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Abstract 29 

Quantification of large-scale leaf age-dependent leaf area index has been lacking in 30 

tropical and subtropical evergreen broadleaved forests (TEFs) despite the recognized 31 

importance of leaf age in influencing leaf photosynthetic capacity in this region. Here, 32 

we simplified the canopy leaves of TEFs into three age cohorts, i.e., young, mature and 33 

old one, with different photosynthesis capacity (Vc,max) and produced a first grid dataset 34 

of leaf age-dependent LAI product (referred to as Lad-LAI) over the continental scale 35 

from satellite observations of TROPOMI (the TROPOspheric Monitoring Instrument) 36 

sun-induced chlorophyll fluorescence (SIF) as a proxy of leaf photosynthesis. The 37 

seasonality of three LAI cohorts from the new Lad-LAI products agree well at the three 38 

sites (one in subtropical Asia and two in Amazon) with very fine collections of monthly 39 

LAI of young, mature and old leaves. Continental-scale comparisons with independent 40 

Moderate-resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index 41 

(EVI) products and 53 samples of in situ measurements of seasonal litterfall data also 42 

demonstrate the robustness of the LAI seasonality of the three leaf age cohorts. The 43 

spatial patterns clustered from the three LAI cohorts coincides with those clustered 44 

from climatic variables. And the young and mature LAI cohorts perform well in 45 

capturing a dry-season green-up of canopy leaves across the wet Amazonia areas where 46 

mean annual precipitation exceeds 2,000 mm yr−1, consistent with previous satellite 47 

data analysis. The new Lad-LAI products are primed to diagnose the adaption of 48 

tropical and subtropical forest to climate change; and will also help improve the 49 

development of phenology modules in Earth System Models. The proposed satellite-50 

based approaches can provide reference for mapping finer temporal and spatial 51 

resolution LAI products with different leaf age cohorts. The Lad-LAI products are 52 

available at https://doi.org/10.6084/m9.figshare.21700955.v2 (Yang et al., 2022).  53 

 54 

 55 

1. Introduction 56 
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Canopy phenology is the primary cause of photosynthetic seasonality (Chen et al., 57 

2020; Wu et al., 2016) and thus largely regulates the seasonal carbon sinks (Beer et al., 58 

2010; Aragao et al., 2014; Saatchi et al., 2011) in tropical and subtropical evergreen 59 

broadleaved forests (EBFs). However, the ecological connotations of canopy 60 

phenology in tropical and subtropical EBFs differ greatly from those in temperate and 61 

boreal forests, that is, the latter one is closely related to a critical plant trait — total leaf 62 

area index (LAI) that shows remarkable seasonal variations while the former one is 63 

rarely linked to the total LAI which shows marginally small seasonal changes (Wu et 64 

al., 2016; Chen et al., 2020). Due to the useless of total LAI as a proxy for tropical 65 

phenology, it remains less clear what is the most effective plant trait to represent the 66 

phenology seasonality in tropical and subtropical EBFs.  67 

Recently, leaf age-dependent LAI is convergently shown by studies to well 68 

representation of canopy phenology in tropical and subtropical EBFs (Chen et al., 2020). 69 

Although there are less seasonal variations in the LAI of entire canopy, LAI of different 70 

leaf age classes (i.e., cohorts) show considerable seasonality (Wu et al., 2016). In situ 71 

measurements, even though spatially sparse, recorded an increase in LAI of young and 72 

mature leaves and conversely a decrease in LAI of old leaves as solar radiation 73 

enhances (Wu et al., 2016). The key point is that LAI of young and mature leaf cohorts 74 

dominate regulating the seasonal cycles of carbon fluxes (Albert et al., 2018; Doughty 75 

and Goulden, 2008a; Wu et al., 2016). It is because that the newly-flushed young leaves 76 

and maturing leaves show higher photosynthetic capacity than the old leaves being 77 

replaced (Xu et al., 2017), and thereby increase canopy photosynthesis by taking more 78 

advantage of surface radiation (Anber et al., 2015; Wu et al., 2017), even during the dry 79 

seasons (Manoli et al., 2018; Restrepo-Coupe et al., 2013; 2017; Saleska et al., 2003; 80 

2016; Xu et al., 2015; Morton et al., 2014; Guan et al., 2015). This phenomenon has 81 

been well documented from eddy covariance data (Wu et al., 2016), biometric 82 

measurements of canopy foliage productivity (Doughty et al., 2015) and ESM model-83 

derived LAI and gross primary production data (De Weirdt et al., 2012; Chen et al., 84 
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2020; Chen et al., 2021) in both humid- and dry-land tropical and subtropical EBFs. 85 

However, seasonal patterns of leaf age-dependent LAI are still unclear and are rarely 86 

studied at the continental scale. This vague notion \ imposes a challenge for accurately 87 

modeling continental-scale canopy photosynthesis seasonality in most land surface 88 

models (LSMs) due to their poor representation of the canopy phenology in tropical 89 

and subtropical EBF biomes (Restrepo-Coupe et al., 2017; Chen et al., 2021). 90 

In this study, we aim to fill this gap by firstly mapping the seasonal LAI of three 91 

leaf age cohorts (i.e., young, mature and old leaves, denoted as LAIyoung, LAImature, and 92 

LAIold, respectively) to interpret the phenological seasonality in tropical and subtropical 93 

EBF biomes from 2001 to 2018. We simplified that canopy photosynthesis (i.e., gross 94 

primary production (GPP)) is composed of three parts that are produced from young, 95 

mature and old leaves, respectively. Based on this assumption, GPP is expressed as 96 

functions of the sum of the product of each LAI cohort (LAIyoung, LAImature, and LAIold) 97 

and corresponding net CO2 assimilation rate (Anyoung, Anmature, and Anold), which is 98 

calculated by the widely used Farquhar-von Caemmerer-Berry (FvCB) leaf 99 

photochemistry model (Farquhar et al., 1980). And the grid GPP maps are linearly 100 

derived from an arguably better proxy — TROPOMI (the TROPOspheric Monitoring 101 

Instrument) Solar-Induced Fluorescence (SIF) calibrated by eddy covariance GPP data. 102 

To decompose the three LAI cohorts from Equation 1, we hypothesized that the 103 

adjacent four cells in the grid map exhibit consistent magnitude and seasonality of GPP, 104 

LAIyoung, LAImature, and LAIold. Then, we applied Equation 1 to each of the four selected 105 

cells and combined the four equations to derive the three LAI cohorts using a linear 106 

least-squares with constrained method. In situ measurements of seasonal LAIyoung, 107 

LAImature, and LAIold in two Amazonian sites and subtropical Asian sites (blue 108 

pentangles in Fig. 1, Table S1) are used to directly validate the simulating results. To 109 

prove the robustness of the products over a large spatial coverage, the seasonal LAI 110 

cohorts of young and mature leaves are evaluated against the enhanced vegetation index 111 

(EVI) product, which is considered as a proxy for leaf area changes of photosynthetic 112 
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effective leaves (Saatchi, et al., 2015; Wu et al., 2016). Additionally, the LAI cohorts of 113 

old leaves are compared with the phase of litterfall mass from 53 in situ sites (black 114 

circles in Fig. 1) spanning tropical and subtropical EBF regions. This new dataset of 115 

three LAI cohorts provides new insights into tropical and subtropical phenology with 116 

more details of sub-canopy level of leaf seasonality in different leaf age cohorts and 117 

will be helpful for developing accurate tropical phenology model in ESMs. 118 

 119 

Figure 1. Study areas over tropical and sub-tropical for evergreen broadleaves forests. 120 

Red triangles: four sites of EC-observed GPP seasonality. Blue pentangles: observation 121 

sites of three LAI cohort seasonality. Black circles: observation sites of litterfall 122 

seasonality. 123 

 124 

2. Methodology 125 

2.1 Decomposing LAI cohorts (young, mature and old) from SIF-derived GPP 126 

Figure 2 illustrates the overall framework used to generate leaf age-dependent LAI 127 

seasonality product (Lad-LAI). The majority of the tropical and subtropical EBFs retain 128 

leaves year-round and their total LAI shows marginally small seasonal changes (Wu et 129 

al., 2016). Therefore, previous modelling studies have assumed a constant value for the 130 

total LAI in tropical and subtropical EBFs (Cramer et al., 2001; Arora and Boer, 2005). 131 

In this study, we follow above previous studies to assume a total constant value (total 132 

LAI= 7) of total LAI in tropical and subtropical EBFs. We grouped the canopy leaves 133 

of tropical and subtropical EBFs into three leaf age cohorts, i.e., young, mature and old 134 

leaves, respectively. Then, the total GPP is the sum of those produced by the young, 135 

mature and old leaves, respectively. According to the Farquhar-von Caemmerer-Berry 136 
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(FvCB) leaf photochemistry model (Farquhar et al., 1980), GPP can be expressed as 137 

function of the sum of the products of each LAI cohort (LAIyoung, LAImature, and LAIold) 138 

and corresponding net CO2 assimilation rate (Anyoung, Anmature, and Anold) (Equantion 139 

1). 140 

𝐿𝐴𝐼𝑦𝑜𝑢𝑛𝑔 × 𝐴𝑛𝑦𝑜𝑢𝑛𝑔 + 𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 × 𝐴𝑛𝑚𝑎𝑡𝑢𝑟𝑒 + 𝐿𝐴𝐼𝑜𝑙𝑑 × 𝐴𝑛𝑜𝑙𝑑 = 𝐺𝑃𝑃       (1) 141 

where LAIyoung, LAImature and LAIold are the leaf area index cohorts; Anyoung, Anmature 142 

and Anold are the net rate of CO2 assimilation dependent on three leaf age classes; GPP 143 

is canopy total gross primary production. The sum of LAIyoung, LAImature and LAIold is 144 

set as a constant, equaling to 7 according to Chen et al. (2020).  145 

The GPP is derived from SIF (denoted as RTSIF-derived GPP) using a linear 146 

regression model (see sect. 2.2) based on the relationship between RTSIF and EC-147 

observed GPP from 4 sites (Table S2). The Anyoung, Anmature and Anold are calculated 148 

according to the FvCB biochemical model (Farquhar et al., 1980; Bernacchi et al., 2003) 149 

(see sect. 2.3). As there are still three unknow variables to be solved in equation 1 150 

(LAIyoung, LAImature and LAIold), we hypothesized that the adjacent four pixels exhibit 151 

homogenous EBFs and consistent leaf demography and canopy photosynthesis. Then, 152 

we used the data from adjacent four pixels to solve the LAIyoung, LAImature and LAIold 153 

from GPP based on Equation 1 sing a linear least-squares with constrained method. 154 

The inputs grid datasets (i.e. SIF-derived GPP, Tair, VPD and SW, Table S3) in Fig. 2 155 

are sampled at 0.125-degree spatial resolution; while the output maps of LAIyoung, 156 

LAImature, and LAIold are at 0.25-degree spatial resolution. Therefore, the output maps 157 

of LAIyoung, LAImature, and LAIold are at a 0.25-degree spatial resolution. We used Python 158 

version 3.7 (Python Software Foundation, http://www.python.org) and matlab R2019b 159 

for all our analyses. 160 
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 161 

Figure 2. The workflow for mapping Lad-LAI using the Lsqlin method. Lsqlin is the 162 

abbreviation of Linear least-squares solver with bounds or linear constraints. All the 163 

abbreviations are described in supplementary Tables S4. 164 

 165 

2.2 Calculating the GPP from TROPOMI SIF (RTSIF-derived GPP) 166 

Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) is a widely used 167 

proxy for canopy photosynthesis (Yang et al., 2015; Dechant et al., 2020). Here, we 168 

used a long-term reconstructed TROPOMI SIF dataset (RTSIF) (Chen et al., 2022) to 169 

estimate GPP seasonality. Previous analyses show that RTSIF is strongly linearly 170 

correlated to eddy covariance (EC) GPP and used 15.343 as a transformation coefficient 171 

to covert RTSIF to GPP (Fig. 8a in Chen et al., 2022). In this study, we collected GPP 172 

data at 4 EC sites from the FLUXNET 2015 Tier 1 dataset (Table S2; Pastorello et al., 173 
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2020) and examined the relationship between RTSIF-derived GPP and EC GPP (Fig. 174 

3). Results confirmed the robustness of estimating the GPP seasonality using RTSIF-175 

derived GPP (R2>0.90). Despite potential overestimation (Fig. 3 b) or underestimation 176 

(Fig. 3 h) of the magnitudes, RTSIF-derived GPP mostly captures the seasonality of the 177 

EC GPP at all the 4 sites (dphase < 0.26). 178 

 179 

Figure 3. Comparisons between monthly RTSIF-derived GPP (red) and EC-observed 180 

GPP (blue). (a-b) Au-Rob, (c-d) BR-Sa1, (e-f) BR-Sa3, and (g-h) GF-Guy. The 181 

regression is forced to pass the origin. 182 

 183 

2.3 Calculating the net rate of CO2 assimilation (An) 184 

We calculated the net CO2 assimilation (An) according to the FvCB biochemical 185 

model (Farquhar et al., 1980). In this model, the parameter An is calculated as the 186 

minimum of Rubisco (Wc), RuBP regeneration (Wj) and TPU (Wp), respectively, minus 187 

dark respiration (Rdark) (Bernacchi et al., 2013). The formulas for calculating An, Wc, 188 
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Wj, Wp, Rdark and corresponding intermediate variables are listed in Tables S4. 189 

Calculation of Wc. Wc is expressed as a function of internal CO2 concentration (ci), 190 

Michaelis-Menton constant for carboxylase (Kc), Michaelis-Menton constant for 191 

oxygenase (Ko), CO2 compensation point (Γ*) and maximum carboxylation rate (Vc,max) 192 

(Table S4-part1) (Lin et al., 2015; Bernacchi et al., 2013; Ryu et al., 2011; Medlyn et 193 

al., 2011; June et al., 2004; Farquhar et al., 1980). The Kc, Ko, Γ* and Vc,max are 194 

temperature-dependent variables. Thus, we used Equation 2 to calculate their values at 195 

Tk by converting from those at 25℃. Then, we used the Medlyn’s stomatal conductance 196 

model (Medlyn et al., 2011) to estimate internal CO2 concentration (ci) (Equation 3), 197 

which is expressed as a function of vapor pressure deficit (VPD) rather than relative 198 

humidity (Lin et al., 2015). The method of Vc,max calculating for each LAI cohort is 199 

introduced in sect. 2.4. The formulas for calculating corresponding intermediate 200 

parameters are presented in Table S4 -part2. 201 

𝑃𝑎𝑟𝑎 =  𝑃𝑎𝑟𝑎25  × 𝑒𝑥𝑝 (
(𝑇𝑘−298.15)×𝛥𝐻𝑝𝑎𝑟𝑎

𝑅×𝑇𝑘×298.15
)         (2) 202 

where Para denotes a correction factor arising from the temperature dependence of 203 

Vc,max; Para25 are values of the temperature-dependent parameters (Kc, Ko, Γ* and Vc,max) 204 

at the temperature 25℃; Tk denotes temperature in Kelvin; ΔHpara is activation energy 205 

for temperature dependence; R is universal gas constant.  206 

𝑐𝑖 = 𝑐𝑎 × (1 −
1

1.6×(1+
𝑔1

√𝑉𝑃𝐷
)
)                     (3) 207 

where ca is atmospheric CO2 concentration, 380 ppm; VPD is calculated from air 208 

temperature and dew point temperature of the global ERA-Interim reanalysis dataset 209 

(Dee et al., 2011) using the method of Yuan et al. (2019). The calculation formula of 210 

VPD is described in supplementary files. In this study, we used the value of 3.77 for 211 

the stomatal slope (g1) in the stomatal conductance model according to Lin et al. (2015). 212 

Calculation of Wp. Wp is calculated as the function of Vc,max, which are given 213 

different values for different LAI cohorts based on multiple in situ observations (sect. 214 

2.4). 215 
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Calculation of Wj. Wj is calculated from Vc,max, ci and the rate of electrons through 216 

the thylakoid membrane (J) (Bernacchi et al., 2013). The parameter J is calculated from 217 

maximum electron transport rate (Jmax) and the rate of whole electron transport provided 218 

by light (Je) (Bernacchi et al., 2013). Jmax is expressed as a temperature dependence 219 

function of maximum electron transport rate (Jmax,25) at 25℃ and temperature (Tair) and 220 

Je is expressed as a function of total PAR absorbed by canopy (PARtotal), which is the 221 

sum of active radiation in beam (PARb,0) and diffuse (PARd,0) light firstly (Weiss et al., 222 

1985), which are calculated from downward short wave radiation (SW) (Zhang et al., 223 

2014). The formula for PARtotal is given in Equation 4 and formulas for other 224 

intermediate parameters 4 (i.e., PARb,0, PARd,0, ρcb, ρcd, k
’
b, k

’
d, and CI) are listed in 225 

Table S4-part3 and Table S4-part4. 226 

𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜌𝑐𝑏) × 𝑃𝐴𝑅𝑏,0 × (1 − 𝑒𝑥𝑝(−𝑘𝑏
′ × 𝐶𝐼 × 𝐿𝐴𝐼𝑡𝑜𝑡𝑎𝑙)) + (1 − 𝜌𝑐𝑑) ×227 

𝑃𝐴𝑅𝑑,0 × (1 − 𝑒𝑥𝑝(−𝑘𝑑
′ × 𝐶𝐼 × 𝐿𝐴𝐼𝑡𝑜𝑡𝑎𝑙))            (4) 228 

where PARtotal is total PAR absorbed by canopy; PARb,0 is the active radiation; PARd,0 229 

is diffuse radiation; LAItotal is a total LAI and here we used a constant value of 7 230 

according to Chen et al. (2020). 231 

 232 

2.4 Classifying three LAI cohorts with different Vc,max 233 

In this study, we collected in situ samples of Vc,max25 data against different leaf age 234 

across tropical and subtropical EBFs from previous publications (Keller et al., 2001; 235 

Araújo, 2002). Mature leaves (leaf age: 70-160 days) show highest Vc,max25 than those 236 

of new flushed leaves (leaf age: <60 days) and old leaves(leaf age: >200 days) as 237 

Menezes et al. (2022). Therefore, in this study, we also classified the canopy leaves into 238 

three cohorts: young (leaf age: <2 months), mature (leaf age: 3-5 months) and old 239 

cohorts (leaf age: >6 months) as Wu et al. (2016). The Vc,max25 for young, mature and 240 

old cohorts are set as 60, 40 and 20 μmol m-2 s-1, respectively, according to previous 241 

ground-based observations (Keller et al., 2001; Araújo, 2002). 242 

 243 
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2.5 Ground-based observations for LAI cohort validations 244 

At present, there are only several studies that have decomposed the total LAI into 245 

different leaf age cohorts. Thus, only three sites with observation of LAIyoung, LAImature 246 

and LAIold are used for validating the corresponding simulated LAI cohorts. Two sites 247 

(K67 and K34) are at Amazon (Wu et al., 2016). The mean monthly LAI cohorts were 248 

calculated from top‐of‐canopy images of a Tetracam Agricultural Digital Camera (Wu 249 

et al., 2016). The camera‐inferred LAIs were classified into three cohorts based on 250 

different leaf ages: young (<2 months); mature (3–5months); old (>6 months). Detailed 251 

information on camera data processing is given by Wu et al. (2016). 252 

Another site is at Dinghushan station in subtropical China. The hourly top‐of‐253 

canopy images of trees are observed by an RGB camera. This study classified the 254 

canopy leaves into young, mature and old age cohorts based on the green-color band, 255 

as the brightness of different leaf age leaves in the same band differ greatly. Raster 256 

density slicing is a useful classification method for detecting the attributes of various 257 

ground objects (Kartikeyan et al., 1998). Therefore, we set three brightness thresholds 258 

to divide young (blue), mature (green), old (yellow) leaves and background (gray) for 259 

the same canopy extent in each month (Fig. 4). This analysis is conducted in ENVI5.3 260 

software. 261 
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 262 

Figure 4. Classifications of canopy leaves into young, mature and old age cohorts in 263 

Dinghushan station. The boundaries of the imageries are those of the tree canopies that 264 

vary between months. 265 

 266 

2.6 Evaluating the LAI of young and mature leaf age cohorts using satellite-based 267 

EVI  268 

To evaluate the LAI seasonality of photosynthesis-effective leaves, i.e. young and 269 

mature leaves, this study used satellite-based MODIS Enhanced Vegetation Index (EVI) 270 

from independent sensors (Huete et al., 2002; Lopes et al., 2016; Kobayashi, et al., 2018) 271 

as a remotely sensed proxies alternatives of effective leaf area changes and new leaf 272 

flush, i.e., LAIyoung+mature (Wu et al., 2016; Saatchi, et al., 2015). To compare the 273 

seasonality of LAIyoung+mature with those of EVI, we calculate MSD and their three 274 

components—dbias, which denotes the differences about absolute value, dvar, which 275 

denotes the differences of seasonal fluctuations, and dphase, which denotes the 276 
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differences of peak phase to evaluate this consistence, comprehensively (see 277 

Methodology 2.8 section). 278 

Additionally, we compared the spatial patterns of the wet- minus dry-season 279 

differences (∆) between observed and simulated variables, following the work of Guan, 280 

et al. (2015). To determine the wet and dry seasons in each grid cell, we defined a month 281 

as dry one when its monthly average precipitation was smaller than the potential 282 

evapotranspiration (PET) computed using the method of Maes et al. (2019); other 283 

months are classified as wet ones. The wet- minus dry-season LAIyoung+mature (denoted 284 

as LAIyoung+mature) was calculated for each grid cell as the wet-season average 285 

LAIyoung+mature value minus the dry-season average value of LAIyoung+mature. 286 

 287 

2.7 Evaluating the LAI of old leaf age cohorts using ground-based litterfall 288 

Litterfall is closely related to the seasonal dynamics of old leaves, i.e. LAIold (Chen 289 

et al., 2020; Yang et al., 2021). Previous analyses indicated that, in general, a sharping 290 

decrease in LAIold correspond to a peak in litterfall (Pastorello et al., 2020; Midoko 291 

Iponga et al., 2019; Ndakara, 2011; Barlow et al., 2007; Dantas and Phillipson, 1989). 292 

Based on this relationship between litterfall and LAIold, we compare the time of 293 

seasonal litterfall peak with the time of sharpest negative slopes of LAIold, to indirectly 294 

evaluate the LAIold seasonality. To accurately detect the onset date of old leaves 295 

shedding and the day of litterfall peak, we used a least-square regression analysis 296 

method developed by Piao et al. (2006) to smoothen LAIold and litterfall seasonal curves. 297 

The sixth-degree polynomial function (n=6) is applicable to the regression (Equation 298 

5).  299 

𝐿𝐴𝐼𝑜𝑙𝑑 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6          (5) 300 

where x is the day of a year. 301 

Then, we identified the period of sharpest decrease in LAIold as the beginning of 302 

leaves shedding season. For this purpose, we firstly calculated the slope of LAIold curve, 303 

denoted as LAIold, ratio (Equation 6), from the series of consecutive 1-month periods 304 
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and detected the time t with the maximum LAIold, ratio, and then used the corresponding 305 

LAIold(t) as the LAIold threshold for the onset date of old leaves shedding. 306 

𝐿𝐴𝐼𝑜𝑙𝑑,𝑟𝑎𝑡𝑖𝑜(𝑡) = (𝐿𝐴𝐼𝑜𝑙𝑑(𝑡+1) − 𝐿𝐴𝐼𝑜𝑙𝑑(𝑡))/(𝐿𝐴𝐼𝑜𝑙𝑑(𝑡))              (6) 307 

Then, we determined the onset dates of old leaves shedding for each litterfall site, 308 

using the polynomial regression results and the LAIold thresholds calculated before, to 309 

compare with the day of litterfall peak (see in sect. 3.4). In this study, we collected 53 310 

samples of monthly litterfall data across tropical and subtropical EBFs from globally 311 

published articles, and averaged multiyear data to the monthly mean data to compare 312 

with the seasonality of LAIold. The geographical positions of 53 field observations were 313 

shown in Fig. 1 (black circles). The seasonality of LAI (LAIyoung, LAImature, LAIold), 314 

litterfall mass, photosynthesis proxies (EVI, RTSIF-derived GPP) and climate proxies 315 

(Tair, VPD, SW) at these field are shown in Fig. S1. Litterfall datasets are listed in Table 316 

S5. 317 

 318 

2.8 Evaluation Metrics 319 

Two metrics were chosen to evaluate the seasonality of Lad-LAI against the that 320 

of other proxies: the Kobayashi decomposition of the Mean Square Difference between 321 

model and observation (Kobayashi and Salam, 2000) and the Pearson correlation 322 

coefficient (Pearson, 1896) for gridded fields. 323 

Mean square deviation (MSD). The mean squared deviation (MSD) is given by 324 

Kobayashi and Salam (2000):  325 

𝑀𝑆𝐷 =
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1                        (7) 326 

𝑆𝐵 = (𝑥̅ − 𝑦̅)2                               (8) 327 

𝑆𝐷𝑠 = √
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1                        (9) 328 

𝑆𝐷𝑚 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1                       (10) 329 

𝑆𝐷𝑆𝐷 = (𝑆𝐷𝑠 − 𝑆𝐷𝑚)2                        (11) 330 

𝐿𝐶𝑆 = 2𝑆𝐷𝑠𝑆𝐷𝑚(1 − 𝑟)                       (12) 331 

https://doi.org/10.5194/essd-2022-436
Preprint. Discussion started: 17 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 

15 

 

where mean squared deviation is the square of RMSD; i.e., MSD = RMSD2.The lower 332 

the value of MSD, the closer the simulation is to the measurement. MSD can be 333 

decomposed into the sum of three components: the squared bias (dbias), dbias=SB; the 334 

squared difference between standard deviations (variance-related difference, dvar), 335 

dvar=SDSD; and the lack of correlation weighted by the standard deviations (phase-336 

related difference, dphase), dphase=LCS; r indicates the correlation coefficient between x 337 

and y. 338 

Pearson correlation coefficient (R). The Pearson correlation coefficient is a 339 

measure of linear correlation between two variables (Merkl and Waack, 2009). The 340 

correlation coefficient between X and Y is as: 341 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
=

𝐸((𝑋−𝜇𝑋)(𝑌−𝜇𝑌))

𝜎𝑋𝜎𝑌
                   (13) 342 

 343 

3. Results 344 

3.1 Comparison of LAI cohort seasonality with sparse site observations 345 

Despite very few site observations of LAIyoung, LAImature, and LAIold over TEFs, the 346 

leaf age-dependent LAI seasonality product agrees well with these camera‐based 347 

measurements of LAIyoung, LAImature, and LAIold at K67, K34 sites in Amazon and 348 

Dingshuan site in China. The LAI seasonality of mature and old classes from the new 349 

Lad-LAI products agree well at these sites with very fine collections of monthly LAI 350 

of mature (R2
K67=0.40, R2

K34=0.81, R2
Din=0.90; MSDK67=1.55, MSDK34=1.12, 351 

MSDDin=6.33) and old leaves (R2
K67=0.02, R2

K34=0.40, R2
Din=0.92; MSDK67=0.87, 352 

MSDK34=0.30, MSDDin=15.57). However, the seasonality of LAI from young leaves 353 

performs a little poor in comparison with mature and old leaves (R2
K67=0.24, 354 

R2
K34=0.02, R2

Din=0.48; MSDK67=0.87, MSDK34=0.65, MSDDin=1.07). It is because that 355 

the trade-off between the phenology of mature and old leaves mainly control the 356 

seasonality of canopy photosynthesis. It is interesting to note that the canopy leaf 357 

phenology of TEFs at these sites differ greatly. At K67 and K34 sites, both in situ and 358 

simulated LAIyoung and LAImature decrease at early wet season around February and 359 
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convert to increase at early wet season around June (Fig. 5 a-d). On the contrary, at 360 

Dinghushan sites, LAIyoung and LAImature increase during the wet season and peak with 361 

largest rainfall at June or July (Fig. 5 e and f). There is a reverse pattern for LAIold 362 

seasonality compared to LAImature for all the three sites. 363 

 364 

Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 365 

observed data at Amazonian K67, K34 sites and Asian Dinghushan site. 366 

 367 

3.2 Comparison of patterns of grid LAI cohort seasonality with previous climatic 368 

and phenological patterns 369 

The in situ measurements of LAIyoung, LAImature, and LAIold suggest diverse patterns 370 

of Lad-LAI seasonality over the TEFs; while the sparse coverage of these site 371 

measurements limit a comprehensive and direct evaluation of leaf age-dependent LAI 372 

seasonality product. To continue in-depth sub-regional evaluations of the grid Lad-LAI 373 

seasonality product, we further conduct spatial clustering analyses of LAIyoung, LAImature, 374 

and LAIold using the K-means analysis method (see methods). 375 

Surprisingly, the spatial clustering patterns of Lad-LAI product derived from 376 

satellite-based vegetative signals (Fig. 6 g-i) coincide well with those clustered from 377 
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in-dependent climatic variables (rainfall and radiation etc.) (Fig. 6 a-c) (see methods). 378 

These patterns are also similar as those of the climate-phenology rhythms mapped by 379 

(Yang et al., 2021), which suggest different correlations of litterfall seasonality with 380 

canopy phenology between different climate-phenology rhythms.  381 

In central (sub-region s2) and south (sub-region s3) Amazon (Fig. 6 g), the 382 

seasonality of LAIyoung, LAImature, and LAIold (Fig. 7 b and c) are similar as those of 383 

BR-Sa1 and BR-Sa3 sites. And in subtropical Asia (sub-region s6) (Fig. 6 i), the 384 

seasonality of three LAI cohorts (Fig. 7 f) are similar as those of Dinghushan sites. The 385 

remaining 4 sub-regions (sub-regions s1, s4, s5, s7) are all located nearby the equator. 386 

The magnitudes of seasonal changes in LAI cohorts are smaller than those in sub-387 

regions s2, s3 and s6 away from the equator. It is worth noting that for these sub-regions 388 

around the equator there is a bimodal seasonality pattern for LAImature, with the first 389 

peak in around March and the second peak in around August (Fig. 7 a, d, e and g). This 390 

is consistent with the findings of Li et al. (2021) that showed tropical and subtropical 391 

TEFs changed from a unimodal phenology at higher-latitudes to a bimodal phenology 392 

at lower-latitudes. 393 

 394 

Figure 6. Comparison of sub-regions of Lad-LAI products (plots g-i) with those of 395 
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climatic factors classified by the K-means clustering analysis (plots a-c) (Chen et al., 396 

2019) and those of the three climate-phenology regimes (plots d-f) developed by Yang 397 

et al. (2021). 398 

 399 

 400 

Figure 7. Seasonality of simulated LAIyoung, LAImature, and LAIold in sub-regions 401 

classified by the K-means clustering analysis. 402 

 403 

3.3 Sub-regional evaluations of grid LAIyoung+mature seasonality using satellite-based 404 

EVI products 405 

The grid dataset of LAIyoung+mature seasonality was indirectly evaluated using the 406 

satellite-based EVI products (Wang et al., 2017; De Moura et al., 2017; Xiao et al., 407 

2005; Wu et al., 2018), as the Enhanced Vegetation Index (EVI) can be considered as a 408 

proxy for leaf area change of those leaves with high photosynthesis efficiency (Huete 409 

et al., 2006; Lopes et al., 2016; Wu et al., 2018). The linear correlation and MSD 410 

decompositions (see methods) between simulated and satellite-based EVI are displayed 411 

in Fig. 8. Overall, the seasonal LAIyoung+mature in 76.79% of the TEFs is well correlated 412 

with satellite-based EVI (R2 > 0.40) (Fig. 8 a-c). The MSD is smaller than 0.1 in 90.59% 413 

of the TEFs over the whole tropical and subtropical region (Fig. 8 d-f). Statistics in the 414 

7 clustered sub-regions show that the seasonal LAIyoung+mature of Lad-LAI data mostly 415 
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correlate better with seasonal EVI in high-latitude areas (sub-region s2: R=0.66, sub-416 

region s3: R=0.75, sub-region s6: R=0.71) than those in low latitudes (sub-region s1: 417 

R=0.44, sub-region s5: R=0.63, sub-region s7: R=0.40) except for sub-region s4 418 

(R=0.76) (Fig. 9). The MSD components also confirm the better performance of 419 

LAIyoung+mature seasonality in high-latitude areas (sub-region s2:dbias=0.010, dvar=0.001, 420 

dphase=0.029; sub-region s3: dbias=0.008, dvar=0.002, dphase=0.028; sub-region s6: 421 

dbias=0.013, dvar=0.005, dphase=0.033) than in low-latitude areas near the Equator (sub-422 

region s1: dbias=0.022, dvar=0.002, dphase=0.041; sub-region s4: dbias=0.022, dvar=0.001, 423 

dphase=0.025; sub-region s5: dbias=0.022, dvar=0.001, dphase=0.029; sub-region s7: 424 

dbias=0.040, dvar=0.002, dphase=0.043) (Fig. 10). 425 

 426 

 427 

Figure 8. Pearson correlation coefficient (R) and Mean squared deviation (MSD) 428 

between seasonality of simulated LAIyoung+mature and MODIS Enhanced Vegetation 429 

Index (EVI). 430 

 431 
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 432 

Figure 9. Statistics of the Pearson correlation coefficient (R) between seasonality of 433 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 7 434 

clustered sub-regions. (a-g): the histogram of R; (h): mean of R in each sub-region 435 

 436 

 437 

Figure 10. Statistics of the Mean squared deviation (MSD) between seasonality of 438 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 7 439 

clustered sub-regions. (a-g): the histogram of MSD; (h): mean of MSD in each sub-440 

region. 441 
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 442 

Additionally, previous studies indicated large-scale dry-season green-up area over 443 

tropical and subtropical region (i.e., Guan et al., 2015, Tang et al., 2017, Myneny et al., 444 

2007) where MAP exceeds 2,000 mm yr−1. Here, we calculated the differences (Δ) 445 

between wet- and dry-season LAIyoung+mature (i.e., LAIyoung+ LAImature), to test whether 446 

the Lad-LAI can capture this green-up spatial pattern. Spatial patterns of 447 

ΔLAIyoung+mature (Fig. 11) were similar to those developed by (Guan et al., 2015), with 448 

higher LAIyoung+mature during the dry season (blue area) in large areas north of the 449 

Equator. This indicates an emergence of new leaf flush and increase of mature leaves, 450 

resulting the canopy “green-up” phenomenon observed by previous satellite-based 451 

signals. It is interesting to note that the total areas (blue regions in Fig. 11) of this dry-452 

season green up shown by LAIyoung+mature is smaller than those shown by SIF signals 453 

that almost everywhere north of the Equator. That is because that new and mature leaves 454 

show quite a higher photosynthetic capacity than old leaves. A slight or moderate 455 

“green-up” in new and mature leaves (i.e., increase in LAIyoung+mature) would boost 456 

strong increase in photosynthesis, inducing significant “green-up” shown by 457 

photosynthesis-related signals, e.g. SIF data. Therefore, using photosynthesis proxies 458 

likely overestimate the areas with “green-up” of new leaves during the dry seasons in 459 

the real world. 460 

 461 

 462 

Figure 11. Spatial pattern of dry-season green-up using wet-season LAIyoung+mature 463 

minus dry-season LAIyoung+mature. 464 

 465 

https://doi.org/10.5194/essd-2022-436
Preprint. Discussion started: 17 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 

22 

 

3.4 Sub-regional evaluations of grid LAIold seasonality using site-based litterfall 466 

observations 467 

The seasonal patterns of LAIold were evaluated indirectly using site-based seasonal 468 

litterfall observations (black circles in Fig. 1). As there are 53 sites in total over the 469 

tropical and subtropical EBFs, we selected 9 specific sites for examples with different 470 

patterns of litterfall seasonality and LAIold seasonality, to illustrate the analyses results. 471 

Fig. 12 a-i illustrate the days when there is a sharping decrease in monthly LAIold, which 472 

are closely to monthly litterfall peak. The days when LAIold decreases sharpest 473 

(DayLAIold) agree well with the days when their monthly litterfall peaks (Daylitterfall) (Fig. 474 

12 j), mostly distributed near the diagonal lines (R2=0.90). This indirectly demonstrate 475 

the robustness of the LAIold seasonality of the Lad-LAI product. 476 

 477 

 478 

Figure 12. Evaluation of simulated LAIold using site-observed litterfall seasonality. (a-479 

i) Days of a sharping decrease in LAIold in comparison with days of corresponding 480 

litterfall peak at 9 specific sites for examples. (j) Comparisons of the days when LAIold 481 

decreases sharpest (DayLAIold) against the days when monthly litterfall peaks 482 

(Daylitterfall). 483 

 484 

4 Discussion 485 

Leaf age-dependent LAI performs well in describing the seasonal replacements of 486 

canopy leaves in TEFs (Wu et al., 2016; Chen et al., 2020), showing to be a critical 487 

plant trait for representing the tropical and subtropical phenology (Doughty and 488 
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Goulden, 2008b; Saleska et al., 2007). However, to our knowledge, there are currently 489 

no continental-scale information of such leaf age-dependent LAI data over the whole 490 

TEFs, as it can neither be mapped from sparse site observations (Wu et al., 2016), nor 491 

be modeled from ESMs which were triggered by unclear climatic drivers (Chen et al., 492 

2020). These hinder global researches on accurately simulations of large-scale 493 

photosynthesis (GPP) seasonality using remote sensing approaches and ESMs (Chen et 494 

al., 2020).  495 

The Lad-LAI product developed in this study is a new continental-scale grid dataset 496 

of monthly LAI in different leaf age cohorts. Although lacking of enough in situ 497 

observations for adequate validations, the seasonality of three LAI cohorts performs 498 

well at the three sites (K67, K34 and Din) with very fine collections of monthly LAIyoung, 499 

LAImature, and LAIold. To test the robustness of the grid Lad-LAI products over the whole 500 

TEFs, the seasonality of LAImature seasonality was also validated pixel by pixel using 501 

satellite-based EVI products and the phase of LAIold seasonality were compared with 502 

the those of seasonal litterfall data from 53 site measurements, respectively. Moreover, 503 

the LAIyoung+mature from the new Lad-LAI products can also directly represent the large-504 

scale dry-season green-up of canopy leaves north of the Equator. Therefore, direct and 505 

indirect evaluations both demonstrated the robustness of the new grid Lad-LAI 506 

products. 507 

It should be noted that, over the regions with large magnitude of annual 508 

precipitation nearby the Equator, there is no obvious dry seasons and thus tree canopy 509 

phenology changes smaller than higher-latitude ones throughout the year (Yang et al., 510 

2021). Thus, the accuracy in the seasonality of LAI cohorts depend highly on that of 511 

input SIF data, which shows marginally small seasonal changes nearby the equator. Our 512 

analyses showed that the LAIyoung+mature cohorts from Lad-LAI succeed to capture the 513 

bimodal phenology of TEFs nearby the equator. It is also worth noting that we use a 514 

constant to calculate to transfer from SIF data to GPP and also assume a constant value 515 

for the total LAI over the whole TEFs, which tend to bring unexpected errors in the 516 
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magnitudes of simulated LAI cohorts. This can be seen from the MSD evaluations, 517 

where the bias-related term dominated the total MSD, especially in regions nearby the 518 

Equator. However, this bring less impacts on the seasonality of Lad-LAI, as the phase-519 

related term of MSD is much smaller. 520 

Additionally, the maximum carboxylation rate (Vc,max) of leaves changes 521 

significantly with leaf age (Xu et al., 2017). Currently, most Earth system models 522 

(ESMs) define Vc,max as a function of leaf age whereas their relationship is still less well 523 

understood in TEFs due to sparse in-situ measurements (Chen et al., 2020). This may 524 

consequentially lead to poorly representation of LAI and GPP seasonality in ESMs (De 525 

Weirdt et al., 2012). To overcome this challenge, we simplified the tree canopy into 526 

three big leaves (i.e., young, mature and old) in TEFs, similar as the two-big leaves 527 

model developed for temperate and boreal forests (Best et al., 2011; Clark et al., 2011; 528 

Harper et al., 2016), which simplified tree canopy into sun and shade leaves. However, 529 

some uncertain remains on the assumption, as it neglected the spatial and temporal 530 

variations of Vc,max, which also changes with seasonal climate anomaly and also differs 531 

between nearby pixels in high heterogeneous forest ecosystems. These may bring 532 

uncertainties for simulating seasonal An and therefore influence the seasonality of Lad-533 

LAI. 534 

In summary, this study developed a new method to produce the first grid dataset of 535 

leaf age-dependent LAI product over the continental scale. Although some uncertainties 536 

remain associated with this assumption, it is important to improve the GPP simulation 537 

accuracy in most ESMs that are currently run at a coarser resolution. And, the proposed 538 

method could provide simulations of accurate age-dependent LAI seasonality by 539 

dividing canopy leaves into more age cohorts. With the development of remote sensing 540 

technology, finer temporal and spatial resolutions of SIF products will also enable finer 541 

temporal and spatial resolutions maps of Lad-LAI products. 542 

 543 

5. Data availability 544 
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The 0.25 degree leaf age-dependent LAI seasonality (Lad-LAI) datasets from 545 

2001-2018 presented in this paper are available at 546 

https://doi.org/10.6084/m9.figshare.21700955.v2 (Yang et al., 2022). The format of this 547 

dataset is GeoTiff, with a spatial reference of WGS84. Each file in this dataset is named 548 

based on leaf age, start year, end year, and monthly. We divided the LAI into three 549 

cohorts: LAIyoung, LAImature, and LAIold. 550 

 551 

6. Conclusion 552 

This study for the first-time mapped continental-scale grid dataset of monthly LAI 553 

in three leaf age cohorts from 2001-2018 RTSIF data. The LAI seasonality of young, 554 

mature and old leaves was evaluated using in situ measurements of seasonal LAI data, 555 

satellite based EVI and in situ measurements of seasonal litterfall data. The evaluations 556 

from these independent datasets all demonstrate the robustness of the seasonality of 557 

three leaf age cohorts. The new Lad-LAI products indicate diverse patterns over the 558 

whole tropical and subtropical regions. In central and south Amazon, LAIyoung and 559 

LAImature decrease at early wet season around February and convert to increase at early 560 

wet season around June. On the contrary, in subtropical Asia, LAIyoung and LAImature 561 

increase during the wet season and peak with largest rainfall at June or July. In regions 562 

nearby the Equator, the LAI cohorts show a bimodal phenology but with marginally 563 

small changes in magnitudes. The proposed method will enable to produce finer 564 

temporal and spatial resolutions maps of Lad-LAI products by using precise temporal 565 

and spatial resolutions data as the inputs. The Lad-LAI products will be help for 566 

diagnosing the adaption of tropical and subtropical forest to climate change; and will 567 

also help improve the development of phenology models in ESMs. 568 

 569 

Supplement. The supplement related to this article will be available online at once 570 

accepted. 571 

 572 
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