
1 

 

A long-term dataset of simulated epilimnion and hypolimnion 1 

temperatures in 401 French lakes (1959-2020) 2 

Najwa Sharaf1,2, Jordi Prats3, Nathalie Reynaud1,2, Thierry Tormos1,4, Tiphaine Peroux1,2, 3 

Pierre-Alain Danis1,4 4 
 5 

1Pôle R&D Ecosystèmes Lacustres (ECLA), OFB-INRAE-USMB, Aix-en-Provence, France 6 
2INRAE, Aix Marseille Univ, RECOVER, Team FRESHCO, 3275 Route Cézanne, 13182 Aix-en-Provence, 7 
France 8 
3Segula Technologies, C. Calàbria 169, 08015 Barcelona, Spain 9 
4OFB, Service ECOAQUA, DRAS, 3275 Route Cézanne, 13100 Aix-en-Provence, France 10 
 11 
Correspondence to: Sharaf Najwa (najwa.sharaf@inrae.fr), Tormos Thierry (thierry.tormos@ofb.gouv.fr), 12 
Reynaud Nathalie (nathalie.reynaud@inrae.fr)  13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 

https://doi.org/10.5194/essd-2022-457
Preprint. Discussion started: 14 February 2023
c© Author(s) 2023. CC BY 4.0 License.



2 

 

1. Abstract  54 

Understanding the thermal behavior of lakes is crucial for water quality management. Under climate change, 55 

lakes are warming and undergoing alterations in their thermal structure, including surface and deep-water 56 

temperatures. These changes require continuous monitoring due to the possible major ecological implications on 57 

water quality and lake processes. With the scarcity of long-term in situ water temperature datasets, we present a 58 

regional long-term water temperature dataset (LakeTSim: Lake Temperature Simulations) produced over 401 59 

French lakes by combining numerical modelling and satellite thermal data. The dataset consists of daily 60 

epilimnion and hypolimnion temperatures for the period 1959-2020 simulated with the semi-empirical OKPLM 61 

(Ottosson-Kettle-Prats Lake Model).  We also describe this model and its performance. We present the 62 

uncertainty analysis of simulations with default (parametrized with satellite thermal data over all lakes and in 63 

situ measurements) and calibrated (with in situ temperature measurements for each lake) model parameters as 64 

well as the sensitivity analysis of the latter. Overall, the 90% confidence uncertainty range is largest for 65 

hypolimnion temperature simulations with a median of 8.5 ºC and 2.32 ºC respectively with default and 66 

calibrated parameter values. There is less uncertainty associated with epilimnion temperature simulations with a 67 

median of 5.42 ºC and 1.85 ºC before and after parameter calibration. This dataset will help provide insight into 68 

the thermal functioning of French lakes. It provides over six decades of epilimnion and hypolimnion temperature 69 

data, crucial for climate change studies at a regional scale. The dataset will also be of great advantage for 70 

decision making by stakeholders.    71 

2. Introduction 72 

Lakes, both natural and artificial (i.e., reservoirs and gravel pits) are sentinels of environmental change and  73 

provide important services such as access to drinking water, hydropower production, recreation and fisheries 74 

(Adrian et al., 2009). Under climate change and anthropogenic pressures, many lakes are warming and 75 

consequently experiencing changes to their biophysicochemical structure and function that are leading to 76 

services being compromised (Janssen et al., 2021).  77 

In lakes, water temperature is an essential parameter regulating processes such as the functioning of trophic 78 

webs, oxygen conditions, the physical structure of the water column as well as the biogeochemistry (Yang et al., 79 

2018). Under warming, historical records and future projections demonstrate that for lakes, alterations in the 80 

thermodynamic functioning including warmer temperatures and shifts in mixing regimes already took place and 81 

are expected to persist in the future (Shatwell et al., 2019; Woolway and Merchant, 2019). In this context, they 82 

are undergoing shorter periods of ice cover and longer, more stable periods of thermal stratification (Woolway et 83 

al., 2022). These alterations could have considerable ecological implications for the biological communities 84 

(Lind et al., 2022; Havens and Jeppesen, 2018). For instance, worldwide studies have shown that the expansion 85 

of toxic cyanobacterial blooms is linked to warming (Griffith and Gobler, 2020). Other responses include species 86 

reduced body size (Daufresne et al., 2009), changes in thermal habitat and shifts in species seasonality 87 

(Kharouba et al., 2018).  88 

For assessing the impact of climate change on lake ecosystems it is thus crucial to closely evaluate water 89 

temperature trajectories over the entire water column in space and time.  However, long-term datasets of in situ 90 

temperatures are usually scarce and mostly limited to large lakes (Layden et al., 2015). Moreover, the sampling 91 
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of water temperature differs in terms of approach and frequency, from decades (Piccolroaz et al., 2020) to a few 92 

years (Sharma et al., 2015), thus rendering it challenging to investigate warming trends.    93 

Due to the difficulties in conventional in situ monitoring, which is often expensive, the coupling of modelling 94 

and satellite remote sensing data has become fundamental in the field of limnology (Nouchi et al., 2019). 95 

Modelling provides means to interpolate both temporal and spatial gaps. It thereby allows us to acquire 96 

information about surface water temperatures, which are globally the focus of lake climate change studies, and 97 

deep-water temperatures which are as critical though often disregarded in this context. Several numerical models 98 

that vary in complexity exist for conducting water temperature simulations, the most accurate being deterministic 99 

or process-based models. Nevertheless, regional or global deterministic modelling efforts over long periods are 100 

usually hindered by the lack of sufficiently detailed input data (e.g., meteorological and field data) to run the 101 

models (Kim et al., 2021). For practical and operational purposes, simpler models (semi-empirical, statistical or 102 

hybrid physical-statistical based models) with less requirements for forcing data, have been mostly applied to 103 

assess the impact of climate change on lake ecosystems and study them (Piccolroaz et al., 2020; Toffolon et al., 104 

2014; Sharma et al., 2008). For conducting long-term simulations over a considerable number of lakes, this type 105 

of models is especially useful for detecting trends in time series, which with short datasets is not accurately 106 

achievable (Gray et al., 2018).  107 

The performance of numerical models depends highly on the calibration of their parameters as well as on the 108 

quality of the input data. Satellite remote sensing is an effective way to monitor surface water temperature on a 109 

synoptic scale (Schaeffer et al., 2018; Sharaf et al., 2019) and provide a complementary source of data to in situ 110 

measurements for model calibration or validation purposes (Allan et al., 2016; Babbar-Sebens et al., 2013). In 111 

particular, thermal infrared sensors onboard the Landsat satellites are very adequate for retrospective analysis of 112 

surface water temperature with a spatial resolution adapted for small to medium size lakes and reservoirs at a 113 

bimonthly acquisition frequency. Landsat 4 and 5 TM (Thematic Mapper), 7 ETM+ (Enhanced Thematic 114 

Mapper) and 8 TIRS (Thermal InfraRed Sensor) provide surface temperature data at spatial resolutions of 120, 115 

60 and 100 m respectively. Landsat series records of surface water temperature can be used to validate 3D 116 

hydrodynamic models when in situ measurements are scarce (Sharaf et al., 2021) and to spatially assess the 117 

quality and suitability of aquatic habitat for biological communities (Halverson et al., 2022). Although, satellite 118 

thermal data is limited to the surface, its integration  into model calibration could improve the accuracy of 119 

simulations over the surface layer and the water column (Javaheri et al., 2016). 120 

Here we present on a regional scale, a long-term dataset, LakeTSim (Lake Temperature Simulations), of daily 121 

epilimnion and hypolimnion temperature simulations for the period 1959-2020 over 401 French lakes monitored 122 

under the Water Framework Directive (WFD) including natural and artificial lakes, reservoirs and gravel pits. 123 

We present the OKPLM (Ottosson-Kettle-Prats Lake Model) used to produce water temperature simulations and 124 

its performance. Further, we provide the uncertainty analysis of simulations with default (parametrized with 125 

satellite thermal data over an entire set of lakes) and calibrated (with in situ temperature measurements for each 126 

lake) model parameter values as well as the sensitivity analysis for the latter. The goal of publishing this dataset 127 

is to provide new insight about surface and deep-water temperatures of lakes in France especially for those that 128 

are not monitored regularly through conventional methods.  This long-term dataset is valuable for developing 129 

temperature indicators for identifying warming trends, extreme events and possible changes in the mixing regime 130 
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among others. These indicators will contribute to assess the impact of climate change on lakes thermal 131 

functioning and its influence on the biological community structure and trophic webs.    132 

3. Data and methodology  133 

3.1. The OKP Lake Model description 134 

The OKPLM (Ottosson-Kettle-Prats Lake Model) is a two-layer semi-empirical data model adapted from Kettle 135 

et al (2004) for the epilimnion module and Ottosson & Abrahamsson (1998) for the hypolimnion module. It was 136 

further modified in Prats & Danis (2019) and used to simulate daily epilimnion and hypolimnion temperatures of 137 

401 French lakes. These modifications consisted mainly of simplifying the mixing algorithm used in Ottosson & 138 

Abrahamsson (1998) using a basic stability condition whereas for the epilimnion module a sinusoidal fit to 139 

average daily solar radiation was used instead of the theoretical clear-sky radiation. The OKPLM also runs on 140 

weekly and monthly frequencies. The regionalization of the parameters of the model mainly depends on the 141 

geographical and morphological properties of the lake (maximum depth, volume, surface area, latitude and 142 

altitude). The model requires few meteorological forcing data: solar radiation and air temperature.   143 

The model calculates water temperature as follows: 144 

𝑇𝑒,𝑖 = 𝐴 + 𝐵𝑓(𝑇𝑎,𝑖
∗ ) + 𝐶𝑆𝑖                                                                                                                                       (1) 145 

where 𝑇𝑒 is the epilimnion temperature (°C), 𝑖 is the day number, 𝐴, 𝐵 and 𝐶 are calibration parameters, 𝑆 is the 146 

solar radiation (W m-2) and 𝑓(∗) is an exponential smoothing function with 𝑇𝑎,𝑖
∗  defined as:  147 

𝑇𝑎,𝑖
∗ = 𝑇𝑎,𝑖–𝑀𝐴𝐴𝑇                                                                                                                                                  (2) 148 

where 𝑇𝑎,𝑖 is air temperature (°C) and 𝑀𝐴𝐴𝑇 is the annual mean air temperature (°C).   149 

𝑇ℎ,𝑖 = 𝐴 ∙ 𝐷 + 𝐸 ∙ 𝑔(𝑇𝑒,𝑖)                                                                                                                                        (3) 150 

where 𝑇ℎ is the hypolimnion temperature (°C), 𝐷 and 𝐸 are calibration parameters and 𝑔(𝑇𝑒,𝑖) is an exponential 151 

smoothing of 𝑇𝑒. 152 

The OKPLM is integrated into a Python 3 package, “ALAPROD” (A LAke MODElling project-PRODuction) 153 

which for the present study was used to simulate epilimnion and hypolimnion water temperatures (Danis, 2020). 154 

ALAPROD is part of a software environment called ALAMODE. In addition to lake water temperature, this 155 

package can also be used to make simulations of stream water temperature, hydrodynamics and stream flow 156 

rates. In this package OKPLM can be run in two modes: the “default” mode where model parameters use the 157 

parameterization presented in Prats & Danis (2019), and the “calibrated” mode where model parameters are 158 

calibrated individually for each lake by using in situ temperature measurements. The “default” parameterization 159 

provides expressions of the model parameters as a function of lake characteristics (latitude, altitude, surface, 160 

volume, depth). The expressions for epilimnion module parameters were derived using surface temperatures 161 

estimated from Landsat infrared data acquired between 1999 and 2016 over French lakes (Prats et al., 2018), 162 

while the parameterization of hypolimnion parameters was derived from temperature profile data of 357 lakes.  163 
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3.2. Input data 164 

The OKPLM was forced with two sources of meteorological data extracted from the SAFRAN (Système 165 

d’Analyse Fournissant des Renseignements Adaptés à la Nivologie) analysis system (Durand et al., 1993) and 166 

the S2M (SAFRAN–SURFEX/ISBA–Crocus–MEPRA) meteorological reanalysis (Vernay et al., 2015, 2022).  167 

The SAFRAN system provides meteorological variables at an hourly time step estimated through interpolation 168 

and assimilation processes with an 8 km square grid. Average daily data from the nearest grid cell was selected 169 

for each study site. The difference in altitude between the study site and the grid cell was accounted for by 170 

applying an adiabatic elevation correction on air temperature.   171 

The S2M model chain combines the SAFRAN meteorological analysis and the SURFEX/ISBA–Crocus snow 172 

cover model including MEPRA (Modèle Expert d’Aide à la Prévision du Risque d’Avalanche). It is more 173 

adapted to mountainous regions as it has a spatial definition where spatial heterogeneity is taken into 174 

consideration. The S2M reanalysis uses a vertical resolution of 300 m and is the result of simulations performed 175 

over mountainous zones called “massifs” each corresponding approximately to an average surface of 1000 km2. 176 

These massifs represent the spatial variability of processes in mountainous regions. Average daily data was used 177 

for each study site.  178 

In situ temperature profiles, geographical and morphological data of the study sites were extracted from the 179 

PLAN_DEAU database managed by INRAE (l’Institut National de Recherche pour l’Agriculture, l’Alimentation 180 

et l’Environnement) and R&D consortium ECLA (ECosystèmes LAcustres) at Aix-en-Provence, France.  181 

3.3. Lake simulations 182 
For this study, we considered 401 lakes (Figure 1) located in Metropolitan France monitored according to the 183 

Water Framework Directive (WFD). Here we refer to lakes as natural lakes, reservoirs, artificial lakes and gravel 184 

pits. The present lake dataset includes 54 natural lakes, 302 reservoirs, 38 artificial lakes and 7 gravel pits that 185 

have characteristics ranging between 0 and 2279.7 m for altitude, 0.8 and 309.7 m for maximum depth, 0.08 and 186 

577.12 km2 for surface area and 5 × 104 and 8.9 × 1010 m3 for volume.  187 

The OKPLM was run using “default” and “calibrated” parameters with two sources of meteorological data 188 

“SAFRAN” and “S2M” over specific sets of lakes. Among the total number of study sites (n=401), the model 189 

was forced using SAFRAN and S2M meteorological data respectively for 210 and 21 lakes with “default” model 190 

parameters, and for 164 and 6 lakes with “calibrated” model parameters. The geomorphological characteristics 191 

of the simulated lakes with each of the abovementioned configurations are shown in Table 1. “Calibrated” model 192 

parameters are adopted when in situ temperature measurements are available; conversely, “default” parameters 193 

are used. S2M data are more representative of mountainous meteorological conditions than SAFRAN data and 194 

were thus used for simulating the water temperature in lakes situated at altitudes higher than 900 m.   195 

 196 

 197 
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 198 

Figure 1 : Location and lake type of the 401 French lakes simulated with the OKPLM in “default” and “calibrated” 

modes, with SAFRAN and S2M meteorological data for the period 1959-2020. 

 

Table 1: Characteristics of the lakes simulated with the OKPLM in “default” and “calibrated” modes with SAFRAN 

and S2M meteorological data for the period 1959-2020; n represents the number of lakes. 

Variables Minimal - Maximal range 

Model parameters Default Calibrated 

Meteorological data SAFRAN S2M SAFRAN S2M 

n 210 21 164 6 

Altitude (m) 1 - 1753 916 - 2213  0 - 2279.7 1577.5 - 2172.5  

Latitude (°N) 41.47 - 50.87 42.55 - 46.21  42.88 - 49.87 42.65 - 42.86 

Longitude (°E) -3.90 - 9.48 0.08 - 6.94 -4.24 - 6.96 -0.33 - 1.92 

Maximal depth (m) 0.8 - 309.7 10.3 - 180 1.2 - 124 49 - 112 

Surface area (km2) 0.08 - 577.12 0.11 - 6.52 0.29 - 57.57 0.45 - 1.21 

Volume (m3) 5×104 – 8.9×1010 51.4×104 - 33.32×107 12.9×104 - 49.88×107 72.7×105 - 68.6×106 

 199 

3.4. Calibration, uncertainty and sensitivity analysis  200 

The initial assessment of the quality of OKPLM simulations described in the previous section has been 201 

completed with a sensitivity and uncertainty analysis. For calibration and uncertainty analysis we used the 202 

https://doi.org/10.5194/essd-2022-457
Preprint. Discussion started: 14 February 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

package “CUSPY” (Calibration, Uncertainty analysis and Sensitivity analysis in PYthon), which is part of the 203 

software environment “ALAMODE”  (Danis, 2020) and acts as an interface to the package “pyemu” (White et 204 

al., 2016). 205 

Parameter values were calibrated for lakes with enough available in situ data (temperature profiles and 206 

bathymetry). Parameter values were calibrated using the Gauss-Levenberg-Marquardt algorithm and Tikhonov 207 

regularization (White et al., 2020). In addition to the calibrated parameter values, the calibration process also 208 

provided posterior parameter uncertainty and composite scaled sensitivities. Composite scaled sensitivities 209 

(CSS) indicate the quantity of information provided by each parameter and the sensitivity of the model to them 210 

(Ely, 2006). 211 

The uncertainty of the simulations (calibrated and default) was analyzed using Monte Carlo simulations. For 212 

each lake, 100 Monte Carlo simulations were carried by randomly selecting the value of the model parameters. 213 

Two parameters, 𝑎𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 and 𝑠𝑤_𝑓𝑎𝑐𝑡𝑜𝑟, multiplying the meteorological input, were added to account for 214 

possible uncertainties in input data. For default simulations, the a priori distribution of the parameters was 215 

assumed to follow a normal distribution with the average value and lower and upper bounds shown in Table 2. 216 

The ranges for parameters 𝐴, 𝐵 and 𝐶 were estimated as four times the standard deviation of the residuals of the 217 

formulas used to estimate them according to Prats & Danis (2019). For 𝐷, 𝐸 and 𝛽, given their higher 218 

uncertainty, the full 0-1 range was explored. For 𝑀𝐴𝐴𝑇, 𝑎𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 and 𝑠𝑤_𝑓𝑎𝑐𝑡𝑜𝑟, reasonable ranges (±10%) 219 

were chosen to account for meteorological data uncertainty (measurement error, errors in regionalization, etc.). 220 

For calibrated simulations, the distribution of the parameters was obtained from the calibration results. 221 

Table 2: Characteristics of the a priori distributions of the model parameters. Parameters with tilde indicate 

parameter values estimated for a particular lake according to the regionalization formulas by Prats & Danis (2019). 

Parameter Average value Lower bound Upper bound 

𝑨 𝐴 𝐴 − 2 · 0.74 𝐴 + 2 · 0.74 

𝑩 𝐵 𝐵 − 2 · 0.08 𝐵 + 2 · 0.08 

𝑪 𝐶 𝐶 − 2 · 0.004 𝐶 + 2 · 0.004 

𝑫 �̂� 0 1 

𝑬 𝐸 0 1 

𝜶 𝛼 0 𝛼 + 2 · 0.08 

𝜷 𝛽 0 1 

𝑴𝑨𝑨𝑻 𝑀𝐴𝐴𝑇^  𝑀𝐴𝐴𝑇^ − 2 · 0.5 𝑀𝐴𝐴𝑇^ + 2 · 0.5 

𝒂𝒕_𝒇𝒂𝒄𝒕𝒐𝒓 1 0.9 1.1 

𝒔𝒘_𝒇𝒂𝒄𝒕𝒐𝒓 1 0.9 1.1 

 222 
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4. Model performance 223 

The performance of the OKPLM was assessed in Prats & Danis (2019) by comparing its performance to two 224 

other often-applied models in lake studies, air2water and FLake. The air2water model is a semi-empirical model 225 

used to calculate the epilimnion temperature of temperate lakes (Toffolon et al., 2014). Flake is a one-226 

dimensional (1D) hydrodynamic lake model for simulating temperature vertical profiles and mixing conditions 227 

in lakes (Mironov, 2008). To assess their performances, both models were run with default parameter values 228 

between 1999 and 2016 over a set of 409 French lakes of different types (reservoirs, natural lakes, artificial lakes 229 

and gravel pits) with temperature measurements including five lakes with continuous profile measurements. 230 

Meteorological forcing (SAFRAN) consisted of air temperature for the air2water model in addition to solar 231 

radiation, vapor pressure, cloud cover and wind speed for Flake.  232 

The OKPLM, air2water and FLake simulations were assessed through comparison to in situ measurements. For 233 

epilimnion temperatures, the average discrepancies calculated between OKPLM simulations and observations 234 

remained below 2 °C in most cases, in contrast to the air2water and Flake models. The performance comparison 235 

between the OKPLM, air2water and FLake yielded respectively median RMSE’s (Root Mean Square Error) of 236 

1.7, 2.3 and 2.6 °C calculated between simulations and observations of epilimnion water temperature. For 237 

hypolimnion temperatures, the median RMSEs by lake type obtained with OKPLM simulations remained below 238 

2 °C, except for gravel pits (RMSE = 2.7 °C) and reservoirs (RMSE = 2.3 °C), whereas FLake yielded a median 239 

RMSE of 3.3 °C. For the epilimnion, the differences between the RMSE of lake types were not significant. In 240 

terms of depth, discrepancies between epilimnion temperature simulations with the OKPLM and measurements 241 

were highest for lakes with a depth > 10 m and for ponds around 1 m deep. The OKPLM simulations were also 242 

evaluated seasonally, in particular during summer and winter. The model simulated temperatures well with a 243 

median RMSE of 1.4 and 1.6 °C in summer and winter respectively. 244 

5. Uncertainty analysis 245 

The uncertainty analysis revealed that, overall, for both simulations with default and calibrated model 246 

parameters; uncertainty was higher and recurrent for hypolimnion temperature compared to epilimnion 247 

temperature especially in reservoirs (Figure 2). In default simulations, the uncertainty of simulated values 248 

showed a clear relation with lake maximal depth (Figure 2). For epilimnion temperature, uncertainty increased 249 

with maximal depth in particular for lakes with depths greater than 10 m. For hypolimnion temperature, 250 

uncertainty was maximal for lakes with depths around 10 m. 251 

After calibration, there was an important reduction in simulation uncertainty. For default simulations of 252 

epilimnion temperature the median of the 90% confidence uncertainty range was 5.42 ºC, while after calibration 253 

it was 1.85 ºC. For hypolimnion temperature, the median of the 90% confidence uncertainty range of default 254 

simulations was 8.5 ºC, while it was 2.32 ºC after calibration. However, many reservoirs with depths greater than 255 

8 m still had a much greater uncertainty (uncertainty range > 4 ºC) than the rest of lakes after calibration. 256 

 257 

  258 
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 259 

Figure 2: Average 90% confidence uncertainty range for epilimnion and hypolimnion temperatures in calibrated (n = 

170) and default (n = 231) simulations for the period 1959-2020.  

6. Sensitivity analysis 260 
The parameter to which the model was most sensitive was the parameter C (Figure 3), which multiplies solar 261 

radiation in Eq. (1). The CSS for C were an order of magnitude greater than for the next parameters with highest 262 

CSS, the parameter α and at_factor, both influencing the effect of air temperature on simulated water 263 

temperature. Other parameters to which the model was somewhat sensitive were E, B and β. The model was 264 

quite insensitive to sw_factor, MAT and A. The parameter D, with CSS several orders of magnitude smaller than 265 

the other parameters, was unidentifiable. 266 

 267 

Figure 3: Composite scaled sensitivities (CSS) for each parameter. The boxplots indicate the distribution of CSS 

between the simulations calibrated for different lakes. The y-axis is in logarithmic form.  
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The model tended to be more sensitive to the parameter values in the case of reservoirs than in the case of natural 268 

lakes (Figure 4). Some parameters (α, β) also showed a dependency on lake depth. The increase of model 269 

sensitivity to the parameter α with depth can be related with the increase in uncertainty with depth in the default 270 

simulations. In the case of the parameter β, CSS were mostly low, with a median value of 0.49. However, for 271 

some reservoirs and artificial water bodies CSS could attain very high values. 272 

Although the model in general was not very sensitive to the values of the parameters most directly related with 273 

hypolimnion temperatures (D, E, β), the quality of hypolimnion temperature was greatly improved through 274 

calibration. This would seem to indicate that the quality of simulated hypolimnion temperature was improved 275 

through the improvement of epilimnion temperature simulations. 276 

 277 

Figure 4 : Composite scaled sensitivities (CSS) for each model parameter as a function of maximal depth. 

7. Discussion and implications 278 

Lakes are undeniably changing under climate change and long-term future projections show that the shifts in 279 

ecosystem functioning will continue with aggravated alterations. In particular, given the key role of warming 280 

lake water temperature in regulating ecosystem processes, its warming has become a response that is crucial to 281 

monitor, explore and understand. Hence, the importance of developing or adopting approaches, such as 282 

numerical models, that will provide long-term information about water temperature and allow us to understand 283 

the thermal response of lakes to climate change.  284 

Here we used a semi-empirical model, the OKPLM, to simulate six decades of epilimnion and hypolimnion 285 

water temperatures in French lakes. In comparison to similar models, overall, the OKPLM provides acceptable 286 

estimations of water temperatures, with better results for epilimnion temperatures. The values of the RMSEs 287 

provided in Prats & Danis (2019) and obtained between OKPLM simulations and observations are comparable to 288 

values found in studies applying complex hydrodynamic lake models (Read et al., 2014; Fang et al., 2012). The 289 

analysis revealed that the uncertainty associated with both epilimnion and hypolimnion temperature simulations 290 

was highly related to maximal lake depth. The uncertainty in hypolimnion simulations is more important and 291 

especially associated with reservoirs having maximal depths > 8 m. The calibration of model parameters 292 
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significantly reduced the uncertainties yet, for hypolimnion temperatures, they remained considerably high and 293 

increased with depth especially in reservoirs.                    294 

The high levels of uncertainty found in reservoirs could be somewhat attributed to the lack of consideration of 295 

water level fluctuations in the model. In contrast to other waterbodies (e.g., natural lakes, artificial lakes and 296 

gravel pits) reservoirs experience significant variations in their water level, which influences the heat budget and 297 

hence their thermal regime. Therefore, even under similar meteorological conditions lakes and reservoirs could 298 

have different thermal behaviors (Nowlin et al., 2004). In reservoirs, the discharge depth is a driver of thermal 299 

structure. Deep discharges could contribute to warmer bottom waters (Carr et al., 2020) whereas in some cases if 300 

the reservoir is shallow or if the discharge depth is not deep, it could demonstrate lake-like thermal behavior. 301 

This does not necessarily mean that, in this case, the entire functioning of the reservoir resembles one of a 302 

natural lake; there are still differences to consider (Detmer et al., 2022). 303 

The application of the OKPLM should be made with caution given its performance and depending on the 304 

objective of the study. The model does not take into account a complete set of meteorological forcing (e.g., with 305 

cloud cover, relative humidity and wind speed and direction) or other variables (e.g., inflow and outflow rates or 306 

water level fluctuations, inflow discharge depth and inflow temperature) that could influence the thermal 307 

structure of the ecosystem (Yang et al., 2020; Carr et al., 2020). Furthermore, the OKPLM was parametrized for 308 

a specific set of lakes with particular geomorphological characteristics. Thus, it would be advisable to apply the 309 

model over lakes with similar characteristics. If the aim is to conduct a long-term regional or global study for 310 

studying general patterns of climate change impacts over a large number of study sites, the utilization of semi-311 

empirical models such as the OKPLM is the most suitable choice. Although complex, deterministic or process-312 

based models provide a more accurate representation of thermal conditions, applying these models over several 313 

study sites and for long periods is usually hindered by the scarcity of the required input data. The increased 314 

complexity of these models (with reference to an increased number of model parameters) is beneficial for 315 

representing additional ecosystem processes. Yet the greater number of model parameters, increases the 316 

sensitivity of models and demands more calibration efforts (Lindenschmidt, 2006). Furthermore, a reduction in 317 

model errors is sometimes associated with an increased complexity in model structure; however, this is not 318 

always consistent since a complex model does not necessarily provide better estimations and thus lower errors 319 

than a simple model (Snowling and Kramer, 2001).             320 

Our goal in publishing the present dataset is to expand knowledge about the water temperature of French lakes 321 

and provide data, with enough details and reliability, that it could be implemented in different studies where 322 

water temperature is implicated for understanding specific processes or interactions, in particular under climate 323 

change. Hence the significance of the present findings. The present study, making use of a semi-empirical model 324 

to provide long-term data about water temperature, was necessary for several reasons. Equipping a large number 325 

of lakes with thermal sensors is challenging and labor-intensive, it comes with a high financial cost that is often 326 

not available. Consequently, historical and even current water temperature datasets are often scarce, which can 327 

be problematic for studying the impact of climate change, as it requires high frequency data over a long duration 328 

of time for accurate analysis. In general, the higher the sampling frequency and duration, the better the data is 329 

suited to estimate or analyze specific processes or warming trends. The sampling frequency and length of a 330 

dataset have been shown to play a role in determining the accuracy of estimating warming trends where time 331 
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series longer than 30 years seem to be the most appropriate (Gray et al., 2018). Although, the duration and 332 

frequency of a dataset have a major role in reflecting accurate representations, their influence is scarcely 333 

addressed when it comes to climate change studies related to warming trends in water temperature.  334 

This dataset is very useful for climate change studies; it could be used for developing and analyzing several 335 

temperature indicators (e.g., annual or seasonal maximal and minimal temperature values, temperature exceeding 336 

certain thresholds with biological implications, etc.). Further, mixing and stratification dynamics are important to 337 

characterize as they drive lake biogeochemistry. Among other processes, they influence the distribution of 338 

nutrients, primary productivity and the composition of phytoplankton and zooplankton communities along the 339 

water column (Judd et al., 2005). With the LakeTSim dataset, it is possible to classify the mixing regime of lakes 340 

and investigate possible triggers of regime shifts.    341 

8. Code availability        342 

The respective codes for the “CUSPY” (Prats-Rodríguez and Danis, 2023a) and “OKPLM” (Prats-Rodríguez 343 

and Danis, 2023b) packages, which can be used to conduct sensitivity and uncertainty analysis and to run the 344 

OKP Lake Model, are available at https://github.com/inrae/ALAMODE-cuspy and 345 

https://github.com/inrae/ALAMODE-okp as well as ZENODO.    346 

9. Data availability 347 

The LakeTSim dataset (Sharaf et al., 2023) for epilimnion and hypolimnion water temperature simulations and 348 

supporting information are available at doi:10.57745/OF9WXR . The file “00_Data_description.txt” contains a 349 

description of the dataset. The geographical (longitude and latitude) and morphological (surface area, volume 350 

and maximum depth) data for the 401 lakes are presented in the file “01_Lake_data.txt” in addition to the name, 351 

type, altitude and the identification code for each lake. The data for daily epilimnion (tepi) and hypolimnion 352 

(thyp) temperatures simulated with the OKPLM are presented in text files available in the folders 353 

“02_LakeTSim_SAFRAN_OKPdefault_data”, “03_LakeTSim_SAFRAN_OKPcalibrated_data”, 354 

“04_LakeTSim_S2M_OKPdefault_data” and “05_LakeTSim_S2M_OKPcalibrated_data”. Each file within these 355 

folders is named according to the identification code of the lake.      356 

10. Conclusions 357 

We present the LakeTSim dataset and the semi-empirical OKP Lake Model for simulating water temperature in 358 

Lakes. We applied the model over a set of 401 French lakes for the period 1959-2020 to derive daily simulations 359 

of epilimnion and hypolimnion water temperatures, here referred to as the LakeTSim dataset. Previous efforts to 360 

assess the model’s performance show an overall acceptable representation of epilimnion and hypolimnion 361 

temperatures when compared to in situ measurements.  The uncertainty analysis of simulations demonstrates that 362 

more uncertainty is associated firstly with default simulations, secondly hypolimnion compared to epilimnion 363 

temperatures and, thirdly deep lakes in particular reservoirs (maximal depth > 8 m). Although the calibration 364 

significantly decreases the uncertainties related to both the epilimnion and hypolimnion, in some cases they are 365 

still considerable for the latter. Based on these results and if enough observation data are available, optimally we 366 

recommend the use of the OKPLM over shallow lakes with calibrated model parameters. However, if applied in 367 

its default or even calibrated configuration over deep lakes, one should be aware of the presented limitations and 368 

address them in the analysis. The LakeTSim dataset is valuable for assessing the impact of climate change on 369 
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lakes thermal functioning, which is often hindered by the lack of water temperature observations. The present 370 

dataset will provide new insights about the thermal behavior of French lakes. This will be of great advantage for 371 

stakeholders, as it should allow them to take better management strategies under climate change. 372 
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