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We thank the reviewers for their thoughtful and helpful comments. Below are our responses (in 5 
regular font) to their comments (in bolded italic font).  6 
  7 



Reviewer #1: 8 
Review of “Radiative sensitivity quantified by a new set of radiation flux kernels based on the 9 
ERA5 reanalysis”  10 
By Huang and Huang 11 
essd-2022-474 12 
Summary 13 
 14 
Radiative kernels, which quantify the impact of unit changes in individual fields on radiative 15 
fluxes, have become a key tool in diagnosing radiative feedbacks both in climate models and in 16 
observations. In this study the authors develop a new set of radiative kernels using 17 
atmospheric and surface fields from the ERA5 reanalysis as inputs to the RRTMG radiation 18 
code. Unlike many previous kernels, they generate kernels for both the top-of-atmosphere 19 
(TOA) and the surface (SFC) such that impacts of changes in temperature, humidity, clouds, 20 
and surface albedo on surface radiation can be diagnosed. The ERA5 kernels are compared 21 
with previously generated kernels, and inter-kernel differences are illuminated. The authors 22 
also explore the degree to which the derived kernels depend on the state of the climate, with 23 
input data from years impacted by El Nino events or with anomalous sea ice concentration 24 
resulting in kernels of different strength.  25 
 26 
Overall I find the analysis to be solid and the presentation to be mostly clear. I have some 27 
suggestions for improving the readability of the paper and for presenting the relative 28 
importance of inter-kernel versus inter-model feedback differences. I also would like the 29 
authors to provide more evidence of the quality of this new kernel versus existing kernels. I 30 
recommend acceptance pending minor revision, as detailed below.  31 
 32 

Mark Zelinka 33 
 34 
Major Comments  35 
 36 
• Abstract: Since the goals of this data journal are to publish work that documents useful 37 
datasets, with the scientific results being secondary, I felt that the abstract spent too much time 38 
on the inter-kernel comparison and not enough on the evaluation of the specific ERA5 kernels 39 
developed here. For example, it would be good to know in the abstract whether the new 40 
kernels have smaller residuals in the global mean or regionally than previous kernels. The 41 
bulk of the abstract describes results from all kernels collectively rather than focusing on the 42 
ERA5 kernels. 43 
 44 
Revised. ERA5 TOA kernels are as good as other kernel datasets while for surface kernels, 45 
ERA5 kernels show better performance, in terms of the radiative sensitivity and radiation closure 46 
test. The revised abstract emphasized this point. 47 
 48 
• The paper discusses TOA and SFC kernels but does not discuss the implied atmospheric 49 
kernels, derived via differencing the TOA and SFC kernels. Perhaps this would make the 50 
paper too long, but the authors might consider adding something on ATM kernels. 51 
 52 



Agreed: the ATM kernels are as important as TOA and SFC kernels. Considering the length and 53 
readability of the manuscript, we added ATM kernel results in the supplement. 54 
 55 
• Organization of the figures: I found it to be really taxing and distracting to have to jump 56 
between eight large figures on separate pages during Sections 3.1 to 3.2. 57 

Section 3.1 discusses the ERA5 kernels in isolation. I think it would be more logical to 58 
have the first figure or two just show all the ERA5 kernels. This would include the first 59 
column of Figs 1-8, which is 32 panels. Perhaps you could have 2 figures with 4 rows and 4 60 
columns each. This way a reader can see all of the new kernels just by looking at 2 figures, 61 
and can more easily match the discussion in Section 3.1 with the individual figure panels 62 
being discussed without flipping between 8 pages. If you do this, I suggest re-labeling so it is 63 
obvious above each panel what one is looking at (i.e., “All-sky SFC Air Temperature Kernel”, 64 
“Clear-sky TOA LW Water Vapor Kernel”, etc.)  65 

Section 3.2 discusses the inter-kernel comparison, which refers solely to the two right 66 
columns of Figs 1-8. I would suggest making these their own figures. Perhaps some of this 67 
material could go in supporting information or the appendix, if you don’t spend much time 68 
discussing it. Given the choice of journal, the focus of this manuscript should be to present 69 
and evaluate the new dataset, so this intercomparison is somewhat superfluous as it currently 70 
stands. It might be worth doing a more rigorous evaluation of ERA5 against other datasets 71 
rather than this discussion of the kernel differences collectively. 72 
 73 
We reorganized the figures, with the ERA5 kernel now shown in Figure 1-2 and the comparison 74 
with other datasets in Figure 3-4. We keep the comparison of all kernel datasets in Section 3.2 75 
(e.g., the fractional discrepancies) as oppose the difference of ERA5 kernels against other 76 
datasets, as there is no truth value to be compared with and the point in this section is to show 77 
where these datasets differ most, and indeed the comparison reveals some issues in current SFC 78 
kernels. 79 
 80 
• Multi-kernel dataset: Have you considered doing the community service of placing the 81 
common-gridded multi-kernel dataset discussed on lines 294-296 on a public website? 82 
 83 
We added it in the data repository. 84 
 85 
• Throughout: The inter-kernel differences are referred to as “biases”. Perhaps the authors 86 
are referring to the fact that all model-based kernels have a biased mean-state with respect to 87 
observations, but I think this verbiage is misleading. Also, the definition in L306 quantifies the 88 
bias with respect to the multi-kernel average, implying that the multi-kernel average is truth. 89 
The inter-kernel differences are a mix of model differences (in mean-state, radiation codes, 90 
etc.) and possibly the influence of actual biases (like the issues identified here in the HadGEM 91 
and Oslo kernels). If a kernel were to be built from a preindustrial control state, it may be less 92 
biased for computing feedbacks with respect to that state than the ERA5 kernels developed 93 
here; it depends on the context whether a given kernel is biased. I suggest changing all 94 
instances of “bias” to “differences” unless it can be shown to be a true bias with respect to a 95 
correct value. 96 
 97 



Revised. In equation (2), we use the multi-kernel mean as a reference value to illustrate how the 98 
kernel values vary among dataset, rather than deeming it as a “truth” value. We add a note in 99 
Line 279-280 to explain it. 100 
 101 
• Tables 3-6: Could these results be presented more effectively? I’m not sure how insightful it 102 
is to present all the individual model results in four big tables. The message you are trying to 103 
convey is the relative importance of inter-kernel differences versus inter-model differences in 104 
SFC and TOA feedbacks, either broken down into LW, SW, and net, or into individual 105 
feedback components. I wonder if something analogous to Figure 1 of Chao and Dessler 106 
(2021) might be more effective. In this case, you would show the spread in each feedback from 107 
inter-kernel vs inter-model differences. Or would simply showing a figure comparing inter-108 
kernel and inter-model standard deviations (ignoring the multi-model mean values) be more 109 
effective? Deciding on the most important points and then creating a figure that supports 110 
those points clearly would be worthwhile. Right now it is a bit hard for the reader to wade 111 
through these four big tables and extract the messages. 112 
 113 
We reorganized these results and put the tables of component feedback parameters to the 114 
supplement for readers who are interested and used figure 8 and 10 to show the relatively larger 115 
inter-model difference than inter-kernel difference. 116 
 117 
• In the end it is still a little unclear to me whether the new ERA5 kernel has a smaller 118 
residual than the other kernels. Can you make a stronger case for why we need this new 119 
kernel, and whether it is more accurate? Figures 11 and 12 suggest to me that the residuals 120 
are comparable to previous kernels; but this should be noted explicitly. If it is not more 121 
accurate, why should I use it over previous kernels? If it is more accurate, do you advocate 122 
that the community use this instead of the others? I think it is well established here and 123 
elsewhere that the inter-kernel differences are small relative to inter-model spread; why are we 124 
regularly making new kernels in this case? 125 
 126 
We added more emphasis on the accuracy of this newly generated datasets in the abstract and 127 
conclusion. In short, ERA5 TOA kernels are as good as other datasets but ERA5 surface kernels 128 
show improved performance compared with others (e.g., Figure 10). This is possibly caused by 129 
how the surface kernels are calculated and averaged, e.g., concerning the issues of surface flux 130 
kernels of atmospheric temperature. We also emphasized the importance of the consideration of 131 
surface pressure when vertically integrating the atmospheric contributions.  132 
 133 
Minor Comments 134 
  135 
• Verbiage: Throughout the paper, I found some of the verbiage to be unnecessarily 136 
longwinded. Could “kernel of the surface flux” be the “surface kernel”, for example?  137 
Revised 138 
 139 
• L22: “in” should be “for” 140 
Corrected. 141 
 142 



• L32: I don’t understand what is meant by “inter-kernel bias-induced uncertainty”, which 143 
appears in slightly modified phrasing in other places as well (L557). Is this just “inter-kernel 144 
differences”?  145 
Corrected.  146 
 147 
• L38: delete “on the other hand”  148 
 Corrected. 149 
 150 
• L60: suggest also citing the recent work of Chao and Dessler (2021)  151 
 Added 152 
 153 
• L75: Suggest citing some additional work, some of which includes surface and atmosphere 154 
cloud radiative kernels (Zhang et al., 2021; Zhou et al., 2022, 2013)  155 
Added 156 
 157 
• L81: suggest specifying “largely insensitive”  158 
Clarified. 159 
 160 
• L83: “are” should be “is”  161 
Corrected  162 
 163 
• L107: suggest simplifying to “we intercompare”  164 
Revised 165 
 166 
• L109-111: suggest rephrasing this sentence, which I found hard to parse. Also, you probably 167 
want to specify that you are comparing across-model vs across-kernel differences in this 168 
sentence (I think)  169 
Revised 170 
 171 
• L150-152: I’m confused by how you describe the analysis. I thought kernels were 172 
constructed using one experiment, performing many calls to the radiative transfer code, each 173 
time with a single field / level / location perturbed. This is not how the procedure is described 174 
here.  175 
Clarified. 176 
 177 
• L168-169: Probably want to remind the reader why the factors of 4 and 8 are present in these 178 
expressions. It is because the radiation calculations are done 4- or 8-times daily, I think.  179 
Added. 180 
 181 
• L168: “kernels” should be singular  182 
Corrected. 183 
 184 
• L190: suggest “upwelling” instead of “outgoing”. Also, suggest simplifying to “the kernel is 185 
negative”  186 
Revised. 187 
 188 



• L206: should be “(f,l)” rather than “(g,l)”  189 
Corrected. 190 
 191 
• L253: “reduce” should be plural  192 
Corrected. 193 
 194 
• L257: I think you should specify that you are talking about the clear-sky TOA kernel here. 195 
Added.  196 
 197 
• L336: “by the inconsistency in” should be “by inconsistencies in”  198 
Corrected. 199 
 200 
• L343-344: could this be simplified to “state-dependency in the kernels”?  201 
Revised. 202 
 203 
• L354-355: “the” before “interannual” and “cloudiness” is not needed 204 
Corrected. 205 
 206 
• L359: what is meant be “seasonal SST anomalies” Previously, it is stated that you are 207 
examining annual means. 208 
Revised. 209 
 210 
• L363: “since” should be “in the” 211 
Corrected. 212 
 213 
• L364: “exemplify” should be “illustrate” or “highlight” 214 
Corrected. 215 
 216 
• L365: All sky what? Kernels? 217 
Revised. 218 
 219 
• L370: I think some explanation of this result is warranted. Why does Figure 9e have that 220 
structure, wherein some regions that are moister and cloudier have a larger SW WV kernel 221 
but some do not (NE Pacific). Also, the panel titles in Figure 9 are a little ambiguous; suggest 222 
explicitly stating what is shown in each. 223 
Corrected. 224 
 225 
• Figure 10: suggest deleting the longitude labels which clutter the figure and seem 226 
unnecessary given the provided coastlines.  227 
We think this is fine. 228 
 229 
• L385-394: More explanation of why you get these results is needed. Also, this is too long of a 230 
sentence. 231 
Revised. 232 
 233 



• L390-394: Is one of the take-aways here that it may be necessary to average over multiple 234 
years when constructing kernels? Or at least that one has to be careful not to choose a year 235 
with an extreme Nino index or huge sea ice anomalies when constructing kernels? You might 236 
consider making this point explicitly. 237 
Yes, added. 238 
 239 
• L403: missing space between “Table” and “2”  240 
Corrected. 241 
 242 
• Table 2: “model top level” is not an accurate description of what is reported in that column  243 
Revised. 244 
 245 
• L412-419: I think more description and motivation for using these experiments is needed. 246 
The abrupt-4xCO2 experiment is a fully-coupled experiment whereas piClim-4xCO2 is an 247 
atmosphere-only experiment. You should also cite the relevant piClim-4xCO2 experiment 248 
description paper (Pincus et al., 2016). I’ve never seen these two experiments differenced in 249 
order to derive the temperature-mediated responses without the confounding effects of rapid 250 
adjustments; this is clever although it limits the number of models available to analyze. 251 
(Although more than just 6 models are available as far as I can tell.) I suggest explaining 252 
these choices a little better. I would also suggest mentioning this methodological difference 253 
when coming your values to those of Zelinka et al (2020) – that study used piControl 254 
simulations as the baseline and computed abrupt-4xCO2 anomalies and feedbacks differently. 255 
It is reassuring that the results of the two approaches agree as well as they do.  256 
Added. 257 
 258 
• L445-446: The end of this sentence is redundant with previous statements; suggest deleting. 259 
We think it is fine. 260 
• L460, L467: small relative to what?  261 
Added. Compared with the total feedback. 262 
• L477: Suggest stating the name of the row rather than making the reader count. 263 
Revised. 264 
• L478-480: suggest citing some examples to explain how you arrive at these percentage 265 
numbers. Are you comparing inter-kernel standard deviations to inter-model standard 266 
deviations?   267 
Revised. 268 
• L488: these numbers seem misleading, because most feedbacks have roughly the same 269 
absolute value of inter-kernel spread; they just vary in the central value. If all feedbacks had 270 
the same inter-kernel spread, but one feedback happened to be zero (e.g., if the SW cloud 271 
amount feedback perfectly compensated a SW cloud albedo feedback), the inter-kernel spread 272 
relative to this would be infinite, but that is not really meaningful. 273 
Revised. 274 
 275 
• L541: Delete “First of all”   276 
Deleted 277 
 278 
• L583: This sentence seems to run on and should probably be broken up for clarity.  279 



Revised. 280 
• L585-591: this sentence is also way too long and should be broken up  281 
Revised. 282 
• L594: “it is especially noticed that” can be deleted  283 
Deleted. 284 
• L599-600: suggest making this more concise by removing redundancy  285 
Revised. 286 
• L601-602: How could inter-model spread come from inter-kernel spread? Please rephrase. 287 
 Corrected. 288 
• L603: rephrase to “finding is consistent with previous”  289 
Revised. 290 
• L762: specify whether this is an absolute or relative change. I’m pretty sure it is the former.  291 
Added. 292 
• L767: not sure what is meant by the last phrase   293 
Revised. 294 
• L818: “trickiness” is probably too informal; suggest “challenge”  295 
 Revised. 296 
• L835: I don’t understand what is meant from “and accounting” onward   297 
Revised. 298 
• Figure A2: are these SFC or TOA kernels? I assume SFC.   299 
Yes, added. 300 
• L854: specify “in these cases”  301 
Revised. 302 
 303 
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Reviewer #2: 326 
The paper presents a set of newly calculated radiation flux kernels using the ERA5 reanalysis 327 
dataset. The authors discuss how the new radiation flux kernels differ from previous ones and 328 
how they can be used to improve our understanding of Earth's climate system. Overall, this 329 
paper presents a valuable contribution to the field of climate science by providing a new set of 330 
radiation flux kernels that can help improve our understanding of Earth's climate sensitivity. I 331 
have several major concerns and recommend a major revision. 332 
 333 
1. In recent years, one of the improvements of radiative kernels is the development of radiative 334 
kernels at the surface (SFC) and in the atmospheric column. The kernels at SFC have been 335 
calculated not only from reanalysis data but also from observational data (Karmer et al. 2019). 336 
Although the ERA5-derived kernels show high consistency with model-based kernels, 337 
feedback parameters obtained from model- and reanalysis-based kernels have large 338 
discrepancies with observation-based feedback parameters, especially for the cloud feedback 339 
(Karmer et al. 2019; Zhang et al. 2021). Would you like to conduct more analysis and add 340 
more discussion on the differences in cloud feedbacks derived from various data sources? 341 
 342 
Agreed: we added in the kernel comparison the kernels based on CloudSat dataset (Kramer et al., 343 
2019) (Figure 3-4) and also in the radiative feedback quantification (Figure 7-10) 344 
 345 
2. Cloud feedbacks are diagnosed using the adjusted cloud radiative effect method by 346 
assuming that all-sky decomposition has the same non-closure residual. There are some flaws 347 
in the assumption. First, the residual (reso) is introduced during the single variable 348 
perturbation or linear decomposition without involving cloud related process. Second, the all-349 
sky decomposition is assumed that has the same non-closure residual with clear-sky (reso 350 
=resc). It should be proved before being applied. Once the cloud related processes are 351 
introduced, it would be nearly impossible for the non-closure residual in all-sky to be same as 352 
the residual in clear-sky. Please reconsider Eqs. 5-6. 353 
 354 
This may be justified as the non-cloud nonlinear effects are comparable in the clear- and all-skies 355 
and the cloud-related terms normally dominate the nonlinear effects in the all-sky 356 
decomposition. We recognize there are inaccuracies in the adjusted cloud radiative forcing 357 
method, although it is the most widely used. This issue is beyond the scope of this paper but 358 
warrants future investigation.  359 
 360 
3. The non-closure residual terms due to nonlinear effect are discussed in Figs. 11 and 12. As 361 
shown in Fig. 11, the residual term at the TOA mainly arises from shortwave radiation over 362 
regions with abundant sea ice cover. Huang et al. (2021) pointed out that the nonlinear effects 363 
are resulted from the coupling effect between the surface albedo and cloud, and between the 364 
air temperature and cloud. Given the significant interactive between cloud and other climate 365 
variables, it’s inappropriate to assume the same residual between all-sky and clear-sky 366 
conditions. For the residual term at the SFC (Fig. 12), the magnitude of longwave radiation is 367 
comparable to the magnitude of shortwave. There is a lack of necessary discussion of the 368 
increase in LW residual at SFC relative to that at TOA. 369 
 370 
See the response above, about the same issue of adjusted CRF method.  371 



 372 
We see no strong evidence that surface residual is larger than TOA from figure 7 to 10, although 373 
there may be reasons for this to happen, e.g., because temperature and water vapor feedbacks and 374 
their biases tend to compensate for the TOA but not so for the surface. This is only a speculation 375 
though and would require further investigation to verify. 376 
 377 
4. The most important issue is that what’s the contribution of ERA5-based kernel to the 378 
radiative kernel method. It’s highly consistent with model simulation-based kernel, while 379 
model simulation can be applied to more accurate analysis such as diagnostic analysis on the 380 
role of dynamic processes in climate response.  381 
 382 
We added notes and discussions on the accuracy of ERA5 kernel in the abstract and conclusion. 383 
In short, the ERA5 TOA kernels are as good as other kernel datasets while for surface kernels, 384 
ERA5 kernels show better performance, in terms of both the radiative sensitivity and radiation 385 
closure test. Model based radiative kernels show good performance in TOA radiation budget 386 
while for surface, they may have some issues, e.g., larger inaccuracies and misattributed surface 387 
contribution (e.g., Figure 10, Figure A2). For observation-based kernel, for example, CloudSat 388 
kernel (Kramer et al., 2019), it also performs well for TOA but not that well for surface. Besides, 389 
satellite observations are subject to the detection of near surface layers and this may lead to some 390 
underestimated radiative sensitivity from the bottom layer for surface kernels. The newly 391 
generated ERA5 show good radiative closure for both TOA and surface and may best facilitate 392 
the analysis of surface energy budget change.  393 
 394 
5. The order of the figures needs to be adjusted. It would be better to cite figures near the 395 
context instead of figures far away from the context.  396 
 397 
We reorganize the figures. 398 
 399 
6. In Fig. 6b, the fractional discrepancies of the sensitivity of the TOA SW flux to water vapor 400 
in the tropics show six large value centers from the east coast of Africa to the equatorial 401 
eastern Pacific. It’s hard to understand these large value centers physically. Could you explain 402 
it? 403 
 404 
This periodic pattern is caused by CAM3 kernel, likely due to a coarse temporal resolution that 405 
does not well resolve the diurnal cycle of solar insolation (Line 303-304) 406 
 407 
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Reviewer #3: 417 
In this manuscript, the authors introduce a new set of all-sky and clear-sky, top-of-atmosphere 418 
(TOA) and surface radiative kernels, generated with the RRTMG radiative transfer model for 419 
5 years of input fields from ERA5 reanalysis data. The authors incorporate these kernels into 420 
a more general inter-comparison of the magnitude and structure of existing sets of radiative 421 
kernels, highlighting the sensitivity of radiative kernels to the input climate state fiends used to 422 
compute them. Along these lines, they also highlight the sensitivity of radiative kernels to 423 
interannual variability in the climate state, taking advantage of the fact that the ERA5 kernels 424 
have been computed for 5 years of data, over a period with notable changes in ENSO and sea 425 
ice coverage.  426 
 427 
The manuscript is comprehensive and well written. More multi-kernel comparison analysis is 428 
certainly needed, so this will be a welcomed addition to the literature. However, I feel the 429 
paper suffers in a few ways by trying to balance all three tasks (introduce a new kernel, multi- 430 
kernel comparison, sensitivity of kernels to variability) in one paper. For instance, I think the 431 
analysis of inter-annual variability is the most valuable part of the work, but the analysis is not 432 
well connected to the multi-kernel comparison, and the analysis is not as in depth as it could 433 
be. Additionally, it’s not clear why we need the ERA5 kernels when they don’t seem all that 434 
different from the others, and the kernels based on ERA-Interim reanalysis data (ERAi) 435 
previously developed by the second author of this paper were also calculated for 5 years of 436 
data and could have been used for the inter-annual variability analysis instead. Given the 437 
journal, I think justifying the new data product is important. My comments below reflect these 438 
concerns and hopefully add some additional, useful explanation to my points. Given these, I 439 
think the paper deserves consideration for publication, pending major revisions.  440 

Ryan Kramer 441 
 442 
General  443 
1) As noted above, some additional justification for producing the ERA5 kernels is necessary, 444 
particularly given that the ERAi kernels exist, which use similar input data and a similar 445 
radiative transfer code, also for 5 years of data. For example, is the improvement of RRTMG 446 
(ERA5 kernels) over RRTM (the ERAi kernels) large enough to warrant new kernels? Even if 447 
so, the sensitivity of kernels to RT is not really a focus of the analysis here. Does ERA5 have 448 
more realistic climate state fields than ERAi? The two kernels were computed over different 449 
periods, so maybe that is reason to make new kernels? But the period for the ERAi kernels 450 
(2008-2012) also has notable swings in ENSO, so I don’t quite see the advantage of the later 451 
period used for ERA5 kernels. 452 

1a) Related, what is the justification for developing radiative kernels from reanalysis 453 
when the fields are available from models and observations? Arguably reanalysis offers a 454 
happy middle between the two. They may not be pure observations, but they do have the full 455 
diurnal cycle that most satellite observations do not have. This may be important for 456 
diagnosing feedbacks in models, where the model fluxes are also a response to the full diurnal 457 
cycle. But there is also the argument that, in order to diagnose the true feedback, model 458 
feedbacks should be diagnosed with a kernel developed from models and observed feedbacks 459 
should be diagnosed with appropriate observations. What is the value of reanalysis-based 460 
kernels in that context? Some discussion along these lines would be really valuable to a 461 
community often confused about what kernels they should be using. 462 



 463 
Following these suggestions, revisions are made to emphasize the strength of this newly 464 
generated ERA5 kernel in the abstract and conclusion. As suggested by the comparison and 465 
figures in the manuscript, ERA5 TOA kernels are as good as other datasets. Though for surface 466 
kernels, it shows better performance than other datasets. These points are added in the revised 467 
manuscript. 468 
 469 
Many studies have shown the superior performance of ERA5 compared with other reanalysis, 470 
including its older version - ERAi reanalysis. We used this reanalysis for better representation of 471 
the real atmosphere and recommend using ERA5 kernels for feedback analysis. Compared with 472 
the satellite observation, as the reviewer mentioned, the strength of reanalysis dataset is that it 473 
includes the full diurnal cycle and is not limited by the detection of near-surface layers. For 474 
example, although the CloudSat kernels show great performance for TOA radiation budget, some 475 
of its surface kernels show underestimated strength from the bottom atmospheric layers possibly 476 
due to the difficulty of satellite in detecting low atmosphere information. 477 
 478 
It is verified here that the TOA radiative kernels show little discrepancies among the datasets and 479 
use of a reanalysis based kernel can well quantify the radiative feedbacks in GCMs. But the same 480 
cannot be said about the current surface kernels as illustrated by Figure 9 and 10. More 481 
discussion is added in the manuscript to underline this point. 482 
 483 
2) This may be the only example where an “older” (ERAi) and “updated” (ERA5) radiative 484 
kernel were developed by the same research group using similar RT codes. This could be a 485 
really powerful tool for the multi-kernel comparison analysis and should be exploited here, 486 
but has not been yet. If the second author still has access to the ERAi kernel input data, I 487 
would like this team to include a more in-depth comparison of the ERAi and ERA5 kernels in 488 
the context of the multi-kernel intercomparison. Throughout the current manuscript, the 489 
authors highlight examples of large multi-kernel differences, tying them to potential 490 
differences in the underlying climate input data. For a given example, is the spread also 491 
evident in differences between the ERAi and ERA5 kernels? If so, the authors should analyze 492 
the climate input fields directly to reveal specifics about why the kernels differ. A few specific 493 
comments in the section below try to prompt this type of analysis. Among other groups, I think 494 
this could be extremely useful for the ECMWF developers of ERAi and ERA5, who are always 495 
trying to understand the biases and limitations of their product, giving your work exposure to 496 
an additional, large community.  497 
 498 
Yes, we added the comparison between ERA5 and ERAi kernel in Figure 5. In general, the 499 
differences between these two kernels are smaller than the interannual variation of ERA5 500 
kernels, except for WV SW kernel, which is largely affected by the difference in cloud and water 501 
vapor fields between ERA5 and EARi. 502 
 503 
3) Section 3.1: The authors should rethink the presentation and the focus of discussion in this 504 
section. First, general descriptions of the sign, basic explanation of the causes of the sign, and 505 
the zonal-mean vertical structure of kernels are discussed here for the new ERA5 kernels, but 506 
these topics have been covered extensively for other kernels and the new kernels don’t seem to 507 
deviate from that. Therefore, it seems redundant to repeat that information here. This is true 508 



even for surface radiative kernels, where the structure and sign were covered by Kramer et al. 509 
2019 a and b (see refs below). The description of the horizontal spatial structure of the kernels 510 
is newer however, and worthy of focus in this section. Second, the number of figures and 511 
figure panels in this section is also overwhelming for the reader and should be consolidated. 512 
Given these points, I would instead: 513 
-For Figures 1-8, make the first figure or two just the spatial maps of each kernel, with a title 514 
for each subplot that describes which kernel we are looking at (e.g. all sky, surface temp, 515 
clear-sky SW WV, etc.).  516 
-Given their prevalence elsewhere (e.g. Soden et al. 2008; Block and Mauritsen 2013; Kramer 517 
et al. 2019a,b, Smith et al. 2021), the latitude-pressure subplots of the ERA5 kernels can be 518 
combined and put in supplemental material. -Any subplot currently referring to the 519 
intercomparison across existing kernels should be saved for new, separate figures placed in 520 
Section 3.2, where that material is discussed in the text.  521 
 522 
This above list is just a recommendation. I’m sure there are other ways of reorganizing the 523 
plots to improve manuscript readability, but some reorganization is necessary. 524 
 525 
Kramer, R. J., A. V. Matus, B. J. Soden, and T. S. L’Ecuyer, 2019: ObservaDon-Based 526 

Radiative Kernels From CloudSat/CALIPSO. JGR Atmospheres, 124, 5431–5444, 527 
https://doi.org/10.1029/2018jd029021.  528 

Kramer, R. J., B. J. Soden, and A. G. Pendergrass, 2019: Evaluating Climate Model 529 
Simulations of the Radiative Forcing and Radiative Response at Earth’s Surface. 530 
Journal of Climate, 32, 4089– 4102, hTps://doi.org/10.1175/jcli-d-18-0137.1. 531 

 532 
For the completeness of the description, we kept the descriptions of the sign, basic explanation 533 
and the vertical structure of radiative kernels, so that the readers who are not familiar with 534 
radiative kernels have the basic information. We kept the results in all-sky in the main text and 535 
moved the clear-sky result to the supplement for better readability.  536 
 537 
4) It is evident that clouds play an important role in determining the spatial pattern of the all-538 
sky radiative kernels. More description of the type of clouds impacting the kernels would be 539 
very useful and novel. For example, cloud vertical extent? Cloud base height (for sfc kernels)? 540 
Optical properties? A deeper analysis of the ERA5 cloud fields would be helpful here. And if 541 
the fields are still available for the ERAi kernels, even better.  542 
 543 
Cloud information is documented in Line 122 and 128. As cloud fraction and cloud liquid/ice 544 
water content data are from ERA5, they are of the same resolution as other variables (2.5*2.5, 37 545 
level), extending from 1hPa to 1000hPa. Cloud droplet radii are from CERES 3-hourly dataset 546 
(1*1) and then interpolated to the same resolution as ERA5 data.  547 
 548 
5) I think the analysis of inter-annual variability in the kernel is the most interesting 549 
contribution of this paper to the literature. It deserves a more prominent place in the title, 550 
abstract, and conclusion section. 551 
 552 



Following this suggestion, we strengthened various aspects of the paper concerning the 553 
interannual variability. These responses are detailed below in the responses to the specific 554 
comments related to this topic.  555 
 556 
6) The inter-annual variability analysis feels disjointed from the introduction of the new 557 
kernels in Section 3.1, the multi-kernel comparison, and the feedback estimate section. It is 558 
evident that the ERA5 kernels are sensitive to inter-annual variability, but does this really 559 
matter for overall kernel spread? For instance, the ERA5 all-sky TOA Ts kernel is clearly 560 
sensitive to interannual variability in the Eq. Pacific at ~Longtiude 180, but this doesn’t 561 
appear to be a particularly noteworthy area of inter-kernel differences in fig 1e. It may very 562 
well be important, but the analysis at present doesn’t offer enough of a connection to make 563 
that point. Comparing the inter-annual variability in the ERA5 vs ERAi kernels in more detail 564 
may be a useful starting point to help make the connection between this section and the others.  565 
 566 
Both inter-kernel difference and interannual difference of kernel values reflect the dependence of 567 
radiative sensitivity on background atmospheric states. We showed this point using the 568 
comparison among different kernel datasets first and then used the interannual variability of 569 
ERA5 kernel to further show how the change in atmospheric state (e.g., during ENSO or due to 570 
sea ice change) impacts the radiative sensitivity, given that these variables from ERA5 are 571 
available and used in our calculation.  572 
 573 
The interannual variability of ERA5 kernel indeed proves this point and further comparison 574 
between ERA5 and ERAi kernel is also added in Figure 5 to compare the changes in kernel value 575 
caused by ENSO. The inter-kernel comparison does not show as much variation in the Central 576 
Pacific as in the ENSO case; this is likely because smaller temperature differences between the 577 
atmospheric datasets used for kernel calculation (e.g., Figure 5g) 578 
 579 
7) After the interesting analysis showing the sensitivity of kernels to inter-annual variability 580 
spatially, the feedback analysis in Section 4.2 and 4.3 mostly just focuses on global-mean 581 
values. While this type of analysis is valuable in a general sense for kernel users, it doesn’t 582 
quite fit well with this paper, particularly because the ERA5 kernels don’t stand out as being 583 
more accurate or unique. Instead, I’d like to authors to focus more on multi-kernel 584 
differences in the feedback spatial patterns. Given the large focus on the pattern effect and the 585 
influence of regional feedbacks on the global-mean in recent years, I think that could be 586 
particularly citeable. We know kernels are generally in agreement in the global-mean 587 
(especially for the TOA). But what about for kernel spread in estimates of the regional 588 
feedbacks?  589 
 590 
Following this suggestion, we used the spatial root-mean-squares (RMS) of residual terms to 591 
document the spatial biases in each kernel dataset. As indicated by the numbers in Figure 7 and 592 
9, the ERA5 kernels show relatively smaller RMS, especially for surface, compared to many 593 
other kernels. This indicates the EAR5 kernels may be more suitable for surface feedback 594 
quantification. We have clarified these points in the paper. 595 
 596 



8) It is tough to pick out valuable information from your tables of TOA and Surface 597 
feedbacks. The authors should turn those into summary figures (e.g. dot plots or scatter plots 598 
used by e.g. Smith et al. 2018 supplemental, or Zelinka et al. 2020) where possible. 599 
 600 
Tables are moved to the Supplement and we used figure 8 and 10 to show the inter-kernel and 601 
inter-model feedback spread. 602 
 603 
9) There are now many observation-based kernels in the literature from CloudSat/CALIPSO 604 
observations, CERES CCCM products, AIRS, and a bunch of others specific to surface albedo 605 
kernels that are not included in the multi-kernel analysis here. I think it’s an open question 606 
whether these observational kernels should be included in a comparison with model-based 607 
kernels or not. The authors should provide a brief reason for not incorporating them (or 608 
should include them if they feel its appropriate), especially since the Kramer et al. and 609 
Thorsen et al. reference papers are cited in the text.  610 
 611 
Yes, we included the CloudSat kernel for comparison in the revised manuscript.  612 
 613 
Specific or Minor Comments  614 
Line 311-312 and Appendix: We discussed similar RT issues regarding the surface 615 
temperature kernel for surface fluxes in Kramer et al. 2019 (JClim). The authors can cite 616 
and/or refer to it for some additional support. We also argued that, as noted in the author’s 617 
current Appendix and elsewhere, similar RT issues can bias the lowest level of the surface flux 618 
Ta kernel in an equal and opposite manner as the Ts kernel, thereby allowing a kernel like 619 
CAM5 to be correct in its estimate of the vertically integrated Temperature feedback, but for 620 
the wrong reason. This likely explains why CAM5 and ERA5 kernels agree in Figure A2c and 621 
A2d. Your text somewhat gets to this point, but I’d call it out directly as a warning to kernel 622 
users: Some kernels may give you the correct temp. feedback for the wrong reason. 623 
Presumably this is true for the TOA temperature feedback too, but the contribution from the 624 
surface and near surface layers to that vertically integrated feedback are small, so maybe it 625 
doesn’t matter much? 626 
Kramer, R. J., B. J. Soden, and A. G. Pendergrass, 2019: Evaluating Climate Model 627 

Simulations of the Radiative Forcing and Radiative Response at Earth’s Surface. 628 
Journal of Climate, 32, 4089– 4102, https://doi.org/10.1175/jcli-d-18-0137.1. 629 

 630 
Following this suggestion, we added a note to caution this issue in Line 873-875. 631 
 632 
Line 316-319 and more generally: Bright and O’Holleran (2019) and Donohoe et al. (2020) 633 
performed nice, detailed comparisons of surface albedo kernels. These papers should be cited 634 
and their work should be put into context of the author’s own results within the present 635 
manuscript. This would also be useful for the section on diagnosing radiative feedback spread, 636 
since the authors show that the kernels give quite different results in the poles. Riihela et al. 637 
(2021) also did a comparison of surface albedo kernels in the context of sea ice states, and 638 
should be cited somewhere in the present manuscript.  639 
Bright, R. M., and T. L. O’Halloran, 2019: Developing a monthly radiative kernel for surface 640 

albedo change from satellite climatologies of Earth’s shortwave radiation budget: CACK 641 
v1.0. Geosci. Model Dev., 12, 3975–3990, https://doi.org/10.5194/gmd-12-3975-2019.  642 



Donohoe, A., E. Blanchard-Wrigglesworth, A. Schweiger, and P. J. Rasch, 2020: The Effect 643 
of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice 644 
Albedo Feedback. Journal of Climate, 33, 5743–5765, hTps://doi.org/10.1175/jcli-d-19-645 
0674.1. 646 

Riihelä, A., R. M. Bright, and K. Anbla, 2021: Recent strengthening of snow and ice albedo 647 
feedback driven by Antarctic sea-ice loss. Nat. Geosci., 14, 832–836, 648 
https://doi.org/10.1038/s41561-021-00841-x.  649 

 650 
There references are now added. 651 
 652 
Line 316-227 and more generally: Aligning with general comment 4 above, the author’s 653 
assumption that clouds are the cause of the discrepancies discussed here is likely right, but 654 
this has been alluded to before in past work. The author’s have a unique opportunity to prove 655 
it directly by using the kernel’s cloud input data directly in the analysis. Using the ERA5 and 656 
ERAi cloud fields can the authors confirm their assumption that cloud fields matter? Or 657 
provide a more detailed analysis? Among all the potential sources of kernel differences, clouds 658 
seem to warrant deeper investigation.  659 
 660 
We included a comparison between ERA5 and ERAi kernel in Figure 5 and there the difference 661 
in cloud mainly leads to the difference in water vapor SW kernel as this difference only appears 662 
in all-sky (Figure 5l) but not in the clear-sky (Figure S7f). 663 
 664 
Figure 2f: The ERAi and ERA5 kernels are noticeably different below ~800mb. Why?  665 
 666 
Mainly due to the difference in water vapor and air temperature below 800hPa. 667 
 668 
Figure 3e and 3k: There are large standard deviations relative to the magnitude of the ERA5 669 
kernels at certain locations within the vertical kernel structure, but for anything above 670 
~950mb, the kernel magnitude is small relative to the lowermost atmospheric levels, and likely 671 
does not contribute much to the vertically-integrated quantity. A zoomed in version of these 672 
plots, highlighting the important standard deviation across kernels in the lowermost levels, 673 
would be informative.  674 
 675 
We would like to keep the current vertical range as the discrepancy in the South Pole region 676 
extents to about 300hPa. 677 
 678 
Figure 3f and 3l. Why is the ERAi kernel so much larger at the lowest levels near the surface 679 
than the ERA5 kernel (and the other kernels)? This is true for both all-sky and clear-sky. 680 
Could vertical resolution of the kernels be playing a role? We discuss the potential influence 681 
of resolution in the Appendix of Kramer et al. (2019, JClim). 682 
 683 
Yes, this is due to the vertical resolution and how the air temperature perturbation is added. 684 
 685 
Interestingly, there is also a fairly large difference between ERA5 and ERAi in the all-sky LW 686 
WV kernel for surface fluxes (figure 5L), but it only shows up in the all-sky kernel, not the 687 
clear-sky. Does that suggest clouds matter more for the LW WV kernel in explaining 688 



differences than they do for the LW Ta kernel, relative to other potential sources of kernel 689 
spread? 690 
 691 
This is an interesting observation and hypothesis. The comparison however may be obscured by 692 
the averaging issues noted in the Appendix. We tried to not speculate here.  693 
 694 
Line 368: Is this the sensitivity of the surface to the vertically integrated kernel change? Only 695 
the sensitivity to a certain level of WV change? It is not obvious from the figure 9 caption 696 
either. Some rethinking of how the kernels are described in the text here and elsewhere would 697 
be helpful. Maybe shorthand acronyms or some other naming convention would be helpful.  698 
 699 
It is relative to the vertically integrated kernel. Caption is revised accordingly. 700 
 701 
Plot 9: I really like this figure. I’m not sure anyone else has shown the sensitivity of these 702 
temperature and water vapor kernels to variability spatially yet. But I think it would be helpful 703 
to go one step further and show what level of WV and cloud variability is impacting the 704 
temporal variability of the kernels most. And does that particular level help explain the multi- 705 
kernel spread in those kernels, evident in Figure 1-8? Or is inter-annual variability not 706 
enough to explain the kernel spread? This comments connects with my general comment #6 707 
above. 708 

 709 
Following this suggestion, we added Figure S8 to show the vertical distribution of water vapor, 710 
cloud profiles and also water vapor kernels. In the ENSO case, the relatively weaker water vapor 711 
LW kernel in the Central Pacific (Figure 5e) is contributed from almost the whole troposphere 712 
(Figure S8c), possibly caused by the increase of cloud cover in the upper troposphere (Figure 713 
S8b). For the difference between ERA5 and ERAi kernel, the vertically integrated difference in 714 
water vapor SW kernel (Figure 5l) is mainly contributed from the mid-to-low troposphere 715 
(Figure S8f), which also corresponds to the discrepancies noticed in Figure 4i, and is partially 716 
due to the increase of cloud cover in mid-troposphere (Figure S8e).  717 
 718 
In summary, the interannual variability contribute to but does not fully explain the inter-kernel 719 
differences as shown in Figure 3 and 4, but both of them demonstrate the state-dependency of 720 
radiative kernels. We clarified these points in the paper. 721 
 722 
 723 
Plot 9: The TOA SW WV kernel is a potentially interesting case where the largest multi-kernel 724 
spread (tropics around 500mb in Figure 6k) sits above the level at which the ERA5 kernel is 725 
the strongest (closer to 800mb in Figure 6j). Building on my comment above, how does the 726 
importance of inter-annual variability play into the large kernel spread at this ~500mb level? 727 
And does the spread at 500mb actually matter much for the vertically-integrated quantity? 728 
This level of detail could be useful for e.g. modeling centers trying to connect TOA biases to 729 
particular biases in their climate states. 730 
 731 
As shown by Figure S8, it suggests that the interannual variation partly explains the 732 
discrepancies among kernel datasets. The difference of cloud field between ERA5 and ERAi 733 
suggest that the discrepancies in WV SW TOA kernel in all-sky are mainly caused by the cloud. 734 



 735 
Figure 10: I struggle to see spatially where the variability in water vapor is having an effect on 736 
the kernels shown in the other subplots. Maybe only for the NE coast of Greenland? Should 737 
cloud changes be shown in this plot instead? I’d give more detailed evidence about why water 738 
vapor is important here.  739 
 740 
Replaced it with cloud cover. 741 
 742 
Line 412-419: Some explanation of why you need both abrupt4xCO2 and piCLim-4xCO2 (e.g. 743 
to remove rapid adjustments) is needed, since most people just use abrupt4xCO2 with Gregory 744 
regression to get feedbacks. 745 
 746 
Yes, this is to remove the rapid adjustment. Explanation was added in Line 437. 747 
 748 
 Line 436 and Equation 5: What does the clear-sky residual term mean physically and why 749 
does it matter for computing cloud feedback? Although the author’s math in Equation 6 750 
works out to be the same as what everyone else uses, I think the way they’ve introduced this 751 
method, and terminology used, is less common. Some extra detail would be helpful.  752 
 753 
The clear-sky residual term means the unexplained part by kernel method. In adjusted cloud 754 
radiative forcing method, such a non-closure term is actually attributed to the cloud feedback.  755 
 756 
Line 463-464: Block and Mauritsen (2013) can be cited here for their nice discussion and 757 
analysis of the non-linearity of the surface albedo kernel in 4xCO2 runs.  758 
Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model 759 

under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676–691, 760 
https://doi.org/10.1002/jame.20041. 761 

 762 
Added. 763 
 764 
Last Column Table 3: The multi-model values differ somewhat across the different kernels, 765 
but not the associated standard deviations, which look to be essentially the same for all rows of 766 
the column. Does this suggest the kernels can estimate feedbacks differently in a systematic 767 
manner across all models, but they do not necessarily estimate the magnitude of the feedback 768 
spread differently? In other words, the kernel may get the model-mean feedback value wrong, 769 
but the spread in feedbacks correct? This is worth noting if so.  770 
 771 
As feedbacks are calculated by the product of radiative kernels (𝐾!) and the anomalies (∆𝑋), 772 
when calculating the standard deviation of feedbacks among the models by the same radiative 773 
kernels, it is the variation of ∆𝑋 among models that matters (as all models use the same 𝐾!) and I 774 
think that’s why different kernel datasets show a close multi-model standard deviation. 775 
 776 
Line 487-491: Since you are not using cloud radiative kernels, the inter-kernel differences in 777 
cloud feedback must come from the difference between all-sky and clear-sky kernels (cloud 778 
masking). Can you identify which of the kernel terms is the culprit? From a related discussion 779 
see text around figs 9-11 in Kramer et al. (2019, JGR), for example. 780 



 Kramer, R. J., A. V. Matus, B. J. Soden, and T. S. L’Ecuyer, 2019: Observation-Based 781 
Radiative Kernels From CloudSat/CALIPSO. JGR Atmospheres, 124, 5431–5444, 782 
https://doi.org/10.1029/2018jd029021. 783 

 784 
In our calculation, we found that the inter-kernel differences in cloud LW feedback are almost 785 
equally contributed from Ta, Ts and WV, and in cloud SW feedback are contributed more from 786 
the albedo. As no dominant contributor or general feature is found, we chose to make no specific 787 
additional comment here.   788 
 789 
 790 
Line 769-793: This is a really nice description of how you develop the water vapor kernel. I’d 791 
highlight in the main text that you have included this section in appendix. I think many kernel 792 
users and developers are looking for a description like this and will turn to it in the future. 793 
There are often question about this calculation. 794 
 795 
We chose to keep the technical details in the appendix. 796 
 797 
 798 


