
Response to Reviewer Comments 1 
 2 
 3 
 4 
We thank the reviewer for thoughtful and helpful comments. Below are our responses (in regular 5 
font) to the comments (in bolded italic font).  6 
  7 



Reviewer #3: 8 
In this manuscript, the authors introduce a new set of all-sky and clear-sky, top-of-atmosphere 9 
(TOA) and surface radiative kernels, generated with the RRTMG radiative transfer model for 10 
5 years of input fields from ERA5 reanalysis data. The authors incorporate these kernels into 11 
a more general inter-comparison of the magnitude and structure of existing sets of radiative 12 
kernels, highlighting the sensitivity of radiative kernels to the input climate state fiends used to 13 
compute them. Along these lines, they also highlight the sensitivity of radiative kernels to 14 
interannual variability in the climate state, taking advantage of the fact that the ERA5 kernels 15 
have been computed for 5 years of data, over a period with notable changes in ENSO and sea 16 
ice coverage.  17 
 18 
The manuscript is comprehensive and well written. More multi-kernel comparison analysis is 19 
certainly needed, so this will be a welcomed addition to the literature. However, I feel the 20 
paper suffers in a few ways by trying to balance all three tasks (introduce a new kernel, multi- 21 
kernel comparison, sensitivity of kernels to variability) in one paper. For instance, I think the 22 
analysis of inter-annual variability is the most valuable part of the work, but the analysis is not 23 
well connected to the multi-kernel comparison, and the analysis is not as in depth as it could 24 
be. Additionally, it’s not clear why we need the ERA5 kernels when they don’t seem all that 25 
different from the others, and the kernels based on ERA-Interim reanalysis data (ERAi) 26 
previously developed by the second author of this paper were also calculated for 5 years of 27 
data and could have been used for the inter-annual variability analysis instead. Given the 28 
journal, I think justifying the new data product is important. My comments below reflect these 29 
concerns and hopefully add some additional, useful explanation to my points. Given these, I 30 
think the paper deserves consideration for publication, pending major revisions.  31 

Ryan Kramer 32 
 33 
General  34 
1) As noted above, some additional justification for producing the ERA5 kernels is necessary, 35 
particularly given that the ERAi kernels exist, which use similar input data and a similar 36 
radiative transfer code, also for 5 years of data. For example, is the improvement of RRTMG 37 
(ERA5 kernels) over RRTM (the ERAi kernels) large enough to warrant new kernels? Even if 38 
so, the sensitivity of kernels to RT is not really a focus of the analysis here. Does ERA5 have 39 
more realistic climate state fields than ERAi? The two kernels were computed over different 40 
periods, so maybe that is reason to make new kernels? But the period for the ERAi kernels 41 
(2008-2012) also has notable swings in ENSO, so I don’t quite see the advantage of the later 42 
period used for ERA5 kernels. 43 

1a) Related, what is the justification for developing radiative kernels from reanalysis 44 
when the fields are available from models and observations? Arguably reanalysis offers a 45 
happy middle between the two. They may not be pure observations, but they do have the full 46 
diurnal cycle that most satellite observations do not have. This may be important for 47 
diagnosing feedbacks in models, where the model fluxes are also a response to the full diurnal 48 
cycle. But there is also the argument that, in order to diagnose the true feedback, model 49 
feedbacks should be diagnosed with a kernel developed from models and observed feedbacks 50 
should be diagnosed with appropriate observations. What is the value of reanalysis-based 51 
kernels in that context? Some discussion along these lines would be really valuable to a 52 
community often confused about what kernels they should be using. 53 



 54 
Following these suggestions, revisions are made to emphasize the strength of this newly 55 
generated ERA5 kernel in the abstract and conclusion. As suggested by the comparison and 56 
figures in the manuscript, ERA5 TOA kernels are as good as other datasets. Though for surface 57 
kernels, it shows better performance than other datasets. These points are added in the revised 58 
manuscript. 59 
 60 
Many studies have shown the superior performance of ERA5 compared with other reanalysis, 61 
including its older version - ERAi reanalysis. We used this reanalysis for better representation of 62 
the real atmosphere and recommend using ERA5 kernels for feedback analysis. Compared with 63 
the satellite observation, as the reviewer mentioned, the strength of reanalysis dataset is that it 64 
includes the full diurnal cycle and is not limited by the detection of near-surface layers. For 65 
example, although the CloudSat kernels show great performance for TOA radiation budget, some 66 
of its surface kernels show underestimated strength from the bottom atmospheric layers possibly 67 
due to the difficulty of satellite in detecting low atmosphere information. 68 
 69 
It is verified here that the TOA radiative kernels show little discrepancies among the datasets and 70 
use of a reanalysis based kernel can well quantify the radiative feedbacks in GCMs. But the same 71 
cannot be said about the current surface kernels as illustrated by Figure 9 and 10. More 72 
discussion is added in the manuscript to underline this point. 73 
 74 
2) This may be the only example where an “older” (ERAi) and “updated” (ERA5) radiative 75 
kernel were developed by the same research group using similar RT codes. This could be a 76 
really powerful tool for the multi-kernel comparison analysis and should be exploited here, 77 
but has not been yet. If the second author still has access to the ERAi kernel input data, I 78 
would like this team to include a more in-depth comparison of the ERAi and ERA5 kernels in 79 
the context of the multi-kernel intercomparison. Throughout the current manuscript, the 80 
authors highlight examples of large multi-kernel differences, tying them to potential 81 
differences in the underlying climate input data. For a given example, is the spread also 82 
evident in differences between the ERAi and ERA5 kernels? If so, the authors should analyze 83 
the climate input fields directly to reveal specifics about why the kernels differ. A few specific 84 
comments in the section below try to prompt this type of analysis. Among other groups, I think 85 
this could be extremely useful for the ECMWF developers of ERAi and ERA5, who are always 86 
trying to understand the biases and limitations of their product, giving your work exposure to 87 
an additional, large community.  88 
 89 
Yes, we added the comparison between ERA5 and ERAi kernel in Figure 5. In general, the 90 
differences between these two kernels are smaller than the interannual variation of ERA5 91 
kernels, except for WV SW kernel, which is largely affected by the difference in cloud and water 92 
vapor fields between ERA5 and EARi. 93 
 94 
3) Section 3.1: The authors should rethink the presentation and the focus of discussion in this 95 
section. First, general descriptions of the sign, basic explanation of the causes of the sign, and 96 
the zonal-mean vertical structure of kernels are discussed here for the new ERA5 kernels, but 97 
these topics have been covered extensively for other kernels and the new kernels don’t seem to 98 
deviate from that. Therefore, it seems redundant to repeat that information here. This is true 99 



even for surface radiative kernels, where the structure and sign were covered by Kramer et al. 100 
2019 a and b (see refs below). The description of the horizontal spatial structure of the kernels 101 
is newer however, and worthy of focus in this section. Second, the number of figures and 102 
figure panels in this section is also overwhelming for the reader and should be consolidated. 103 
Given these points, I would instead: 104 
-For Figures 1-8, make the first figure or two just the spatial maps of each kernel, with a title 105 
for each subplot that describes which kernel we are looking at (e.g. all sky, surface temp, 106 
clear-sky SW WV, etc.).  107 
-Given their prevalence elsewhere (e.g. Soden et al. 2008; Block and Mauritsen 2013; Kramer 108 
et al. 2019a,b, Smith et al. 2021), the latitude-pressure subplots of the ERA5 kernels can be 109 
combined and put in supplemental material. -Any subplot currently referring to the 110 
intercomparison across existing kernels should be saved for new, separate figures placed in 111 
Section 3.2, where that material is discussed in the text.  112 
 113 
This above list is just a recommendation. I’m sure there are other ways of reorganizing the 114 
plots to improve manuscript readability, but some reorganization is necessary. 115 
 116 
Kramer, R. J., A. V. Matus, B. J. Soden, and T. S. L’Ecuyer, 2019: ObservaDon-Based 117 

Radiative Kernels From CloudSat/CALIPSO. JGR Atmospheres, 124, 5431–5444, 118 
https://doi.org/10.1029/2018jd029021.  119 

Kramer, R. J., B. J. Soden, and A. G. Pendergrass, 2019: Evaluating Climate Model 120 
Simulations of the Radiative Forcing and Radiative Response at Earth’s Surface. 121 
Journal of Climate, 32, 4089– 4102, hTps://doi.org/10.1175/jcli-d-18-0137.1. 122 

 123 
For the completeness of the description, we kept the descriptions of the sign, basic explanation 124 
and the vertical structure of radiative kernels, so that the readers who are not familiar with 125 
radiative kernels have the basic information. We kept the results in all-sky in the main text and 126 
moved the clear-sky result to the supplement for better readability.  127 
 128 
4) It is evident that clouds play an important role in determining the spatial pattern of the all-129 
sky radiative kernels. More description of the type of clouds impacting the kernels would be 130 
very useful and novel. For example, cloud vertical extent? Cloud base height (for sfc kernels)? 131 
Optical properties? A deeper analysis of the ERA5 cloud fields would be helpful here. And if 132 
the fields are still available for the ERAi kernels, even better.  133 
 134 
Cloud information is documented in Line 122 and 128. As cloud fraction and cloud liquid/ice 135 
water content data are from ERA5, they are of the same resolution as other variables (2.5*2.5, 37 136 
level), extending from 1hPa to 1000hPa. Cloud droplet radii are from CERES 3-hourly dataset 137 
(1*1) and then interpolated to the same resolution as ERA5 data.  138 
 139 
5) I think the analysis of inter-annual variability in the kernel is the most interesting 140 
contribution of this paper to the literature. It deserves a more prominent place in the title, 141 
abstract, and conclusion section. 142 
 143 



Following this suggestion, we strengthened various aspects of the paper concerning the 144 
interannual variability. These responses are detailed below in the responses to the specific 145 
comments related to this topic.  146 
 147 
6) The inter-annual variability analysis feels disjointed from the introduction of the new 148 
kernels in Section 3.1, the multi-kernel comparison, and the feedback estimate section. It is 149 
evident that the ERA5 kernels are sensitive to inter-annual variability, but does this really 150 
matter for overall kernel spread? For instance, the ERA5 all-sky TOA Ts kernel is clearly 151 
sensitive to interannual variability in the Eq. Pacific at ~Longtiude 180, but this doesn’t 152 
appear to be a particularly noteworthy area of inter-kernel differences in fig 1e. It may very 153 
well be important, but the analysis at present doesn’t offer enough of a connection to make 154 
that point. Comparing the inter-annual variability in the ERA5 vs ERAi kernels in more detail 155 
may be a useful starting point to help make the connection between this section and the others.  156 
 157 
Both inter-kernel difference and interannual difference of kernel values reflect the dependence of 158 
radiative sensitivity on background atmospheric states. We showed this point using the 159 
comparison among different kernel datasets first and then used the interannual variability of 160 
ERA5 kernel to further show how the change in atmospheric state (e.g., during ENSO or due to 161 
sea ice change) impacts the radiative sensitivity, given that these variables from ERA5 are 162 
available and used in our calculation.  163 
 164 
The interannual variability of ERA5 kernel indeed proves this point and further comparison 165 
between ERA5 and ERAi kernel is also added in Figure 5 to compare the changes in kernel value 166 
caused by ENSO. The inter-kernel comparison does not show as much variation in the Central 167 
Pacific as in the ENSO case; this is likely because smaller temperature differences between the 168 
atmospheric datasets used for kernel calculation (e.g., Figure 5g) 169 
 170 
7) After the interesting analysis showing the sensitivity of kernels to inter-annual variability 171 
spatially, the feedback analysis in Section 4.2 and 4.3 mostly just focuses on global-mean 172 
values. While this type of analysis is valuable in a general sense for kernel users, it doesn’t 173 
quite fit well with this paper, particularly because the ERA5 kernels don’t stand out as being 174 
more accurate or unique. Instead, I’d like to authors to focus more on multi-kernel 175 
differences in the feedback spatial patterns. Given the large focus on the pattern effect and the 176 
influence of regional feedbacks on the global-mean in recent years, I think that could be 177 
particularly citeable. We know kernels are generally in agreement in the global-mean 178 
(especially for the TOA). But what about for kernel spread in estimates of the regional 179 
feedbacks?  180 
 181 
Following this suggestion, we used the spatial root-mean-squares (RMS) of residual terms to 182 
document the spatial biases in each kernel dataset. As indicated by the numbers in Figure 7 and 183 
9, the ERA5 kernels show relatively smaller RMS, especially for surface, compared to many 184 
other kernels. This indicates the EAR5 kernels may be more suitable for surface feedback 185 
quantification. We have clarified these points in the paper. 186 
 187 



8) It is tough to pick out valuable information from your tables of TOA and Surface 188 
feedbacks. The authors should turn those into summary figures (e.g. dot plots or scatter plots 189 
used by e.g. Smith et al. 2018 supplemental, or Zelinka et al. 2020) where possible. 190 
 191 
Tables are moved to the Supplement and we used figure 8 and 10 to show the inter-kernel and 192 
inter-model feedback spread. 193 
 194 
9) There are now many observation-based kernels in the literature from CloudSat/CALIPSO 195 
observations, CERES CCCM products, AIRS, and a bunch of others specific to surface albedo 196 
kernels that are not included in the multi-kernel analysis here. I think it’s an open question 197 
whether these observational kernels should be included in a comparison with model-based 198 
kernels or not. The authors should provide a brief reason for not incorporating them (or 199 
should include them if they feel its appropriate), especially since the Kramer et al. and 200 
Thorsen et al. reference papers are cited in the text.  201 
 202 
Yes, we included the CloudSat kernel for comparison in the revised manuscript.  203 
 204 
Specific or Minor Comments  205 
Line 311-312 and Appendix: We discussed similar RT issues regarding the surface 206 
temperature kernel for surface fluxes in Kramer et al. 2019 (JClim). The authors can cite 207 
and/or refer to it for some additional support. We also argued that, as noted in the author’s 208 
current Appendix and elsewhere, similar RT issues can bias the lowest level of the surface flux 209 
Ta kernel in an equal and opposite manner as the Ts kernel, thereby allowing a kernel like 210 
CAM5 to be correct in its estimate of the vertically integrated Temperature feedback, but for 211 
the wrong reason. This likely explains why CAM5 and ERA5 kernels agree in Figure A2c and 212 
A2d. Your text somewhat gets to this point, but I’d call it out directly as a warning to kernel 213 
users: Some kernels may give you the correct temp. feedback for the wrong reason. 214 
Presumably this is true for the TOA temperature feedback too, but the contribution from the 215 
surface and near surface layers to that vertically integrated feedback are small, so maybe it 216 
doesn’t matter much? 217 
Kramer, R. J., B. J. Soden, and A. G. Pendergrass, 2019: Evaluating Climate Model 218 

Simulations of the Radiative Forcing and Radiative Response at Earth’s Surface. 219 
Journal of Climate, 32, 4089– 4102, https://doi.org/10.1175/jcli-d-18-0137.1. 220 

 221 
Following this suggestion, we added a note to caution this issue in Line 864-865. 222 
 223 
Line 316-319 and more generally: Bright and O’Holleran (2019) and Donohoe et al. (2020) 224 
performed nice, detailed comparisons of surface albedo kernels. These papers should be cited 225 
and their work should be put into context of the author’s own results within the present 226 
manuscript. This would also be useful for the section on diagnosing radiative feedback spread, 227 
since the authors show that the kernels give quite different results in the poles. Riihela et al. 228 
(2021) also did a comparison of surface albedo kernels in the context of sea ice states, and 229 
should be cited somewhere in the present manuscript.  230 
Bright, R. M., and T. L. O’Halloran, 2019: Developing a monthly radiative kernel for surface 231 

albedo change from satellite climatologies of Earth’s shortwave radiation budget: CACK 232 
v1.0. Geosci. Model Dev., 12, 3975–3990, https://doi.org/10.5194/gmd-12-3975-2019.  233 



Donohoe, A., E. Blanchard-Wrigglesworth, A. Schweiger, and P. J. Rasch, 2020: The Effect 234 
of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice 235 
Albedo Feedback. Journal of Climate, 33, 5743–5765, hTps://doi.org/10.1175/jcli-d-19-236 
0674.1. 237 

Riihelä, A., R. M. Bright, and K. Anbla, 2021: Recent strengthening of snow and ice albedo 238 
feedback driven by Antarctic sea-ice loss. Nat. Geosci., 14, 832–836, 239 
https://doi.org/10.1038/s41561-021-00841-x.  240 

 241 
There references are now added. 242 
 243 
Line 316-227 and more generally: Aligning with general comment 4 above, the author’s 244 
assumption that clouds are the cause of the discrepancies discussed here is likely right, but 245 
this has been alluded to before in past work. The author’s have a unique opportunity to prove 246 
it directly by using the kernel’s cloud input data directly in the analysis. Using the ERA5 and 247 
ERAi cloud fields can the authors confirm their assumption that cloud fields matter? Or 248 
provide a more detailed analysis? Among all the potential sources of kernel differences, clouds 249 
seem to warrant deeper investigation.  250 
 251 
We included a comparison between ERA5 and ERAi kernel in Figure 5 and there the difference 252 
in cloud mainly leads to the difference in water vapor SW kernel as this difference only appears 253 
in all-sky (Figure 5l) but not in the clear-sky (Figure S7f). 254 
 255 
Figure 2f: The ERAi and ERA5 kernels are noticeably different below ~800mb. Why?  256 
 257 
Mainly due to the difference in water vapor and air temperature below 800hPa. 258 
 259 
Figure 3e and 3k: There are large standard deviations relative to the magnitude of the ERA5 260 
kernels at certain locations within the vertical kernel structure, but for anything above 261 
~950mb, the kernel magnitude is small relative to the lowermost atmospheric levels, and likely 262 
does not contribute much to the vertically-integrated quantity. A zoomed in version of these 263 
plots, highlighting the important standard deviation across kernels in the lowermost levels, 264 
would be informative.  265 
 266 
We would like to keep the current vertical range as the discrepancy in the South Pole region 267 
extents to about 300hPa. 268 
 269 
Figure 3f and 3l. Why is the ERAi kernel so much larger at the lowest levels near the surface 270 
than the ERA5 kernel (and the other kernels)? This is true for both all-sky and clear-sky. 271 
Could vertical resolution of the kernels be playing a role? We discuss the potential influence 272 
of resolution in the Appendix of Kramer et al. (2019, JClim). 273 
 274 
Yes, this is due to the vertical resolution and how the air temperature perturbation is added. 275 
 276 
Interestingly, there is also a fairly large difference between ERA5 and ERAi in the all-sky LW 277 
WV kernel for surface fluxes (figure 5L), but it only shows up in the all-sky kernel, not the 278 
clear-sky. Does that suggest clouds matter more for the LW WV kernel in explaining 279 



differences than they do for the LW Ta kernel, relative to other potential sources of kernel 280 
spread? 281 
 282 
This is an interesting observation and hypothesis. The comparison however may be obscured by 283 
the averaging issues noted in the Appendix. We tried to not speculate here.  284 
 285 
Line 368: Is this the sensitivity of the surface to the vertically integrated kernel change? Only 286 
the sensitivity to a certain level of WV change? It is not obvious from the figure 9 caption 287 
either. Some rethinking of how the kernels are described in the text here and elsewhere would 288 
be helpful. Maybe shorthand acronyms or some other naming convention would be helpful.  289 
 290 
It is relative to the vertically integrated kernel. Caption is revised accordingly. 291 
 292 
Plot 9: I really like this figure. I’m not sure anyone else has shown the sensitivity of these 293 
temperature and water vapor kernels to variability spatially yet. But I think it would be helpful 294 
to go one step further and show what level of WV and cloud variability is impacting the 295 
temporal variability of the kernels most. And does that particular level help explain the multi- 296 
kernel spread in those kernels, evident in Figure 1-8? Or is inter-annual variability not 297 
enough to explain the kernel spread? This comments connects with my general comment #6 298 
above. 299 

 300 
Following this suggestion, we added Figure S8 to show the vertical distribution of water vapor, 301 
cloud profiles and also water vapor kernels. In the ENSO case, the relatively weaker water vapor 302 
LW kernel in the Central Pacific (Figure 5e) is contributed from almost the whole troposphere 303 
(Figure S8c), possibly caused by the increase of cloud cover in the upper troposphere (Figure 304 
S8b). For the difference between ERA5 and ERAi kernel, the vertically integrated difference in 305 
water vapor SW kernel (Figure 5l) is mainly contributed from the mid-to-low troposphere 306 
(Figure S8f), which also corresponds to the discrepancies noticed in Figure 4i, and is partially 307 
due to the increase of cloud cover in mid-troposphere (Figure S8e).  308 
 309 
In summary, the interannual variability contribute to but does not fully explain the inter-kernel 310 
differences as shown in Figure 3 and 4, but both of them demonstrate the state-dependency of 311 
radiative kernels. We clarified these points in the paper. 312 
 313 
 314 
Plot 9: The TOA SW WV kernel is a potentially interesting case where the largest multi-kernel 315 
spread (tropics around 500mb in Figure 6k) sits above the level at which the ERA5 kernel is 316 
the strongest (closer to 800mb in Figure 6j). Building on my comment above, how does the 317 
importance of inter-annual variability play into the large kernel spread at this ~500mb level? 318 
And does the spread at 500mb actually matter much for the vertically-integrated quantity? 319 
This level of detail could be useful for e.g. modeling centers trying to connect TOA biases to 320 
particular biases in their climate states. 321 
 322 
As shown by Figure S8, it suggests that the interannual variation partly explains the 323 
discrepancies among kernel datasets. The difference of cloud field between ERA5 and ERAi 324 
suggest that the discrepancies in WV SW TOA kernel in all-sky are mainly caused by the cloud. 325 



 326 
Figure 10: I struggle to see spatially where the variability in water vapor is having an effect on 327 
the kernels shown in the other subplots. Maybe only for the NE coast of Greenland? Should 328 
cloud changes be shown in this plot instead? I’d give more detailed evidence about why water 329 
vapor is important here.  330 
 331 
Replaced it with cloud cover. 332 
 333 
Line 412-419: Some explanation of why you need both abrupt4xCO2 and piCLim-4xCO2 (e.g. 334 
to remove rapid adjustments) is needed, since most people just use abrupt4xCO2 with Gregory 335 
regression to get feedbacks. 336 
 337 
Yes, this is to remove the rapid adjustment. Explanation was added in Line 437. 338 
 339 
 Line 436 and Equation 5: What does the clear-sky residual term mean physically and why 340 
does it matter for computing cloud feedback? Although the author’s math in Equation 6 341 
works out to be the same as what everyone else uses, I think the way they’ve introduced this 342 
method, and terminology used, is less common. Some extra detail would be helpful.  343 
 344 
The clear-sky residual term means the unexplained part by kernel method. In adjusted cloud 345 
radiative forcing method, such a non-closure term is actually attributed to the cloud feedback.  346 
 347 
Line 463-464: Block and Mauritsen (2013) can be cited here for their nice discussion and 348 
analysis of the non-linearity of the surface albedo kernel in 4xCO2 runs.  349 
Block, K., and T. Mauritsen, 2013: Forcing and feedback in the MPI-ESM-LR coupled model 350 

under abruptly quadrupled CO2. J. Adv. Model. Earth Syst., 5, 676–691, 351 
https://doi.org/10.1002/jame.20041. 352 

 353 
Added. 354 
 355 
Last Column Table 3: The multi-model values differ somewhat across the different kernels, 356 
but not the associated standard deviations, which look to be essentially the same for all rows of 357 
the column. Does this suggest the kernels can estimate feedbacks differently in a systematic 358 
manner across all models, but they do not necessarily estimate the magnitude of the feedback 359 
spread differently? In other words, the kernel may get the model-mean feedback value wrong, 360 
but the spread in feedbacks correct? This is worth noting if so.  361 
 362 
As feedbacks are calculated by the product of radiative kernels (𝐾!) and the anomalies (∆𝑋), 363 
when calculating the standard deviation of feedbacks among the models by the same radiative 364 
kernels, it is the variation of ∆𝑋 among models that matters (as all models use the same 𝐾!) and I 365 
think that’s why different kernel datasets show a close multi-model standard deviation. 366 
 367 
Line 487-491: Since you are not using cloud radiative kernels, the inter-kernel differences in 368 
cloud feedback must come from the difference between all-sky and clear-sky kernels (cloud 369 
masking). Can you identify which of the kernel terms is the culprit? From a related discussion 370 
see text around figs 9-11 in Kramer et al. (2019, JGR), for example. 371 



 Kramer, R. J., A. V. Matus, B. J. Soden, and T. S. L’Ecuyer, 2019: Observation-Based 372 
Radiative Kernels From CloudSat/CALIPSO. JGR Atmospheres, 124, 5431–5444, 373 
https://doi.org/10.1029/2018jd029021. 374 

 375 
In our calculation, we found that the inter-kernel differences in cloud LW feedback are almost 376 
equally contributed from Ta, Ts and WV, and in cloud SW feedback are contributed more from 377 
the albedo. As no dominant contributor or general feature is found, we chose to make no specific 378 
additional comment here.   379 
 380 
 381 
Line 769-793: This is a really nice description of how you develop the water vapor kernel. I’d 382 
highlight in the main text that you have included this section in appendix. I think many kernel 383 
users and developers are looking for a description like this and will turn to it in the future. 384 
There are often question about this calculation. 385 
 386 
We chose to keep the technical details in the appendix. 387 
 388 
 389 


