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Response to reviewer comments on: 
Omara, M., Gautam, R., et al. Developing a spatially explicit global oil and gas 
infrastructure database for characterizing methane emission sources at high resolution 
(https://essd.copernicus.org/preprints/essd-2022-452/)  

Reviewer 1 

This is a great and valuable dataset, and I appreciate the authors hard work in aggregating and 
making this data publicly available. I downloaded the dataset and it was easy to navigate, 
visualize, and extract layers. The methods and uncertainties are well described in the paper. I 
have a few comments listed below: 

We thank the reviewer for these helpful feedback on our manuscript.  

-The gap assessment and spatial assessment in this study are both very useful for error 
quantification. However, I think there is an additional error term or test that could be helpful 
especially in context of your MethaneAir analysis - the gaps that exist in a "dense" country. Or 
another way, "if MethaneAir observes plume in the Permian, how close is the nearest piece of 
GIS infrastructure, and is it right to attribute it to that plume?"  You show proof of concept with 
MethaneAir, but EDF has gathered extensive and independent facility-scale observations with 
attribution through PermianMap where you could do this test rigorously. 

We appreciate this interesting comment from the reviewer regarding methane plume source 
attribution assessments in regions with high density of oil and gas infrastructure.  

The assessment of the proximity of a remotely sensed methane plume to an oil and gas 
methane emitting facility is dependent on several factors, including the methane plume 
characteristics (e.g., plume shape and spatial extent), the spatial resolution and georectification 
accuracy of the methane remote sensing data, and the spatial accuracy of the database being 
used for methane source attribution.  

While we provide a general estimate of the spatial accuracy of the Oil and Gas Infrastructure 
Mapping (OGIM) data, the detailed assessment of methane plume proximity to infrastructure 
points and whether it is “right to attribute” the plume to a given location, as suggested by the 
reviewer, is outside the scope of this study. We note that the “is it right to attribute” question is 
also dependent on the analyst’s ability to correctly characterize the remotely sensed methane 
plume as a true positive detection, and to correctly classify it as a methane plume attributable to 
an oil and gas source (and not other methane sources, such as wetlands). 

We believe our spatial accuracy and gap assessment, as presented in the manuscript, is 
sufficiently robust in demonstrating the comprehensiveness of the OGIM spatial data coverage 
(and data gaps therein) as well as the spatial accuracy of point locations of key oil and gas 
infrastructure types. In addition, we show various use cases/analytics and insights that can be 
derived using the OGIM data and note that these are not intended as an exhaustive and 
detailed characterization of the applications of the database, which can vary by user.  
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-Related to previous comment: in addition to randomly sampling GIS infrastructure and 
comparing to visible imagery, why not assemble an independent list of GIS infrastructure solely 
through visible inspection (say 100 of so in various basins/countries) and then see if your GIS 
database has elements near your visual list? This would be a more blinded test of gaps in the 
inventory and spatial accuracy.    

We thank the reviewer for this suggestion and acknowledge that such blinded assessments are 
useful in further assessing the OGIM data coverage and spatial accuracy.  

To help provide further assessment of the OGIM data coverage and spatial accuracy, we use a 
machine-learning derived dataset of oil and gas infrastructure in the Permian Basin, developed 
by training machine learning (ML) models to automatically detect and classify locations of oil 
and gas infrastructure in AirBus SPOT imagery (1.5 m pixel resolution) for 2019. Further details 
of the model development and the ML-derived dataset can be found in Lyon et al. (2020). The 
original ML-dataset included over 190,000 locations in the Permian, which we filter to 35,107 
locations with reported model raw confidence of >95%, indicating high confidence in the 
likelihood of the model detection being an oil and gas facility. The ML-derived locations are 
reported for the centroid of the facility footprint based on the satellite imagery. We note that 
even with this filter of high-confidence detections, it is possible that there are a small 
undetermined fraction of non-oil and gas infrastructure locations with footprints that are similar 
in appearance to oil and gas infrastructure footprints in satellite imagery. Nevertheless, this ML-
derived dataset represents a very large and independent dataset of oil and gas infrastructure 
locations in the Permian Basin and provides a unique opportunity for a comprehensive 
comparison with the OGIM data to further assess OGIM data coverage and spatial accuracy. 

For each of the 35,107 high-confidence ML-derived locations, we use a k-dimensional binary 
tree algorithm to search for its nearest neighbor in the OGIM dataset and compute the distance 
(in meters) between the ML-derived location and the OGIM nearest neighbor. Setting a distance 
threshold of 100-m as an approximate dimension (length/width) of the typical oil and gas facility 
in the Permian, we find 33,620 OGIM locations are within 100-m of the ML-derived locations, 
suggesting comprehensive coverage (96%) with high spatial accuracy at the set distance 
threshold. This coverage increases to 97% at 250-m threshold and 99% at 500-m threshold. We 
note that the Permian is a highly dynamic basin in terms of oil and gas activity, and had ~300 
new well pad development per month in 2019 (Lyon et al. 2020). Additionally, public data 
reporting in this region can have reporting lags of more than three to six months. Thus, while it 
is possible to track monthly trends in new oil and gas development using machine learning 
approaches (depending on satellite imagery refresh rate), the public data reporting lag and 
update frequencies could help explain the <100% coverage assessed herein. A histogram of the 
computed distances between the ML-derived locations and the OGIM locations is shown in the 
figure below.  

The above assessment provides an independent check on the OGIM data coverage and spatial 
accuracy in a dynamic oil and gas basin with dense oil and gas infrastructure. Future data 
verification work should leverage similar approaches to further characterize data coverage and 
spatial accuracy in other regions, as it is infeasible for us to manually develop, on a scale 
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suggested by the reviewer, an independent verification dataset based on manual detection and 
classification of oil and gas infrastructure footprints in satellite imagery.  

We include the above assessment as supplementary information to our manuscript. 
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Figure B1. (a) Visualization of a machine-learning derived dataset of point locations of oil and 
gas infrastructure in the Permian Basin (Lyon et al. 2020) and the OGIM dataset in the same 
region. The red points show the filtered high-confidence ML-derived dataset, the red polygons 
show a 50-m radius buffer around each ML-derived point, and the cyan triangles show the 
OGIM oil and gas infrastructure points. (b) Histogram of the distance between an ML-derived 
dataset and its nearest neighbor in the OGIM dataset. The dashed dark-red lines show the 
distance thresholds of 100-m, 250-m, and 500-m. 

 

-The analysis of Permian emissions based on the inventory raises confusion. After application of 
literature-based emission factors, you get an emission budget/basin loss rate on par with 
previous atmospheric inversion studies (3.1 Tg). However, the conclusion that this budget is 
dominated by upstream low-emitting sources is a very different conclusion than what's been 
found in previous studies, some of which have been published by EDF. For example, from the 
abstract of Lyon et al. (2021) [https://doi.org/10.5194/acp-21-6605-2021]: "the Permian Basin is 
in a state of overcapacity in which rapidly growing associated gas production exceeds 
midstream capacity and leads to high methane emissions." Also, in your description of 
activity/emission factors, you use EPA GHGI emission factors for gathering pipelines - however 
from Yu et al. (2021) [https://doi.org/10.1021/acs.estlett.2c00380]: " In this study, we use 
methane emission measurements collected from four recent aerial campaigns in the Permian 
Basin, the most prolific O&G basin in the United States, to estimate a methane emission factor 
for gathering lines. From each campaign, we calculate an emission factor between 2.7 (+1.9/–
1.8, 95% confidence interval) and 10.0 (+6.4/–6.2) Mg of CH4 year–1 km–1, 14–52 times higher 
than the U.S. Environmental Protection Agency’s national estimate for gathering lines and 4–13 
times higher than the highest estimate derived from a published ground-based survey of 
gathering lines." Application these alternative emission factors which have been observed in the 
Permian would certainly change your conclusion about upstream/midstream. Without this 
context explicitly stated in your Permian analysis, this section reads as an attempt to arrive at a 
certain prescribed conclusion, which I don't believe is your intent. The preferred approach would 
be to make an ensemble of estimates based on the many emission factor distributions that have 
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been recently observed. Or at minimum, the manuscript should state that upstream/diffuse 
result from your inventory is not totally consistent with other studies from the Permian. However, 
this seems outside the scope of a data description paper and may be worth total removal/saving 
for another analysis. 

We appreciate the reviewer’s helpful comments on the section of our manuscript regarding 
methane emissions inventory in the Permian Basin.  

We note that the Lyon et al. (2020) study does not claim that emissions in the Permian are 
dominated by the midstream sector, and the study does not provide an estimate of the 
proportion of the total measured emissions attributable to the midstream sector. As the reviewer 
noted, the study suggested that “insufficient capacity of midstream infrastructure for handling 
and delivering rapidly growing rates of natural gas” contributed to the high observed emission 
rates pre-COVID. Insufficient capacity of midstream infrastructure (pipelines, compressor 
stations, processing plants) could create production takeaway bottlenecks both at or upstream 
(i.e., at oil and gas production sites) of the midstream facilities, as further evidenced by the 
reported high flaring and flare malfunctions (i.e., venting) of produced associated gas at the time 
(Lyon et al. (2020). We note that our estimate is also for the 2021 post-COVID era, when 
Permian takeaway capacity had considerably improved (Varon et al. 2023).  

Our use of the EPA methane emissions factors for the gathering pipelines reflects the paucity of 
facility-scale ground-based measurement datasets for methane emissions from gathering 
pipelines. For consistency, we only used available data from previous facility-scale ground-
based measurements in our emissions estimates for all oil and gas sectors (supplementing with 
the EPA Greenhouse Gas Inventory emission factors, where such measurements were not 
available). The high minimum detection limits of most of today’s point-source “top-down” aerial 
measurements, and the highly intermittent and often short-duration nature of the high-
magnitude emissions typically observed by these platforms, require further studies on 
statistically robust methods for integrating such datasets with the facility-scale ground-based 
measurements. We include the following sentences in the revised manuscript: 

• “For consistency, our bottom-up methane emissions estimate for each of the major oil 
and gas sectors are based on measurements collected using facility-scale, ground-
based measurement approaches, such as the EPA Other Test Methods (OTM-33A, e.g., 
Robertson et al. 2020) and dual tracer flux measurements (Mitchell et al. 2015). 
Additional facility-scale emissions datasets include measurements collected using point 
source aerial measurement platforms (e.g., Cusworth et al. 2021, 2022), with higher 
minimum detection limits (e.g., >10-20 kg/h; Cusworth et al. 2021) and detections of low-
probability and intermittent high-magnitude emissions events.  Further studies are 
needed to develop statistically robust methods for integrating facility-scale ground-based 
datasets with such “top-down” datasets. Because of the paucity of facility-scale ground-
based measurements for gathering and transmission pipelines, our use of the EPA 
Greenhouse Gas Inventory methane emission factors may represent a low-bound on 
total estimated emissions for these sectors, as recent studies suggest the EPA emission 
factors could be biased low (Yu et al. (2021).” 
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In addition, we provide 95% confidence bounds on our total methane emissions estimates of 
+24%/-17% or 2.6—3.6 Tg, resulting from uncertainty in the mean facility-level emissions 
distributions and uncertainty in oil and gas activity data, particularly for gathering natural gas 
compressor stations. 

To the best of our knowledge, there have not been any previous comprehensive “top-down” 
measurement-based studies characterizing total methane emissions by oil and gas sector in the 
Permian, i.e., apportionment of total methane emissions to specific facility categories such as 
well pads and compressor stations. Our Permian inventory, in addition to demonstrating one of 
the key applications of the OGIM database, provides an improved “bottom-up” estimate and 
methane source allocation based on available facility-level measurement datasets.  

-On the Zenodo DOI webpage it states that datasets for Russian compressors and VIIRS are 
not included in the dataset due to permissions. I did not see that description also written in the 
manuscript, where it should also be. 

We have updated the current version of the OGIM database to include the VIIRS flaring dataset 
for the year 2021. We have included the following description in the Data Availability section of 
the manuscript: 

• “The current version of the publicly available OGIM database does not include 
compressor station locations for Russia (shown in the map on Figure 6). Future updates 
to the OGIM database may include these datasets when appropriate permissions to 
make them publicly accessible are obtained.” 
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