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Abstract 42 

Long-term climate data and high-quality baseline climatology surface with high resolution are 43 

essential to multiple fields including climatological, ecological, and environmental sciences. Here, 44 

we created a brand-new baseline climatology surface (ChinaClim_baseline) and developed a 1km 45 

monthly precipitation and temperatures dataset in China during 1952-2019 (ChinaClim_time-series). 46 

Thin plate spline (TPS) algorithm in each month with different model formulations by accounting 47 

for satellite-driven products and climatic research unit (CRU) datasets, was used to generate 48 

ChinaClim_baseline and monthly climate anomaly surface. Climatologically aided interpolation 49 

(CAI) was used to superimpose monthly anomaly surface with ChinaClim_baseline to generate 50 

ChinaClim_time-series. Our results showed that ChinaClim_baseline exhibited very high 51 

performance in four climatic regions with the RMSEs of precipitation and temperature elements 52 

estimation being 1.276 ~28.439 mm and 0.310 ~ 2.040 °C, respectively. The correlations among 53 

ChinaClim_baseline and WorldClim2 and CHELSA were high, but our results also captured clearly 54 

spatial differences among them. WorldClm2 and CHELSA might overestimated (or underestimated) 55 

climate events such as warming and drought in temperate continental region and high cold Tibetan 56 

plateau where weather stations were sparse. For ChinaClim_time-series, precipitation and 57 

temperature elements had average RMSEs between 7.502 mm ~ 52.307 mm, and 0.461 °C ~ 58 

0.939 °C for all months, respectively. Compared with Peng’s climate surface and CHELSAcruts, R2 59 

increased by ~ 7 %, RMSE and MAE decreased by ~ 17 % for precipitation; for temperature elements, 60 

R2 hardly increased, but RMSE and MAE decreased by ~50 %. Our results showed 61 

ChinaClim_baseline obviously improved the accuracy of time-series climatic elements estimation, 62 

and the satellite-driven data can greatly improve the accuracy of time-series precipitation estimation, 63 

but not the accuracy of time-series temperatures estimation. Overall, ChinaClim_baseline, an 64 

excellent baseline climatology surface, can be used for obtaining high-quality and long-term climate 65 

datasets from past to future. In the meantime, ChinaClim_time-series of 1km spatial resolution 66 

based on ChinaClim_baseline, is suitable for investigating the spatial-temporal patterns of climate 67 

changes and their impacts on eco-environmental systems in China. 68 

Here, ChinaClim_baseline is available at 10.5281/zenodo.5900743 (Gong, 2020a), 69 

ChinaClim_time-series of precipitation is available at 10.5281/zenodo.5919442 (Gong, 2020b), 70 

ChinaClim_time-series of maximum temperature is available at 10.5281/zenodo.5919448 (Gong, 71 

2020c), ChinaClim_time-series of minimum temperature is available at 10.5281/zenodo.5919423 72 

(Gong, 2020d) and ChinaClim_time-series of average temperature is available at 73 

10.5281/zenodo.5919450 (Gong, 2020e). 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

https://doi.org/10.5194/essd-2022-45

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



3 

 

1 Introduction 83 

Long-term information on climatic conditions with high resolution (1km) is pivotal for 84 

understanding climate changes and its influences in atmospheric movements, vegetation dynamics, 85 

soil water content , and other related scientific and application fields (Chaney et al., 2014; Gao et 86 

al., 2018; Hijmans et al., 2005; Karger et al., 2017; Liu et al., 2016; New et al., 2002; Pfister et al., 87 

2020; Wagner and Wolfgang, 2003). However, existing climate datasets often only represent 88 

climatic variation at spatial resolutions of 0.25~1 degree, such as Climatic Research Unit: CRU 89 

(Harris et al., 2014), The European Centre for Medium-Range Weather Forecast (ECWMF) Climatic 90 

reanalysis: ERA (Sterl et al., 1998), Global Precipitation and temperature: UDEL (Lawrimore et al., 91 

2011), The Berkeley Earth Surface Temperatures: BEST (Muller et al., 2013), Global Precipitation 92 

Climatology Centre: CPCC (Becker et al., 2013). As the studying of climate change and its regional 93 

responses becomes more and more important, high resolution gridded climate data is urgently 94 

needed for national and regional scales (Hamann et al., 2015; Hijmans et al., 2005; Karger et al., 95 

2017). 96 

A large body of works including spatial interpolation methods and statistical downscaling were 97 

motivated to obtain high resolution gridded climate data. Spatial interpolation methods such as 98 

Kriging (Li and Shao, 2010; Wu and Li, 2013), Inverse Distance Weighting (Hartkamp et al., 1999) 99 

and Spline (Boer et al., 2001) were widely applied in estimating climate elements (temperatures, 100 

precipitation, vapor pressure, solar radiation and wind speed) at arbitrary spatial resolution. Among 101 

them, thin plate spline (TPS) interpolation was considered to perform well in generating grids of 102 

climate elements (Boer et al., 2001; Hartkamp et al., 1999; Hijmans et al., 2005; Hutchinson, 1995; 103 

Fick et al., 2017). Recent studies have shown that climatologically aided interpolation (CAI) 104 

employing the temporal anomaly (ratio) surface and an accurate baseline climatology surface, is 105 

well suited for producing more high-quality climate datasets than direct interpolation using original 106 

weather stations (Abatzoglou et al., 2018; Becker et al., 2013; C. Vega et al., 2017; Karger et al., 107 

2017; Mosier et al., 2014; Peng et al., 2019; Willmott and Robeson, 2010). Remarkably, the quality 108 

of monthly time-series climate surface, generated by CAI method, was highly determined by the 109 

baseline climatology surface (Gao et al., 2018; Peng et al., 2019). Baseline climatology surface, also 110 

called 30-Year Normals, described average monthly conditions over the most recent three full 111 

decades. Fine-scale baseline climatology surface is physically representative and meaningful 112 

meteorological variable for climatology studies (Marchi et al., 2019; Mosier et al., 2014; Peng et al., 113 

2017; Platts et al., 2015). Previous efforts have developed some high-quality baseline climatology 114 

surfaces with a resolution of 1km, such as WorldClim v1 (Hijmans et al., 2005), WorldClim2 (Fick 115 

et al., 2017) and CHELSA (Karger et al., 2017) for global land surface, PRISM (Daly et al., 2002; 116 

Daly et al., 2008) and Daymet (Thornton et al., 1997) for North America. Although these baseline 117 

climatology surfaces are widely used for basic and applied studies (Belda et al., 2017; Ray et al., 118 

2015), a gap between these gridded climate datasets and weather stations was still observed in many 119 

areas (New et al., 2002; Fick et al., 2017). For example, data quality of WorldClim depends on local 120 

climate variability, quality and density of observations, and the degree of the fitted spline (Hijmans 121 

et al.,2005). Unfortunately, currently available high-quality baseline climatology surface with high-122 

resolution covering China like WorldClim2 and CHELSA, only a part of weather stations (323 and 123 

228 stations for WorldClim2 and CHELSA respectively) were employed to generate baseline 124 
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climatology surface. Weather stations are the most reliable source of the estimation of temperatures 125 

and precipitation, and thus more weather stations can provide more accurate point measure 126 

information. Thus, a dataset of 30-year average climate (1981-2010) containing more than 2000 127 

weather stations from China Meteorological Data Service Center and Central Weather Bureau, can 128 

be used to create a brand-new baseline climatology surface in China. Notably, CHELSA have not 129 

considered satellite-driven products, and WorldClim2 did not use directly satellite-driven 130 

precipitation products but cloud cover datasets as predictor. However, satellite-driven products can 131 

improve the estimate of climate elements in the regions with less regular distribution of 132 

meteorological stations (Deblauwe et al., 2016; Jin and Dickinson, 2010; Mildrexler et al., 2011).  133 

With the development of remote sensing and geographic information technology, satellite-driven 134 

climate grid become the optimum climate product in measuring climate elements at regional and 135 

global scales (Huffman et al., 2010; Michaelides et al., 2009; Siuki et al., 2017). The Multisatellite 136 

Precipitation Analysis monthly 3B43 products (TRMM3B43) have been utilized extensively to 137 

provide valuable precipitation information in areas with sparse weather stations over the last two 138 

decades (Biasutti et al., 2012; Huffman et al., 2010; Simpson et al., 1996). Land surface temperature 139 

(LST) is now available from satellite-borne instruments, which is widely incorporated in estimating 140 

air temperature (Kilibarda et al., 2014, Yao et al., 2020). Despite TRMM3B43 and LST products 141 

played huge roles in recent precipitation and temperature measures (Kilibarda et al., 2014; Kolios 142 

and Kalimeris, 2020; Yao et al., 2020), they are only available after 1997 and 2000 respectively, 143 

which is not long enough for the long-term ecological and environmental analyses and modeling. 144 

Therefore, there is an urgently need to combine satellite-driven TRMM3B43 and LST in climate 145 

interpolation to generate a brand-new and higher-quality baseline climatology surface 146 

(ChinaClim_baseline) and further to create a high-quality monthly time series of precipitation and 147 

temperatures dataset for China (ChinaClim_time-series) from 1952 to 2019 with CAI method.  148 

Specifically, the objectives of this work are: (1) to create a brand-new and higher-quality baseline 149 

climatology surface for China (ChinaClim_baseline). (2) to generate a 1km monthly temperatures 150 

and precipitation dataset in China for the period of 1952-2019 (ChinaClim_time-series).  151 

 152 
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2 Data  162 

2.1 Weather observation stations  163 

Dataset of 30-year average climate (1981-2010) was obtained from two sources, 2438 weather 164 

stations from CMD and 25 weather stations from Central Weather Bureau (www.cwb.gov.tw). 165 

Dataset of monthly surface observation values drawn from 613 weather stations for the period of 166 

1952-2019 was collected from the China Meteorological Data Service Center (CMD: 167 

http://cdc.nmic.cn). Moreover, influenced by the monsoon and Tibetan Plateau, four climate regions 168 

(Figure 1: Temperate continental region, Temperate monsoonal region, High cold Tibetan Plateau, 169 

and Subtropical-tropical monsoonal region) have experienced various climate changes in both 170 

precipitation and temperature (He et al 2018). Weather stations also were divided into four regions 171 

to construct model and check the performance of data products in the areas with sparse and dense 172 

weather stations. 173 

 174 
Figure1. The spatial distribution of weather stations in four climatic regions (i.e. Temperate continental region, Temperate 175 

monsoonal region, High cold Tibetan plateau, and Subtropical-tropical monsoonal region) of China. 176 
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2.2 Version 7 TRMM3B43 datasets 177 

The Tropical Rainfall Measuring Mission (TRMM), a joint project by the National Aeronautics and 178 

Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), was launched 179 

in November 1997 to monitor and investigate tropical and subtropical rain system (Huffman et al., 180 

2010; Simpson et al., 1996). Our study used the TRMM3B43 monthly product, with a spatial 181 

resolution of 0.25 degree over a latitude range from 50°S to 50°N. The Version 7 monthly 182 

TRMM3B43 in NetCDF format was downloaded from https://mirador.gsfc.nasa.gov. Referring to 183 

the method of Ma et al (2018), monthly and yearly TRMM3B43 (TRMM_m and TRMM_y) were 184 

averaged across years 1998-2019 by downscaled to 1km spatial resolution via cubist algorithm and 185 

TPS interpolation. 186 

2.3 Land Surface Temperature  187 

Land surface temperature (LST) was compiled from Moderate Resolution Imaging 188 

Spectroradiometer (MODIS). Mean night and day LST values were extracted from ~1 km resolution 189 

MOD11A2 images, averaged by month and year from 2001 to 2019. Then, the night LST (lst_nm 190 

/lst_ny) was used as either covariates or independent spline variables for minimum temperature, the 191 

day LST (lst_dm/lst_dy) was used as either covariates or independent spline variables for maximum 192 

temperature and an average of lst_dm/lst_dy and lst_nm/lst_ny (lst_am/ lst_ay) was used as either 193 

covariates or independent spline variables for average temperature.  194 

2.4 Elevation and Distance to the nearest coast 195 

Elevation data with a spatial resolution of 90 m from Shuttle Rader Topography Mission (SRTM) 196 

(data available at http://srtm.csi.cgiar.org/) was aggregated to 1km spatial resolution. Precipitation 197 

generally increases with elevation (Oke, 1978; Barry and Chorley, 1987), and temperature exhibits 198 

a predictable decrease with elevation when the atmosphere is well mixed (e.g. Willmott and 199 

Matsuura, 1995). Coastline dataset was downloaded from https://www.ngdc.noaa.gov. Coastal 200 

effects on temperatures and precipitation are most noticeable because the water temperature is 201 

significantly different from the adjacent land temperature and ocean often brings warm-humid water 202 

vapor (Haugen and Brown, 1980; Atkinson and Gajewski, 2002). We calculated the distance to the 203 

nearest coast using Euclidean distance in ArcGIS 10.2 with the fine coastline datasets. 204 

2.5 Climatic Research Unit gridded Time Series (CRU TS v. 4.05)  205 

Climatic Research Unit gridded Time Series (CRU TS) is a widely used climate dataset on a 0.5° 206 

×0.5° grid over all land domains of the world except Antarctica. The new version (CRU TS v4) was 207 

updated to span 1901–2018 by the inclusion of additional station observations, and it will be updated 208 

annually. CRU TS v. 4.05 can be accessed online at https://crudata.uea.ac.uk/cru/data/hrg/.  209 

Although the coarse spatial resolution of CRU dataset, it can provide valuable information on the 210 
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time-varying characteristics of climatic elements. Here, we calculated the CRU anomaly (ratio) 211 

during 1952-2019 and interpolated them to 1km spatial resolution via TPS algorithm as variable for 212 

monthly temperatures anomaly (precipitation ratio) estimation. 213 

2.6 Baseline climatology surfaces and monthly time-series climatic 214 

datasets  215 

Two baseline climatology surfaces as WorldClim2 (Fick et al., 2017) and CHELSA (Karger et al., 216 

2017) with 1km spatial resolution were used to compare the spatial consistency with 217 

ChinaClim_baseline. WorldClim2 was interpolated with ANUSPLIN (Hutchinson, 1995) and 218 

represented the period of 1970-2000, a method that fits thin plate splines through station data in 219 

three dimensions: latitude, longitude, and elevation. WorldClim2 data sets can be accessed online at 220 

www.worldclim.org. CHELSA contains high spatial resolution monthly climatologies of average, 221 

maximum, and minimum temperatures and precipitation, representing the period of 1979-2013. 222 

CHELSA is essentially a quasi-mechanistical statistical downscaling of the ERA-Interim reanalysis, 223 

with the temperature downscaling based on mean lapse rates and elevation, and the precipitation 224 

algorithm using geographic predictors including wind fields, exposure, and boundary layer height 225 

(Karger et al., 2017). CHELSA is freely available at www.chelsa-climate.org.   226 

We also collected two long-term climate datasets with high resolution. One is CHELSAcruts, a delta 227 

changes monthly climate dataset for the years 1901-2016 for mean monthly maximum temperatures, 228 

mean monthly minimum temperatures, and monthly precipitation sum. Anomalies of the CRU TS 229 

v. 4.01 dataset were interpolated between all CRU TS grid cells and are then added (for temperature 230 

variables) or multiplied (in case of precipitation) to high resolution climate data from CHELSA 231 

V1.2 (Karger et al., 2017). CHELSAcruts is freely available at www.chelsa-climate.org. The other 232 

is the recently published Peng’s climate surfaces (Peng et al., 2019). This climate dataset was 233 

spatially downscaled from 30’ CRU time series dataset with the baseline climatology surface of 234 

WorldClim using CAI method. This is a 1km dataset of monthly air temperatures at 2m and 235 

precipitation for China during the period of 1901-2017. Peng’s climate surface can be freely 236 

available at www.zenodo.org. 237 

 238 
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3 Method 247 

3.1 Creation of baseline climatology surface over China 248 

(ChinaClim_baseline)  249 

The monthly average values of precipitation and temperatures of multi-years (1980-2010) were 250 

interpolated with the thin plate spline (TPS) from R packages “fields”. Spline models for the N 251 

observed data values 𝑧𝑖 are fit as the following: 252 

𝑧𝑖 = 𝑓(𝑥𝑖) + 𝑎𝑇𝑦𝑖 +  λ        (𝑖 = 1, … , 𝑁) 253 

Where 𝑓  is a smooth function of the spline independent variable 𝑥𝑖  , 𝑎  is a vector of linear 254 

coefficients for the independent covariates 𝑦𝑖 . In this study, we considered longitude, latitude, 255 

elevation, distance to the nearest coast and satellite-driven variables to create baseline climatology 256 

surface over China based on TPS model. We listed climate elements and variables used in TPS 257 

model for estimating ChinaClim_baseline in Table 1. It is worth noting that longitude, latitude and 258 

elevation were set as spline independent variables and other variables were used as either 259 

independent spline variables or linear covariates. Especially, Elevation (m) was divided by 1000 260 

following scaling recommendations by Hutchinson (1995). Precipitation values were square root 261 

transformed prior to fitting following recommendations by Hutchinson and Xu (2013). Moreover, 262 

TRMM3B43 contained a latitude range from 50°S to 50°N, so we constructed TPS model including 263 

TRMM3B43 in the area south of 50°N. Because the northernmost latitude of China is higher than 264 

50°N, we constructed TPS models without TRMM3B43 in the area north of 49°N. Obvious 265 

differences may be appeared in the border area since different model formulas using in two areas. 266 

Thus, the 1° overlap area ensures that baseline climatology surface of the two areas can be better 267 

merged by weighting estimates inversely proportional to distance from each region’s border 268 

(Hijmans et al., 2005; New et al., 2002). Similarly, this method also was used in fusing the 269 

boundaries of the four different climate regions. 270 

Specifically, the process for generating ChinaClim_baseline based on the tenfold spatially stratified 271 

cross-validation approach can be described as follows (Figure 2): 272 

(1) After removing duplicate and invalid weather stations, the remaining were split into 10 folds in 273 

each climate region to assure that there was enough training and testing data for each climate region 274 

to build and verify the model, and thus to avoid spatial autocorrelation. 275 

(2) We randomly extracted 9 folds’ weather stations in each climate region and combined them into 276 

a new training dataset. The remained were combined as testing dataset to valid the accuracy of 277 

model. 278 

(3) 11 model for each month in each climatic region were tried using different combinations of 279 

variables to construct TPS model (Model formulations about longitude, latitude, elevation, distance 280 

to the nearest coast and satellite-driven TRMM and LST described in Table S1).  281 

(4) The optimal model for each month in each climatic region was used by selecting only the model 282 

with the lowest average RMSE value, then fit full dataset to create final surfaces and merge the 283 

region of interest via inverse distance weighted method. 284 

 285 
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Table 1. Climate elements and variables used in TPS model for creating baseline climatology and anomaly surface. 286 

Variables include longitude (x), latitude (y), elevation (z), distance to the nearest coast (coast), averaged monthly 287 

CRU precipitation ratio (cru_r) and temperature anomaly (cru_a) during 1952-2019, averaged monthly (trmm_m) 288 

and yearly (trmm_y) TRMM3B43 during 1998-2019, monthly TRMM ratio (trmm_r), MOD11A2 land surface 289 

temperature (the day LST, the night LST, and the average of the day and night LST ) during 2001-2019 averaged 290 

by month (lst_dm, lst_nm, lst_am) and year (lst_dy, lst_ny, lst_ay), MOD11A2 land surface temperature anomaly 291 

during 2001-2019 (lst_da, lst_na, lst_aa), Baseline climatology surface (base_prep, base_tavg, base_tmax, 292 

base_tmin). 293 

Climate elements Unit Variables used in TPS models 

Precipitation mm x, y, z,coast,trmm_m,trmm_y 

Minimum temperature °C x, y, z,coast, lst_nm, lst_ny 

Maximum temperature °C x, y, z,coast, lst_dm, lst_dy 

Average temperature °C x, y, z,coast, lst_am, lst_ay 

Precipitation ratio % x, y, z,coast, cru_r, trmm_r(1998-2019), base_prep 

Minimum temperature anomaly °C x, y, z,coast, cru_a, lst_na(2001-2019), base_tmin 

Maximum temperature anomaly °C x, y, z,coast, cru_a, lst_da(2001-2019), base_tmax 

Average temperature anomaly °C x, y, z,coast, cru_a, lst_aa(2001-2019), base_tavg 

Note: x, y and z were set spline independent variables and other variables were used as either independent spline 294 

variables or linear covariates 295 

 296 

Figure 2. Workflow for baseline climatology surface (ChinaClim_baseline) for 297 

China (adapted from Fick et al., 2017) 298 
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3.2 Generation of monthly precipitation and temperatures surface for China 299 

(ChinaClim_time-series) 300 

CAI method was used to superimpose monthly anomaly (ratio) surface and baseline climatology 301 

surface (ChinaClim_baseline) to produce monthly precipitation and temperatures surface 302 

(ChinaClim_time-series) during 1952-2019 in China as the following.  303 

Firstly, the precipitation ratio and temperature anomaly time series were calculated by the ratio and 304 

the difference between the original time series from weather stations and the 30-Year Normals, 305 

respectively.  306 

Secondly, we applied TPS model to generate monthly precipitation ratio and temperature anomaly 307 

surface from 1952.01 to 2019.12 with the similar way obtained ChinaClim_baseline (Figure 2). For 308 

monthly anomaly (ratio) during 1952-2019, 7 model formulations (Table S6) were constructed by 309 

using different combinations of variables (Longitude, Latitude, Elevation, Distance to the nearest 310 

coast, CRU anomaly (ratio) and the 30-Year normals), and the optimal model was chosen via the 311 

minimum RMSE value of multi-year (1952-2019) average to fit precipitation ratio surfaces during 312 

1952-1997 and temperatures anomaly surfaces during 1952-2000; For the remained period, we also 313 

constructed two model formulations on the basis of the optimal model (1952-2019). The two models   314 

added satellite data (satellite-driven TRMM ratio and LST anomaly) as either independent spline 315 

variables or linear covariates. That is, 3 model formulations (eg: Table S6: model 1 was 316 

F(x,y,z,base,coast)+cru_r, model 1a was F(x,y,z,base,coast)+cru_r+trmm_r and model 1b was 317 

F(x,y,z,base,coast,trmm_r)+cru_r) were checked to select the best model during 1998-2019 for 318 

precipitation and 2001-2019 for temperature elements. Overall, The final anomaly/ratio surfaces 319 

were created by selecting only the model with the lowest average RMSE value in corresponding 320 

period. 321 

Eventually, ChinaClim_time-series was generated by superimposing anomaly (ratio) time series 322 

grid and ChinaClim_baseline from 1952.01 to 2019.12 (Figure 3). 323 
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 324 
Figure 3. Workflow for ChinaClim_time-series generation. 325 

3.3 Evaluation metrics 326 

Three statistic indices including the root mean square error (RMSE), mean absolute error (MAE) and 327 

coefficients of determination (R2) are examined to evaluate the performance of ChinaClim_baseline 328 

and ChinaClim_time-series. 329 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝑀𝑖)2𝑛

𝑖=1

𝑛
 330 

𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑀𝑖|𝑛

𝑖=1

𝑛
 331 

𝑅2 = (
∑ (𝑀𝑖 − 𝑀)(𝑃𝑖 − 𝑃)𝑛

𝑖=1

√∑ (𝑀𝑖 − 𝑀)2(𝑃𝑖 − 𝑃)2𝑛
𝑖=1

)2 332 

Where Pi is the estimates like ChinaClim_baseline/ChinaClim_time-series in the ith weather station; 333 

Mi is the measured value from the ith weather station; n is the number of weather stations; 𝑃 is the 334 

average of the estimates like ChinaClim_baseline/ChinaClim_time-series from n weather stations; 335 

𝑀 is the average of the measured value from n weather stations. 336 

 337 

 338 

 339 
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4 Results 340 

4.1 A brand-new and high-quality baseline climatology surface for China 341 

(ChinaClim_baseline) 342 

4.1.1 The optimal model and its overall accuracy 343 

For precipitation estimation (Tables S2 - S5), the best model with the lowest RMSE from each 344 

region in each month employed satellite-driven TRMM3B43 (TRMM_m or TRMM_y), which 345 

implied that TRMM3B43 improved effectively precipitation accuracy. TRMM_m can improve the 346 

accuracy of precipitation in all months, while TRMM_y can only improve the accuracy in some 347 

months. Regardless of any region, the precipitation error in the summer half year was higher than 348 

that in the winter half year at month scale. The RMSE value of the summer half year was as high as 349 

28.458mm in the Subtropical-tropical monsoonal region, followed by high cold Tibetan plateau and 350 

temperate monsoonal region, with RMSE of 15.708 and 15.572mm, respectively. However, 351 

precipitation error in temperate continental region was the lowest, and the highest RMSE in summer 352 

half year was just 8.694mm. Subtropical-tropical monsoonal region, high cold Tibetan plateau and 353 

temperate monsoonal region, strongly affected by monsoon, have abundant precipitation in the 354 

summer half year which tended to trigger higher precipitation error. 355 

For all temperature elements (Tables S2 - S5), models considering LST were best in most months 356 

due to a strong correlation of temperature with LST in these months. That is, LST could improve 357 

the interpolation of temperatures, while the improvement by LST might be limited in some months 358 

over a specific region. For example, Model 1 (F(x,y,z)+coast) in Jul, Sep, Oct, Nov, and Dec were 359 

the best model for maximum temperature in temperate continental region, and it is the best model 360 

in 6 months (Jan, Feb, Apr, May, Sep, Oct) for minimum temperature in high cold Tibetan plateau. 361 

It means that temperature elements have very high correlation with altitude in related months over 362 

these regions and adding LST as an auxiliary variable is not necessary. As shown from Table.3, 363 

model accuracy was very high for the temperature elements when selecting the best model from 364 

each region in each month. Similar to precipitation, regardless of any region, the accuracy of 365 

temperature estimation in the summer half year was also higher than that of the winter half year, 366 

that is, compared with the winter half year, our results captured the lower RMSE and MAE for 367 

temperature elements in the summer half year. However, the temperature accuracy ranking of each 368 

temperature element was different over four climatic regions. In Temperate continental region and 369 

Temperate monsoonal region, the RMSE and MAE of the maximum temperature were the smallest, 370 

followed by the average and minimum temperature. In high cold Tibetan plateau and subtropical-371 

tropical monsoonal region, the accuracy of the average temperature was the highest, followed by 372 

the maximum and minimum temperature. Specifically, the accuracy of average temperature in 373 

subtropical-tropical monsoonal region (an average RMSE between 0.369~0.632 ℃) was highest but 374 

close to that of temperate monsoonal region (an average RMSE between 0.310~0.732 ℃), followed 375 

by high cold Tibetan plateau (an average RMSE between 0.784~1.242 ℃) and temperate continental 376 

region (an average RMSE between 0.667~1.519 ℃). RMSE of the maximum temperature in 377 
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temperate monsoonal region had an average RMSE between 0.273~0.452 ℃, followed by 378 

subtropical-tropical monsoonal region (an average RMSE between 0.475~0.798 ℃), temperate 379 

continental region (an average RMSE between 0.616~1.081 ℃), and high cold Tibetan plateau (an 380 

average RMSE between 0.990~1.509 ℃). For minimum temperature, the accuracy of temperature 381 

estimation in subtropical-tropical monsoonal region and temperate monsoonal region was good and 382 

had an average RMSE of 0.378~0.719 ℃ and 0.448~1.186 ℃, respectively, while the accuracy in 383 

high cold Tibetan plateau (an average RMSE of 0.893~1.853 ℃) and temperate continental region 384 

(an average RMSE of 0.893~1.853 ℃) was relatively poor.  385 

 386 

Table 3. Tenfold cross-validation statistics for selected models based on independent weather stations in Temperate 387 

continental region 388 

Climate 

elements 

Statistic 

indices 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

RMSE 1.367  1.276  2.316  4.679  6.663  6.759  8.694  7.226  4.873  3.628  2.574  1.603  

R2 0.848  0.823  0.779  0.750  0.791  0.894  0.935  0.960  0.941  0.851  0.842  0.893  

MAE 0.754  0.810  1.469  2.507  3.534  4.245  5.703  4.930  3.416  2.256  1.384  0.826  

Average 

temperature 

RMSE 1.519  1.273  0.831  0.667  0.687  0.793  0.837  0.818  0.783  0.788  0.928  1.303  

R2 0.862  0.919  0.961  0.963  0.952  0.933  0.925  0.921  0.923  0.914  0.922  0.871  

MAE 1.003  0.842  0.593  0.479  0.470  0.544  0.581  0.572  0.570  0.582  0.690  0.889  

Maximum 

temperature 

RMSE 1.081  1.030  0.846  0.616  0.702  0.750  0.802  0.733  0.663  0.607  0.727  0.980  

R2 0.936  0.949  0.964  0.974  0.956  0.952  0.942  0.951  0.959  0.964  0.956  0.935  

MAE 0.645  0.614  0.480  0.357  0.406  0.480  0.516  0.474  0.409  0.364  0.467  0.606  

Minimum 

temperature 

RMSE 2.040  1.815  1.218  1.068  1.033  1.114  1.076  1.136  1.189  1.189  1.331  1.773  

R2 0.776  0.845  0.908  0.906  0.900  0.852  0.834  0.834  0.812  0.800  0.820  0.792  

MAE 1.457  1.286  0.916  0.826  0.806  0.854  0.813  0.843  0.914  0.879  1.013  1.285  

 389 

Table 4. Tenfold cross-validation statistics for selected models based on independent weather stations in High cold 390 

Tibetan Plateau 391 

Climate 

elements 

Statistic 

indices 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

RMSE 2.380  2.922  5.829  7.553  10.284  15.212  15.708  13.595  12.115  6.207  3.439  1.719  

R2 0.736  0.767  0.775  0.888  0.912  0.906  0.898  0.901  0.896  0.919  0.867  0.714  

MAE 1.310  1.716  3.799  5.323  7.176  10.970  11.785  10.314  9.107  4.320  1.886  0.971  

Average 

temperature 

RMSE 1.242  1.163  1.132  0.976  0.936  0.933  0.824  0.784  0.857  0.918  1.049  1.172  

R2 0.936  0.948  0.939  0.961  0.944  0.942  0.956  0.963  0.954  0.946  0.951  0.922  

MAE 0.964  0.878  0.844  0.722  0.678  0.680  0.613  0.594  0.632  0.685  0.815  0.924  

Maximum 

temperature 

RMSE 1.310  1.509  1.369  1.272  1.230  1.182  1.042  0.990  1.096  1.265  1.103  1.089  

R2 0.925  0.907  0.893  0.929  0.922  0.917  0.941  0.943  0.905  0.914  0.942  0.942  

MAE 0.921  1.069  1.006  0.949  0.829  0.816  0.746  0.738  0.810  0.896  0.799  0.813  

Minimum 

temperature 

RMSE 1.853  1.566  1.256  1.062  0.966  0.963  0.929  0.961  0.893  1.119  1.469  1.799  

R2 0.888  0.920  0.940  0.955  0.945  0.948  0.948  0.947  0.950  0.943  0.912  0.889  

MAE 1.459  1.202  0.979  0.840  0.759  0.740  0.734  0.752  0.667  0.875  1.181  1.422  

 392 

 393 
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Table 5. Tenfold cross-validation statistics for selected models based on independent weather stations in Temperate 394 

monsoonal region 395 

Climate 

elements 

Statistic 

indices 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

RMSE 1.463  2.039  2.885  4.117  7.931  9.751  15.572  14.935  6.682  4.783  2.202  1.408  

R2 0.969  0.971  0.962  0.953  0.955  0.951  0.893  0.880  0.933  0.901  0.955  0.959  

MAE 0.892  1.146  1.787  2.389  4.040  5.975  10.965  10.151  4.599  2.918  1.459  0.845  

Average 

temperature 

RMSE 0.732  0.635  0.457  0.422  0.434  0.390  0.326  0.310  0.402  0.447  0.526  0.672  

R2 0.989  0.990  0.991  0.986  0.977  0.978  0.981  0.984  0.983  0.988  0.991  0.990  

MAE 0.506  0.439  0.331  0.313  0.320  0.270  0.230  0.236  0.303  0.327  0.396  0.481  

Maximum 

temperature 

RMSE 0.452  0.451  0.434  0.452  0.449  0.431  0.402  0.335  0.291  0.273  0.345  0.436  

R2 0.995  0.994  0.992  0.982  0.970  0.972  0.962  0.972  0.989  0.995  0.996  0.995  

MAE 0.278  0.283  0.296  0.301  0.277  0.266  0.257  0.227  0.199  0.184  0.238  0.287  

Minimum 

temperature 

RMSE 1.186  1.066  0.778  0.735  0.744  0.625  0.448  0.492  0.704  0.775  0.869  1.059  

R2 0.976  0.977  0.979  0.964  0.949  0.953  0.973  0.971  0.963  0.969  0.978  0.977  

MAE 0.832  0.748  0.600  0.557  0.563  0.458  0.322  0.366  0.522  0.572  0.648  0.762  

 396 

 397 

Table 6. Tenfold cross-validation statistics for selected models based on independent weather stations in 398 

Subtropical-tropical monsoonal region 399 

Climate 

elements 

Statistic 

indices 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

RMSE 8.999  9.143  9.990  11.514  17.116  26.410  28.207  28.459  22.054  17.894  12.174  9.004  

R2 0.908  0.946  0.970  0.968  0.935  0.873  0.735  0.795  0.864  0.873  0.857  0.861  

MAE 4.288  5.184  6.591  7.786  11.144  17.158  19.239  18.265  12.566  8.600  5.289  3.699  

Average 

temperature 

RMSE 0.597  0.632  0.617  0.530  0.437  0.369  0.368  0.355  0.401  0.474  0.514  0.566  

R2 0.978  0.971  0.967  0.965  0.968  0.976  0.982  0.984  0.979  0.976  0.976  0.977  

MAE 0.395  0.414  0.400  0.347  0.299  0.255  0.268  0.261  0.295  0.342  0.370  0.401  

Maximum 

temperature 

RMSE 0.749  0.798  0.786  0.680  0.579  0.521  0.515  0.475  0.514  0.586  0.615  0.689  

R2 0.973  0.962  0.956  0.943  0.937  0.950  0.967  0.970  0.963  0.965  0.967  0.972  

MAE 0.458  0.499  0.490  0.430  0.368  0.334  0.345  0.315  0.345  0.371  0.401  0.439  

Minimum 

temperature 

RMSE 0.702  0.711  0.695  0.621  0.490  0.378  0.408  0.385  0.441  0.537  0.638  0.719  

R2 0.969  0.966  0.960  0.962  0.970  0.978  0.978  0.982  0.975  0.968  0.967  0.965  

MAE 0.476  0.476  0.463  0.422  0.356  0.284  0.308  0.292  0.339  0.410  0.474  0.515  

 400 

4.1.2 Comparison of ChinaClim_baseline with WorldClim2 and CHELSA.  401 

To better identify the performance of ChinaClim_baseline, it was compared with two widely 402 

recognized baseline climatology surface with same spatial resolution: WorldClim2 (Fick et al., 2017) 403 

and CHELSA (Karger et al., 2017). The spatial differences and density scatter between 404 

ChinaClim_baseline and WorldClim2 as well as CHELSA for annual total precipitation, annual 405 

average temperature, January minimum temperature, and July maximum temperature were shown 406 

in Figures 4, 5, 6, and 7 respectively.  407 
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There were some obvious spatial differences between ChinaClim_baseline and WorldClim2 and 408 

CHELSA for annual total precipitation in the temperate continental region and high cold Tibetan 409 

plateau (Figure 4a and 4b). The precipitation ratios of worldclime v2/ChinaClim_baseline were less 410 

than 50% in most areas over temperate continental region and high cold Tibetan plateau, and higher 411 

than 150% in Himalayas. WorldClim2 tended to be drier than ChinaClim_baseline in many locations 412 

of temperate continental region and high cold Tibetan plateau, but tended to be wetter in Himalayas. 413 

It is worth noting that the precipitation rate was obviously more than 150% for CHELSA in the west 414 

and south of high cold Tibetan plateau, while were less than 50% in the northeast of high cold 415 

Tibetan plateau and west of temperate continental region (Figure 4b). That is, CHELSA was pretty 416 

wetter than ChinaClim_baseline in the west and south of high cold Tibetan plateau and much drier 417 

the northeast of high cold Tibetan plateau and west of temperate continental region than 418 

ChinaClim_baseline. As shown in Figure 4c and 4d, the high correlation coefficient (r) between 419 

ChinaClim_baseline and WorldClim2 (r = 0.97) and CHELSA (r = 0.92) imply that our baseline 420 

climatology surface was trustworthy. The spatial consistency between ChinaClim_baseline and 421 

WorldClim2 was higher, which may be because they used similar algorithms to generate baseline 422 

climatology surface. 423 

 424 
Figure 4. WorldClim2/ ChinaClim_baseline and CHELSA/ ChinaClim_baseline ratio maps (expressed as 425 

percentage) and density scatter plots of annual precipitation in China. The color of points represents the density of 426 

points, where the red points represent the highest density, and the blue points represent the lowest density. The 427 

black line is the 1:1 line. 428 

For temperature elements (Figure 5, 6, and 7), the spatial consistent between ChinaClim_baseline 429 

and WorldClim2 as well as CHELSA were very high (the lowest r was 0.98) and the spatial 430 

discrepancy were much smaller than precipitation as temperature generally follows relatively simple 431 

gradients along latitude and elevation. Similar to precipitation, only few areas in temperate 432 
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monsoonal region and subtropical-tropical monsoonal region had obvious spatial discrepancy (the 433 

areas where temperature different over 3°C), and the spatial consistent was low in temperate 434 

continental region and high cold Tibetan plateau.  435 

Specifically, for annual average temperature, most areas showed small temperature different (< 3°C) 436 

and WorldClim2 and CHELSA were slightly hotter (red) in those areas than ChinaClim_baseline 437 

and only CHELSA in the west of high cold Tibetan plateau were colder. However, for July maximum 438 

temperature, WorldClim2 were obviously warmer than our baseline surface in the west of temperate 439 

continental region and the west of high cold Tibetan plateau, and were lower in the remaining areas. 440 

Most areas of CHELSA showed lower temperature than ChinaClim_baseline, particularly in high 441 

cold Tibetan plateau with vast high-altitude areas. Compared to other temperature elements, the 442 

spatial pattern of January minimum temperature showed much more obvious differences among our 443 

baseline surface and WorldClim2 and CHELSA (Figure 7a and 7b), but the density scatter plot 444 

(Figure 7c and 7d) showed that the correlation coefficients (r) were still as high as 0.99 and 0.98, 445 

respectively. Notably, obvious warmer temperature differences (red) can be captured in the eastern 446 

and southern parts of high cold Tibetan plateau both WorldClim2 and CHELSA. Furthermore, 447 

WorldClim2 in temperate continental region tended to be colder than ChinaClim_baseline, while 448 

CHELSA showed a completely opposite spatial pattern. 449 

 450 
Figure 5. WorldClim2 - ChinaClim_baseline and CHELSA – ChinaClim_baseline difference maps and density 451 

scatter plots of annual average temperature in China. The color of points represents the density of points, where the 452 

red points represent the highest density, and the blue points represent the lowest density. The black line is the 1:1 453 

line. 454 

 455 

 456 

 457 
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 458 

Figure 6. WorldClim2 - ChinaClim_baseline and CHELSA - ChinaClim_baseline difference maps and density 459 

scatter plots of July maximum temperature in China.  460 

 461 
Figure 7. WorldClim2 - ChinaClim_baseline and CHELSA - ChinaClim_baseline difference maps and density 462 

scatter plots of January minimum temperature in China.  463 

https://doi.org/10.5194/essd-2022-45

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

4.2 1km monthly precipitation and temperatures surfaces during1952-2019 464 

(ChinaClim_time-series) 465 

4.2.1 The optimal models and accuracy of ChinaClim_time-series 466 

Our results showed that Model 7 (F(x,y,z)+cru_r+base+coast / F(x,y,z)+cru_a+base+coast) had the 467 

lowest multi-year average (1952-2019) RMSE value in most months for precipitation and 468 

temperature elements (Table S7). Model 1 (F(x,y,z,base,coast)+cru_r / F(x,y,z,base,coast)+cru_a) 469 

also had the lowest RMSE in some months such as in Feb for precipitation, during Dec-Mar for 470 

average temperature and during Nov-Mar for maximum temperature. Hence, we used Model 1 and 471 

Model 7 to generate monthly climate surface in corresponding months for precipitation estimation 472 

during 1952-1997 and temperature estimation during 1952-2000. For precipitation estimation 473 

during 1998-2019 and temperature estimation during 2001-2019, models considering TRMM3B43 474 

ratio and LST anomaly (Model 7b and Model 1a) showed the lowest multi-year average RMSE 475 

value (Table S8). 476 

As shown in Table 4, our results demonstrated that ChinaClim_time-series showed excellent 477 

performance during 1952-2019. Precipitation had an average RMSE between 7.502 mm and 478 

52.307mm, an average R2 of 0.755~0.919, and an average of MAE of 4.283~36.826 mm for all 479 

months. Compared with other months, the accuracy of precipitation was slightly poor from Jun to 480 

Aug. Average temperature had an average R2 of 0.991~0.995, an average RMSE between 0.461 °C 481 

and 0.731 °C, and an average MAE of 0.323~0.489 °C for all months. Maximum temperature had 482 

an average R2 of 0.984~0.994, an average RMSE between 0.535 °C and 0.714 °C, and an average 483 

MAE of 0.372 °C ~ 0.485 °C for all months. Minimum temperature had an average R2 of 484 

0.989~0.993, an average RMSE between 0.547 °C and 0.939 °C, and an average MAE of 485 

0.392~0.661 °C for all months. In a word, the accuracy of the average temperature was the best, 486 

followed by the maximum temperature and the minimum temperature.  487 

 488 

Table 4. Tenfold cross-validation statistics for ChinaClim_time-series.  489 

    Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation 

RMSE 7.502  10.532  15.880  24.740  36.320  48.040  52.307  49.240  35.437  25.543  13.866  7.746  

R2 0.897  0.908  0.919  0.888  0.865  0.820  0.755  0.756  0.782  0.801  0.845  0.850  

MAE 4.291  5.881  9.259  15.153  22.794  31.973  36.826  34.298  23.442  14.191  7.839  4.283  

Average 

temperature 

RMSE 0.731  0.682  0.565  0.480  0.463  0.461  0.466  0.467  0.493  0.506  0.607  0.717  

R2 0.995  0.994  0.994  0.993  0.992  0.991  0.991  0.991  0.992  0.994  0.995  0.995  

MAE 0.489  0.465  0.385  0.332  0.329  0.323  0.328  0.333  0.347  0.354  0.416  0.488  

Maximum 

temperature 

RMSE 0.714  0.702  0.637  0.584  0.557  0.565  0.565  0.549  0.547  0.535  0.616  0.701  

R2 0.994  0.993  0.991  0.988  0.985  0.984  0.984  0.986  0.987  0.991  0.994  0.994  

MAE 0.481  0.485  0.444  0.405  0.396  0.403  0.407  0.399  0.385  0.372  0.418  0.470  

Minimum 

temperature 

RMSE 0.939  0.887  0.752  0.630  0.604  0.578  0.547  0.578  0.628  0.678  0.797  0.923  

R2 0.993  0.993  0.992  0.992  0.991  0.989  0.990  0.990  0.990  0.992  0.993  0.993  

MAE 0.661  0.633  0.539  0.459  0.441  0.411  0.392  0.413  0.453  0.495  0.573  0.655  

 490 
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4.2.2 Comparison of ChinaClim_time-series to other datasets 491 

Here, we compared the accuracy of ChinaClim_time-series with Peng’s climate surface and 492 

CHELSAcruts by RMSE, R2 and MAE in China and four climatic regions (Temperate continental 493 

region, High cold Tibetan Plateau, Temperate monsoonal region and Subtropical-tropical 494 

monsoonal region). The independent weather stations extracted from a tenfold cross-validation 495 

approach were used to assess the performance of ChinaClim_time-series, while only these weather 496 

stations with small deviations (< 200 m) between the recorded and actual elevation (1 km DEM) 497 

were used to assess the accuracy of CHELSAcruts and Peng’s climate surface (Tables 5-7). It is 498 

worth noting that these weather stations might not be independent weather station for validating 499 

CHELSAcruts and Peng’s climate surface. Thus the accuracy of CHELSAcruts and Peng’s climate 500 

surface may be overestimated in this study.  501 

 502 

Table 5. The overall accuracy of total precipitation for ChinaClim_time-series, Peng’s climate surface and 503 

CHELSAcruts in China and four climatic regions during 1952-2019 504 

    RMSE R2 MAE 

China 

ChinaClim_time-series 32.867 0.867 17.716 

Peng’s climate surface 39.707  0.805  21.290  

CHELSAcruts 40.015  0.809  21.560  

Temperate continental 

region 

ChinaClim_time-series 13.933  0.847  7.307  

Peng’s climate surface 16.575  0.791  8.881  

CHELSAcruts 15.043  0.832  7.892  

High cold Tibetan 

Plateau 

ChinaClim_time-series 17.878  0.881  9.931  

Peng’s climate surface 31.625  0.714  16.201  

CHELSAcruts 34.228  0.696  18.000  

Temperate monsoonal 

region 

ChinaClim_time-series 26.858  0.854  14.085  

Peng’s climate surface 29.151  0.817  15.496  

CHELSAcruts 28.819  0.831  15.375  

Subtropical-tropical 

monsoonal region 

ChinaClim_time-series 43.626  0.834  26.662  

Peng’s climate surface 52.426  0.758  31.612  

CHELSAcruts 52.950  0.760  32.364  

 505 

The precipitation accuracy of ChinaClim_time-series showed better performance than Peng’s 506 

climate surface and CHELSAcruts in China and four climatic regions (Table 5) with the higher R2 507 

(0.867), and the lower RMSE (32.867 mm) and MAE (17.716 mm). Comparing with Peng’s climate 508 

surface and CHELSAcruts, R2 increased by 7.70 % and 7.17 %, RMSE decreased by 17.23 % and 509 

17.86% and MAE decreased by 16.79% and 17.83 %, respectively.  510 

Specifically, RMSE, R2 and MAE of ChinaClim_time-series in temperate continental region were 511 

13.933mm, 0.847 and 7.307mm, Respectively. The accuracy is higher than CHELSAcruts (RMSE: 512 

15.043mm, R2: 0.832 and MAE: 7.892mm), but much higher than Peng’s climate surface (RMSE: 513 

16.575mm, R2: 0.791 and MAE: 8.881mm) in three surfaces. Remarkably, compared with Peng’s 514 

climate surface and CHELSAcruts in high cold Tibetan plateau, R2 of ChinaClim_time-series for 515 

increased by 23.39 % and 26.59 %, RMSE decreased by 43.47 % and 47.77 % and MAE decreased 516 

by 38.70 % and 44.83 %, respectively. That is, ChinaClim_time-series improved greatly 517 
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precipitation accuracy in those region with low-density weather station in comparison with the other 518 

time series climate datasets. The accuracy difference of different climate datasets in temperate 519 

monsoonal region was the lower than other three climatic regions, and the RMSE, R2 and MAE of 520 

ChinaClim_time-series was 26.858mm, 0.854 and 14.085mm, respectively. The accuracy of 521 

ChinaClim_time-series in subtropical-tropical monsoonal region were better obviously than Peng’s 522 

climate surface and CHELSAcruts, and R2 increased by 10.03 % and 9.74 %, RMSE decreased by 523 

16.79 % and 17.61 % and MAE decreased by 15.66 % and 17.62 %, respectively. 524 

Table 6. The overall accuracy of maximum temperature for ChinaClim_time-series, Peng’s climate surface and 525 

CHELSAcruts in China and four climatic regions during 1952-2019 526 

  Maximum temperature RMSE R2 MAE 

China 

ChinaClim_time-series 0.629  0.997  0.412  

Peng’s climate surface 1.299  0.988  0.974  

CHELSAcruts 1.443  0.987  1.097  

Temperate continental 

region 

ChinaClim_time-series 0.854  0.996  0.482  

Peng’s climate surface 1.591  0.985  1.202  

CHELSAcruts 1.835  0.981  1.358  

High cold Tibetan Plateau 

ChinaClim_time-series 0.676  0.993  0.473  

Peng’s climate surface 2.224  0.951  1.847  

CHELSAcruts 2.686  0.947  2.231  

Temperate monsoonal 

region 

ChinaClim_time-series 0.483  0.999  0.352  

Peng’s climate surface 1.090  0.993  0.847  

CHELSAcruts 1.225  0.993  0.962  

Subtropical-tropical 

monsoonal region 

ChinaClim_time-series 0.573  0.995  0.397  

Peng’s climate surface 1.252  0.978  0.935  

CHELSAcruts 1.314  0.980  1.035  

 527 

Table 7. The overall accuracy of minimum temperature for ChinaClim_time-series, Peng’s climate surface and 528 

CHELSAcruts in China and four climatic regions during 1952-2019 529 

  Minimum temperature RMSE R2 MAE 

China 

ChinaClim_time-series 0.742  0.996  0.501  

Peng’s climate surface 1.422  0.988  1.074  

CHELSAcruts 1.523  0.987  1.125  

Temperate continental 

region 

ChinaClim_time-series 1.016  0.993  0.673  

Peng’s climate surface 1.765  0.982  1.351  

CHELSAcruts 2.004  0.976  1.461  

High cold Tibetan 

Plateau 

ChinaClim_time-series 0.856  0.992  0.584  

Peng’s climate surface 2.276  0.944  1.800  

CHELSAcruts 1.975  0.958  1.528  

Temperate monsoonal 

region 

ChinaClim_time-series 0.727  0.997  0.521  

Peng’s climate surface 1.324  0.991  1.032  

CHELSAcruts 1.585  0.989  1.196  

Subtropical-tropical 

monsoonal region 

ChinaClim_time-series 0.543  0.995  0.386  

Peng’s climate surface 1.254  0.977  0.938  

CHELSAcruts 1.119  0.984  0.878  
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The temperature elements accuracy of ChinaClim_time-series also showed better performance than 530 

Peng’s climate surface and CHELSAcruts in China and all climatic regions (Tables 6 - 7). In whole 531 

China, the RMSE, R2 and MAE of maximum temperature were 0.629 °C, 0.997 and 0.412 °C, 532 

respectively; the RMSE, R2 and MAE of minimum temperature were 0.996, 0.742 °C and 0.501°C, 533 

respectively. All R2 were very high among three datasets, but RMSE of ChinaClim_time-series 534 

decreased by 51.58 % (Peng’s climate surface) and 56.41 % (CHELSAcruts) for maximum 535 

temperature and by 47.82% (Peng’s climate surface) and 51.28 % (CHELSAcruts) for minimum 536 

temperature; MAE of ChinaClim_time-series decreased by 57.70 % (Peng’s climate surface) and 537 

62.44 % (CHELSAcruts) for maximum temperature and by 53.35 % (Peng’s climate surface) and 538 

55.74 % (CHELSAcruts) for minimum temperature.  539 

The accuracy of ChinaClim_time-series also was much better than Peng’s climate surface and 540 

CHELSAcruts, and the RMSE and MAE of ChinaClim_time-series reduced by about 50% in all 541 

climatic regions. Especially in high cold Tibetan plateau, the accuracy of the maximum and 542 

minimum temperature of ChinaClim_time-series were 0.676 °C and 0.856 °C for RMSE, 0.993 and 543 

0.992 for R2, and 0.473 °C and 0.584 °C for MAE, respectively; Compared with Peng’s climate 544 

surface and CHELSAcruts, RMSE decreased by 69.60 % and 74.83% for maximum temperature 545 

and by 62.39 % and 56.66 % for minimum temperature, respectively; MAE decreased by 74.39 % 546 

and 78.80 % for maximum temperature and by 67.56 % and 61.78 % for minimum temperature, 547 

respectively.  548 

4.2.3 The effectiveness of satellite-driven TRMM3B43 and LST 549 

Our results have shown that models considering satellite-driven data (Table S7: Model 7b and 550 

Model 1a) were the best models during the periods for precipitation during 1998-2019 and for 551 

temperature elements during 2001-2019. Here, the effectiveness of satellite-driven data for 552 

improving precipitation and temperature estimation was evaluated again because simple multi-year 553 

monthly average model was difficult to quantify the influences of satellite-driven data. We 554 

investigated the accuracy of precipitation and three temperature elements with satellite-driven data 555 

and without satellite-driven data by RMSE, R2 and MAE from density scatter plots in China (Figures 556 

8-11) and four climatic regions (Figures S1-S4). 557 

 558 

 559 

https://doi.org/10.5194/essd-2022-45

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



22 

 

 560 

Figure 8 Density scatter plots of precipitation with satellite-driven TRMM3B43 and (b) without satellite-driven 561 

TRMM3B43 in China. 562 

 563 

As shown in Figure 8, after considering the satellite-driven TRMM3B43, the overall RMSE, R2 and 564 

MAE in China were 30.258mm, 0.888 and 16.533mm, but RMSE, R2 and MAE of the model without 565 

considering the satellite-driven TRMM3B43 were 35.769mm, 0.842, and 19.032mm, respectively. 566 

Furthermore, we investigated the differences for the overall accuracy of precipitation estimation in 567 

the four climatic regions before and after adding satellite-driven TRMM3B43 (Figure S1). The 568 

results showed that RMSE in temperate continental region reduced from 14.798mm to 12.720mm 569 

after considering satellite-driven TRMM3B43; RMSE in high cold Tibetan plateau also reduced by 570 

about 2mm, from 19.831mm to 17.336mm; RMSE in temperate monsoonal region was 24.890mm, 571 

and decreased by 10.91 %; particularly, RMSE in subtropical-tropical monsoonal region reduced 572 

from 48.271mm to 40.114mm, and the reduction of RMSE was as high as 16.70%. In short, adding 573 

satellite-driven TRMM3B43 to TPS model can improve obviously the accuracy of precipitation 574 

estimation, whether in temperate continental region and high cold Tibetan plateau with low-density 575 

weather stations or in temperate monsoonal region and subtropical-tropical monsoonal region with 576 

huge precipitation variation. 577 

 578 
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 579 

Figure 9 Density scatter plots of average temperature (a) with satellite-driven LST and (b) without satellite-driven 580 

LST in China. 581 

 582 

 583 

Figure 10 Density scatter plots of maximum temperature (a) with satellite-driven LST and (b) without satellite-584 

driven LST in China.  585 

 586 

https://doi.org/10.5194/essd-2022-45

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 March 2022
c© Author(s) 2022. CC BY 4.0 License.



24 

 

 587 

Figure 11 Density scatter plots of minimum temperature (a) with satellite-driven LST and (b) without satellite-588 

driven LST in China.  589 

 590 

Our results (Figures 9-11) showed that the accuracy of the temperature elements were improved 591 

slightly in China after considering satellite-driven LST. Among them, RMSE of the average 592 

temperature reduced from 0.522 to 0.517, and RMSE of the maximum temperature reduced from 593 

0.535 to 0.530, the average RMSE remained unchanged. Moreover, the accuracy of temperature 594 

elements estimation in various climatic regions were not as obvious as precipitation estimation when 595 

adding satellite-driven data to the TPS model (Figures S2-S4). We inferred that temperature 596 

variation usually tends to change simply with altitude gradients, and adding CRU temperature data 597 

to the TPS model may affect the role of satellite-driven LST to the estimate of temperature elements. 598 

That is, the improvement of the accuracy of adding satellite-driven LST to TPS model for 599 

temperature elements estimation will be limited when models were able to fit the regression 600 

relationship between temperature and related variables well. 601 

5 Data availability 602 

ChinaClim_baseline is a brand-new and high-quality baseline climatology surface for China at 603 

spatial resolution of 1km. The data now is freely available through Zenodo at 604 

10.5281/zenodo.5900743 (Gong, 2020a), which can be downloaded in NC format. The scale factor 605 

of precipitation and temperature are 0.01 and 0.1, respectively. 606 

ChinaClim_time-series is a monthly temperatures and precipitation dataset in China for the period 607 

of 1952-2019 of 1km spatial resolution. The data now are freely available through Zenodo at 608 

10.5281/zenodo.5919442 (Gong, 2020b), 10.5281/zenodo.5919423 (Gong, 2020c), 609 

10.5281/zenodo.5919448 (Gong, 2020d), and 10.5281/zenodo.5919450 (Gong, 2020e) which can 610 

be downloaded in Geotiff format. The scale factor of the data is 0.1. 611 
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6 Discussion 612 

The high-quality climate dataset could play pivotal role in studying climate change and its effect on 613 

the processes and functioning of the ecosystem (Ordonez and Williams., 2013; Pinsky et al., 2013). 614 

However, it is difficult and expensive to build a time-series weather stations with high-density 615 

distribution network. It has been noted that more than 2000 weather stations could be freely used to 616 

generate baseline climatology surface, then our study created a brand-new and high-quality baseline 617 

climatology surface (ChinaClim_baseline) based on those weather stations (Dataset of 30-year 618 

average climate), and which were used as input to the climatologically aided interpolation (CAI), 619 

combined with available time-series weather stations, CRU datasets, and satellite-driven data to 620 

construct a time-series climate dataset (ChinaClim_time-series) with lower uncertainty. 621 

There are a number of baseline climatology surface products for global land surface (Hijmans et al., 622 

2005; Karger et al., 2017; New et al., 1999; New et al., 2002; Fick et al., 2017), while few weather 623 

stations from China were employed to generate these surfaces, which might result in insufficient 624 

accuracy of these surfaces in China, and further affect the accuracy of long-term climate datasets 625 

with these surfaces as input, especially in temperate continental region and high cold Tibetan plateau 626 

where weather stations were sparse. In this study, ChinaClim_baseline could greatly reduce the 627 

uncertainty of climatic elements interpolation in remote areas owing to the high-density distribution 628 

of weather stations. As our results showed that, the estimation of ChinaClim_baseline performed 629 

well in all months for four climatic regions and the RMSEs of precipitation and temperature elements 630 

estimation being 1.276 ~28.439 mm. and 0.310 ~ 2.040 °C, respectively. ChinaClim_baseline, as a 631 

brand-new baseline climatology surface currently released for China, was highly consistent with 632 

WorldClim2 and CHELSA (high r). However, ChinaClim_baseline also showed clearly spatial 633 

differences with WorldClim2 and CHELSA over China, especially in low-density weather station 634 

regions such as high cold Tibetan Plateau and temperate continental region. WorldClim2 tended to 635 

be drier than ChinaClim_baseline in many locations of temperate continental region and high cold 636 

Tibetan plateau, which may overestimate the drought risk when being applied for assessing the 637 

influence of climate changes in these areas. CHELSA simply used temperature lapse rates to 638 

estimate temperatures, which might product mistakenly temperatures estimation in the absence of 639 

sufficient weather stations correction in high-altitude regions. Although WorldClim2 considered 640 

satellite-driven LST and cloud cover, it did not optimized the fitting model of climate elements in 641 

each months (Hijmans et al., 2005; Fick et al., 2017), which might impact the accuracy of key 642 

months and cannot correctly reveal the seasonal variation of climate elements well and mislead the 643 

vegetation-climate relationship. Previous study demonstrated that local context and seasons changes 644 

has siginificant influence on climate processes (Brunsdon et al., 2001; Fick et al., 2017), thus the 645 

model for fitting baseline climatology surface should vary from various climatic regions and 646 

different months to improve the data accuracy. ChinaClim_baseline was created by the optimal TPS 647 

model for each climatic region and different months. This adaptive method allowed for better model 648 

fits in remote regions and specific months. Moreover, ChinaClim_baseline used not only much more 649 

weather stations, but also the spatially continuous satellite-driven TRMM3B43 which can 650 

distinguish the rain shadow effect of mountains (Deblauwe et al., 2016) and provide enough 651 

information in sparse areas of weather stations.   652 

Therefore, our high-quality baseline climatology surface should better reduce the uncertainty and 653 
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reflect the actual climate conditions over China than currently existing baseline climatology surface, 654 

especially in temperate continental region and high cold Tibetan plateau with sparse weather station 655 

during growing season. Beside, a good baseline climatology surface, not only could be applied in 656 

modelling history and paleo climate changes, but also can be combined with GCM products to 657 

predicting future climate change scenarios with high resolution (Peng et al., 2019; Platts et al., 2015). 658 

ChinaClim_baseline can be used to construction of more accurate bioclimatic indicators at ~1 km 659 

spatial resolution for China. Bioclimatic variables, representing annual trends, seasonality and 660 

extreme or limiting environmental factors, are much more biologically meaningful (Hijmans et al., 661 

2005), they are more suitable for examining the vegetation-climate relationship (Liu et al.,2020; 662 

Marchi et al., 2019; Vega et al., 2017). 663 

A variety of studies have developed many superior long-term climate data products with high 664 

resolution, such as CHELSAcruts and Peng’s climate surface. They simply relied on coarse CRU 665 

anomaly and baseline climatology surfaces (WorldClim2 and CHELSA) (Karger et al., 2017; Peng 666 

et al., 2019), which maybe lead to huge uncertainty. In this study, ChinaClim_baseline as input in 667 

CAI reduced the uncertainty of output (ChinaClim_time-series). Simultaneously, we interpolated 668 

climatic elements anomaly (ratio) based on the optimal monthly TPS model, which can not only 669 

make full use of time-series weather stations, but also consider the satellites-driven data (TRMM 670 

3B43 ratio and LST anomaly) and CRU data as either independent spline variables or linear 671 

covariates to further improve the accuracy of the final monthly climate surface. As our results 672 

showed that compared with these two climate data products, ChinaClim_time-series increased the 673 

accuracy (RMSE) by more than 15% and 50% for precipitation and temperature elements, 674 

respectively, especially in temperate continental region and high cold Tibetan plateau. Previous 675 

study demonstrated that satellite-driven data can effectively improve the accuracy of climatic 676 

elements interpolation. Our results showed that the utilization of satellite-driven TRMM3B43 ratio 677 

in TPS interpolation improved the precipitation estimation of ChinaClim_time-series, but satellite-678 

driven LST anomaly did not significantly improve the estimates of time-series temperature elements. 679 

Incorporating satellite-driven LST into spline interpolation induced diminishing returns owing to 680 

increasing the number of predictor variables, and strong correlations between temperature variables 681 

and CRU predictors may be contributing to this result. Beside, since CRU data could provide long-682 

time series climatic element information, it plays an irreplaceable role for the reconstruction of long-683 

time series climatic element. In particular, for the estimation of temperature elements, CRU data 684 

can play the role of LST data to a certain extent, which will provide us with important guiding 685 

significance for downscaling or spatial interpolation of time-series climatic elements. That is, a 686 

high-quality baseline climatology surface based on high-density weather stations could improve the 687 

estimates of time-series climate elements, while satellite-driven data is more helpful to improve the 688 

accuracy of precipitation estimates and produce very little effect in improving the accuracy of 689 

temperatures estimation. Hence, ChinaClim_time-series, a very high-quality time-series climate 690 

elements datasets over China, can reveal successfully the spatial-temporal change patterns of 691 

precipitation and temperatures. At the same time, considering 68 years’ span, it can be used to more 692 

accurately assess the prolonged effects of climate changes on eco-environment. 693 

The TRMM3B43 improves the estimate of precipitation, while the 0.25-degree spatial resolution of 694 

TRMM might be fail to represent many important finer-scale climatic features (Deblauwe et al., 695 

2016) due to the uncertainties caused by downscaling from 0.25 degree to 1km using Cubist 696 

algorithm although this algorithm was recommended for exploring downscaling of satellite-based 697 
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data (Ma et al., 2018). It should also be noted that there is a temporal mismatch between the datasets 698 

from weather stations (1981–2010) and from average TRMM3B43 (1998-2019) in estimating 699 

ChinaClim_baseline. Therefore, incorporating TRMM3B43 into the generation of 700 

ChinaClim_baseline and ChinaClim_time-series may exist challenges (Deblauwe et al., 2016). 701 

Similarly, the 0.5-degree spatial resolution of CRU datasets was interpolated into 1km also caused 702 

uncertainties and impact the accuracy of ChinaClim_time-series. With the emergence of more 703 

climate-related remote sensing products at high-resolution in the future, and the improvement of 704 

multiple-source remote sensing data fusion technology, the uncertainty of climate interpolation were 705 

greatly reduced and the accuracy of product estimation will be improved, particularly in places with 706 

very few weather stations or strong gradients change or complex terrain (Immerzeel et al., 2009; Li 707 

and Shao, 2010; Fick et al., 2017; Vega et al 2017). Although our research showed that TPS method 708 

could be used well in climate interpolation, this method accounted for direct elevation effects only, 709 

and had difficulty in considering the sharp changes in the relationship between climate and elevation 710 

(Daly et al., 2008; Daly et al., 2007; Marchi et al., 2019). Therefore, it is essential to 711 

comprehensively quantify the non-linear relationship between environmental variables and climate 712 

elements, and more deeply understand the impact of the interaction among environmental variables 713 

on climate elements. It is urgently needed in future work to couple the nonlinear relationship and 714 

variables interactions in climate elements interpolation with TPS or new algorithm for the better 715 

climate elements estimations. 716 
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