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1. Abstract   54 

Understanding the thermal behavior of lakes is crucial for water quality management. Under climate change, lakes 55 

are warming and undergoing alterations in their thermal structure, including surface and deep-water temperatures. 56 

These changes require continuous monitoring due to the possible major ecological implications on water quality 57 

and lake processes. We combined numerical modelling and satellite thermal data to create a regional dataset 58 

(LakeTSim: Lake Temperature Simulations) of long-term water temperatures for 401 French lakes in order to 59 

tackle the scarcity of in situ water temperature (Sharaf et al., 2023; doi:10.57745/OF9WXR).  The dataset consists 60 

of daily epilimnion and hypolimnion water temperatures for the period 1959-2020 simulated with the semi-61 

empirical OKPLM (Ottosson-Kettle-Prats Lake Model) and the associated uncertainties. Here, we describe the 62 

model and its performance. Additionally, we present the uncertainty analysis of simulations with default parameter 63 

values (parametrized as a function of lake characteristics) and calibrated parameter values, along with the analysis 64 

of the sensitivity of the model to parameter values and biases in the input data. Overall, the 90% confidence 65 

uncertainty range is largest for hypolimnion temperature simulations with a median of 8.5 ºC and 2.32 ºC 66 

respectively with default and calibrated parameter values. There is less uncertainty associated with epilimnion 67 

temperature simulations with a median of 5.42 ºC and 1.85 ºC, respectively before and after parameter calibration. 68 

This dataset provides over six decades of epilimnion and hypolimnion temperature data, crucial for climate change 69 

studies at a regional scale. It will help provide insight into the thermal functioning of French lakes and can be used 70 

to help decision-making and stakeholders.    71 

2. Introduction 72 

Lakes, both natural and artificial (i.e., reservoirs and gravel pits) are sentinels of environmental change and  provide 73 

important services such as access to drinking water, hydropower production, recreation and fisheries (Adrian et 74 

al., 2009). Under climate change and anthropogenic pressures, many lakes are warming and consequently 75 

experiencing changes to their biophysicochemical structure and function that are leading to services being 76 

compromised (Janssen et al., 2021).  77 

In lakes, water temperature is an essential parameter regulating processes such as the functioning of trophic webs, 78 

oxygen conditions, the physical structure of the water column as well as the biogeochemistry (Yang et al., 2018). 79 

Under warming, historical records and future projections demonstrate that for lakes, alterations in the 80 

thermodynamic functioning including warmer temperatures and shifts in mixing regimes already took place and 81 

are expected to persist in the future (Shatwell et al., 2019; Woolway and Merchant, 2019). In this context, they are 82 

undergoing shorter periods of ice cover and longer, more stable periods of thermal stratification (Woolway et al., 83 

2022). These alterations could have considerable ecological implications for the biological communities (Lind et 84 

al., 2022; Havens and Jeppesen, 2018). For instance, worldwide studies have shown that the expansion of toxic 85 

cyanobacterial blooms is linked to warming (Griffith and Gobler, 2020). Other responses include species reduced 86 

body size (Daufresne et al., 2009), changes in thermal habitat and shifts in species seasonality (Kharouba et al., 87 

2018).  88 

It is thus crucial to closely evaluate water temperature trajectories over the entire water column in space and time 89 

when assessing the impact of climate change on lake ecosystems. However, the lack of data coverage, both 90 

spatially and temporally, makes it difficult to accurately characterize lakes thermal response to climate change and 91 

to identify warming trends (Gray et al., 2018). Indeed, long-term datasets of in situ temperatures are usually scarce 92 

https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/OF9WXR
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and mostly limited to large lakes (Layden et al., 2015). Moreover, sampling frequency and temporal coverage of 93 

in situ water temperature varies greatly from one lake to the next, from a few years (Sharma et al., 2015) up to 94 

decades (Piccolroaz et al., 2020; Rimet et al., 2020).     95 

Due to the difficulties in setting up conventional (i.e., in situ) monitoring programs tied to e.g., costs, governance 96 

and intercalibration, the coupling of modelling and satellite remote sensing data has become fundamental in the 97 

field of limnology (Nouchi et al., 2019). Modelling provides means to interpolate both temporal and spatial gaps. 98 

It thereby allows us to acquire information about surface water temperatures, which are globally the focus of lake 99 

climate change studies, and deep-water temperatures which are as critical though often disregarded in this context 100 

(however see Pilla et al., 2020). Several numerical models that vary in complexity exist for conducting water 101 

temperature simulations, the most accurate being deterministic or process-based models. Nevertheless, regional or 102 

global deterministic modelling efforts over long periods are usually hindered by the lack of sufficiently detailed 103 

input data (e.g., meteorological and field data) to run the models (Kim et al., 2021). For practical and operational 104 

purposes, simpler models (semi-empirical, statistical or hybrid physical-statistical based models) with less 105 

requirements for forcing data, have been mostly applied to assess the impact of climate change on lake ecosystems 106 

and study them (Piccolroaz et al., 2020; Toffolon et al., 2014; Sharma et al., 2008). Long-term simulations across 107 

a considerable number of lakes are made possible with this type of models, enabling the detection of trends in time 108 

series data that are not achievable with shorter datasets (Gray et al., 2018).  109 

The performance of numerical models depends highly on the calibration of their parameters as well as on the 110 

quality of the input data. Satellite remote sensing is an effective way to monitor surface water temperature on a 111 

synoptic scale (Schaeffer et al., 2018; Sharaf et al., 2019) and provide a complementary source of data to in situ 112 

measurements for model calibration or validation purposes (Allan et al., 2016; Babbar-Sebens et al., 2013). In 113 

particular, thermal infrared sensors onboard the Landsat satellites are very adequate for retrospective analysis of 114 

surface water temperature with a spatial resolution adapted for small to medium size lakes and reservoirs at a 115 

bimonthly acquisition frequency. Landsat 4 and 5 TM (Thematic Mapper), 7 ETM+ (Enhanced Thematic Mapper) 116 

and 8 TIRS (Thermal InfraRed Sensor) provide surface temperature data at spatial resolutions of 120, 60 and 100 117 

m respectively. Landsat series records of surface water temperature can be used to validate 3D hydrodynamic 118 

models when in situ measurements are scarce (Sharaf et al., 2021) and to spatially assess the quality and suitability 119 

of aquatic habitat for biological communities (Halverson et al., 2022). Although, satellite thermal data is limited 120 

to the surface, its integration  into model calibration could improve the accuracy of simulations over the surface 121 

layer and the water column (Javaheri et al., 2016). 122 

Here we present on a regional scale, a long-term dataset, LakeTSim (Lake Temperature Simulations), of daily 123 

epilimnion and hypolimnion temperature simulations, as well as uncertainties, for the period 1959-2020 over 401 124 

French lakes monitored under the Water Framework Directive (WFD) including natural and artificial lakes, 125 

reservoirs and gravel pits. We present the OKPLM (Ottosson-Kettle-Prats Lake Model) used to produce water 126 

temperature simulations and its performance. Further, we provide the uncertainty analysis of simulations with 127 

default (parametrized with in situ and satellite thermal data over an entire set of lakes) and calibrated (with in situ 128 

temperature measurements for each lake) model parameter values as well as the sensitivity analysis for the latter. 129 

The goal of publishing this dataset is to provide new insight about epi- and hypolimnion temperatures of lakes in 130 

France especially for those that are not monitored regularly through conventional methods. This long-term dataset 131 
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is valuable for developing temperature indicators for identifying warming trends, extreme events and possible 132 

changes in the mixing regime among others. These indicators will contribute to assess the impact of climate change 133 

on lakes thermal functioning and its influence on the biological community structure and trophic webs.    134 

3. Data and methodology  135 

3.1. The software suite ALAMODE 136 

The simulations, sensitivity and uncertainty analysis presented in this paper were made using the software suite 137 

ALAMODE (A LAke MODElling project). ALAMODE (Danis, 2020) is a software suite developed in python 3 138 

by the Pôle R&D Ecosystèmes Lacustres (ECLA) and SEGULA Technologies to facilitate the realization of 139 

simulations of lakes and the management of related information. It comprises multiple modules and packages 140 

designed for lake and tributary modelling, as well as for processing the data necessary to operate these models. 141 

These packages include OKPLM (Ottosson-Kettle-Prats Lake Model), CUSPY (Calibration, Uncertainty analysis 142 

and Sensitivity analysis in PYthon), TMOD (Temperature MODelling), GLMtools (General Lake Model tools), 143 

“tributary”, TINDIC (Temperature INDICators) and ALAPROD (ALAMODE-Production). OKPLM (Prats-144 

Rodríguez and Danis, 2023b) is used to simulate epilimnion and hypolimnion water temperatures in lakes while 145 

CUSPY (Prats-Rodríguez and Danis, 2023a) is used for model parameters estimations and conducting uncertainty 146 

and sensitivity analyses. TMOD is used for managing the T-MOD database designated to facilitate the realization 147 

and consultation of simulations. GLMtools is used to conduct lake hydrodynamic simulations using the one-148 

dimensional hydrodynamic General Lake Model (Hipsey et al., 2019) while “tributary” is used for the estimation 149 

of flow and temperature of lake tributaries. The package TINDIC is used for calculating temperature indicators 150 

from model simulations. Finally, ALAPROD integrates all the functionalities to produce simulations into a single 151 

package: simulation of stream water temperature, of lake hydrodynamics and temperature, and of stream flow rate. 152 

It also includes sensitivity and uncertainty analysis features. The functionalities of these packages can be accessed 153 

either by using each package separately or by utilizing the ALAPROD package, which depends on the TMOD 154 

database and requires access to it.  155 

At present, only the ALAMODE packages related to the main functionalities used in this work are publicly 156 

available (see Code availability section): the simulation of lake temperatures using the Ottosson-Kettle-Prats Lake 157 

Model (Prats & Danis, 2019), implemented in the package OKPLM, and the sensitivity and uncertainty analysis 158 

tools in the CUSPY package. We used ALAPROD to access the functionalities of both packages.  159 

3.2. The OKP Lake Model description 160 

The OKPLM (Ottosson-Kettle-Prats Lake Model) (Prats & Danis, 2019) is a two-layer semi-empirical data model 161 

adapted from Kettle et al (2004) for the epilimnion module and Ottosson & Abrahamsson (1998) for the 162 

hypolimnion module. The modifications proposed in Prats & Danis (2019) consisted mainly of simplifying the 163 

mixing algorithm used in Ottosson & Abrahamsson (1998) using a basic stability condition, whereas for the 164 

epilimnion module a sinusoidal fit to average daily solar radiation was used instead of the theoretical clear-sky 165 

radiation. The OKPLM also runs on weekly and monthly frequencies. The regionalization of the parameters of the 166 

model mainly depends on the geographical and morphological properties of the lake (maximal depth, volume, 167 

surface area, latitude and altitude). The model requires few meteorological forcing data: solar radiation and air 168 

temperature. 169 
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The model calculates water temperature as follows: 170 

𝑇𝑒,𝑖 = 𝐴 + 𝐵𝑓(𝑇𝑎,𝑖
∗ ) + 𝐶𝑆𝑖                                                                                                                                       (1) 171 

where 𝑇𝑒 is the epilimnion temperature (°C), 𝑖 is the day number, 𝐴, 𝐵 and 𝐶 are calibration parameters, 𝑆 is the 172 

solar radiation (W m-2) and 𝑓(∗) is an exponential smoothing function with 𝑇𝑎,𝑖
∗  defined as:  173 

𝑇𝑎,𝑖
∗ = 𝑇𝑎,𝑖– 𝑀𝐴𝐴𝑇                                                                                                                                                    (2) 174 

Where 𝑇𝑎,𝑖 is air temperature (°C) and 𝑀𝐴𝐴𝑇 is the annual mean air temperature (°C). The smoothing function 175 

𝑓(∗) is such that it gives greater weight to the nearest observations and the weights decrease exponentially. It is 176 

defined as: 177 

𝑓(𝑇𝑎,1
∗ )  =  𝑇𝑎,1

∗                                                                                                                                                          (3) 178 

𝑓(𝑇𝑎,𝑖
∗ )  =  𝛼𝑇𝑎,𝑖

∗  + (1 −  𝛼)𝑓(𝑇𝑎,𝑖−1
∗ )                                                                                                                     (4)   179 

where 𝛼 is the smoothing factor. When 𝛼 = 1 there is no smoothing, while the smoothing increases with the 180 

decrease in the value of 𝛼. 181 

𝑇ℎ,𝑖 = 𝐴 ∙ 𝐷 + 𝐸 ∙ 𝑔(𝑇𝑒,𝑖)                                                                                                                                            (5) 182 

where 𝑇ℎ is the hypolimnion temperature (°C), 𝐷 and 𝐸 are calibration parameters and 𝑔(𝑇𝑒,𝑖) is an exponential 183 

smoothing as follows: 184 

𝑔(𝑇𝑒,1)  =  𝑇𝑒,1                                                                                                                                                         (6) 185 

𝑔(𝑇𝑒,𝑖)  =  𝛽𝑇𝑒,𝑖  + (1 −  𝛽)𝑔(𝑇𝑒,𝑖−1)                                                                                                                     (7)  186 

where 𝛽 is the exponential smoothing factor. As for 𝛼, there is no smoothing for 𝛽 = 1 and the smoothing increases 187 

as 𝛽 approaches zero. 188 

 In ALAPROD, OKPLM can be run in two modes: the “default” mode where model parameter values for each 189 

lake are estimated using the parameterization presented in Prats & Danis (2019), and the “calibrated” mode where 190 

model parameters are calibrated individually for each lake by using in situ temperature measurements. The default 191 

parameterization was obtained by using the individually calibrated parameter values to fit appropriate expressions 192 

as a function of the characteristics of lakes. In the epilimnion module model parameter values A, B, C, and α are 193 

estimated based on lake characteristics (i.e., latitude, altitude, surface area, volume, and depth). These equations 194 

were determined using robust regressions and Landsat infrared data (median skin temperatures) from 1999 to 2016 195 

of French lakes to estimate mean surface temperatures (Prats et al., 2018). In contrast, for the hypolimnion module, 196 

parameter values E and β were derived as a function of lake depth and lake type using temperature profile data 197 

from 357 lakes; β can have a value of 1 (E > 0.95) or 0.13 (E ≤ 0.95). The parameter D was assigned a constant 198 

value of 0.51.  199 

The parametrization of the OKPLM parameters as presented in Prats & Danis (2019) is as follows: 200 

𝐴 = 39.9 − 0.484𝐿𝐿𝑎𝑡 − 4.52 × 10−3𝐿𝐴𝑙𝑡 − 0.167𝑙𝑛𝐿𝐴                                                                                             (8) 201 
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where 𝐿𝐿𝑎𝑡 is lake latitude (°N), 𝐿𝐴𝑙𝑡 is lake altitude (m) and 𝐿𝐴 is lake surface area (m2). 202 

 𝐵 = 1.058 − 0.0010𝐿𝐷𝑚𝑎𝑥                                                                                                                                      (9) 203 

where 𝐿𝐷𝑚𝑎𝑥  is lake maximal depth (m). 204 

𝐶 = 1.12 × 10−3 − 3.62 × 10−6𝐿𝐴𝑙𝑡                                                                                                                     (10) 205 

𝐸 = 𝑒1 +
1−𝑒1

1+exp [𝑒3(𝑒2−𝑙𝑛𝐿𝐷)]
                                                                                                                                    (11) 206 

where 𝑒1, 𝑒2 and 𝑒3 are coefficients with respective values of 0.10, 2.0, -1.8 for natural lakes and 0.49, 1.7, -2.0 207 

for artificial lakes (reservoirs, gravel pits, ponds and quarry lakes) and 𝐿𝐷 is lake mean depth (m).  208 

𝛼 = exp (0.52 − 3.0 × 10−4𝐿𝐴𝑙𝑡 + 0.25𝑙𝑛𝐿𝐴 − 0.36𝑙𝑛𝐿𝑉)                                                                                  (12) 209 

where 𝐿𝑉 is lake volume (m3). 210 

3.3. Input data 211 

The OKPLM was forced with two sources of meteorological data extracted from the SAFRAN (Système d’Analyse 212 

Fournissant des Renseignements Adaptés à la Nivologie) analysis system (Durand et al., 1993) and the S2M 213 

(SAFRAN–SURFEX/ISBA–Crocus–MEPRA) meteorological reanalysis (Vernay et al., 2015, 2022).  214 

The SAFRAN system provides meteorological variables at an hourly time step estimated through interpolation 215 

and assimilation processes with an 8 km square grid. Average daily data from the nearest grid cell was selected 216 

for each study site. The difference in altitude between the study site and the grid cell was accounted for by applying 217 

an adiabatic elevation correction on air temperature.   218 

The S2M model chain combines the SAFRAN meteorological analysis and the SURFEX/ISBA–Crocus snow 219 

cover model including MEPRA (Modèle Expert d’Aide à la Prévision du Risque d’Avalanche). It is more adapted 220 

to mountainous regions as it has a spatial definition where spatial heterogeneity is taken into consideration. The 221 

S2M reanalysis uses a vertical resolution of 300 m and is the result of simulations performed over mountainous 222 

zones referred to as “massifs” and covering the French Alps, Pyrenees and Corsica mountainous regions. In order 223 

to use S2M meteorological data over each lake an extraction of certain topographic classes is necessary. These 224 

include elevation, aspect and slope, which represent the spatial variability over “massifs”. On average, a massif 225 

corresponds to a mountainous region of about 1000 km2 over which meteorological conditions are considered 226 

homogeneous at a given elevation range. Two types of S2M reanalysis simulations exist for each elevation range, 227 

one at flat terrain and the other with 8 aspects at 2 different slope angles. For this study, this information (elevation, 228 

slope, aspect) was extracted from a Digital Elevation Model (BD Alti, IGN) for each lake over its drainage basin, 229 

combined into zones corresponding to S2M topographic classes.  We considered a zero slope and average daily 230 

data for each study site.  231 

In situ temperature profiles, geographical and morphological data of the study sites were initially extracted from 232 

the PLAN_DEAU database. The extracted data was then incorporated into the T-MOD database, with the aim of 233 

simplifying the process of simulations and accessing information about the characteristics of the simulated lakes. 234 

Both databases are managed by INRAE (l’Institut National de Recherche pour l’Agriculture, l’Alimentation et 235 

l’Environnement) and Pôle R&D ECLA ("ECosystèmes Lacustres") in Aix-en-Provence, France.  The 236 
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geomorphological data consisting of maximal depth, volume, surface area, latitude and altitude were extracted for 237 

401 lakes. In situ temperature profiles were extracted from the RCS/RCO (Réseau de Contrôle de 238 

Surveillance/Réseau de Contrôle Opérationel, French networks for the Water Framework Directive (WFD)) 239 

monitoring network for 170 lakes over different depths. Depending on each lake, the number of years with samples 240 

could vary from 1 to 12 with a number of samples ranging between 1 and 10 per year.    241 

3.4. Lake simulations 242 
For this study, we considered 401 lakes (Figure 1) located in Metropolitan France monitored according to the 243 

WFD. Here we refer to lakes as natural lakes, reservoirs, gravel pits and other artificial lakes (e.g., ponds and 244 

quarry lakes). The present lake dataset includes epi- and hypolimnion temperature simulations for 54 natural lakes, 245 

302 reservoirs, 7 gravel pits and 38 other artificial lakes (Figure 2). The lakes characteristics range between 0 and 246 

2279.7 m for altitude, 0.8 and 309.7 m for maximal depth, 0.08 and 577.12 km2 for surface area and 5 × 104 and 247 

8.9 × 1010 m3 for volume.  248 

The OKPLM was run for each lake using either “default” or “calibrated” parameters, and either SAFRAN or S2M 249 

meteorological data. Specifically, “calibrated” model parameters were adopted when in situ temperature profiles 250 

along the water columns were available from the RCS/RCO monitoring network; these temperature profiles were 251 

then transformed and used as epilimnion and hypolimnion temperatures. For those lakes, calibration parameters 252 

(A, B, C, D, E, α and β) are lake-specific and determined using the lake-specific temperature profiles. Conversely, 253 

“default” parameters were used for the rest of the lakes as well as when bathymetry data necessary for the 254 

transformation of temperature profiles into epilimnion and hypolimnion temperatures were not available. In this 255 

case, the values of the parameters were estimated according to equations (8) to (12).  256 

SAFRAN data were used for most of the lakes except for a few lakes at higher altitudes. Indeed, S2M data are 257 

more representative of mountainous meteorological conditions than SAFRAN data and were thus used, when 258 

possible, for simulating the water temperature in lakes situated at altitudes higher than 900 m. For some lakes, it 259 

was not possible to use S2M data, either because their drainage basins are not entirely part of a massif (n = 1), or 260 

because they are located in massifs that are not covered by the S2M reanalysis dataset (n = 18). Among the total 261 

number of study sites (n = 401), the model was forced using SAFRAN and S2M meteorological data respectively 262 

for 210 and 21 lakes with “default” model parameters, and for 164 and 6 lakes with “calibrated” model parameters. 263 

The geomorphological characteristics of the simulated lakes with each of the abovementioned configurations are 264 

shown in Table 1.  265 

 266 
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 267 

Figure 1: Location and lake type of the 401 French lakes simulated with the OKPLM in “default” and “calibrated” 

modes, with SAFRAN and S2M meteorological data for the period 1959-2020. The “other” artificial lakes consist of 

ponds and quarry lakes.  
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Figure 2: Presentation of the LakeTSim data. (A) Epilimnion and (B) hypolimnion mean annual temperatures, with 

average trend across lakes shown with a smooth spline. (C) Daily epilimnion temperature per lake in the dataset for 

2010, with smooth spline and the time series for one lake (LDC63) highlighted. (D) Daily hypolimnion temperature per 

lake in the dataset for 2010, with smooth spline and the time series for one lake (LDC63) highlighted. LDC63 is the code 

for Lake Chauvet, a natural lake (45.46 °N, 2.83 °E) located at 1167 m asl, with a surface area of 0.51 km2, a volume of 

17.41 106 m3, and a maximum depth of 66.8 m. The simulation for LDC63 was conducted resorting to SAFRAN data 

and was run with the “calibrated” mode. (E) Uncertainties were calculated per lake and per day and are shown here 

daily for LDC63, in 2010, for both the epilimnion (epi) and the hypolimnion (hyp). (F) Uncertainties are shown here 

seasonally for LDC63, in 2010, for both the epilimnion (epi) and the hypolimnion (hyp). JFM corresponds to January-

February-March, AMJ corresponds to April-May-June, JAS corresponds to July-August-September and OND 

corresponds to October-November-December.  
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Table 1: Characteristics of the lakes simulated with the OKPLM in “default” and “calibrated” modes with SAFRAN 

and S2M meteorological data for the period 1959-2020; n represents the number of lakes. 

Variables Minimal - Maximal range 

Model parameters Default Calibrated 

Meteorological data SAFRAN S2M SAFRAN S2M 

n 210 21 164 6 

Altitude (m) 1 - 1753 916 - 2213  0 - 2279.7 1577.5 - 2172.5  

Latitude (°N) 41.47 - 50.87 42.55 - 46.21  42.88 - 49.87 42.65 - 42.86 

Longitude (°E) -3.90 - 9.48 0.08 - 6.94 -4.24 - 6.96 -0.33 - 1.92 

Maximal depth (m) 0.8 - 309.7 10.3 - 180 1.2 - 124 49 - 112 

Surface area (km2) 0.08 - 577.12 0.11 - 6.52 0.29 - 57.57 0.45 - 1.21 

Volume (m3) 5×104 – 8.9×1010 51.4×104 - 33.32×107 12.9×104 - 49.88×107 72.7×105 - 68.6×106 

 268 

3.5. Calibration, uncertainty and sensitivity analysis  269 

Calibration, uncertainty and sensitivity analyses of model parameters were carried out using the package “CUSPY” 270 

(Calibration, Uncertainty analysis and Sensitivity analysis in PYthon), which is part of the software suite 271 

“ALAMODE” (Danis, 2020) and acts as an interface to the package “pyemu” (White et al., 2016, 2020). In addition 272 

to model parameters, sensitivity analysis was extended to encompass forcing parameters (MAAT, at_factor, 273 

sw_factor) as they provide information about the degree of sensitivity exhibited by model parameters in response 274 

to biases in the forcing data.  275 

Parameter values were calibrated for lakes with available in situ data (temperature profiles and bathymetry). 276 

Parameter values were calibrated using the Gauss-Levenberg-Marquardt algorithm and Tikhonov regularization 277 

(White et al., 2020), and the squared sum of residuals as objective function. In addition to the calibrated parameter 278 

values, the calibration process also provided posterior parameter uncertainty and composite scaled sensitivities. 279 

Composite scaled sensitivities (CSS) indicate the quantity of information provided by each parameter and the 280 

sensitivity of the model to them (Ely, 2006). The parameters with higher CSS values will have a greater impact on 281 

the resulting simulation compared to those with low CSS values. To determine the CSS values for each parameter, 282 

the Dimensionless Scaled Sensitivities (DSS) are used. DSS indicate how important an observation or how sensitive 283 

a simulated equivalent of an observation is in relation to the estimation of a parameter. Further information on 284 

these statistical measures is available in Hill (1998) and Poeter & Hill (1997). The dimensionless scaled sensitivity 285 

for i and j, i being one of the observations and j being one of the parameters, is calculated as: 286 

   𝐷𝑆𝑆𝑖,𝑗  =  [
𝜕𝑦𝑖

′

𝜕𝑏𝑗
] 𝑏𝑗𝑤

𝑖

1
2⁄
                                                                                                                                         (13) 287 
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where 𝑦𝑖
′ is the simulated value associated with the ith observation, 𝑏𝑗 is the jth estimated parameter,  

𝜕𝑦𝑖
′

𝜕𝑏𝑗
 is the 288 

sensitivity of the simulated value associated with the ith observation and 𝑤𝑖  is the weight of the ith observation 289 

calculated based on the inverse of the variance-covariance matrix of the observation errors.  290 

The CSS for parameter j is calculated from DSS as follows: 291 

𝐶𝑆𝑆𝑗  = [
∑ (𝐷𝑆𝑆𝑖𝑗)2|𝒃

𝑁𝐷
𝑖=1

𝑁𝐷
]

1
2⁄

                                                                                                                                       (14) 292 

where 𝑁𝐷 is the number of observations and 𝒃 is a vector of parameters values. 293 

The uncertainty of the simulations (calibrated and default) was analyzed using Monte Carlo simulations. For each 294 

lake, 100 Monte Carlo simulations were carried by randomly selecting the value of the model parameters. Two 295 

parameters, 𝑎𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 and 𝑠𝑤_𝑓𝑎𝑐𝑡𝑜𝑟, multiplying the meteorological input, were added to account for possible 296 

uncertainties in input data. For default simulations, the a priori distribution of the parameters was assumed to 297 

follow a normal distribution with the average value and lower and upper bounds shown in Table 2. The ranges for 298 

parameters 𝐴, 𝐵 and 𝐶 were estimated as four times the standard deviation of the residuals of the formulas used to 299 

estimate them according to Prats & Danis (2019). The parameters 𝐷, 𝐸 and 𝛽, are expected to lie in the range 0-1 300 

for mathematical and physical reasons. However, their respective values are highly interdependent and are difficult 301 

to identify. Given their higher uncertainty, the full 0-1 range was explored. For 𝑀𝐴𝐴𝑇, 𝑎𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 and 𝑠𝑤_𝑓𝑎𝑐𝑡𝑜𝑟, 302 

reasonable ranges (±10%) were chosen to account for meteorological data uncertainty (measurement error, errors 303 

in regionalization, etc.). For calibrated simulations, the distribution of the parameters was obtained from the 304 

calibration results. 305 

In this study, the non-parametric Kendall’s tau coefficient (significance level at 5%) was used to identify statistical 306 

associations between uncertainty values and CSS in respect to lake geomorphological characteristics (maximal 307 

depth, volume, surface area, latitude and altitude). 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 
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Table 2: Characteristics of the a priori distributions of the model parameters. Parameters with a circumflex accent 

indicate parameter values estimated for a particular lake according to the regionalization formulas by Prats & Danis 

(2019). 

Parameter Average value Lower bound Upper bound 

𝑨 𝐴 𝐴 − 2 · 0.74 𝐴 + 2 · 0.74 

𝑩 𝐵 𝐵 − 2 · 0.08 𝐵 + 2 · 0.08 

𝑪 𝐶 𝐶 − 2 · 0.004 𝐶 + 2 · 0.004 

𝑫 �̂� 0 1 

𝑬 𝐸 0 1 

𝜶 𝛼 0 𝛼 + 2 · 0.08 

𝜷 𝛽 0 1 

𝑴𝑨𝑨𝑻 𝑀𝐴𝐴𝑇^  𝑀𝐴𝐴𝑇^ − 2 · 0.5 𝑀𝐴𝐴𝑇^ + 2 · 0.5 

𝒂𝒕_𝒇𝒂𝒄𝒕𝒐𝒓 1 0.9 1.1 

𝒔𝒘_𝒇𝒂𝒄𝒕𝒐𝒓 1 0.9 1.1 

 318 

4. Model performance 319 

The performance of the OKPLM was assessed in Prats & Danis (2019) by comparing its performance to two other 320 

often-applied models in lake studies, air2water (the 4-parameter version) and FLake. The air2water model is a 321 

semi-empirical model used to calculate the epilimnion temperature of temperate lakes (Toffolon et al., 2014; 322 

Piccolroaz et al., 2013). FLake is a one-dimensional (1D) hydrodynamic lake model for simulating temperature 323 

vertical profiles and mixing conditions in lakes (Mironov, 2008). To assess their performances, the three models 324 

were run between 1999 and 2016 over two sets of French lakes of different types (reservoirs, natural lakes, ponds, 325 

quarry lakes and gravel pits): a group of five lakes with continuous profile measurements, and a group of 404 lakes 326 

with less frequent temperature measurements. The performance assessment was limited to the period of 1999-2016 327 

due to the availability of water temperature data (in situ and satellite) during that specific timeframe. The scarcity 328 

of in situ water temperature measurements before 1999 applies to the entire set of lakes. However, it is important 329 

to note that long-term in situ water temperature data is available for a few large lakes, which was used to assess 330 

the performance of the three models (Prats & Danis, 2015). The OKPLM was run with the “default” parameter 331 

values given by the parameterization in Prats & Danis (2019). The air2water parameter values were obtained as a 332 

function of lake depth from the parametrization presented in Toffolon et al. (2014), based on data from 14 lakes 333 

around the globe. In this case, the air2water model parameters were not calibrated due to the fact that the percentage 334 

of missing data within the LakeSST dataset employed in Prats & Danis (2019) exceeded 97% for most lakes. 335 

Beyond this threshold of 97% missing data, the performance of the calibrated 4-parameter version of the air2water 336 

model was found to be unsatisfactory (Piccolroaz, 2016). However, when evaluating the model performance with 337 
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the set of five lakes with continuous data, air2water was run using parameter values calibrated for the individual 338 

lakes available data. FLake does not have calibration parameters. Meteorological forcing (SAFRAN) consisted of 339 

air temperature for the air2water model; solar radiation, vapor pressure, cloud cover and wind speed for FLake; 340 

and air temperature and solar radiation for the OKPLM.   341 

The OKPLM, air2water and FLake simulations were assessed through comparison to in situ measurements. For 342 

epilimnion temperatures, the average discrepancies calculated between OKPLM simulations and observations 343 

remained below 2 °C in most cases, in contrast to the air2water and Flake models. The performance comparison 344 

between the OKPLM, air2water and FLake yielded respectively median RMSE’s (Root Mean Square Error) of 345 

1.7, 2.3 and 2.6 °C calculated between simulations and observations of epilimnion water temperature. Although 346 

when using calibrated parameter values for air2water, median RMSE was below 1 ºC in most cases. For 347 

hypolimnion temperatures, the median RMSEs by lake type obtained with OKPLM simulations remained below 348 

2 °C, except for gravel pits (RMSE = 2.7 °C) and reservoirs (RMSE = 2.3 °C), whereas FLake yielded a median 349 

RMSE of 3.3 °C. For the epilimnion, the differences between the RMSE of lake types were not significant. In 350 

terms of depth, discrepancies between epilimnion temperature simulations with the OKPLM and measurements 351 

were highest for lakes with a depth > 10 m and for ponds around 1 m deep. The OKPLM simulations were also 352 

evaluated seasonally, in particular during summer and winter. The model simulated temperatures well with a 353 

median RMSE of 1.4 and 1.6 °C in summer and winter respectively.  354 

5. Uncertainty analysis 355 

Overall, for both simulations with default and calibrated model parameters, uncertainty was higher for 356 

hypolimnion temperature compared to epilimnion temperature especially in reservoirs (Figure 3). In default 357 

simulations, the uncertainty of simulated epilimnion temperatures showed a clear and strong relation with lake 358 

maximal depth (Figure 3, Table 3). On one hand, maximal depth had the highest Kendall's tau value of 0.64 (p-359 

value < 0.0001), indicating a strong positive correlation with uncertainty followed by volume with a Kendall’s tau 360 

of 0.59 (p-value < 0.0001). Uncertainty increased with maximal depth and volume in particular for lakes with 361 

depths greater than 10 m and volumes greater than 106 m3 (Figure 3). Overall, lakes with higher maximal depths 362 

have higher volumes and are located at greater altitudes (Figures A1-A2 in Appendix A). On the other hand, 363 

moderate significant correlations were identified with surface area, altitude and latitude (Table 3). Lakes with 364 

larger surface areas and higher altitudes tend to have higher uncertainties whereas lakes located at higher latitudes 365 

tend to have lower uncertainties (Figure A3 in Appendix A). The latter can be linked to the fact that more shallow 366 

lakes are located at higher latitudes (Figure A1 in Appendix A). For default simulations of hypolimnion 367 

temperatures, uncertainty was maximal for lakes with depths around 10 m. Kendall's tau values revealed a 368 

moderate significant correlation between hypolimnion temperature uncertainty and altitude (-0.45, p-value < 369 

0.0001). The decrease in uncertainties with altitude can be related to the fact that lakes situated at very high 370 

altitudes are mostly deep. Further, in the present dataset, lakes with higher maximal depths occur as altitude 371 

increases (Figure A1-A2 in Appendix A).      372 

After calibration, there was an important reduction in simulation uncertainty. For default simulations of epilimnion 373 

temperature the median of the 90% confidence uncertainty range was 5.42 ºC, while after calibration it was 1.85 374 

ºC. For hypolimnion temperature, the median of the 90% confidence uncertainty range of default simulations was 375 

8.5 ºC, while it was 2.32 ºC after calibration. However, many reservoirs with depths greater than 8 m still had a 376 
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much greater uncertainty (uncertainty range > 4 ºC) than the rest of lakes after calibration. Additionally, reservoirs 377 

(and a few natural lakes) above 100 m in altitude showed the highest uncertainties in the simulation of epilimnion 378 

temperature.   379 

 380 

Figure 3: Average 90% confidence uncertainty range for epilimnion (top panel) and hypolimnion (bottom panel) 

temperatures in calibrated (n = 170) and default (n = 231) simulations for the period 1959-2020. The “other” artificial 

lakes consist of ponds and quarry lakes.   

 

Table 3: Kendall’s tau coefficients and p-values of average 90% confidence uncertainty range for epilimnion and 

hypolimnion temperatures obtained from default simulations (1959-2020) in respect to lakes geomorphological 

characteristics. For each lake, “Epilimnion uncertainty” and “Hypolimnion uncertainty” are defined as the average 

90% confidence uncertainty range calculated as the difference between the 95th and 5th percentiles of the daily simulated 

epilimnion and hypolimnion water temperatures. The significance levels are represented as follows: *: 1.00e-02 < p-

value ≤ 5.00e-02, **: 1.00e-03 < p-value ≤ 1.00e-02, ***: 1.00e-04 < p-value ≤ 1.00e-03, ****: p-value ≤ 1.00e-04. 

Otherwise, correlations are not significant (p-value > 0.05).  

 Maximal depth 

(m) 

Surface area 

(km2) 

Altitude 

(m) 

Latitude 

(°N) 

Volume 

(m3) 

Epilimnion uncertainty 0.64**** 0.31**** 0.39**** -0.40**** 0.59**** 

Hypolimnion uncertainty -0.13** 0.05 -0.45**** 0.03 -0.03 

6. Sensitivity analysis 381 
The parameter to which the model was most sensitive was the parameter C (Figure 4), which multiplies solar 382 

radiation in Eq. (1). The CSS for C were an order of magnitude greater than for the next parameters with highest 383 

CSS, the parameter α and at_factor, both influencing the effect of air temperature on simulated water temperature. 384 

Other parameters to which the model was somewhat sensitive were E, B and β. The model was quite insensitive 385 

to sw_factor, MAAT and A. The parameter D, with CSS several orders of magnitude smaller than the other 386 

parameters, was unidentifiable. 387 



15 

 

 388 

Figure 4: Composite scaled sensitivities (CSS) for each parameter. The boxplots indicate the distribution of CSS 

between the simulations calibrated for different lakes. The y-axis is in logarithmic form.  

The model tended to be more sensitive to the parameter values in the case of reservoirs than in the case of natural 389 

lakes (Figure 5, Figures A4-A7 in Appendix A). Some parameters showed a dependency on lakes 390 

geomorphological characteristics. With the exception of a weak correlation with altitude (Kendall's tau = 0.18), 391 

there was no significant dependence between the parameter C and lakes geomorphological characteristics (Table 392 

4, Figure A4 in Appendix A). The parameter α being parametrized as a function of lake volume, surface area and 393 

altitude reflects the thermal inertia of the lake. It showed a clear highly significant dependency primarily on lake 394 

depth (Kendall’s tau = 0.47) followed by altitude (Kendall’s tau = 0.4) and volume (Kendall’s tau = 0.39) (Figure 395 

5, Table 4). The increase of model sensitivity to the parameter α primarily with depth as well as altitude and volume 396 

propagated to the default simulations and explain the increased uncertainty with these same geomorphological 397 

characteristics in the default simulations. The parameter at_factor, was weakly but significantly correlated with 398 

all lakes geomorphological characteristics except for latitude with which no correlation was found (Figure 5, Table 399 

4, Figures A4-A7 in Appendix A). CSS were mostly low for the parameter β, except for a few reservoirs and 400 

artificial lakes that scored very high CSS values. The sensitivity of β displayed a weak but significant correlation 401 

with lakes geomorphological characteristics, except for volume (Table 4). 402 

Although the model in general was not very sensitive to the values of the parameters most directly related with 403 

hypolimnion temperatures (D, E, β), the quality of hypolimnion temperature was greatly improved through 404 

calibration. This would seem to indicate that the quality of simulated hypolimnion temperature was improved 405 

through the improvement of epilimnion temperature simulations.  406 

 407 

 408 

 409 

 410 
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Table 4: Kendall’s tau coefficients and p-values of CSS for model parameters values and drivers obtained from 

calibrated simulations (1959-2020) in respect to lakes geomorphological characteristics. The significance levels are 

represented as follows: *: 1.00e-02 < p-value ≤ 5.00e-02, **: 1.00e-03 < p-value ≤ 1.00e-02, ***: 1.00e-04 < p-value ≤ 

1.00e-03, ****: p-value ≤ 1.00e-04. Otherwise, correlations are not significant (p-value > 0.05).    

 Maximal depth 

(m) 

Surface area 

(km2) 

Altitude 

(m) 

Latitude 

(°N) 

Volume 

(m3) 

CSSA 0.02 -0.1 0.14** -0.08 -0.07 

CSSB 0.09 -0.04 0.14** -0.14** 0.02 

CSSC -0.04 -0.09 0.18*** -0.05 -0.1 

CSSD -0.12* 0.02 -0.14** 0.06 -0.1 

CSSE -0.01 -0.001 0.02 0.0003 -0.03 

CSSα 0.47**** 0.07 0.4**** -0.23**** 0.39**** 

CSSβ 0.16** -0.12* 0.22**** -0.19*** 0.05 

CSSat_factor -0.25**** -0.14** -0.13* 0.04 -0.28**** 

CSSsw_factor -0.22**** -0.06 -0.14** 0.06 -0.2**** 

CSSMAAT -0.09 -0.13** 0.13* -0.02 -0.15** 

 411 

 412 

Figure 5 : Composite scaled sensitivities (CSS) for each model parameter as a function of maximal depth. The “other” 

artificial lakes consist of ponds and quarry lakes.  

7. Discussion and implications 413 

Lakes are undeniably changing under climate change and long-term future projections show that the shifts in 414 

ecosystem functioning will continue with aggravated alterations (Woolway & Merchant, 2019). In particular, given 415 

the key role of lake water temperature in regulating ecosystem processes, its warming has become a response that 416 

is crucial to monitor, explore and understand. Hence, the importance of developing or adopting approaches, such 417 

as numerical models, that will provide long-term information about water temperature and allow us to understand 418 

the thermal response of lakes to climate change.  419 
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Here we used a semi-empirical model, the OKPLM, to simulate six decades of epilimnion and hypolimnion water 420 

temperatures in French lakes. In comparison to similar models, overall, the OKPLM provides acceptable 421 

estimations of water temperatures, with better results for epilimnion temperatures. The values of the RMSEs 422 

provided in Prats & Danis (2019) and obtained between OKPLM simulations and observations are comparable to 423 

values found in studies applying complex hydrodynamic lake models (Read et al., 2014; Fang et al., 2012). When 424 

using the default parameter values, the uncertainty associated with epilimnion temperature simulations was 425 

significantly related to all geomorphological characteristics however, it was especially strongly correlated to lake 426 

maximal depth. In contrast, the uncertainty in the hypolimnion simulations had a significant correlation solely with 427 

altitude and maximal depth. The importance of this correlation was especially noteworthy in the case of reservoirs 428 

located in low-altitude regions where uncertainties were the lowest. While the association between hypolimnion 429 

uncertainty and maximal depth exhibited only a weak correlation, the instances of highest uncertainties were 430 

predominantly found in reservoirs having maximal depths around 10 m. The correlations found between lakes 431 

geomorphological characteristics and simulations uncertainties suggests that there might be systematic biases in 432 

the definition of model parameters or in the forcing data. The calibration of model parameters significantly reduced 433 

the uncertainties yet, for hypolimnion temperatures, they remained considerably high and increased with depth 434 

especially in reservoirs.                    435 

The high levels of uncertainty found in reservoirs could be somewhat attributed to the lack of consideration of 436 

water level fluctuations in the model. In contrast to other lakes (e.g., natural lakes, artificial lakes and gravel pits) 437 

reservoirs experience significant variations in their water level, which influences the heat budget and hence their 438 

thermal regime. Therefore, even under similar meteorological conditions lakes and reservoirs could have different 439 

thermal behaviors (Nowlin et al., 2004). In reservoirs, the discharge depth is a driver of thermal structure. Deep 440 

discharges could contribute to warmer bottom waters (Carr et al., 2020) whereas in some cases if the reservoir is 441 

shallow or if the discharge depth is not deep, it could demonstrate lake-like thermal behavior. This does not 442 

necessarily mean that, in this case, the entire functioning of the reservoir resembles one of a natural lake; there are 443 

still differences to consider (Detmer et al., 2022). 444 

The application of the OKPLM should be made with caution given its performance and depending on the objective 445 

of the study. The model does not take into account a complete set of meteorological forcing (e.g., with cloud cover, 446 

relative humidity and wind speed and direction) or other variables (e.g., inflow and outflow rates or water level 447 

fluctuations, inflow discharge depth and inflow temperature) that could influence the thermal structure of the 448 

ecosystem (Yang et al., 2020; Carr et al., 2020). Furthermore, the OKPLM was parametrized for a specific set of 449 

lakes with particular geomorphological characteristics. Thus, it would be advisable to apply the model over lakes 450 

with similar characteristics. If the aim is to conduct a long-term regional or global study for studying general 451 

patterns of climate change impacts over a large number of study sites, the utilization of semi-empirical models 452 

such as the OKPLM is the most suitable choice. Although complex, deterministic or process-based models provide 453 

a more accurate representation of thermal conditions, applying these models over several study sites and for long 454 

periods is usually hindered by the scarcity of the required input data. The increased complexity of these models 455 

(with reference to an increased number of model parameters) is beneficial for representing additional ecosystem 456 

processes. Yet the greater number of model parameters, increases the sensitivity of models and demands more 457 

calibration efforts (Lindenschmidt, 2006). Furthermore, a reduction in model errors is sometimes associated with 458 
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an increased complexity in model structure; however, this is not always consistent since a complex model does 459 

not necessarily provide better estimations and thus lower errors than a simple model (Snowling and Kramer, 2001).             460 

Our goal in publishing the present dataset is to expand knowledge about the water temperature of French lakes and 461 

provide data, with enough details and reliability, that it could be implemented in different studies where water 462 

temperature is implicated for understanding specific processes or interactions, in particular under climate change. 463 

Hence the significance of the present findings. The present study, making use of a semi-empirical model to provide 464 

long-term data about water temperature, was necessary for several reasons. Equipping a large number of lakes 465 

with thermal sensors is challenging and labor-intensive, it comes with a high financial cost that is often not 466 

available. Consequently, historical and even current water temperature datasets are often scarce, which can be 467 

problematic for studying the impact of climate change, as it requires high frequency data over a long duration of 468 

time for accurate analysis. In general, the higher the sampling frequency and duration, the better the data is suited 469 

to estimate or analyze specific processes or warming trends. The sampling frequency and length of a dataset have 470 

been shown to play a role in determining the accuracy of estimating warming trends where time series longer than 471 

30 years seem to be the most appropriate (Gray et al., 2018). Although, the duration and frequency of a dataset 472 

have a major role in reflecting accurate representations, their influence is scarcely addressed when it comes to 473 

climate change studies related to warming trends in water temperature.  474 

This dataset will be useful for climate change studies; it could be used to develop and analyze several temperature 475 

indicators (e.g., annual or seasonal maximal and minimal temperature values, temperature exceeding certain 476 

thresholds with biological implications, etc.). Further, mixing and stratification dynamics are important to 477 

characterize as they drive lake biogeochemistry. Among other processes, they influence the distribution of 478 

nutrients, primary productivity and the composition of phytoplankton and zooplankton communities along the 479 

water column (Judd et al., 2005). With the LakeTSim dataset, it is possible to classify the mixing regime of lakes 480 

and investigate possible triggers of regime shifts.    481 

8. Data usage  482 
The LakeTSim dataset comprises water temperature simulations for natural lakes (n = 54), reservoirs (n = 302), 483 

gravel pits (n = 7), and other artificial lakes (e.g., ponds and quarry lakes, n = 38). The simulations are for both the 484 

epi- and hypolimnion. Lakes that are fully mixed throughout the year (typically, shallower lakes) have the same 485 

temperature value for both layers. More generally, the delta of temperature can be used to calculate mixing regimes 486 

(Sharaf et al., in prep.).  487 

The lakes in the dataset were selected because they are monitored as part of the European Water Framework 488 

Directive (Directive 2000/60/EC). The majority of the 401 lakes are non-natural and some were only created after 489 

1959 (i.e., the start of our simulations). We compiled the initial temporal gap filling related to the initial filling 490 

years for 282 of these 347 non-natural lakes (269 reservoirs and 13 artificial lakes, Figure A8 in Appendix A) in 491 

Table S1 (see Supplement) to be used as a companion dataset to LakeTSim. The filling years were sourced from 492 

https://www.barrages-cfbr.eu for 179 of the lakes and from the PLAN_DEAU database for 103 of the lakes; the 493 

information was not available for 33 reservoirs, 7 gravel pits and 25 other artificial lakes of the LakeTSim dataset.  494 

The median filling date was 1962 and 67% of the lakes with known filling dates were filled by 1980. While the 495 

complete simulations ranging from 1959 to 2020 can also be used as theoretical lake temperature for comparison 496 

https://www.barrages-cfbr.eu/
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across similar periods, we recommend that users of LakeTSim data for reservoir and artificial lake simulations 497 

consider the initial filling dates provided in Table S1 to filter out years from the simulations during which lakes 498 

were not filled yet.  499 

Additionally, users should be aware that some reservoirs might be drained completely at certain intervals (e.g., 500 

every 10 years) for maintenance and inspection purposes, and that this is not reflected in our dataset. Finally, as 501 

mentioned in the discussion, some of the lakes in the dataset experience artificial (e.g., in reservoirs) or natural 502 

(e.g., in some smaller ponds) water level fluctuations, and potential intermittent dry-periods lasting weeks or 503 

months; none of these hydrological processes are accounted for in the simulations.    504 

9. Code availability        505 

The respective codes for the “CUSPY” (Prats-Rodríguez and Danis, 2023a) and “OKPLM” (Prats-Rodríguez and 506 

Danis, 2023b) packages, which can be used to conduct sensitivity and uncertainty analysis and to run the OKP 507 

Lake Model, are available at https://github.com/inrae/ALAMODE-cuspy and 508 

https://github.com/inrae/ALAMODE-okp as well as ZENODO.    509 

10. Data availability 510 

The LakeTSim dataset (Sharaf et al., 2023) for epilimnion and hypolimnion water temperature simulations and 511 

supporting information are available at doi:10.57745/OF9WXR . The file “00_Data_description.txt” contains a 512 

description of the dataset. The geographical (longitude and latitude) and morphological (surface area, volume and 513 

maximal depth) data for the 401 lakes are presented in the file “01_Lake_data.txt” in addition to the name, type, 514 

altitude and the identification code for each lake. The data are located in two main folders: “02_Temperature_data” 515 

containing daily epilimnion (tepi) and hypolimnion (thyp) temperatures simulated with the OKPLM and 516 

“03_Uncertainty_data” containing daily tepi and thyp uncertainties. In each folder, the data for temperature 517 

simulations and their uncertainties are presented in text files available in the folders 518 

“00_LakeTSim_SAFRAN_OKPdefault_data”, “01_LakeTSim_SAFRAN_OKPcalibrated_data”, 519 

“02_LakeTSim_S2M_OKPdefault_data” and “03_LakeTSim_S2M_OKPcalibrated_data”. The name of each file 520 

within these folders includes the identification code of the lake. From 2024, the data will be visible from a 521 

dashboard. The link to the dashboard will be accessible from data.ecla.inrae.fr.   522 

11. Conclusions 523 

We present the LakeTSim dataset and the semi-empirical OKP Lake Model for simulating water temperature in 524 

lakes. We applied the model over a set of 401 French lakes for the period 1959-2020 to derive daily simulations 525 

of epilimnion and hypolimnion water temperatures, here referred to as the LakeTSim dataset. Previous efforts to 526 

assess the model’s performance show an overall acceptable representation of epilimnion and hypolimnion 527 

temperatures when compared to in situ measurements.  The uncertainty analysis of simulations demonstrates that 528 

higher uncertainties are found for, by order of relative importance: (1) default simulations, (2) hypolimnion 529 

compared to epilimnion temperatures and, (3) deep lakes, in particular reservoirs (maximal depth greater than 10 530 

m for epilimnion temperature and around 10 m for hypolimnion temperature simulated with default model 531 

parameters). Although the calibration significantly decreases the uncertainties related to both the epilimnion and 532 

hypolimnion, in some cases they are still considerable in the hypolimnion. Based on these results and if enough 533 

observation data are available, optimally we recommend the use of the OKPLM for shallow (maximal depth < 8 534 

https://github.com/inrae/ALAMODE-cuspy
https://github.com/inrae/ALAMODE-okp
https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/OF9WXR
file:///C:/Users/jprats/Documents/Articles%20Najwa/Article%20simulations/20230602_DataPaper_Simulations_OKP_Revision_V7_Marked.docx
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m) lakes with calibrated model parameters. However, if applied in its default or even calibrated configuration over 535 

deep lakes, one should be aware of the presented limitations and address them in the analysis. The LakeTSim 536 

dataset is valuable for assessing the impact of climate change on lakes thermal functioning, which is often hindered 537 

by the lack of water temperature observations. The present dataset will provide new insights about the thermal 538 

behavior of French lakes, which can provide useful context for stakeholders as they design management strategies 539 

in a context of climate change. 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 
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 555 
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 561 
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12. Appendix A 563 

 

 

Figure A1: Scatter plots of lakes (n = 401) geomorphological characteristics: Maximal depth (m), Surface area (km2), 

volume (m3), altitude (m) and latitude (°N).  
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Figure A2: Kendall’s tau correlation matrix of the geomorphological characteristics of lakes simulated in “default” 

mode (n = 231): Maximal depth (m), Surface area (km2), volume (m3), altitude (m) and latitude (°N). The significance 

levels are represented as follows: *: 1.00e-02 < p-value ≤ 5.00e-02, **: 1.00e-03 < p-value ≤ 1.00e-02, ***: 1.00e-04 < p-

value ≤ 1.00e-03, ****: p-value ≤ 1.00e-04. Otherwise, correlations are not significant (p-value > 0.05).       

 

Figure A3: Average 90% confidence uncertainty range for epilimnion (top panel) and hypolimnion (bottom panel) 

temperatures in calibrated (n = 170) and default (n = 231) simulations for the period 1959-2020 as a function of surface 

area (km2) and latitude (°N). The “other” artificial lakes consist of ponds and quarry lakes.  
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 564 

Figure A4: Composite scaled sensitivities (CSS) for each model parameter as a function of altitude. The “other” artificial 

lakes consist of ponds and quarry lakes.  

 

 

Figure A5: Composite scaled sensitivities (CSS) for each model parameter as a function of volume. The “other” artificial 

lakes consist of ponds and quarry lakes.  
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Figure A6: Composite scaled sensitivities (CSS) for each model parameter as a function of surface area. The “other” 

artificial lakes consist of ponds and quarry lakes. 

 

 

Figure A7: Composite scaled sensitivities (CSS) for each model parameter as a function of latitude. The “other” artificial 

lakes consist of ponds and quarry lakes.  
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Figure A8: Distribution of initial filling years for lakes (e.g., reservoirs, gravel pits, ponds and quarry lakes) of the 

LakeTSim dataset. 
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