Public justification (visible to the public if the article is accepted and published):

We report here below the comments received and the answers of the authors in red.

Copernicus will want full version of DOI: https://doi.org/10.5281/zenodo.7516361. Works for me but you (and ESSD) want to save users a cut-and-paste step.

The DOI has been updated accordingly to the suggestion:

https://doi.org/10.5281/zenodo.7516361

No page numbers so hard to identify specific changes! The reviewed files included page numbers and with all modifications in track changes.

By my counting, page 7 (US EPA methods), line 25, "Foley et al." needs proper citation. 2022 or 2023? I think Copernicus imposes a necessary procedure for, or disallows, manuscripts "submitted"?

The citation of the paper by Foley et al. has been updated in the revised version of the manuscript as following:

Foley, K. M., Pouliot, G. A., Eyth, A., Aldridge, M. F., Allen, C., Appel, K. W., Bash, J. O., Beardsley, M., Beidler, J., Choi, D., Farkas, C., Gilliam, R. C., Godfrey, J., Henderson, B. H., Hogrefe, C., Koplitz, S. N., Mason, R., Mathur, R., Misenis, C., Possiel, N., Pye, H. O. T., Reynolds, L., Roark, M., Roberts, S., Schwede, D. B., Seltzer, K. M., Sonntag, D., Talgo, K., Toro, C., Vukovich, J., Xing, J., and Adams, E.: 2002–2017 anthropogenic emissions data for air quality modeling over the United States, Data in Brief, 47, 109022, https://doi.org/10.1016/j.dib.2023.109022, 2023.

Again, my counting, page 17, lines 24 and 38: Section numbering confusion, e.g. both sections labelled as 3.4?

We changed the second label of section 3.4 as 3.4.2.

One serious remaining issue: uncertainties? Uncertainty introduced in particulates sections but reader never finds a composite uncertainty or discussion of how such uncertainty might vary by pollutant? Even if regional emissions products fail to declare quantitative uncertainties (allowing you as compiler to add, multiply, etc.), compositing processes (e.g. gridding, sectoral combinations, temporal extrapolations, etc.) undoubtedly introduce additional uncertainties. No doubt final uncertainty estimate will involve mostly 'expert' judgement but readers need your best estimate! For example, can we really accept global SO2 "decrease" of 100 to 73 over 20 years? What basis does reader have to accept 99.4 vs 100 or 72.9 vs 73? Or global NOx increase from 110 to 117? Users can only get trustworthy assessment of uncertainties from you. Or, in absence, they need to guess? Even a sentence or two about, or a short table of,

uncertainties globally and by pollutant? Huge effort but we all know outcome retains significant uncertainty! Tell us!

We acknowledge the remark on the uncertainty and we introduced a new section (3.5) in the manuscript to address this point, as reported here below.

3.5 Qualitative assessment of the uncertainty of a global emission mosaic

Assessing the uncertainty of a global emission mosaic is challenging since it consists of several bottom-up inventories and by definition it prevents a consistent global uncertainty calculation. Each emission inventory feeding the HTAP_v3 mosaic is characterized by its own uncertainty which is documented by the corresponding literature describing each dataset (see Table 2 and section 2.3) and which should be cited by the users of the mosaic for a quantitative assessment of regional uncertainties. However, the mosaic compilation process may also introduce additional uncertainties compared to the input datasets. In order to limit these additional uncertainties, we made the following considerations:

-for each emission inventory both the national totals and gridded data by sector were gathered. This process allows the mosaic compilers not to introduce additional uncertainty compared to the original input regional datasets. In fact, additional uncertainties may arise from the extraction of the national totals from spatially distributed data (e.g. country border issues which were one limitation of previous editions of the HTAP mosaics). Therefore, when regional trends are described by region and pollutant (see section 3), no additional source of uncertainty has to be considered from the mosaic compilation approach.

-the sector definition and mapping has been accurately developed following the IPCC categories and when no data was available for a certain combination of sector and pollutant a gapfilling procedure is applied using the EDGAR database. Also in this case no additional uncertainty should be considered compared to the input datasets.

-any additional uncertainty introduced by the temporal disaggregation can be deemed as negligible since each inventory already provided monthly resolution emission gridmaps and time series.

In this work we also provide a qualitative indication of the emission variability by HTAP sector and pollutant at the global level. Table S6 summarises the variability of global HTAP_v3 emissions by sector for the boundary years of this mosaic (2000 and 2018) compared to the global EDGARv6.1 data. EDGAR emissions are considered as the reference global emission inventory against which comparing the HTAP_v3 estimates although these two global products are not fully independent. The variability of the global emissions is calculated as the relative difference of the estimates of the two inventories, i.e. (EDGARv6.1-HTAP_v3)/HTAP_v3). Emission variabilities are also classified as low (L, L<15%), low medium (LM, 15%<LM<50%), upper medium (UM, 50%<UM<100%), high (H, H>100%), based on the EMEP/EEA Guidebook (2019) information. The largest variability is found domestic shipping emissions (CO and NMVOC), energy (OC, BC), agricultural crops (PM), road transport (PM, NMVOC) and industry (NH3, NMVOC). In absence of a full uncertainty assessment the variability can be used as proxy of structural uncertainty, keeping in mind that variability could be biased towards overconfidence, thus underestimating the uncertainty. Furthermore, the uncertainty of the spatial proxies has not been assessed and maybe subject of future activity updates.

Table S6 – Variability of global emission estimates by sector and pollutant, calculated as the relative difference between HTAP_v3 emissions and the EDGARv6.1 estimates. Variability ranges are based on the qualitative classes defined in the EMEP/EEA Guidebook 2019 as low (L), low medium (LM), upper medium (UM), high (H).

	Sub	(EDGARv6.1-	(EDGARv6.1-	varibility	varibility
	stan	HTAP v3)/HTAP	HTAP v3)/HTAP	range,	range,
Emission sector	ce	v3, year 2000	v3, year 2018	year 2000	year 2018
HTAPv3 3 Ene					5
rgy	OC	69.3%	128.7%	UM	Н
HTAPv3 3 Ene					
rgy	BC	-1.9%	77.8%	L	UM
HTAPv3_3_Ene	SO				
rgy	2	-0.3%	44.5%	L	LM
HTAPv3_3_Ene	NO				
rgy	X	15.8%	24.4%	LM	LM
HTAPv3_3_Ene					
rgy	CO	22.3%	20.7%	LM	LM
	NM				
HTAPv3_3_Ene	VO				
rgy	C	34.9%	15.5%	LM	LM
HTAPv3_3_Ene	PM				
rgy	2.5	-16.4%	-1.2%	LM	L
HTAPv3_3_Ene	PM				
rgy	10	-17.2%	-2.7%	LM	L
HTAPv3_3_Ene	NH				
rgy	3	-1.9%	-39.5%	L	LM
	NM				
HTAPv3_4.1_In	VO				
dustry	C	59.3%	96.4%	UM	UM
HTAPv3_4.1_In	SO				
dustry	2	-15.8%	85.5%	LM	UM
HTAPv3_4.1_In					
dustry	OC	-24.0%	50.3%	LM	UM
HTAPv3_4.1_In					
dustry	BC	-3.7%	47.8%	L	LM
HTAPv3_4.1_In	PM				
dustry	2.5	-46.6%	40.2%	LM	LM
HTAPv3_4.1_In	NO				
dustry	X	-1.6%	21.5%	L	LM
HTAPv3_4.1_In	PM				
dustry	10	-60.3%	-0.5%	UM	L
HTAPv3_4.1_In					
dustry	CO	-25.8%	-2.6%	LM	L

HTAPv3_4.1_In	NH				
dustry	3	-53.7%	-54.2%	UM	UM
HTAPv3_4.2_F					
ugitive	CO	53.5%	64.1%	UM	UM
HTAPv3_4.2_F	SO				
ugitive	2	31.1%	52.7%	LM	UM
HTAPv3_4.2_F					
ugitive	BC	36.7%	50.2%	LM	UM
HTAPv3_4.2_F	NH				
ugitive	3	30.2%	19.4%	LM	LM
	NM				
$HTAPv3_4.2_F$		10.70/	12 40/	.	Ŧ
ugitive	C	10.7%	13.4%	L	L
HTAPv3_4.2_F	NO	20.00/	0.00/		T
ugitive	X	29.9%	8.9%	LM	L
HIAPV3_4.2_F		0.00/	0.00/	т	т
UTAD-2 4.2 E		-0.0%	0.9%	L	L
HIAPV5_4.2_F		20.0%	22.0%	IM	IM
$\frac{\text{ugnive}}{\text{ut} \Lambda \mathbf{D}_{\mathbf{v}}^2} = 1.2 \text{ E}$	2.3	-29.070	-23.070	LIVI	LIVI
niArv5_4.2_r		65.0%	51 10/2	UM	UM
ugitive	NM	-05.070	-51.170		UNI
$HTAP_{V}3$ 4 3 S	VO				
olvents		2.2%	-25.2%	T.	LM
HTAPv3 4 3 S	PM	2.270	23.270	2	
olvents	2.5	-69.8%	-60.2%	UM	UM
HTAPv3 4.3 S	PM				
olvents	10	-74.5%	-67.6%	UM	UM
HTAPv3 4.3 S	NH				
olvents	3	-99.8%	-99.6%	UM	UM
HTAPv3 5.1 R	NH				
oad Transport	3	52.3%	80.2%	UM	UM
HTAPv3_5.1_R	NO				
oad_Transport	X	-4.2%	-16.4%	L	LM
HTAPv3_5.1_R					
oad_Transport	CO	-21.3%	-47.0%	LM	LM
HTAPv3_5.1_R					
oad_Transport	OC	-36.2%	-51.1%	LM	UM
	NM				
$HTAPv3_5.1_R$	VO				
oad_Transport	C	-11.0%	-58.1%	L	UM
$HTAPv3_5.1_R$			60 5 0 (
oad_Transport	BC	-48.3%	-60.5%	LM	UM
$ HTAPv3_5.1_R $	PM	(2.20)	74 50 (
oad_Transport	2.5	-63.2%	-/4.5%	UM	UM
$ HTAPv3_5.1_R $	SO	52.10/	01.00/		
oad_Transport	2	-53.1%	-81.2%	UM	UM
$HIAPv3_5.1_R$	PM	00.20/	02.90/		IN
oad_1 ransport	10	-90.3%	-93.8%	UM	UM

HTAPv3_5.2_B					
rake_and_Tyre_					
wear	BC	26.1%	19.1%	LM	LM
HTAPv3_5.2_B					
rake_and_Tyre_					
wear	OC	-33.5%	-25.6%	LM	LM
HTAPv3_5.2_B					
rake_and_Tyre_	PM				
wear	2.5	-57.1%	-48.0%	UM	LM
HTAPv3_5.2_B					
rake_and_Tyre_	PM				
wear	10	-84.9%	-80.0%	UM	UM
HTAPv3_5.3_D	NM				
omestic_shippin	VO				
g	C	249.9%	191.3%	Н	Н
HTAPv3_5.3_D					
omestic_shippin					
g	CO	221.2%	188.7%	Н	Н
HTAPv3_5.3_D					
omestic_shippin	SO				
g	2	-5.5%	13.7%	L	L
HTAPv3_5.3_D					
omestic_shippin	PM				
g	2.5	11.4%	13.6%	L	L
HTAPv3_5.3_D					
omestic_shippin	PM				
g	10	11.1%	13.5%	L	L
HTAPv3_5.3_D					
omestic_shippin					
g	BC	5.2%	11.3%	L	L
HTAPv3_5.3_D					
omestic_shippin					
g	OC	6.3%	6.0%	L	L
HTAPv3_5.3_D					
omestic_shippin	NO				
g	X	-5.2%	3.3%	L	L
HTAPv3_5.3_D					
omestic_shippin	NH				
g	3	-41.5%	-20.9%	LM	LM
HTAPv3_5.4_O					
ther ground tra	PM				
nsport	2.5	-34.5%	8.9%	LM	L
HTAPv3 5.4 O					
ther ground tra	NH				
nsport	3	-13.8%	-17.4%	L	LM
HTAPv3 5.4 O					
ther ground tra	NO				
nsport	X	-55.5%	-33.1%	UM	LM

HTAPv3_5.4_O					
ther_ground_tra	PM				
nsport	10	-47.7%	-37.7%	LM	LM
HTAPv3_5.4_O					
ther_ground_tra					
nsport	OC	-71.8%	-41.7%	UM	LM
HTAPv3_5.4_O	NM				
ther_ground_tra	VO				
nsport	C	-80.8%	-64.6%	UM	UM
HTAPv3_5.4_O					
ther_ground_tra					
nsport	BC	-86.0%	-73.3%	UM	UM
HTAPv3_5.4_O					
ther_ground_tra					
nsport	CO	-82.6%	-82.3%	UM	UM
HTAPv3_5.4_O					
ther_ground_tra	SO				
nsport	2	-83.8%	-84.0%	UM	UM
HTAPv3_6_Res	PM				
idential	10	30.2%	18.2%	LM	LM
HTAPv3 6 Res	NH				
idential	3	15.0%	4.9%	LM	L
HTAPv3 6 Res	SO				
idential	2	-8.0%	3.9%	L	L
HTAPv3 6 Res	PM				
idential	2.5	-7.4%	-9.5%	L	L
	NM				
HTAPv3_6_Res	VO				
idential	C	-17.0%	-18.3%	LM	LM
HTAPv3 6 Res					
idential	OC	-16.5%	-20.5%	LM	LM
HTAPv3_6_Res					
idential	CO	-20.6%	-20.5%	LM	LM
HTAPv3 6 Res	NO				
idential	X	-39.0%	-28.8%	LM	LM
HTAPv3 6 Res					
idential	BC	-41.6%	-40.3%	LM	LM
	NM				
HTAPv3 7 Wa	VO				
ste	C	78.1%	54.9%	UM	UM
HTAPv3 7 Wa	SO				
ste	2	9.2%	7.4%	L	L
HTAPv3 7 Wa	NH				
ste	3	-34.5%	-13.3%	LM	L
HTAPv3 7 Wa	PM				
ste	10	-60.8%	-48.6%	UM	LM
HTAPv3 7 Wa	NO				
ste	x	-50.5%	-57.3%	UM	UM

HTAPv3 7 Wa	PM				
ste	2.5	-70.5%	-58.4%	UM	UM
HTAPv3 7 Wa					
ste	BC	-81.2%	-74.0%	UM	UM
HTAPv3_7_Wa					
ste	OC	-89.9%	-82.7%	UM	UM
HTAPv3_7_Wa					
ste	CO	-95.7%	-95.8%	UM	UM
HTAPv3_8.1_A					
gricultural_wast					
e_burning	OC	7.5%	6.7%	L	L
HTAPv3_8.1_A					
gricultural_wast	PM				
e_burning	2.5	6.6%	6.1%	L	L
HTAPv3_8.1_A					
gricultural_wast					
e_burning	CO	7.0%	5.8%	L	L
HTAPv3_8.1_A					
gricultural_wast	PM				
e_burning	10	5.6%	5.4%	L	L
HTAPv3_8.1_A					
gricultural_wast	SO				
e_burning	2	5.6%	5.1%	L	L
HTAPv3_8.1_A					
gricultural_wast	NO	5 40 (.	.
e_burning	X	5.4%	4.9%	L	L
HTAPv3_8.1_A					
gricultural_wast	DC	2.00/	4.00/	.	Ŧ
e_burning	BC	3.8%	4.0%	L	L
$HTAPv3_8.1_A$	NIT				
gricultural_wast	NH	1.00/	2 70/	T	T
e_burning	3	1.0%	2.7%	L	L
HTAPv3_8.1_A	NM				
gricultural_wast		1 10/	0.20/	т	т
e_burning	C	-1.1%0	0.3%	L	L
HIAPV3_8.2_A	NO				
griculture_livest	NU	11 50/	10.70/	т	т
	X	11.3%	10./%	L	L
$\Pi I APV_{3}_{\delta,2}A$					
griculture_livest		14 70/	0.49/	т	т
		-14./70	-7.470	L	
$\begin{bmatrix} \Pi I A \Gamma V S \delta . 2 \\ A \end{bmatrix}$	NILT				
griculture_livest		25.20%	20.0%	IM	IM
	3	-23.270	-20.970	LIVI	LIVI
migulture livest	DM				
griculture_livest		22 90/	26 70/	TM	TM
UCK	10	-33.070	-20.770		

HTAPv3_8.2_A					
griculture_livest	PM				
ock	2.5	-34.8%	-27.8%	LM	LM
HTAPv3_8.3_A	NO				
griculture_crops	X	13.1%	11.7%	L	L
HTAPv3_8.3_A	NH				
griculture_crops	3	16.6%	8.7%	LM	L
	NM				
HTAPv3_8.3_A	VO				
griculture_crops	С	6.9%	6.8%	L	L
HTAPv3_8.3_A	PM				
griculture_crops	2.5	-82.1%	-77.8%	UM	UM
HTAPv3_8.3_A	PM				
griculture_crops	10	-92.6%	-91.6%	UM	UM