative transfer model (RRTMG) (Mlawer et al., 123 
1997) to calculate the radiative kernels. RRTMG conducts radiative transfer calculations in 16 124 
longwave (LW) spectral bands and 14 shortwave (SW) bands. The accuracy of this model has 125 
been extensively validated against the line-by-line calculations (e.g., Collins et al, 2006).  126 

Input data required by RRTMG, including surface pressure, skin temperature, air 127 
temperature, water vapor, albedo, ozone concentration, cloud fraction, cloud liquid water content 128 
and cloud ice content, are taken from the instantaneous (as opposed to monthly mean) data of the 129 
ERA5 reanalysis, with a horizontal resolution of 2.5 degree by 2.5 degree and 37 vertical 130 
pressure levels between 1 hPa and 1000 hPa. To ensure the accuracy of radiative kernels in upper 131 
atmosphere (Smith et al., 2020), we patch five layers of the U.S. standard profile above 1 hPa in 132 
the LW calculations. Other required input variables, such as the effective radii of cloud liquid 133 
droplet and ice crystal are taken from the 3-hourly synoptic TOA and surface fluxes and cloud 134 
product of the Clouds and Earth’s Radiant Energy System (CERES) (Doelling et al., 2013) with 135 
a horizontal resolution of 1 degree and then interpolated to the same resolution as the ERA5 data 136 
(2.5 degree). A random cloud overlapping scheme is used in our all-sky calculation. Sensitivity 137 
tests have been conducted to determine the necessary temporal sampling for a proper 138 
representation of the diurnal cycle and 6-hourly and 3-hourly instantaneous profiles are adopted 139 
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for LW and SW radiative transfer calculations, respectively, to limit the root mean squared error 140 
of the computed diurnal mean flux biases to less than one percent. 141 
 142 
 143 
2.2 Radiative kernel computation 144 
 145 

Radiative kernels in essence measure the change of radiative flux to unit perturbation of 146 
atmospheric variables, i.e., !"

!#
, where 𝑅 is either the upwelling irradiance flux at the TOA or 147 

upwelling/downwelling irradiance flux at the surface; 𝑋 represents the aforementioned feedback 148 
variables; 𝐾# is the radiative kernel of variable 𝑋. Note that for each radiative flux, 𝐾# varies 149 
with the time, geographic and vertical locations of the perturbed variable and is in general a 4-150 
dimensional (4-D) data array. Note also that all radiative fluxes and kernel values are defined as 151 
downward positive. 152 

Following the previous studies, we compute non-cloud radiative kernels including the LW 153 
kernels of surface temperature (𝑇$), air temperature (𝑇%), and water vapor (𝑊𝑉	𝐿𝑊), and the SW 154 
kernels of surface albedo (𝐴𝐿𝐵) and water vapor (𝑊𝑉	𝑆𝑊). To calculate the kernels, we use the 155 
partial radiative perturbation experiments, conducting two radiative transfer computations, one 156 
without perturbation (control run) and the other with a perturbation of one atmospheric variable; 157 
the difference between these two computations is used to calculate the radiative kernel value. In 158 
both experiments, the upward, downward and net radiative fluxes at the TOA and surface are 159 
saved at each time instance and location. Then ∆𝑅& can be obtained by differencing the saved 160 
radiative fluxes between the perturbed and unperturbed experiments. Dividing ∆𝑅& with the 161 
perturbation of variable 𝑋 (∆𝑋&), the instantaneous radiative kernel 𝐾# is calculated as  162 

 163 
𝐾# =

∆"!
∆#!

     (1) 164 
 165 

Applying such perturbation computations to all the relevant variables (see Appendix for a 166 
detailed discussion of the procedure), we obtain instantaneous radiative kernels of these 167 
dimensionalities: the surface temperature and albedo kernels are 3-D arrays (time, latitude|73, 168 
longitude|144), and the air temperature and water vapor kernels are 4-D arrays (time, level|37, 169 
latitude|73, longitude|144).  170 

To account for possible interannual variability of the radiative kernel values, we compute 171 
the kernels using atmospheric data of five calendar years: from year 2011 to 2015. Among these 172 
years, 2011 is a strong La Niña year, 2015 is a strong El Niño year. Monthly or annual mean 173 
kernels are then averaged from the instantaneous computations. For example, the LW annual 174 
mean kernel of 2011 is obtained as 𝐾 = (

)*+∗-
∑ 𝐾.)*+∗-
./(  (365 is the number of days of a year and 175 

4 is because 6-hourly data are used for LW calculations) and the SW kernels, 𝐾 =176 
(

)*+∗0
∑ 𝐾.)*+∗0
./(  (8 is because 3-hourly data are used for SW calculations), where the index 𝑖 177 

represents the time slices included in the averaging. Similar averaging procedure is applied to 178 
monthly mean kernels. The analyses in this work are based on multi-year averaged monthly 179 
mean kernels if not otherwise stated. 180 
 181 
3. Characterization of ERA5 kernels 182 
 183 
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 184 
 185 
In this section, we first present the all-sky TOA and surface radiative sensitivity kernels 186 

quantified from the ERA5 in Figure 1 to 4 (see the clear-sky kernels in Figure S1 and S2). The 187 
atmospheric radiation flux kernels, i.e., the change in radiation flux convergence in the 188 
atmosphere due to the perturbation of feedback variables and measured by differencing TOA and 189 
surface kernels, are shown in Figure S3 and S4 for interested readers. Then, we compare ERA5 190 
kernels with the other kernel datasets and we examine the interannual variability of the ERA5 191 
kernel values, due to the dependency of radiative sensitivity on the background atmospheric 192 
state.  193 
 194 
3.1 Distribution of radiative sensitivity 195 

 196 
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 197 
Figure 1. All-sky (left) TOA and (right) surface ERA5 kernels of (a, b) surface 198 

temperature (𝑇$), (c, d) air temperature (𝑇%), (e, f) water vapor longwave (𝑊𝑉	𝐿𝑊), (g, h) water 199 
vapor shortwave (𝑊𝑉	𝑆𝑊) and (i, j) surface albedo (𝐴𝐿𝐵). Note that for 𝑇%, 𝑊𝑉	𝐿𝑊, and 200 
𝑊𝑉	𝑆𝑊 kernels, vertically integrated values are shown, which represents the sensitivity of 201 
radiative flux to a whole-column atmospheric perturbation. Note that the colorbar ranges differ 202 
among panels. 203 
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 204 
Figure 1 summarizes the spatial distribution of all-sky ERA5 kernels for TOA and surface 205 

and Figure 2 illustrates the vertical cross-sections of zonal mean air temperature, water vapor 206 
LW and water vapor SW kernels in all-sky (see Figure S1 and S2 for results in clear-sky). For 207 
surface temperature kernel, an increase of surface temperature leads to more upwelling longwave 208 
radiation (i.e., OLR) both at the surface and TOA, therefore the kernel is negative. The TOA flux 209 
sensitivity in clear-sky (Figure S1a) is stronger than that in all-sky (Figure 1a) due to the absence 210 
of cloud, and the value increases with latitude, due to the decreasing concentration of water 211 
vapor from the tropics to the poles. The all-sky TOA sensitivity is strongly influenced by clouds, 212 
showing, for example, the fingerprint of the ITCZ in the tropical oceans (Figure 1a). The 213 
locations with less atmospheric absorption due to less water vapor or cloud, e.g., in the Tibetan 214 
Plateau and Sahara Desert regions, show relatively stronger sensitivity (Figure 1a). For the 215 
surface flux kernels, the increase of surface temperature enhances the upward emission 216 
according to the Planck function and thus the distribution follows that of surface temperature in 217 
both clear-sky and all-sky (Figure 1b). 218 

For air temperature kernel, the increase of air temperature increases the OLR at TOA and 219 
also the downwelling flux at surface, so the TOA and surface kernels take negative and positive 220 
signs, respectively. The TOA kernel has maximum values in the tropics, due to the higher air 221 
temperature (Planck function) and more abundant cloud and water vapor (higher emissivity) 222 
there, and generally decreases in magnitude with latitude (Figure 1c). Unlike the TOA flux 223 
kernel, which shows comparable sensitivity to air temperature at nearly all vertical levels, the 224 
surface flux is mainly sensitive to the bottom layers (Figure 2b). 225 

For water vapor LW kernel, an increase of water vapor reduces OLR at TOA and increases 226 
downwelling radiation at surface, so that the TOA and surface kernels are both positive in sign. 227 
The vertically integrated kernel values (Figure 1e and f) generally follow the temperature 228 
distribution, for example, decreasing in magnitude with latitude. In both cases, the kernel 229 
magnitude is dampened by clouds in all-sky. The vertically resolved kernels show maximum 230 
sensitivity of TOA flux to the upper troposphere (Figure 2c) and maximum sensitivity of surface 231 
flux to the bottom layers (Figure 2d), respectively. In terms of the atmospheric radiation (the 232 
convergence of the TOA and surface radiation fluxes in the atmosphere), the increase in water 233 
vapor concentration absorbs more LW in the upper troposphere than what it emits but the 234 
opposite is true in the lower troposphere (Figure S4c). Such features were discussed in previous 235 
works (e.g., Huang et al. 2007). 236 

For water vapor SW kernel, an increase of water vapor absorbs solar radiation and thus 237 
reduces both the upwelling (reflected) SW flux at TOA and the downwelling SW flux at surface. 238 
As a result, the two kernels take positive and negative signs, respectively. Note the magnitude of 239 
the SW kernels is much weaker than that of the LW kernels, because water vapor absorbs the 240 
LW flux more significantly than the SW flux. One noticeable feature of the TOA kernel in clear-241 
sky (Figure S1g) is that the magnitude over the land is stronger than that over the ocean, because 242 
the relatively higher albedo over the land reflects more SW radiation and thus enhances the 243 
absorption by the water vapor in the atmosphere. For this reason, over reflective surfaces such as 244 
the Sahara Desert and Tibetan Plateau, as well as the Poles, the sensitivity is maximized. Unlike 245 
the TOA kernel, the distribution of surface kernel follows the distribution of background water 246 
vapor concentration, with noticeable dampening by clouds (Figure 1h and 2f). 247 

For surface albedo kernel, an increase of surface albedo leads to more upwelling 248 
(reflected) SW flux both at surface and TOA; therefore, the kernel is of negative sign. In clear-249 
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sky, the sensitivity strength follows the pattern of solar insolation, with some local maxima, e.g., 250 
in the Sahara Desert and Tibetan Plateau (Figure S1i and j) due to the relatively lower water 251 
vapor concentration. In all-sky, the distribution is again influenced by cloud patterns; for 252 
example, in the ITCZ region, the strength is much reduced as clouds reduce the solar radiation 253 
reaching the surface and thus the sensitivity to surface albedo change (Figure 1i and j). 254 

 255 

 256 
Figure 2. All-sky (left) TOA and (right) surface ERA5 vertically resolved and zonally 257 

averaged kernels of (a, b) air temperature (𝑇%), (c, d) water vapor longwave (𝑊𝑉	𝐿𝑊) and (e, f) 258 
water vapor shortwave (𝑊𝑉	𝑆𝑊), units: W m-2 K-1 100hPa-1. Note nonlinear colorbars are used 259 
for surface air temperature and water vapor LW kernels and the colorbar ranges differ among 260 
panels. 261 
 262 
 263 
3.2 Comparison of ERA5 kernels with other datasets 264 
 265 

To examine the discrepancies between different kernel datasets, we select six previously 266 
published ones for comparison. Table 1 summarizes their resolutions and the datasets based on 267 
which they are computed, including the GCMs: GFDL (Soden et al., 2008), CAM3 (Shell et al., 268 
2008), CAM5 (Pendergrass et al., 2018), and HadGEM3 (Smith et al., 2020), a global reanalysis: 269 
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ERAi (Huang et al., 2017), and satellite observations of cloud fields from CloudSat/CALIPSO 270 
combined with thermodynamic fields from reanalyses (Kramer et al., 2019b). This list is meant 271 
to be representative instead of exhaustive.  272 
 273 

Table 1. Summary of radiative kernels compared in this work. Datasets with * only have 274 
TOA kernels. 275 

Radiative kernels Horizontal resolution 
(lat*lon) Vertical levels Reference 

GFDL* 2x2.5 17 (pressure level) Soden et al., 2008 
CAM3* 2.8x2.8 17 (pressure level) Shell et al., 2008 

ERAi 2.5x2.5 24 (pressure level) Huang et al., 2017 

CAM5 0.94x1.25 30 (hybrid level) Pendergrass et al., 
2018  or 17 (pressure level) 

CloudSat 2x2.5 17 (pressure level) Kramer et al., 2019b 

HadGEM3 1.25x1.9 85 (hybrid level) Smith et al., 2020 or 19 (pressure level) 
ERA5 2.5x2.5 37 (pressure level) This study 

 276 
 277 
To facilitate an intercomparison, these kernel datasets are interpolated to the same 278 

horizontal and vertical resolutions as those of the ERA5 kernel when illustrated in Figure 3 and 4 279 
(see Figure S5 and S6 for clear-sky) and are uploaded to the same data repository of ERA5 280 
kernels. Note that the CAM5 and HadGEM3 kernels have two versions, with one defined at the 281 
raw hybrid levels and the other interpolated to pressure levels. To retain the accuracy of them as 282 
much as possible, the hybrid level version is used for the interpolation and comparison in Figures 283 
3 and 4, while in Section 4, the pressure level version is used for quantifying the feedbacks of 284 
CMIP6 models. The GFDL and CAM3 kernels are only available for TOA fluxes and are 285 
excluded for surface kernel comparisons.  286 

Here we use the standard deviation (𝑠𝑡𝑑) and its normalized value (𝑠𝑡𝑑∗) to measure the 287 
spread of the inter-kernel dataset differences: 288 

𝑠𝑡𝑑# = 3
1

𝑛 − 178𝐾#. − 𝐾#9999:
1

2

./(

			(2) 289 

𝑠𝑡𝑑#∗ =
𝑠𝑡𝑑#
𝐾#9999

∗ 100			(3) 290 

where 𝑛 is the total number of kernel datasets. 𝐾#.  is radiative kernel of variable 𝑋 from the 𝑖34 291 
dataset. 𝐾#9999 is the multi-dataset mean of radiative kernel 𝐾#. Note that 𝐾#9999 does not represent the 292 
“truth” value, but a reference value used to measure the spread of multi-kernel values. The 293 
vertically integrated and the vertically resolved but zonally averaged distributions of fractional 294 
discrepancy (𝑠𝑡𝑑∗) are shown in Figures 3 and 4, respectively. The zonal mean kernel values 295 
from respective multi-datasets are shown in line plots in Figure 3 and 4. Note that some kernels 296 
exhibit abnormal values, such as the surface and air temperature kernel of the surface flux in the 297 
CAM5 and CloudSat kernels (see Appendix Figure A2), indicating inconsistent computation of 298 
their values, and thus are excluded in the corresponding 𝑠𝑡𝑑#∗  statistics in Figures 3 and 4. See 299 
more discussions in Appendix. 300 
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 301 
Figure 3. (contour plot) fractional discrepancies as measured by the normalized standard 302 
deviation of the kernels by Eq. (3) and (line plot) zonal mean distribution of multi-kernels in all-303 
sky. 304 
 305 
 306 

The comparisons identify the following relatively larger differences in kernel values. 307 
Among the TOA kernels, the surface temperature and albedo kernels show relatively large 308 
discrepancies in the Arctic, Southern Ocean and over some continental regions in the tropics in 309 
all-sky (Figure 3a and q), with the maximum discrepancy exceeding 30%; the air temperature 310 
kernel shows larger discrepancies in the lower troposphere and tropical tropopause region 311 
(Figure 4a); these kernel differences are likely due to the differences in cloud fields. The water 312 
vapor LW kernel also shows noticeable fractional differences, for example, over the Antarctic 313 
region (Figure 3i and 4e). The water vapor SW kernel shows differences in the tropical mid-314 
troposphere and over Antarctic in both clear-sky and all-sky (Figure 4i and S6i), leading to 315 
strong variations in the vertical integration of sensitivity (Figure 3m and S5m), with a spread 316 
exceeding 30%. The noticeable periodic equatorial pattern in Figure S5m is caused by the CAM3 317 
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kernel, likely due to a coarser temporal resolution that does not well resolve the diurnal cycle of 318 
solar insolation in the kernel computation. 319 

For the surface kernels, the most prominent differences exist in SW radiative kernels 320 
(Figure 3 and 4), especially in the polar regions. The discrepancy in the water vapor SW kernel 321 
reaches 30% for vertically integrated values (Figure 3o), with noticeable differences through the 322 
troposphere (Figure 4k). The surface albedo kernel differences are much larger in all-sky than 323 
that in clear-sky (Figure 3 and S5), indicating that the cause is in cloud fields, and are also 324 
noticeable in the Arctic region due to sea ice variations (Figure 3s). In the LW, the water vapor 325 
kernels exhibit noticeable differences in the Central Pacific, Southern Ocean and Arctic in all-326 
sky (Figure 3k), where again the difference in cloud field is likely the cause. The air temperature 327 
kernels show noticeable discrepancies in the bottom layers (Figure 4d), which may be caused by 328 
inconsistency in the kernel computation and vertical resolutions (see the discussions in 329 
Appendix). 330 

 331 

 332 
Figure 4. (contour plot) Cross-section of fraction discrepancies of the radiative kernels, (line 333 
plot) global mean vertically resolved kernels from multi-datasets in all-sky. 334 

 335 
In summary, the differences among radiative kernel datasets are generally smaller in clear-336 

sky than in all-sky and in most cases, are mostly within 10% of the radiative kernel values. 337 
However, there are some notable regional discrepancies, for example, in the surface temperature 338 
kernel in the tropics (Figure 3a), in the surface albedo kernel in the Arctic (Figure 3q), and in the 339 
water vapor SW kernel in the Antarctic region (Figure 3m). As different kernel datasets are 340 
calculated using different data sources, the discrepancies detected here are likely due to the state-341 
dependency in the kernels, which differ between the kernel datasets. To ascertain the state-342 
dependency-caused kernel uncertainty, we next examine the ERA5 kernels computed from 343 
different years, i.e., from different atmospheric states, to investigate how much difference in 344 
radiative sensitivity can result from the change in atmospheric state.  345 

 346 
 347 
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3.3 Interannual variation of kernel values 348 
 349 

The intercomparison above identified several prominent inter-dataset differences in the 350 
kernel values. For example, there are noticeable differences in the values of surface temperature, 351 
albedo and water vapor kernels in the Central Pacific and Arctic region. One possible reason that 352 
may account for such differences is the atmospheric state-dependency of the kernel values. 353 
Besides the inter-model differences in the different GCM climatology, interannual variations of 354 
the atmospheric states, such as cloudiness variations in the Central Pacific region during the 355 
ENSO cycle, may affect the radiative sensitivity as some radiative kernels are calculated using 356 
one arbitrary year's data. To test this hypothesis, we use the ENSO and sea ice loss cases to 357 
demonstrate the changes in radiative sensitivity with a focus on Central Pacific and Arctic 358 
region, respectively. In the ENSO case, the variation is defined as the difference in annual mean 359 
kernel values between 2015 and 5-year mean (from 2011 to 2015), which have the annual mean 360 
sea surface temperature anomalies in the Niño 3.4 region (5N-5S, 190-240E) over +2.0K. In the 361 
sea ice loss case, the variation is calculated as the difference in September between year 2012 362 
and 2013, as the sea ice cover in 2012 was reported to be the lowest level in the satellite 363 
observation era. In addition, we further show the comparison between ERA5 and ERAi kernels 364 
(in Figure 5), which was also calculated by RRTMG and averaged from 5 years' calculations 365 
(2008-2012), to compare the inter-kernel difference and interannual difference in kernel values. 366 

To save space, here we only highlight the most prominent differences. Figure 5a-c show 367 
the differences in skin temperature, total column water vapor and total cloud cover due to ENSO 368 
and Figure 5d-f summarize the corresponding differences in all-sky TOA kernels. As the skin 369 
temperature in the Central Pacific warms over 2K (Figure 5a) during ENSO, the increases in 370 
water vapor concentration and cloud fraction (Figure 5b and c) reduce the sensitivity of TOA 371 
flux to surface temperature change by about 0.2 W m-2 K-1 (about 33%) (Figure 5d). The 372 
moistening in the Central Pacific (Figure 5b) enhances the TOA water vapor LW sensitivity in 373 
clear-sky (Figure S7b), while in all-sky the enhanced convection and associated total cloud cover 374 
in this region lead to a weakened TOA water vapor LW radiative sensitivity (Figure 5e) despite 375 
the moist anomaly, and the decrease is almost contributed from the whole troposphere (Figure 376 
S8c). The water vapor SW kernel discrepancy is less pronounced (Figure 5f). 377 

Comparing the 5-year averaged all-sky ERA5 and ERAi kernels, we find that the 378 
atmospheric state differences also exist between the atmospheric datasets on which the kernels 379 
are computed from. For example, the ERA5 shows similar, but less pronounced, warming 380 
anomalies in sea surface temperature in the Central Pacific compared to ERAi, partly due to the 381 
strong El Nino year (2015) included in the ERA5 dataset. ERA5 data also shows more water 382 
vapor and cloud cover (Figure 5h and i). Although the total column water vapor and total cloud 383 
cover are higher in the ERA5 (Figure 5h and i), their differences are complex and vertically non-384 
uniform (Figure S8 d and e), which leads to a slight strengthening of surface temperature kernels 385 
compared with ERAi (Figure 5j). It is also noticed that the ERA5 water vapor SW kernel shows 386 
lower sensitivity (Figure 5l), which mainly comes from the contributions in mid-to-low 387 
troposphere (Figure S8f). The difference noticed in Figure S8 f corresponds to the discrepancy 388 
noticed in Figure 4i, which are both in the mid-to-low troposphere, and the corresponding clear-389 
sky kernels are of much less differences (Figure S7), suggesting that the difference in clouds 390 
might be the main cause of the all-sky kernel differences, which also correspond to the 391 
discrepancies shown in the multi-kernel comparisons in Figure 3a, i, and m. 392 
 393 
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 394 
Figure 5. Differences in climate states and all-sky kernel values (left) between an arbitrary 395 

year (2015) and a 5-year mean of ERA5 and (right) between the 5-year means of ERA5 and 396 
ERAi datasets: (a, g) skin temperature, (b, h) total column water vapor (TCWV), (c, i) total cloud 397 
cover (TCC), (d, j) TOA skin temperature kernel, (e, k) TOA vertically integrated water vapor 398 
LW kernel and (f, l) TOA vertically integrated water vapor SW kernel. Note that the colorbar 399 
ranges differ among panels. 400 
 401 
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 402 
Figure 6. September differences between 2012 and 2013 in (a) sea ice concentration, (b) 403 

total cloud cover (TCC), and the differences in (c, e) water vapor SW kernel for TOA and 404 
surface fluxes, units: W m-2 K-1, (d, f) surface albedo kernel for TOA and surface fluxes, units: 405 
W m-2 1%-1. Note that the colorbar ranges differ among panels. 406 

 407 
In the sea ice loss case, the reduction of sea ice in the Arctic region (Figure 6a) leads to a 408 

significant decrease of radiative sensitivity to surface albedo in the areas with noticeable sea ice 409 
retreats (Figure 6d and f), with the maximum difference exceeding 30% of the radiative kernel 410 
value, because of the nonlinear dependency of the reflected solar radiation on the surface albedo 411 
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(e.g., see Huang et al., 2021b, Fig. 3 and Fig. 6). The cloud cover changes also contribute to 412 
changes in surface albedo kernel values due to the coupling effect between cloud and surface 413 
albedo (see Huang et al., 2021b), which for example is seen in the Siberia and to the west 414 
coastline of Europe. The change in sea ice also leads to a significant decrease in the TOA 415 
sensitivity and an increase of surface sensitivity to water vapor in the sea loss region, 416 
respectively (Figure 6c and e), with the maximum changes exceeding 80% for surface. All these 417 
results confirm the state-dependency of radiative kernels (e.g.,  Riihelä et al., 2021).  418 

In summary, these quantitatively large interannual differences, as well as their locations, 419 
verify that some discrepancies between the radiative kernels are caused by the difference in 420 
atmospheric states and partly explain the inter-dataset kernel differences seen in Figure 3 and 4. 421 
Nevertheless, it ought to be noted that the differences are localized and because of that do not 422 
cause significant differences in the global mean feedback values (see Section 4). The results 423 
above also show that kernel values based on one arbitrary year may be regionally different. If 424 
only one year's atmospheric profiles are used to generate radiative kernels, we recommend 425 
selecting a year without significant anomalies in atmospheric states, e.g., due to El Nino or 426 
severe sea ice loss, so that the computed kernel values better represent the radiative sensitivity 427 
climatology. 428 

 429 
 430 

4. Feedback quantification 431 
 432 

In this section, we apply different kernels to quantifying the radiative feedbacks in one 433 
quadrupling CO2 experiment (abrupt4xCO2) of CMIP6 models. This experiment is selected 434 
because it has been used by a number of studies for forcing and feedback analyses (e.g., Zelinka 435 
et al., 2020), which we can compare our results to. The CMIP6 models used in this assessment 436 
are listed in Table2. Note that the standard outputs at 19 pressure levels from the models and 437 
correspondingly the kernel values, including CAM5 and HadGEM3, provided at the pressure 438 
levels are used in this section. 439 

 440 
Table 2. Summary of CMIP6 models used in this study. 441 

Models Horizontal resolution 
(lat*lon) Vertical levels Reference 

CESM2 0.9*1.25 32 levels to 2.26 hPa  Danabasoglu et al. 
(2020) 

CNRM-CM6-1 1.4*1.4 91 levels to 0.01hPa Voldoire et al. (2019) 
EC-Earth3 0.7*0.7 91 levels to 90 km Döscher et al. (2022) 

HadGEM3-GC31-LL 1.25*1.875 85 levels to 85km Williams et al. (2018) 
IPSL-CM6A-LR 1.3*2.5 79 levels to 80km Boucher et al. (2020) 

MPI-ESM1-2-LR 1.875*1.875 47 levels to 0.01hPa Mauritsen et al. 
(2019) 

 442 
 443 

4.1 Analysis procedure 444 
 445 
To quantify the radiative feedbacks, data from two experiments as documented by Eyring et al. 446 
(2016) and Pincus et al. (2016) are used: abrupt4xCO2 simulations with an instantaneous 447 
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quadrupling of CO2 concentration of year 1850 and piClim-4xCO2 simulations with SST and sea 448 
ice concentrations fixed at the climatology of pre-industrial control experiment and CO2 449 
concentration quadrupled. In each experiment, a 20-year period at the end of the simulation in 450 
each model is used. For example, in the models where the abrupt4xCO2 simulation is longer than 451 
150 years, the simulations from the last 20 years rather than those from years 131 to 150 are used 452 
for the calculation. To exclude the effect of rapid adjustments, the radiative feedbacks in this 453 
study are measured using the difference of feedback variables between the abrupt4xCO2 and 454 
piClim-4xCO2 experiments and vertically integrated from the surface to model top. Note that 455 
these treatments are different from some other studies, e.g., Zelinka et al., 2020, which used 456 
piControl simulation as the climatology baseline and vertical integration from the surface to the 457 
tropopause, although the quantitative differences in the diagnosed global mean feedback values 458 
are small.  459 

To detail the analysis procedure, firstly, all variables including radiative fluxes and 460 
atmospheric variables from CMIP6 models are interpolated to the horizontal and vertical 461 
resolution of the kernel itself. Note that for CAM3, GFDL, CloudSat and CAM5 kernels, they 462 
only have 17 pressure levels which are two layers (1hPa and 5hPa) fewer than the CMIP6 463 
standard model output. To address this issue, the contribution of the two missing layers is 464 
calculated using other kernels (e.g., ERA5) and found to have negligible effect on the global 465 
mean feedback value. Hence, when using these three kernels, the contributions from 10hPa 466 
above are ignored.  467 

Secondly, the non-cloud radiative feedback of variable 𝑋 (∆𝑅#) is calculated as:  468 
∆𝑅# = 𝐾# ∙ ∆𝑋    (4) 469 

with units in W m-2, where 𝐾# is the monthly mean radiative kernel of variable 𝑋 and ∆𝑋 is the 470 
monthly mean anomaly of 𝑋 measured by the difference between abrupt4xCO2 and piClim-471 
4xCO2, and represents the anomalies of surface temperature (∆𝑇$), air temperature (∆𝑇%), water 472 
vapor (∆𝑊𝑉) and surface albedo (∆𝐴𝐿𝐵). For the 2D radiative kernels (surface temperature and 473 
surface albedo), 𝐾# and ∆𝑋 have just single layer values and ∆𝑅# is simply the product of these 474 
two terms. For the 3D radiative kernels (air temperature and water vapor), both 𝐾# and ∆𝑋 are 475 
vectors of pressure levels and ∆𝑅# is the dot product of  𝐾# and ∆𝑋 and is integrated from the 476 
TOA to 1000hPa. Note that if 𝐾# is normalized with unit pressure thickness (e.g., W m-2 K-1 477 
100hPa-1), the layer thickness must be taken into account when calculating 𝑑𝑅#. See Appendix 478 
for further discussion on the application of thickness-weighted kernels.  479 
 Finally, cloud feedbacks are diagnosed using the adjusted cloud-radiative forcing method 480 
(Shell et al., 2008). Here we compute the residual term in clear-sky as:  481 
 𝑟𝑒𝑠5 = ∆𝑅5 −∑∆𝑅#5  (5) 482 
which represents the unexplained part of radiation budget change, and assuming the all-sky 483 
decomposition has the same non-closure residual, the cloud feedback, is measured as  484 
 ∆𝑅6 = ∆𝑅 − ∑∆𝑅# − 𝑟𝑒𝑠5  (6) 485 
where the superscript 𝑜 represents clear-sky quantities. ∑∆𝑅#5 and ∑∆𝑅# are the sum of non-486 
cloud feedbacks in clear-sky and all-sky, respectively, diagnosed by multiplying the radiative 487 
kernel with the atmospheric responses measured as the difference between abrupt4xCO2 and 488 
piClim-4xCO2 experiments. ∆𝑅5 and ∆𝑅 are the total radiation change in clear-sky and all-sky, 489 
respectively, calculated as the difference in the GCM-simulated radiative fluxes between two 490 
experiments. It is worth noting that ∆𝑅6  measured according to Eq. (6) is essentially the part of 491 
total radiation change not explained by the non-cloud feedbacks and is equivalent to the other 492 
formulations of the adjusted cloud radiative effect method (e.g., Shell et al. 2008; Soden et al., 493 
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2008). Interested readers can refer to, for example, Huang (2013) for a detailed formulation and 494 
explanations of the method. 495 

The feedback parameters, 𝜆#, in the units of W m-2 K-1, are then obtained by normalizing 496 
the feedback flux changes ∆𝑅# by the global mean surface temperature change ∆𝑇7 in the 497 
abrupt4xCO2 experiment: 498 

𝜆# = ∆𝑅#/∆𝑇7  (7) 499 
 500 

 501 
4.2 TOA feedbacks  502 
 503 

The residual term (𝑟𝑒𝑠5) measures the unexplained radiation change in the feedback 504 
analysis and provides a useful overall indication of the soundness of the feedback quantification. 505 
Figure 7 illustrates the residual term for the TOA flux decomposition when different kernels are 506 
used to diagnose the multi-model mean feedbacks. In terms of the global mean, all residual terms 507 
are of small magnitude, no matter which kernel dataset is used (Figure 8 and Table S1). 508 
However, there are some noticeable local residuals, especially for the SW budget, e.g., in the 509 
Arctic region and around the Antarctic continent where sea ice changes the most (mid-column in 510 
Figure 7). While the non-zero magnitude of the residual is partly due to nonlinearity in the 511 
radiation decomposition, e.g., possible coupling between surface albedo and water vapor (Huang, 512 
Y. et al., 2021), the spread among the kernel results as evidenced by the line plots of Figure 7 is 513 
attributable to the discrepancies in the SW radiative kernels as revealed by the comparisons in 514 
Section 3. In the LW, the residual is generally small compared with the total feedback. In 515 
summary, the residual terms for the TOA budget are small in terms of the global mean feedback 516 
strengths, affirming the validity of the radiative kernels for feedback quantification. Here, we use 517 
the spatial root-mean square (RMS) of the residuals to quantify the regional biases, which are 518 
shown by the numbers on the right corner of each panel in Figure 7. For LW, results from ERA5, 519 
ERAi and CAM5 kernels show relatively smaller regional biases compared to those from 520 
HadGM3, CloudSat and CAM3 kernels. For SW, all kernel datasets have similar regional non-521 
closures, for example, in the Polar regions (Figure 7 and 8). This is largely caused by the non-522 
linearity in albedo feedback and also the coupling effect between water vapor and surface albedo 523 
feedbacks (Huang et al., 2021b; Block and Mauritsen, 2013). In summary, these results suggest 524 
that for the TOA feedback quantification, the performance of ERA5 kernel is comparable to the 525 
other datasets.  526 

Figure 8 compares the spreads of feedback values resulted from the differences in kernels 527 
and those from the different projections of GCMs. In general, feedbacks from different kernel 528 
datasets overlap each other, even for cloud feedbacks, indicating a good consistency between the 529 
results computed from different kernel datasets. However, the spread across the GCMs is 530 
considerably larger, suggesting the overall feedback uncertainty is dominated by inter-model 531 
spread rather than the kernel uncertainty. The values of the feedbacks from each model and 532 
kernel datasets are shown in Table S1 and S2 for readers who are interested. These results are 533 
consistent with other published results. For example, compared with the results of Zelinka et al. 534 
(2020) based on the ERAi kernel, the kernel-diagnosed overall feedback parameter in the two 535 
results is -0.87 W m-2 K-1 and -0.85 W m-2 K-1 for the CNRM-CM6-1 model and -0.81 W m-2 K-1 536 
and -0.84 W m-2 K-1 for the HadGEM3-GC3-LL model. 537 

In summary, in terms of TOA feedback values, the inter-kernel differences lead to small 538 
uncertainty in the analyzed non-cloud feedbacks; the kernel-induced uncertainty in cloud 539 
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feedback is relatively larger (Table S2), with the inter-kernel spread in cloud LW feedback 540 
almost equally from the spread in surface and air temperature feedback and water vapor LW 541 
feedback (as measured by the ∑∆𝑅#5 −∑∆𝑅# terms in Eq. (6)), and the inter-kernel spread in 542 
cloud SW feedback more from the spread in surface albedo feedback than from water vapor SW 543 
feedback (not shown); despite this, this uncertainty is considerably less than the inter-GCM 544 
cloud feedback spread.   545 

 546 
 547 

 548 
Figure 7. The residuals (𝑟𝑒𝑠5) in the multi-model mean TOA feedback decomposition 549 

when different kernels are used, (left column) LW, (mid-column) SW, (right-column) Net, the 550 



 20 

sum of LW and SW. The three line-plots in the bottom row are the zonal mean residuals. 551 
Numbers on the right corner in each panel are the spatial root-mean-square values.  552 
 553 

 554 
Figure 8. Global mean TOA feedback parameters in all-sky diagnosed by the kernels listed in 555 
Table 1 across CMIP6 models. Dot marks represent multi-model mean values computed from 556 
different kernel datasets. Stars represent the multi-kernel mean results computed from different 557 
GCMs.  558 
 559 
 560 
4.3 Surface feedbacks  561 
 562 

Next, we examine how the inter-kernel differences lead to uncertainty in the analyzed 563 
surface feedbacks.  564 

Figure 9 shows the residual distribution. We find that when the ERA5 and ERAi kernels 565 
are used for the feedback analysis, the non-closure residual in the surface budget is comparable 566 
in magnitude to the TOA analysis. This suggests that the surface kernels afford a valid tool for 567 
the surface feedback analysis. However, some prominent biases are noticed for other kernel 568 
datasets. For example, the HadGEM3 kernels, show especially an underestimation in air 569 
temperature feedback, likely due to a biased sensitivity of the bottom atmospheric layer (see 570 
Appendix for more discussions). The sum of global mean surface and air temperature feedback 571 
parameter measured by the HadGEM3 kernel is around -3.70 W m-2 K-1 (Table S4, compared to 572 
around -1.0 W m-2 K-1 measured by the other kernels), and the non-closure residual is as large as 573 
3.0 W m-2 K-1 (Table S3, compared to -0.1 W m-2 K-1 in the others). For this reason, the result 574 
from HadGEM3 kernel is excluded for the multi-kernel statistics in Figure 10, Table S3 and S4, 575 
but listed in a separate row for comparison. From either the spatial distribution of residual term 576 
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or the spatial RMS residuals, the ERA5 kernel and ERAi kernel show a superior performance 577 
than other datasets. The use of ERA5 kernels may be advantageous for diagnosing the surface 578 
radiation budget, considering that ERA5 data is a newer version reanalysis dataset from ECMWF 579 
compared with ERAi and its data quality has been widely validated.  580 

Figure 10 compares the inter-model and inter-kernel spreads for the surface feedbacks. 581 
Unlike the results for TOA, the inter-kernel spread can be as large as the inter-model spread, for 582 
example, in LW surface temperature feedback, air temperature feedback and water vapor 583 
feedback. The sum of air temperature and surface temperature feedbacks shows better 584 
consistency compared with the respective components (except for the HadGEM3 kernel), and the 585 
respective air temperature and surface temperature feedbacks quantified by the ERA5 kernel are 586 
stronger than the results from the other kernels. These discrepancies are due to the reason 587 
discussed in the Appendix – a possibly wrong quantification of surface temperature effect. In 588 
SW, the multi-kernel results are close to each other, showing smaller inter-kernel spreads than 589 
the inter-model spreads.  590 

In summary, we find the surface feedback decomposition can achieve similar level of 591 
radiation closure to the TOA analysis when using ERA5 kernels, affirming the validity of kernels 592 
for diagnosing the surface radiative feedback. However, the results qualitatively vary depending 593 
on which kernel dataset is used, indicating errors in the computation of some kernels. 594 

 595 
 596 
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 597 
Figure 9. Similar to Figure 7, but for the surface feedback analysis.  598 

 599 
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 600 
Figure 10. Similar to Figure 8, but for the surface feedback parameter. 601 
 602 
 603 
5. Data availability 604 
 605 

The datasets containing the multi-year averaged monthly mean TOA and surface kernels 606 
for surface temperature, air temperature, surface albedo and water vapor (LW and SW) are 607 
available at: http://dx.doi.org/10.17632/vmg3s67568.3 (Huang and Huang, 2023). Other kernel 608 
datasets used in this study, interpolated to the same horizontal and vertical grids of the ERA5 609 
kernels, are also provided at this link. 610 
 611 
6. Conclusions and discussions 612 
 613 

In this paper, we present a newly generated set of ERA5-based radiative kernels of 614 
surface and air temperatures, water vapor and surface albedo, for both TOA and surface radiation 615 
fluxes. We also compare them with other published kernels, including the kernel values and the 616 
kernel-diagnosed radiative feedbacks for both the TOA and surface radiation budgets.  617 

For the TOA kernels, the results here demonstrate general consistency among the 618 
different kernel datasets, and the discrepancies are generally within 10% in terms of vertically 619 
integrated or globally averaged radiative sensitivity, although some relatively larger regional 620 
differences are noticed, including those in the surface temperature kernel in the tropics (Figure 621 
3a), those in the surface albedo kernel in the Arctic (Figure 3q) and those in the water vapor 622 
shortwave kernel over Antarctica (Figure 3m), which is partly due to the dependence of radiative 623 
sensitivity on background climate states.  624 

For the surface kernels, more prominent inter-kernel differences are found. For example, 625 
the differences in the water vapor shortwave kernel in the Antarctic (Figure 3o) and in the 626 
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surface albedo kernel in the Arctic (Figure 3s) can reach 30% of the kernel value itself. Some 627 
kernels have considerably biased air temperature sensitivity values in the bottom atmospheric 628 
layers, which is likely due to improper treatment in the perturbation experiments used for kernel 629 
computation (see Appendix). The differences in both TOA and surface kernels discovered here 630 
emphasize the importance of validating the radiative sensitivity as noted by Huang and Wang 631 
(2019) and Pincus et al. (2020). 632 

The investigation of interannual variability in ERA5 kernels validates the dependence of 633 
radiative sensitivity on atmospheric state and the further comparison between ERAi and ERA5 634 
kernel (Figure 5) reveals the effects of clouds on the kernel values, which might explain the 635 
discrepancies of multi-kernel datasets (Figure 3). 636 

Applying the different kernels to quantifying the TOA and surface radiative feedbacks, 637 
we find that for TOA feedback quantification, the ERA5 kernels are as accurate as other kernel 638 
datasets, while for surface feedback, ERA5 and ERAi kernels show superior accuracy compared 639 
with other datasets. Considering the strengths of the ERA5 dataset in representing the 640 
atmospheric states, we recommend the use of ERA5 kernels.  641 

In addition, we compare the feedback differences caused by using different kernels and 642 
also the inter-GCM spread of the feedback values (when measured by the same kernel). We find 643 
the kernel difference is not a major cause of the inter-GCM TOA feedback spread (Figure 7 and 644 
8). This finding is consistent with the previous assessments (e.g., Soden et al., 2008; Jonko et al., 645 
2012; Vial et al. 2013). 646 

Radiation closure tests show that the unexplained residuals are generally within 10% of 647 
the total feedback for both TOA and surface analyses in terms of the global mean feedback, 648 
confirming the validity of the kernels for feedback quantification for both budgets. This suggests 649 
that the large non-closure residuals reported in some previous studies (e.g., Vargas Zeppetello, et 650 
al., 2019) are likely due to kernel inaccuracy rather than the limitation of the kernel method. 651 
However, there are more significant local non-closures, for example, in the shortwave in the 652 
Arctic region and around the Antarctic continent, which is contributed, but cannot be fully 653 
explained, by the kernel uncertainty. This points to the accuracy limit of the kernel (linear) 654 
method and calls for more advanced methods, such as the neural network method (Zhu et al., 655 
2019), for local feedback analysis.  656 

 657 
 658 

Author contributions 659 
 660 
HH and YH led the design of this research and the writing of the manuscript. HH produced the 661 
ERA5 radiative kernel and provided calculations of the inter-kernel comparison and feedback 662 
analysis.  663 
 664 
Competing interests 665 
The authors declare that they have no conflict of interest. 666 
 667 
Acknowledgements 668 
 669 
 We thank Mark Zelinka, Ryan Kramer and one anonymous reviewer for their helpful 670 
reviews. We acknowledge the grants from the Natural Sciences and Engineering Research 671 
Council of Canada (RGPIN-2019-04511) and the Fonds de Recherché Nature et Technologies of 672 



 25 

Quebec (2021-PR-283823) that supported this research. H. Huang thanks Yonggang Liu, Jun 673 
Yang and Qiang Wei for hosting her visit at Peking University, during which time part of this 674 
work was completed. 675 
 676 
 677 
References 678 

Block, K. and Mauritsen, T.: Forcing and feedback in the MPI‐ESM‐LR coupled model under 679 
abruptly quadrupled CO2, Journal of Advances in Modeling Earth Systems, 5, 676-691, 2013. 680 
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., 681 
Bonnet, R., Bony, S., and Bopp, L.: Presentation and evaluation of the IPSL‐CM6A‐LR climate 682 
model, Journal of Advances in Modeling Earth Systems, 12, e2019MS002010, 2020. 683 
Bright, R. M. and O'Halloran, T. L.: Developing a monthly radiative kernel for surface albedo<? 684 
xmltex\break?> change from satellite climatologies of Earth's shortwave<? xmltex\break?> 685 
radiation budget: CACK v1. 0, Geoscientific Model Development, 12, 3975-3990, 2019. 686 
Chao, L.-W. and Dessler, A. E.: An assessment of climate feedbacks in observations and climate 687 
models using different energy balance frameworks, Journal of Climate, 34, 9763-9773, 2021. 688 
Collins, W., Ramaswamy, V., Schwarzkopf, M. D., Sun, Y., Portmann, R. W., Fu, Q., Casanova, S., 689 
Dufresne, J. L., Fillmore, D. W., and Forster, P.: Radiative forcing by well‐mixed greenhouse 690 
gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) 691 
Fourth Assessment Report (AR4), Journal of Geophysical Research: Atmospheres, 111, 2006. 692 
Colman, R. and McAvaney, B.: A study of general circulation model climate feedbacks determined 693 
from perturbed sea surface temperature experiments, Journal of Geophysical Research: 694 
Atmospheres, 102, 19383-19402, 1997. 695 
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D., DuVivier, A., Edwards, J., Emmons, 696 
L., Fasullo, J., Garcia, R., and Gettelman, A.: The community earth system model version 2 697 
(CESM2), Journal of Advances in Modeling Earth Systems, 12, e2019MS001916, 2020. 698 
Dessler, A. E.: A determination of the cloud feedback from climate variations over the past decade, 699 
Science, 330, 1523-1527, 2010. 700 
Doelling, D. R., Loeb, N. G., Keyes, D. F., Nordeen, M. L., Morstad, D., Nguyen, C., Wielicki, B. 701 
A., Young, D. F., and Sun, M.: Geostationary enhanced temporal interpolation for CERES flux 702 
products, Journal of Atmospheric and Oceanic Technology, 30, 1072-1090, 2013. 703 
Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., and Andrews, 704 
T.: Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and 705 
CMIP6 models, Journal of Climate, 33, 7755-7775, 2020. 706 
Donohoe, A., Blanchard-Wrigglesworth, E., Schweiger, A., and Rasch, P. J.: The effect of 707 
atmospheric transmissivity on model and observational estimates of the sea ice albedo feedback, 708 
Journal of Climate, 33, 5743-5765, 2020. 709 
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., 710 
Boussetta, S., Caron, L.-P., and Carver, G.: The EC-Earth3 Earth system model for the Coupled 711 
Model Intercomparison Project 6, Geoscientific Model Development, 15, 2973-3020, 2022. 712 
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: 713 
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design 714 
and organization, Geoscientific Model Development, 9, 1937-1958, 2016. 715 
Graham, R. M., Hudson, S. R., and Maturilli, M.: Improved performance of ERA5 in Arctic 716 
gateway relative to four global atmospheric reanalyses, Geophysical Research Letters, 46, 6138-717 
6147, 2019. 718 



 26 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., 719 
Peubey, C., Radu, R., and Schepers, D.: The ERA5 global reanalysis, Quarterly Journal of the 720 
Royal Meteorological Society, 146, 1999-2049, 2020. 721 
Huang, H. and Huang, Y.: Nonlinear coupling between longwave radiative climate feedbacks, 722 
Journal of Geophysical Research: Atmospheres, 126, e2020JD033995, 2021. 723 
Huang, H. and Huang, Y.: “Data for ERA5 radiative kernels”, Mendeley Data, V3, doi: 724 
10.17632/vmg3s67568.3, 2023. 725 
Huang, H., Huang, Y., and Hu, Y.: Quantifying the energetic feedbacks in ENSO, Climate 726 
Dynamics, 56, 139-153, 2021a. 727 
Huang, Y.: On the longwave climate feedbacks, Journal of climate, 26, 7603-7610, 2013. 728 
Huang, Y. and Wang, Y.: How does radiation code accuracy matter?, Journal of Geophysical 729 
Research: Atmospheres, 124, 10742-10752, 2019. 730 
Huang, Y., Huang, H., and Shakirova, A.: The nonlinear radiative feedback effects in the Arctic 731 
warming, Frontiers in Earth Science, 651, 2021b. 732 
Huang, Y., Ramaswamy, V., and Soden, B.: An investigation of the sensitivity of the clear‐sky 733 
outgoing longwave radiation to atmospheric temperature and water vapor, Journal of Geophysical 734 
Research: Atmospheres, 112, 2007. 735 
Huang, Y., Xia, Y., and Tan, X.: On the pattern of CO2 radiative forcing and poleward energy 736 
transport, Journal of Geophysical Research: Atmospheres, 122, 10,578-510,593, 2017. 737 
Huang, Y., Chou, G., Xie, Y., and Soulard, N.: Radiative control of the interannual variability of 738 
Arctic sea ice, Geophysical Research Letters, 46, 9899-9908, 2019. 739 
Jonko, A. K., Shell, K. M., Sanderson, B. M., and Danabasoglu, G.: Climate feedbacks in CCSM3 740 
under changing CO 2 forcing. Part I: Adapting the linear radiative kernel technique to feedback 741 
calculations for a broad range of forcings, Journal of Climate, 25, 5260-5272, 2012. 742 
Kolly, A. and Huang, Y.: The radiative feedback during the ENSO cycle: Observations versus 743 
models, Journal of Geophysical Research: Atmospheres, 123, 9097-9108, 2018. 744 
Kramer, R. J., Soden, B. J., and Pendergrass, A. G.: Evaluating Climate Model Simulations of the 745 
Radiative Forcing and Radiative Response at Earth’s Surface, Journal of Climate, 32, 4089-4102, 746 
2019a. 747 
Kramer, R. J., Matus, A. V., Soden, B. J., and L'Ecuyer, T. S.: Observation‐based radiative kernels 748 
from CloudSat/CALIPSO, Journal of Geophysical Research: Atmospheres, 124, 5431-5444, 749 
2019b. 750 
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, 751 
M., Crueger, T., and Esch, M.: Developments in the MPI‐M Earth System Model version 1.2 752 
(MPI‐ESM1. 2) and its response to increasing CO2, Journal of Advances in Modeling Earth 753 
Systems, 11, 998-1038, 2019. 754 
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer 755 
for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave, 756 
Journal of Geophysical Research: Atmospheres, 102, 16663-16682, 1997. 757 
Myhre, G., Kramer, R., Smith, C., Hodnebrog, Ø., Forster, P., Soden, B., Samset, B., Stjern, C., 758 
Andrews, T., and Boucher, O.: Quantifying the importance of rapid adjustments for global 759 
precipitation changes, Geophysical Research Letters, 45, 11,399-311,405, 2018. 760 
Pendergrass, A. G. and Hartmann, D. L.: The atmospheric energy constraint on global-mean 761 
precipitation change, Journal of climate, 27, 757-768, 2014. 762 
Pendergrass, A. G., Conley, A., and Vitt, F. M.: Surface and top-of-atmosphere radiative feedback 763 
kernels for CESM-CAM5, Earth System Science Data, 10, 317-324, 2018. 764 



 27 

Pincus, R., Buehler, S. A., Brath, M., Crevoisier, C., Jamil, O., Franklin Evans, K., Manners, J., 765 
Menzel, R. L., Mlawer, E. J., and Paynter, D.: Benchmark calculations of radiative forcing by 766 
greenhouse gases, Journal of Geophysical Research: Atmospheres, 125, e2020JD033483, 2020. 767 
Previdi, M.: Radiative feedbacks on global precipitation, Environmental Research Letters, 5, 768 
025211, 2010. 769 
Riihelä, A., Bright, R. M., and Anttila, K.: Recent strengthening of snow and ice albedo feedback 770 
driven by Antarctic sea-ice loss, Nature Geoscience, 14, 832-836, 2021. 771 
Shell, K. M., Kiehl, J. T., and Shields, C. A.: Using the radiative kernel technique to calculate 772 
climate feedbacks in NCAR’s Community Atmospheric Model, Journal of Climate, 21, 2269-2282, 773 
2008. 774 
Smith, C. J., Kramer, R. J., and Sima, A.: The HadGEM3-GA7. 1 radiative kernel: the importance 775 
of a well-resolved stratosphere, Earth System Science Data, 12, 2157-2168, 2020. 776 
Soden, B. J. and Held, I. M.: An assessment of climate feedbacks in coupled ocean–atmosphere 777 
models, Journal of climate, 19, 3354-3360, 2006. 778 
Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., and Shields, C. A.: Quantifying 779 
climate feedbacks using radiative kernels, Journal of Climate, 21, 3504-3520, 2008. 780 
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, 781 
Bulletin of the American meteorological Society, 93, 485-498, 2012. 782 
Thorsen, T. J., Kato, S., Loeb, N. G., and Rose, F. G.: Observation-based decomposition of 783 
radiative perturbations and radiative kernels, Journal of climate, 31, 10039-10058, 2018. 784 
Vargas Zeppetello, L., Donohoe, A., and Battisti, D.: Does surface temperature respond to or 785 
determine downwelling longwave radiation?, Geophysical Research Letters, 46, 2781-2789, 2019. 786 
Vial, J., Dufresne, J.-L., and Bony, S.: On the interpretation of inter-model spread in CMIP5 787 
climate sensitivity estimates, Climate Dynamics, 41, 3339-3362, 2013. 788 
Voldoire, A., Saint‐Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Gu789 
érémy, J. F., Michou, M., and Moine, M. P.: Evaluation of CMIP6 deck experiments with CNRM‐790 
CM6‐1, Journal of Advances in Modeling Earth Systems, 11, 2177-2213, 2019. 791 
Wetherald, R. and Manabe, S.: Cloud feedback processes in a general circulation model, Journal 792 
of the Atmospheric Sciences, 45, 1397-1416, 1988. 793 
Williams, K., Copsey, D., Blockley, E., Bodas‐Salcedo, A., Calvert, D., Comer, R., Davis, P., 794 
Graham, T., Hewitt, H., and Hill, R.: The Met Office global coupled model 3.0 and 3.1 (GC3. 0 795 
and GC3. 1) configurations, Journal of Advances in Modeling Earth Systems, 10, 357-380, 2018. 796 
Wright, J. S., Sun, X., Konopka, P., Krüger, K., Legras, B., Molod, A. M., Tegtmeier, S., Zhang, 797 
G. J., and Zhao, X.: Differences in tropical high clouds among reanalyses: origins and radiative 798 
impacts, Atmospheric Chemistry and Physics, 20, 8989-9030, 2020. 799 
Yue, Q., Kahn, B. H., Fetzer, E. J., Schreier, M., Wong, S., Chen, X., and Huang, X.: Observation-800 
based longwave cloud radiative kernels derived from the A-Train, Journal of Climate, 29, 2023-801 
2040, 2016. 802 
Zelinka, M. D., Klein, S. A., and Hartmann, D. L.: Computing and partitioning cloud feedbacks 803 
using cloud property histograms. Part I: Cloud radiative kernels, Journal of Climate, 25, 3715-804 
3735, 2012. 805 
Zelinka, M. D., Myers, T. A., McCoy, D. T., Po‐Chedley, S., Caldwell, P. M., Ceppi, P., Klein, S. 806 
A., and Taylor, K. E.: Causes of higher climate sensitivity in CMIP6 models, Geophysical Research 807 
Letters, 47, e2019GL085782, 2020. 808 
Zhang, B., Kramer, R. J., and Soden, B. J.: Radiative feedbacks associated with the Madden–Julian 809 
oscillation, Journal of Climate, 32, 7055-7065, 2019. 810 



 28 

Zhang, M. and Huang, Y.: Radiative forcing of quadrupling CO 2, Journal of Climate, 27, 2496-811 
2508, 2014. 812 
Zhang, Y., Jin, Z., and Sikand, M.: The top‐of‐atmosphere, surface and atmospheric cloud 813 
radiative kernels based on ISCCP‐H datasets: method and evaluation, Journal of Geophysical 814 
Research: Atmospheres, 126, e2021JD035053, 2021. 815 
Zhou, C., Liu, Y., and Wang, Q.: Calculating the climatology and anomalies of surface cloud 816 
radiative effect using cloud property histograms and cloud radiative kernels, Advances in 817 
Atmospheric Sciences, 39, 2124-2136, 2022. 818 
Zhou, C., Zelinka, M. D., Dessler, A. E., and Yang, P.: An analysis of the short-term cloud feedback 819 
using MODIS data, Journal of Climate, 26, 4803-4815, 2013. 820 
 821 
 822 
 823 
 824 
  825 



 29 

Appendix 826 
 827 

The ERA5 kernels are computed following Eq. (1) and the approach outlined in Section 828 
2.2.  829 
 830 
1. Surface variable kernels 831 
 832 

To execute the partial radiative perturbation computations, the perturbations are prescribed 833 
as the following: for the 2D feedback variables, the surface temperature is increased by 1 K and 834 
the albedo is increased by 0.01 at each location. Hence, the units of the two kernels, 𝐾8$ and 835 
𝐾9:; are W m-2 K-1 and W m-2 %-1, respectively. When applying them to feedback 836 
quantification, their feedbacks are quantified as  837 

 ∆𝑅8$ = 𝐾8$ ∙ ∆𝑇7 (A1) 838 
∆𝑅9<= = 𝐾9:; ∙ ∆𝐴𝑙𝑏 (A2)  839 

where ∆𝑇7 should be measured in the units of K and ∆𝐴𝑙𝑏 in absolute values divided by 1%. 840 
 841 

2. Water vapor kernel 842 
 843 

For the 3D feedback variables, the perturbations are applied to each of the 37 pressure 844 
layers (from 1hPa to 1000hPa) and one layer at a time. For the water vapor kernel, a 10% 845 
incremental perturbation of the water vapor concentration is used. To adapt to the convention 846 
used in the majority of the existing kernels, we convert the units of the kernels to represent the 847 
radiative flux change corresponding to an increase of water vapor concentration that conserves 848 
the relative humidity of the layer under a 1-K increase in air temperature, i.e., converting the 849 
units from W/(m2 ∆𝑞&>(&% 100hPa)  to W/(m2 ∆𝑞&>(@ 100hPa): 850 

𝐾A>(&% = ∆"!
∆A!

"#!% (A3) 851 

𝐾A>(@ =
∆"!
∆A!

"#% = 𝐾A>(&% ∙
∆A!

"#!%

∆A!
"#% 	= 𝐾A>(&% ∙

∆A!
"#!%

A!
∙ B&(8!)
B&(8!>(@)EB&(8!)

  (A4) 852 

Where 𝑞& is the unperturbed water vapor concentration, in units of kg kg-1.  ∆𝑞&>(&% is a 10% 853 
increment in water vapor concentration. 𝑒$(𝑇) is the saturated water vapor pressure under 854 
temperature 𝑇, and can be measured by empirical formulas; hence,  ∆𝑞&>(@ can be measured as 855 
𝑞&[

B&(8!>(@)
B&(8!)

− 1]. Accordingly, when the water vapor kernel is used for water vapor feedback 856 
quantification, the feedback is measured as: 857 

∆𝑅A = 𝐾A>(@ ∙ ∆𝑞>(@ = 𝐾A>(@ ∙
∆A

∆A!
"#% =	𝐾A>(@ ∙

∆A
A!
∙ B&(8!)
B&(8!>(@)EB&(8!)

			      (A5) 858 

where ∆𝑞 = 𝑞 − 𝑞& measures the change in water vapor concentration and is normalized by 859 
∆𝑞&>(@ to give the factor that is multipliable with the 𝐾A>(@ kernel value. If using the Clapeyron-860 
Clausius relation, the above expression can be further approximated as 861 

∆𝑅A =	𝐾A>(@ ∙
∆A
A!
∙ B&
(FB&/F8)∙(@

= 𝐾A>(@ ∙
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A!
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(
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  (A6) 862 

where 𝑅I and 𝐿I are the gas constant and specific latent heat of water vapor, respectively. Note 863 
that when the kernels are used, 𝑇& and 𝑞& typically take their values from the base climate 864 
appropriate to the application, e.g., the unperturbed climate of a GCM experiment, not 865 
necessarily the dataset used for kernel computation.  866 

 867 
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3. Air temperature kernel 868 
 869 
For the air temperature kernel, to be consistent with the “inhomogeneous path treatment” 870 

that accounts for the vertically non-uniform temperature distribution within each discrete 871 
atmospheric layer (Mlawer et al., 1997), perturbations are added not only to the layer-mean 872 
temperature but also the temperature at the exiting boundary of radiative fluxes of interest (i.e., 873 
the upper boundary of each layer for the TOA flux and the lower boundary for the surface flux), 874 
to appropriately represent the physical temperature perturbation in each layer.  875 

A meaningful test to validate the validity of the air temperature kernel is a vertical sum 876 
test, i.e., a linear additivity test to verify the vertical integration of the kernel values reproduce 877 
the flux change, either at TOA or surface, in response to a whole-column air temperature 878 
increase of 1K. Figure A1 shows that the ERA5 kernel well passes this test. However, as shown 879 
by Figure 9, some kernels (e.g., HadGEM3 kernel) show much weaker radiative response at 880 
surface, possibly due to improper treatment of the air temperature perturbation in the kernel 881 
computation, which may lead to an underestimated air temperature feedback and large biases in 882 
the surface feedback analysis.  883 

 884 

 885 
Figure A1. Monthly mean TOA and surface radiation flux change in response to a +1K 886 

air temperature perturbation throughout the vertical column: (a, b) computed by a radiation 887 
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model, RRTMG; (c, d) difference of vertical sum of air temperature kernels compared to truth in 888 
(a, b); (e, f) comparison of the zonal mean. 889 

 890 
Another challenge in the computation of air temperature kernel for surface flux is that the 891 

surface in radiative transfer models is also the lower boundary of the lowermost atmospheric 892 
layer. If the effects of the surface temperature perturbation on the emission of the surface and 893 
that of the lowermost atmospheric layer are not distinguished, this may lead to improper 894 
interpretation and use of the surface temperature kernel. In our ERA5 kernel, the two effects are 895 
considered separately: according to radiative transfer theory, an increase in surface skin 896 
temperature only affects the surface upward emission; an increase in air temperature only affects 897 
the downward radiation. In some other kernels such as CAM5, these effects are not 898 
distinguished, so that the kernel value represents the net effect, i.e., change in the sum of both 899 
downward and upward. As a result, in Figure 10, we see stronger air temperature and surface 900 
temperature feedbacks quantified from ERA5 kernels than those from other kernels and in Table 901 
S4, we can only report the sum of surface and air temperature feedbacks.  902 

 903 
Figure A2 shows the comparison of vertically integrated air temperature kernels and the 904 

sum of surface and air temperature kernels between ERA5, CAM5, HadGEM3 and CloudSat. 905 
Although the strength of vertically integrated air temperature kernel for CAM5 is much weaker 906 
than that for ERA5 (Figure A2a and b), the sum of surface and air temperature kernel between 907 
these two datasets are in good agreement (Figure A2c and d), which warns that the seemingly 908 
right temperature feedback quantified by some kernels might come from the misattribution of 909 
surface temperature contributions. Another noticeable feature in Figure A2 is that the HadGEM3 910 
kernel shows an underestimation in vertical integration of air temperature kernel and an 911 
overestimation in the sum of surface and air temperature kernel, likely due to mistreatment of the 912 
bottom layer, and this accounts for the biased surface feedback analysis as shown in Figure 9. 913 
Similar issues were noticed in Kramer et al. (2019a). 914 

 915 
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Figure A2. Comparison of annual mean surface kernels for ERA5, CAM5, CloudSat and 916 
HadGEM3 for (a, b) the vertically integrated air temperature kernel values, and (c, d) sum of 917 
surface and air temperature kernels. 918 
 919 
 920 
4. Time averaging 921 

 922 
As described in Section 2.2, all the kernels provided for feedback analysis are averaged 923 

from instantaneous kernel values over each calendar month and, in the ERA5 kernel, over 924 
multiple years. This is to ensure proper sampling of radiative sensitivity values under different 925 
atmospheric states, so that the kernels are representative of mean radiative sensitivity and thus 926 
can be readily multiplied with monthly mean climate responses (∆𝑋) to evaluate climate 927 
feedbacks. 928 

 If the kernels are computed for fixed pressure levels, and if the pressure of any of these 929 
levels of an instantaneous atmospheric profile is higher than the surface pressure (i.e., the level is 930 
below the surface) at a time instance, this potentially creates inconsistency in the averaging 931 
procedure. To address this concern, we set the kernel value to zero (as opposed to missing value) 932 
before averaging. This is to ensure that when multiplied with the monthly mean climate response 933 
(∆𝑋), the contribution of a pressure layer (e.g., that centered at 1000 hPa) is effectively counted 934 
only for the fraction of time the layer exists (when surface pressure is higher than 1000 hPa). 935 
Otherwise, the feedback quantification needs to be further weighted with fraction of time (𝑓) 936 
when the pressure layer exists. For example, if the surface pressure is larger than 1000hPa only 937 
for half of time in a month (𝑓=0.5), the radiation flux anomaly contributed by the layer centered 938 
at 1000 hPa is: 939 

 940 
∆𝑅8#!!!)*+ = 𝐾8#!!!)*+

∗ ∙ ∆𝑇(&&&4J% ∙ 𝑓   (A7) 941 
 942 
Here, 𝐾8#!!!)*+

∗  represents the kernel value averaged from the time instances when the layer 943 
exists. Our averaging scheme is essentially to provide a kernel 𝐾8#!!!)*+ = 𝐾8#!!!)*+

∗ ∙ 𝑓, so that 944 
it can be simply multiplied with ∆𝑇(&&&4J% to obtain the same result. 945 

Figure A3 illustrates the differences between 𝐾8+
∗  and 𝐾8+, in terms of their vertically 946 

integrated value. Such difference is pronounced over the Southern Oceans (around 60S), where 947 
the surface pressure value varies considerably. This likely explains why Figure 3h shows 948 
noticeable differences in the air temperature kernel in this region. 949 

 950 
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Figure A3. Zonal mean monthly mean air temperature kernels for surface flux from 951 
ERA5 in clear-sky. Black line is the result from the whole column perturbation computation by 952 
RRTMG, providing a "truth" for comparison. Red dashed line is the kernel weighted with 953 
fraction of time (𝐾8+) and blue dotted line represents results without weights (𝐾8+

∗ ). 954 
 955 

5. Layer-specified and layer thickness-normalized radiative kernels 956 
 957 
We generate two versions of vertically resolved air temperature kernel, water vapor LW 958 

and SW kernel, one with values corresponding to specified vertical layers, i.e., in the units of W 959 
m-2 K-1, and another with unit-layer thickness (e.g., as shown in Figure 2 and 4), i.e., in W m-2 K-960 
1 100hPa-1. The latter one properly portrays the vertical distribution of radiative sensitivity to 961 
perturbations in unit thickness layers, while the former one may be more convenient to use in 962 
feedback quantifications. For TOA budget analyses, these two versions of kernels lead to little 963 
difference in practice due to limited contributions from the bottom atmospheric layer. However, 964 
for surface budget analyses, we recommend using the layer-specified kernels, as the surface 965 
kernels typically show strongest sensitivity to the perturbations in the bottom layers, which can 966 
be best accounted for in the non-normalized kernels. Otherwise, the difference of surface 967 
pressure between ERA5 and GCMs needs to be carefully treated to avoid errors, for example, 968 
caused by missing the radiative contribution from the bottom layer of the atmosphere. To 969 
illustrate this issue in an example, consider a location (latitude-longitude grid point) where the 970 
surface pressure is 960 hPa in a GCM and the lowermost level of non-zero value of ERA5 air 971 
temperature kernel is located at 975 hPa. Had the air temperature change been set to zero or NaN 972 
value due to the GCM ground level being above 975 hPa, the contribution to the surface 973 
radiation change from the air temperature change in the bottom layer of the atmosphere would 974 
not be included, which may lead to a biased quantification of the feedback. We recommend 975 
interpolating the air temperature changes from the GCM vertical coordinate to the kernel vertical 976 
coordinate, using surface values to replace the missing levels (e.g., the 975 hPa level in the above 977 
example) before multiplying with the kernel values, when computing the feedbacks of air 978 
temperature and water vapor. 979 
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