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Abstract 29 

Quantification of large-scale leaf age-dependent leaf area index has been lacking in 30 

tropical and subtropical evergreen broadleaved forests (TEFs) despite the recognized 31 

importance of leaf age in influencing leaf photosynthetic capacity in this biome. Here, 32 

we simplified the canopy leaves of TEFs into three age cohorts (i.e., young, mature and 33 

old one with different photosynthesis capacity (Vc,max)) and proposed a novel neighbor-34 

based approach to develop a first grid dataset of monthly leaf age-dependent LAI 35 

product (referred to as Lad-LAI) at 0.25-degree spatial resolution over the continental 36 

scale during 2001-2018 from satellite observations of sun-induced chlorophyll 37 

fluorescence (SIF) that was reconstructed from MODIS and TROPOMI (the 38 

TROPOspheric Monitoring Instrument). The new Lad-LAI products show good 39 

performance in capturing the seasonality of three LAI cohorts, i.e., young (LAIyoung) 40 

(R=0.36), mature (LAImature) (R=0.77) and old (LAIold) (R=0.59) leaves, at the eight 41 

sites (four in south America, three in subtropical Asia and one in Congo) and can also 42 

represent their interannual dynamics at the Barrocolorado site, with R being equal to 43 

0.54, 0.64 and 0.49 for LAIyoung, LAImature and LAIold, respectively. Additionally, the 44 

abrupt drops in LAIold are mostly consistent with the seasonal litterfall peaks at 53 in 45 

situ measurements across the whole tropical region (R=0.82). The LAI seasonality of 46 

young and mature leaves also agrees well with the seasonal dynamics of Enhanced 47 

Vegetation Index (EVI) (R=0.61), which is a good proxy of effective leaves. Spatially, 48 

the grid Lad-LAI captures a dry-season green-up of canopy leaves across the wet 49 

Amazonia areas where mean annual precipitation exceeds 2,000 mm yr−1, consistent 50 

with previous satellite-based analyses. The spatial patterns clustered from the three LAI 51 

cohorts also coincide with those clustered from climatic variables over the whole TEF 52 

region. The seasonality of LAIyoung, LAImature and LAIold derived from the estimated 53 

GPP based on a simple linear SIF-GPP relationship show the highest correlation with 54 

the in situ measurements at 8 observed sites compared with those derived from Orbiting 55 

Carbon Observatory-2-based SIF (GOSIF) GPP and eddy covariance flux tower 56 
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measurements (FLUXCOM) GPP. Additionally, the Lad-LAI products developed by 57 

the neighbor-based approach using 2*2 and 4*4 neighboring pixels show stable 58 

seasonality in LAIyoung, LAImature and LAIold across the whole tropical region, 59 

respectively. We provide the average seasonality of three LAI cohorts as the main 60 

dataset, and their time-series as a supplementary dataset. These two products are 61 

available at https://doi.org/10.6084/m9.figshare.21700955.v3 (Yang et al., 2022). 62 

 63 

1. Introduction 64 

Tropical and subtropical evergreen broadleaved forests (TEFs) account for 65 

approximately 34% of global terrestrial primary productivity (GPP) (Beer et al., 2010) 66 

and 40-50% of the world's gross forest carbon sink (Pan et al., 2011; Saatchi et al., 67 

2011). Despite a perennial canopy, TEFs shed and rejuvenate their leaves continuously 68 

throughout the year, leading to significant seasonality in canopy leaf demography (Wu 69 

et al., 2016; Chen et al., 2021). This phenological changes in leaf demography is the 70 

primary cause of GPP seasonality in TEFs (Saleska et al., 2003; Sayer et al., 2011; Leff 71 

et al., 2012) and thus largely regulates their seasonal carbon sinks (Beer et al., 2010; 72 

Aragao et al., 2014; Saatchi et al., 2011). 73 

A key plant trait linking canopy phenology with GPP seasonality was shown to be 74 

leaf age (Wu et al., 2017; Xu et al., 2017). At leaf scale, the newly-flushed young leaves 75 

and maturing leaves show higher maximum carboxylation rates (Vc,max) than the old 76 

leaves being replaced (De Weirdt et al., 2012; Chen et al., 2020). Such age-dependent 77 

variations in Vc,max is associated with changes in leaf nutritional contents (nitrogen, 78 

phosphorus and potassium etc.) and stomatal conductance over time (Menezes et al., 79 

2021). Xu et al. (2017) and Menezes et al. (2021) monitored in situ leaf age and leaf 80 

demography combined with leaf-level Vc,max in Amazonian TEFs and found that Vc,max 81 

of newly-flushed leaves increases rapidly with leaf longevity, peaks at approximately 82 

2-month old and then declines gradually as leaf grows older (leaf age > 2 months). At 83 

canopy scale, it was hypothesized that leaf demography and seasonal differences in leaf 84 
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age compositions of tree canopies control the GPP seasonality in TEFs (Wu et al., 2016; 85 

Albert et al., 2018). Similar mechanism was also observed by the ground-based LiDAR 86 

which showed an increasing trend in upper canopy leaf area index (LAI) during the dry 87 

season, whereas a decrease in lower canopy LAI (more old leaves) (Smith et al., 2019). 88 

Wu et al. (2016) classified canopy leaves of Amazonian TEFs into three leaf age cohorts 89 

(young: 1-2 months, mature: 3-5 months and old: ≥ 6 months). LAI of young and mature 90 

leaves increases during the dry seasons and consequently promotes dry-season canopy 91 

photosynthesis. Based on above age-dependent Vc,max at leaf scale (Xu et al., 2017) and 92 

LAI seasonality of different leaf age cohorts at canopy scale (Wu et al., 2016), Chen et 93 

al. (2020; 2021) developed a climate-triggered leaf litterfall and flushing model and 94 

successfully represented the seasonality of canopy leaf demography and GPP at four 95 

Amazonian TEF sites. Overall, leaf age-dependent LAI seasonality is one of the vital 96 

biotic factors in influencing the GPP seasonality in TEFs (Wu et al., 2016; Chen et al., 97 

2020). 98 

Although the leaf age-dependent LAI seasonality can be well documented at site 99 

level using phenology cameras (Wu et al., 2016), it is still rarely studied and remains 100 

unclear at the continental scale. The key causation is that leaf flushing and litterfall of 101 

TEFs in different climatic regions experience different seasonal constraints of water 102 

and light availability during recurrent dry and wet seasons (Brando et al., 2010; Chen 103 

et al., 2020; Davidson et al., 2012; Xiao et al., 2005). Thus, the seasonal patterns of LAI 104 

in different leaf age cohorts become very complex at the continental scale (Chen et al., 105 

2020; Xu et al., 2015). Satellite-based remote sensing (Saatchi et al., 2011, Guan et al., 106 

2015) and land surface model (LSM) technologies (De Weirdt et al., 2012; Chen et al., 107 

2020; 2021) are two commonly used approaches for detecting the spatial heterogeneity 108 

of plant phenology at a large scale. However, for satellite-based studies, most optical 109 

signals are saturated in TEFs due to the dense covered canopies and thus fail to capture 110 

the seasonality of total LAI in TEFs, much less decompose the LAI into different leaf 111 

age cohorts. These limitations prevent satellite-based studies from accurately 112 
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representing the age-dependent LAI seasonality. Moreover, most ESM models also 113 

show poor performances in simulating the LAI seasonality in different leaf age cohorts 114 

(De Weirdt et al., 2012; Chen et al., 2020). This is because that the underling 115 

mechanisms linking seasonal water and light availability with leaf flushing and litterfall 116 

seasonality are currently highly debated and remain elusive at regional scale (Leff et al., 117 

2012; Saleska et al., 2003; Sayer et al., 2011). This vague notion imposes a challenge 118 

for accurately modeling continental-scale GPP seasonality in most LSMs (Restrepo-119 

Coupe et al., 2017; Chen et al., 2021). 120 

To fill the research gap, this study aims to produce a global grid dataset of leaf age-121 

dependent LAI seasonality product (Lad-LAI) over the whole TEF biomes from 2001 122 

to 2018. For this purpose, we first simplified that canopy GPP was composed of three 123 

parts that were produced from young, mature and old leaves, respectively. GPP was 124 

then expressed as a function of the sum of the product of each LAI cohort (i.e., young, 125 

mature and old leaves, denoted as LAIyoung, LAImature, and LAIold, respectively) and 126 

corresponding net CO2 assimilation rate (An, denoted as Anyoung, Anmature, and Anold for 127 

young, mature and old leaves, respectively) (Equation 1). Then, we proposed a novel 128 

neighbor-based approach to derive the values of three LAI cohorts. It was hypothesized 129 

that forests in adjacent four cells in the grid map exhibited consistent seasonality in 130 

both GPP, and LAI cohorts (LAIyoung, LAImature, and LAIold). Based on this assumption, 131 

we applied Equation 1 to each pixel and combined the four equations of 2*2 132 

neighboring pixels to derive the three LAI cohorts using a linear least-squares with 133 

constrained method. An was calculated using the Farquhar-von Caemmerer-Berry 134 

(FvCB) leaf photochemistry model (Farquhar et al., 1980); and GPP was linearly 135 

derived from an arguably better proxy—TROPOMI (the TROPOspheric Monitoring 136 

Instrument) Solar-Induced Fluorescence (SIF) based on a simple SIF-GPP relationship 137 

established by Chen et al. (2022) (see Methods for details). This grid dataset of three 138 

LAI cohorts provides new insights into tropical and subtropical phenology with more 139 

details of sub-canopy level of leaf seasonality in different leaf age cohorts and will be 140 
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helpful for developing accurate tropical phenology model in ESMs. 141 

 142 

2. Study area and material 143 

2.1 Tropical and subtropical evergreen broadleaved forest biomes 144 

In this study, we focused on the whole tropical and subtropical evergreen broadleaf 145 

forests (TEFs). The pixels labeled TEFs according to the International Geosphere-146 

Biosphere Program (IGBP) classification were extracted as the study area based on the 147 

0.05° spatial resolution MODIS land cover map (Fig. 1) (MCD12C1, Sulla-Menashe et 148 

al., 2018). The study area contains three regions: South America (30°S–18°N; 40°W–149 

90°W), the world's largest and most biodiverse tropical rain forest, Congo (10°S–10°N; 150 

10°W−30°E), the western part of the Africa TEF region, and Tropical Asia (20°S–30°N; 151 

70°E−150°E), covering the Indo-China Peninsula, the majority of the Malay 152 

Archipelago and the northern Australia. 153 

 154 

Figure 1. Study areas over tropical and subtropical evergreen broadleaves forests (TEF). 155 

Red triangles: observed GPP seasonality at four eddy covariance (EC) tower sites. Blue 156 

pentangles: observed LAI cohorts at eight camera-based observation sites. Black circles: 157 

observed litterfall seasonality at 53 observation sites. 158 

 159 

2.2 Input datasets for calculating GPP and An parameters 160 

The TROPOspheric Monitoring Instrument (TROPOMI) Solar-Induced 161 

Fluorescence (SIF) data were used to derive the continent-scale GPP (denoted as 162 

RTSIF-derived GPP) according to the SIF-GPP relationship established by Chen et al. 163 

(2022) which used 15.343 as a transformation coefficient to covert SIF to GPP. The air 164 
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temperature data from ERA5-Land (Zhao, Gao et al., 2020), vapor pressure deficits 165 

(VPD) data from ERA-Interim (Yuan et al., 2019) and downward shortwave solar 166 

radiation (SW) from Breathing Earth System Simulator (BESS) (Ryu et al., 2018) were 167 

used to calculate KC, KO, Γ*, Rdark and Vc,max and thus to calculate An according to 168 

equations in Table S4 . The calculation processes were illustrated in Fig. 2. All datasets 169 

were aggregated at the same spatial (0.125°) and temporal resolutions (month) (Table 170 

S3). 171 

 172 

2.3 Datasets for validating leaf age-dependent LAI seasonality 173 

Ground-based seasonal LAI cohorts and litterfall data. Top-of-canopy 174 

imageries observed by ground-based phenology cameras were used to decompose 175 

canopy LAI into LAIyoung, LAImature and LAIold. In total, imageries from eight 176 

observation sites across the whole TEF region were used to validate the simulating 177 

results (blue pentangles in Fig. 1, Table S1). Additionally, the seasonal litterfall data 178 

from 53 in situ sites (black circles in Fig. 1, Table S6) spanning the TEFs were collected 179 

from globally published articles to compare with the phase of simulated LAIold 180 

seasonality (see Methods for details). The multiyear monthly litterfall data were 181 

averaged to the monthly mean to compare with the seasonality of simulated LAIold. 182 

Four eddy covariance flux tower sites (red triangles in Fig. 1, Table S2) provided in 183 

situ seasonal GPP data to evaluate the seasonality of RTSIF-derived GPP. 184 

Satellite-based seasonal EVI data. To evaluate the LAI seasonality of 185 

photosynthesis-effective leaves, i.e., young and mature leaves, this study used satellite-186 

based MODIS Enhanced Vegetation Index (EVI) (Huete et al., 2002; Lopes et al., 2016; 187 

Wu et al., 2018) as a remotely sensed proxies alternatives of effective leaf area changes 188 

and new leaf flush, i.e., LAIyoung+mature (Wu et al., 2016; Xu et al., 2015). To prove the 189 

robustness of the products over a large spatial coverage, the seasonal LAI cohorts of 190 

young and mature leaves were evaluated against the enhanced vegetation index (EVI) 191 

product, which was considered as a proxy for leaf area changes of photosynthetic 192 
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effective leaves (Xu et al., 2015; Wu et al., 2016; de Moura et al., 2017). 193 

 194 

3. Methods 195 

3.1 Decomposing LAI cohorts (young, mature and old) from SIF-derived GPP 196 

Figure 2 illustrates the overall framework used to generate leaf age-dependent LAI 197 

seasonality product (Lad-LAI). The majority of the tropical and subtropical EBFs retain 198 

leaves year-round and their total LAI shows marginally small spatial and seasonal 199 

changes (Wu et al., 2016) (Figs. S3, S4). Therefore, previous modelling studies have 200 

assumed a constant value for the total LAI in tropical and subtropical EBFs (Cramer et 201 

al., 2001; Arora and Boer, 2005; De Weirdt et al., 2012). Based on this, we collected 202 

observed seasonal LAI dynamics in tropical and subtropical EBFs from previously 203 

published literatures which showed a constant value of LAI around 6.0 (Figs. S3, S4, 204 

Table S5). Thus, in this study, we simplified to assume that the seasonal LAI was 205 

approximately equaling to 6.0 in tropical and subtropical EBFs. We grouped the canopy 206 

leaves of tropical and subtropical EBFs into three leaf age cohorts, i.e., young, mature 207 

and old leaves, respectively. Then, the total GPP was defined as the sum of those 208 

produced by the young, mature and old leaves, respectively. According to the Farquhar-209 

von Caemmerer-Berry (FvCB) leaf photochemistry model (Farquhar et al., 1980), GPP 210 

can be expressed as function of the sum of the products of each LAI cohort (LAIyoung, 211 

LAImature, and LAIold) and corresponding net CO2 assimilation rate (Anyoung, Anmature, 212 

and Anold) (Equation 1). 213 

𝐺𝑃𝑃 = 𝐿𝐴𝐼𝑦𝑜𝑢𝑛𝑔 × 𝐴𝑛𝑦𝑜𝑢𝑛𝑔 + 𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 × 𝐴𝑛𝑚𝑎𝑡𝑢𝑟𝑒 + 𝐿𝐴𝐼𝑜𝑙𝑑 × 𝐴𝑛𝑜𝑙𝑑        (1) 214 

where LAIyoung, LAImature and LAIold are the leaf area index of young, mature and old 215 

leaves, respectively; Anyoung, Anmature and Anold are the net rate of CO2 assimilation 216 

dependent on three leaf age classes; GPP is canopy total gross primary production. The 217 

sum of LAIyoung, LAImature and LAIold was set as a constant in this study, equaling to 6.0. 218 

The grid GPP data over the whole EBFs were derived from SIF (denoted as RTSIF-219 

derived GPP) using a linear SIF-GPP regression model (see sect. 3.2) which were 220 
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established based on in situ GPP from 76 eddy covariance (EC) sites (Chen et al., 2022). 221 

The Anyoung, Anmature and Anold were calculated according to the FvCB biochemical 222 

model (Farquhar et al., 1980; Bernacchi et al., 2003) (see section 3.3). As there were 223 

three unknow variables (i.e., LAIyoung, LAImature and LAIold) to be solved in Equation 224 

1, we hypothesized that the adjacent four pixels exhibited homogenous EBFs and 225 

consistent leaf demography and canopy photosynthesis. Then, we used the GPP and An 226 

data from adjacent four pixels to estimate their LAIyoung, LAImature and LAIold based on 227 

Equation 1 using a linear least-squares with constrained method. The inputs grid 228 

datasets (i.e., RTSIF-derived GPP and An derived from Tair, VPD and SW) (Table S3, 229 

Fig. 2) were sampled at 0.125-degree spatial resolution; while the output maps of 230 

LAIyoung, LAImature, and LAIold were at 0.25-degree spatial resolution. Therefore, the 231 

output maps of LAIyoung, LAImature, and LAIold were at a 0.25-degree spatial resolution. 232 

Additionally, to test the robustness of the neighbor-based decomposition approach, we 233 

increased the number of adjacent pixels from 4 (2*2) to 16 (4*4) to produce another 234 

version of Lad-LAI products with spatial resolution of 0.5-degree. All our analyses 235 

were conducted using the Python (version 3.7, http://www.python.org) and Matlab 236 

(version R2019b) software. 237 
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 238 

Figure 2. The workflow for mapping Lad-LAI using the Lsqlin method. Lsqlin is the 239 

abbreviation of Linear least-squares solver with bounds or linear constraints. All the 240 

abbreviations were described in supplementary Tables S4. 241 

 242 

3.2 Calculating the GPP (RTSIF-derived GPP) from TROPOMI SIF  243 

Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) is a widely used 244 

proxy for canopy photosynthesis (Yang et al., 2015; Dechant et al., 2020). Here, we 245 

used a long-term reconstructed TROPOMI SIF dataset (RTSIF) (Chen et al., 2022) to 246 

estimate GPP seasonality. Previous analyses showed that RTSIF was strongly linearly 247 

correlated to eddy covariance (EC) GPP and used 15.343 as a transformation coefficient 248 
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to covert RTSIF to GPP (Fig. 8a in Chen et al., 2022). In this study, we followed 249 

previously published literatures to set a constant value of LAI around 6.0 for the whole 250 

tropical and subtropical EBFs (Figs. S3, S4, Table S5). We collected seasonal GPP data 251 

observed at four EC sites from the FLUXNET 2015 Tier 1 dataset (Table S2; Pastorello 252 

et al., 2020) and validated the Chen’s simple SIF-GPP relationship (Fig. S1). Results 253 

confirmed the robustness of Chen’s simple SIF-GPP relationship in estimating the GPP 254 

seasonality in tropical and subtropical EBFs (R>0.49). Despite potential overestimation 255 

(Fig. S1 b) or underestimation (Fig. S1 h) of the magnitudes, RTSIF-derived GPP 256 

mostly captured the seasonality of the EC GPP at all the four sites (dphase < 0.26). 257 

 258 

3.3 Calculating the net rate of CO2 assimilation (An) 259 

We calculated the net CO2 assimilation (An) using the FvCB biochemical model 260 

(Farquhar et al., 1980). In this model, the parameter An was calculated as the minimum 261 

of Rubisco (Wc), RuBP regeneration (Wj) and TPU (Wp) to minus dark respiration (Rdark) 262 

(Bernacchi et al., 2013). The formulas for calculating An, Wc, Wj, Wp, Rdark and 263 

corresponding intermediate variables were listed in Tables S4. 264 

Calculation of Wc. Wc is expressed as a function of internal CO2 concentration (ci), 265 

Michaelis-Menton constant for carboxylase (Kc), Michaelis-Menton constant for 266 

oxygenase (Ko), CO2 compensation point (Γ*) and maximum carboxylation rate (Vc,max) 267 

(Table S4-part1) (Lin et al., 2015; Bernacchi et al., 2013; Ryu et al., 2011; Medlyn et 268 

al., 2011; June et al., 2004; Farquhar et al., 1980). The Kc, Ko, Γ* and Vc,max are 269 

temperature-dependent variables. Thus, we used Equation 2 to calculate their values at 270 

Tk by converting from those at 25℃. Then, we used the Medlyn’s stomatal conductance 271 

model (Medlyn et al., 2011) to estimate internal CO2 concentration (ci) (Equation 3), 272 

which is expressed as a function of vapor pressure deficit (VPD) rather than relative 273 

humidity (Lin et al., 2015). The method for calculating the Vc,max of each LAI cohort 274 

was introduced in section 3.4. The formulas for calculating corresponding intermediate 275 

parameters were presented in Table S4. 276 
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𝑃𝑎𝑟𝑎 =  𝑃𝑎𝑟𝑎25  × 𝑒𝑥𝑝 (
(𝑇𝑘−298.15)×𝛥𝐻𝑝𝑎𝑟𝑎

𝑅×𝑇𝑘×298.15
)         (2) 277 

where Para denotes a correction factor arising from the temperature dependence of 278 

Vc,max; Para25 are values of the temperature-dependent parameters (Kc, Ko, Γ* and Vc,max) 279 

at the temperature 25℃; Tk denotes temperature in Kelvin; ΔHpara is the activation 280 

energy for temperature dependence; R is the universal gas constant.  281 

𝑐𝑖 = 𝑐𝑎 × (1 −
1

1.6×(1+
𝑔1

√𝑉𝑃𝐷
)
)                     (3) 282 

where ca is atmospheric CO2 concentration, 380 ppm; VPD is calculated from air 283 

temperature and dew point temperature of the global ERA-Interim reanalysis dataset 284 

(Dee et al., 2011) using the method of Yuan et al. (2019). The calculation formula of 285 

VPD was described in supplementary files. In this study, we used the value of 3.77 for 286 

the stomatal slope (g1) in the stomatal conductance model according to Lin et al. (2015). 287 

Calculation of Wp. Wp was calculated as the function of Vc,max, which were given 288 

different values for different LAI cohorts based on multiple in situ observations (section 289 

3.4). 290 

Calculation of Wj. Wj was calculated from Vc,max, ci and the rate of electrons 291 

through the thylakoid membrane (J) (Bernacchi et al., 2013). The parameter J was 292 

calculated from maximum electron transport rate (Jmax) and the rate of whole electron 293 

transport provided by light (Je) (Bernacchi et al., 2013). Jmax was expressed as a 294 

temperature dependence function of maximum electron transport rate (Jmax,25) at 25℃ 295 

and temperature (Tair) and Je was expressed as a function of total PAR absorbed by 296 

canopy (PARtotal) that was the sum of active radiation in beam (PARb,0) and diffuse 297 

(PARd,0) light firstly (Weiss et al., 1985), which were calculated from downward short-298 

wave radiation (SW) (Ryu et al., 2018). The formula for PARtotal was given in Equation 299 

4 and formulas for other intermediate parameters (i.e., PARb,0, PARd,0, ρcb, ρcd, k
’
b, k

’
d, 300 

and CI) were listed in Table S4. 301 

𝑃𝐴𝑅𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜌𝑐𝑏) × 𝑃𝐴𝑅𝑏,0 × (1 − 𝑒𝑥𝑝(−𝑘𝑏
′ × 𝐶𝐼 × 𝐿𝐴𝐼𝑡𝑜𝑡𝑎𝑙)) + (1 − 𝜌𝑐𝑑) ×302 

𝑃𝐴𝑅𝑑,0 × (1 − 𝑒𝑥𝑝(−𝑘𝑑
′ × 𝐶𝐼 × 𝐿𝐴𝐼𝑡𝑜𝑡𝑎𝑙))            (4) 303 
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where PARtotal is total PAR absorbed by canopy; PARb,0 is the active radiation; PARd,0 304 

is diffuse radiation; LAItotal is a total LAI. Here, we used a constant value of 6.0 305 

according to De Weirdt et al. (2012). 306 

 307 

3.4 Classifying three LAI cohorts with different Vc,max 308 

In this study, we collected in situ samples of Vc,max25 data against different leaf age 309 

across tropical and subtropical EBFs from previous publications. Mature leaves (leaf 310 

age: 70-160 days) show highest Vc,max25 than those of new flushed leaves (leaf age: <60 311 

days) and old leaves(leaf age: >200 days) as Menezes et al. (2021). Therefore, in this 312 

study, we classified the canopy leaves into three cohorts: young (leaf age: <2 months), 313 

mature (leaf age: 3-5 months) and old cohorts (leaf age: >6 months) as Wu et al. (2016). 314 

The Vc,max25 for young, mature and old cohorts were set as 60, 40 and 20 μmol m-2 s-1, 315 

respectively, according to previous ground-based observations by Chen et al. (2020). 316 

 317 

3.5 Decomposing camera-based LAI into three leaf age cohorts 318 

We classified the canopy leaves into young, mature and old age cohorts based on 319 

the green-color band from the top-of-canopy imageries observed by RGB camera. It is 320 

because that the brightness of different leaf age leaves differs greatly in the values of 321 

green-color band. Raster density slicing is a useful classification method for detecting 322 

the attributes of various ground objects (Kartikeyan et al., 1998). Therefore, we set three 323 

brightness thresholds to divide young (blue), mature (green), old (yellow) leaves and 324 

background (gray) for the same canopy extent in each month (Fig. S2). This analysis 325 

was conducted in ENVI5.3 software. 326 

 327 

3.6 Evaluating the LAIyoung+mature seasonality and its spatial patterns using 328 

satellite-based EVI products 329 

To compare the seasonality of LAIyoung+mature with those of EVI, we calculate mean 330 

squared deviation (MSD) and their three components—dbias, which denotes the 331 
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differences about absolute value, dvar, which denotes the differences of seasonal 332 

fluctuations, and dphase, which denotes the differences of peak phase to evaluate this 333 

consistence, comprehensively (see section 3.8). Additionally, we compared the spatial 334 

patterns of the wet- minus dry-season differences (∆) between observed and simulated 335 

variables, following the work of Guan et al. (2015). To determine the wet and dry 336 

seasons in each grid cell, we defined a month as dry one when its monthly average 337 

precipitation was smaller than the potential evapotranspiration (PET) computed using 338 

the method of Maes et al. (2019); other months were classified as wet ones. The wet- 339 

minus dry-season LAIyoung+mature (denoted as LAIyoung+mature) was calculated for each 340 

grid cell as the wet-season average LAIyoung+mature value minus the dry-season average 341 

value of LAIyoung+mature. 342 

 343 

3.7 Evaluating the LAIold seasonality using ground-based litterfall data 344 

Litterfall is closely related to the seasonal dynamics of old leaves, i.e., LAIold (Chen 345 

et al., 2020; Yang et al., 2021). Previous analyses indicated that, in general, a sharping 346 

decrease in LAIold corresponded to a peak in litterfall (Pastorello et al., 2020; Midoko 347 

Iponga et al., 2019; Ndakara, 2011; Barlow et al., 2007; Dantas and Phillipson, 1989). 348 

Based on this causal relationship between litterfall and LAIold, we compared the time 349 

of seasonal litterfall peak with the time of abrupt drops in LAIold, to indirectly evaluate 350 

the simulated LAIold seasonality. To accurately detect the onset date of old leaves 351 

shedding and the day of litterfall peak, we used a least-square regression analysis 352 

method developed by Piao et al. (2006) to smoothen LAIold and litterfall seasonal curves. 353 

The sixth-degree polynomial function (n=6) was applicable to the regression (Equation 354 

5).  355 

𝐿𝐴𝐼𝑜𝑙𝑑 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6          (5) 356 

where x is the day of a year. 357 

The slope of seasonal LAI (LAIold, ratio) was calculated in Equation 6. The date of 358 

abrupt drops in LAIold was defined as the time with most negative values of LAIold, ratio.  359 
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𝐿𝐴𝐼𝑜𝑙𝑑,𝑟𝑎𝑡𝑖𝑜(𝑡) = (𝐿𝐴𝐼𝑜𝑙𝑑(𝑡+1) − 𝐿𝐴𝐼𝑜𝑙𝑑(𝑡))/(𝐿𝐴𝐼𝑜𝑙𝑑(𝑡))              (6) 360 

where LAIold, ratio is the slope of seasonal LAIold curve. LAIold(t+1) and LAIold(t) are the 361 

corresponding monthly LAI at time t+1 and t, respectively. 362 

 363 

3.8 Evaluation Metrics 364 

Two metrics were chosen to evaluate the seasonality of Lad-LAI against the that of 365 

other proxies: the Kobayashi decomposition of the Mean Square Difference between 366 

model and observation (Kobayashi and Salam, 2000) and the Pearson correlation 367 

coefficient (Pearson, 1896) for gridded fields. 368 

Mean squared deviation (MSD). The mean squared deviation (MSD) was given 369 

by Kobayashi and Salam (2000):  370 

𝑀𝑆𝐷 =
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1                        (7) 371 

𝑆𝐵 = (�̅� − �̅�)2                               (8) 372 

𝑆𝐷𝑠 = √
1

𝑛
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1                        (9) 373 

𝑆𝐷𝑚 = √
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1                       (10) 374 

𝑆𝐷𝑆𝐷 = (𝑆𝐷𝑠 − 𝑆𝐷𝑚)2                        (11) 375 

𝐿𝐶𝑆 = 2𝑆𝐷𝑠𝑆𝐷𝑚(1 − 𝑟)                       (12) 376 

where mean squared deviation is the square of RMSD; i.e., MSD = RMSD2; and 𝑥𝑖 is 377 

the simulated data at time t, and 𝑦𝑖 is the observed one at time t (month). The lower the 378 

value of MSD, the closer the simulation is to the measurement. MSD can be 379 

decomposed into the sum of three components: the squared bias (dbias), dbias=𝑆𝐵; the 380 

squared difference between standard deviations (variance-related difference, dvar), 381 

dvar=𝑆𝐷𝑆𝐷; and the lack of correlation weighted by the standard deviations (phase-382 

related difference, dphase), dphase=𝐿𝐶𝑆; 𝑟 indicates the correlation coefficient between 𝑥 383 

and 𝑦. 384 

Pearson correlation coefficient (R). The Pearson correlation coefficient is a 385 

measure of linear correlation between two variables (Merkl and Waack, 2009). The 386 
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correlation coefficient between X and Y was as: 387 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
=

𝐸((𝑋−𝜇𝑋)(𝑌−𝜇𝑌))

𝜎𝑋𝜎𝑌
                   (13) 388 

 389 

3.9 The quality control (QC) for the Lad-LAI product 390 

To warn potential uncertainties, we provided information of data quality control 391 

(QC) along with the Lad-LAI product (Fig. S5). In the QC system (Table S7), data 392 

quality was divided into four levels: level 1 represents the highest quality; level 2 and 393 

level 3 represent good and acceptable quality, respectively; and level 4 warns to be used 394 

cautiously. This QC product was generated according to residual sum of squares (RSS) 395 

(Melgosa et al., 2008) obtained from the constrained least-squares method that was used 396 

to estimate derive monthly Lad-LAI data. 397 

 398 

4. Results 399 

4.1 Comparison of LAI cohort seasonality with sparse site observations 400 

The simulated leaf age-dependent LAI seasonality product was validated against 401 

the camera-based measurements of LAIyoung, LAImature, and LAIold at four sites in south 402 

America, one site in Congo and three sites in China. Overall, the LAI seasonality of 403 

mature and old classes from the new Lad-LAI products agrees well at these sites with 404 

very fine-scale collections of monthly LAI of mature (R=0.77, MSD=0.69) and old 405 

leaves (R=0.59, MSD=0.62). However, the seasonality of simulated LAI from young 406 

leaves performs a little poor (R=0.36, MSD=0.45). It is also interesting to note that the 407 

canopy leaf phenology of TEFs at these sites differ greatly. In south America, at K67, 408 

K34 and Eucflux sites, both in situ and simulated LAIyoung and LAImature decrease at 409 

early dry season around February and convert to increase at early wet season around 410 

June (Fig. 3 a, b, d, e, j, k). At the Barrocolorado site, LAIyoung increases from the late 411 

dry to early wet season around Mar in response to the increasing incoming shortwave 412 

radiation and in contrast, LAImature starts to increase at wet season around June (Fig. 3 413 

g, h). However, in subtropical Asia, LAIyoung and LAImature increase during the wet 414 
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season and peak with largest rainfall at June or July at Din, Gutian and Banna sites (Fig. 415 

5 a, b, d, e, g, h). In Congo, we only found one site (Congoflux) with six months 416 

observation period (from May to October). The seasonality of LAIyoung and LAImature 417 

are similar as those in tropical Asia while having smaller variations in magnitude due 418 

to the moderate seasonality of sunlight the Equator region (Fig. 4 a, b). Overall, there 419 

is a reverse pattern for LAIold seasonality compared to LAImature for all the eight sites. 420 

 421 

 422 

Figure 3. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 423 

observed data at 4 sites in south America. (Panels a, d, g and j) simulated LAIs; 424 

(panels b, e, h and k) observed LAIs; (panels c, f, i and l) scatterplots between 425 

simulated and observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; 426 

orange dots are LAIold. 427 
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 428 

Figure 4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 429 

observed data at one site in Congo. (a) Simulated LAIs; (b) observed LAIs; and (c) 430 

scatterplots between simulated and observed LAIs. Limegreen dots are LAIyoung; 431 

green dots are LAImature; orange dots are LAIold. 432 

 433 

Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 434 

observed data at 3 sites in tropical Asia. (Panels a, d and g) simulated LAIs; (panels b, 435 

e and h) observed LAIs; (panels c, f and i) scatterplots between simulated and observed 436 

LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are LAIold. 437 

 438 

Additionally, only one ground site (Barrocolorado site in Panama) had time-series 439 

camera-based phenological imageries, which was then used to evaluate capacity of Lad-440 

LAI in representing the interannual dynamics of three LAI cohorts, with R values being 441 

equal to 0.54, 0.64, 0.49 for LAIyoung, LAImature, LAIold, respectively (Fig. 6). However, 442 
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more in situ long-term observations are in need to test the robustness of the time-series 443 

variations. The temporal variations of LAIyoung, LAImature, LAIold across 8 sub-regions 444 

classified by the K-means clustering analysis were shown in Fig. S6. Results showed 445 

that, for example, the LAImature increased significantly due to 2015 drought in Amazon 446 

basin (e.g., sub-region S2, Fig. S6) and southeast Asia (e.g., sub-region S7, Fig. S6), 447 

indicating good capability of detecting the dynamics of LAIyoung, LAImature, LAIold in 448 

response to climate disturbances. 449 

 450 

Figure 6. Timeseries of simulated LAIyoung, LAImature, and LAIold in comparison with 451 

observed data at Barrocolorado site in Panama. (a) Simulations LAIs; (b) observation 452 

LAIs; and (c) scatterplots between simulated and observed LAIs. 453 

 454 

4.2 Comparison of patterns of grid LAI cohort seasonality with previous climatic 455 

and phenological patterns 456 

The in situ measurements of LAIyoung, LAImature, and LAIold suggested diverse 457 

patterns of Lad-LAI seasonality over the TEFs. Nevertheless, the sparse coverage of 458 

these sites raised challenging for a comprehensive and direct evaluation of leaf age-459 

dependent LAI seasonality product. To continue the grid Lad-LAI seasonality product 460 

at the regional scale, we further conducted spatial clustering analyses of LAIyoung, 461 

LAImature, and LAIold using the K-means analysis method.  462 

Surprisingly, the spatial patterns of Lad-LAI product clustered from satellite-based 463 

vegetative signals (Fig. 7 g-i) coincide well with those clustered from in-dependent 464 

climatic variables (rainfall and radiation etc.) (Fig. 7 a-c). These patterns are also 465 

similar as those of the climate-phenology rhythms mapped by Yang et al. (2021), which 466 

suggest different correlations of litterfall seasonality with canopy phenology between 467 
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different climate-phenology rhythms (Fig. 7 d-f). In central (sub-region S2) and south 468 

(sub-region S3) Amazon (Fig. 7 g), the seasonality of LAIyoung, LAImature, and LAIold 469 

(Fig. 8 b, c) are similar as those of BR-Sa1 and BR-Sa3 sites. And in subtropical Asia 470 

(sub-region S6) (Fig. 7 i), the seasonality of three LAI cohorts (Fig. 8 f) are similar as 471 

those of Din, Gutian and Banna sites. Notably, the sub-region S8, located 472 

geographically between sub-regions S6 and S7, shows a LAIyoung peak at July and a 473 

bimodal phenology in LAImature (Fig. 8 h). The remaining 4 sub-regions (sub-regions 474 

S1, S4, S5, S7) are all located nearby the equator. The magnitudes of seasonal changes 475 

in LAI cohorts are smaller than those in sub-regions S2, S3, S6 and S8 away from the 476 

Equator. It is worth noting that for these sub-regions around the Equator there is a 477 

bimodal seasonality pattern for LAImature, with the first peak around March and the 478 

second peak around August (Fig. 8 a, d, e, g). This is consistent with the findings of Li 479 

et al. (2021) which found that tropical and subtropical TEFs changed from a unimodal 480 

phenology at higher-latitudes to a bimodal phenology at lower-latitudes.  481 

 482 

Figure 7. Comparison of sub-regions of Lad-LAI products (plots g-i) with those of 483 

climatic factors classified by the K-means clustering analysis (plots a-c) (Chen et al., 484 

2021) and those of the three climate-phenology regimes (plots d-f) developed by Yang 485 
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et al. (2021). 486 

 487 

Figure 8. Seasonality of simulated LAIyoung, LAImature, and LAIold in 8 sub-regions 488 

classified by the K-means clustering analysis. 489 

 490 

4.3 Sub-regional evaluations of grid LAIyoung+mature seasonality using satellite-based 491 

EVI products 492 

The grid dataset of LAIyoung+mature seasonality was indirectly evaluated using the 493 

satellite-based EVI products (Wang et al., 2017; de Moura et al., 2017; Xiao et al., 2005; 494 

Wu et al., 2018), as previous studies indicated that EVI can be considered as a proxy 495 

for leaf area change of those leaves with high photosynthesis efficiency (Huete et al., 496 

2006; Lopes et al., 2016; Wu et al., 2018). It is because that EVI are very sensitive to 497 

changes in near-infrared (NIR) reflectance (Galvão et al., 2011) while young and 498 

mature leaves also reflect more NIR signals than the older leaves they replace (Toomey 499 

et al., 2009). The linear correlation and MSD decompositions (see methods) between 500 

simulated and satellite-based EVI were displayed in Fig. 9. Overall, the seasonal 501 

LAIyoung+mature is well correlated with satellite-based EVI (R > 0.40) in 78.26% of the 502 

TEFs and the average correlation coefficient is equaling to 0.61(Fig. 9 a-c). The MSD 503 

is smaller than 0.1 in 89.69% of the whole tropical and subtropical TEFs (Fig. 9 d-f). 504 
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Statistics in the 8 clustered sub-regions show that the seasonal LAIyoung+mature of Lad-505 

LAI data mostly correlate better with seasonal EVI in high-latitude areas (sub-region 506 

S2: R=0.65, sub-region S3: R=0.71, sub-region S6: R=0.67) than those in low latitudes 507 

(sub-region S1: R=0.46, sub-region S5: R=0.61, sub-region S7: R=0.44, sub-region S8: 508 

R=0.64) except for sub-region S4 (R=0.72) (Figs. 10, S7). The MSD components also 509 

confirm the better performance of LAIyoung+mature seasonality in high-latitude areas (sub-510 

region S2:dbias=0.009, dvar=0.001, dphase=0.030; sub-region S3: dbias=0.009, dvar=0.002, 511 

dphase=0.030; sub-region S6: dbias=0.016, dvar=0.005, dphase=0.040) than in low-latitude 512 

areas near the Equator (sub-region S1: dbias=0.012, dvar=0.001, dphase=0.041; sub-region 513 

S4: dbias=0.020, dvar=0.001, dphase=0.031; sub-region S5: dbias=0.017, dvar=0.001, 514 

dphase=0.032; sub-region S7: dbias=0.018, dvar=0.002, dphase=0.043; sub-region S8: 515 

dbias=0.012, dvar=0.005, dphase=0.035) (Figs. 11, S7). This happens because that the 516 

accuracy of Lad-LAI in representing the seasonality of LAI cohorts depends highly on 517 

that of input SIF data, which is low sensitive to canopy phenology and shows 518 

marginally small seasonal changes nearby the Equator, for example in tropical Asia 519 

(Guan et al., 2015; 2016). 520 

 521 

Figure 9. Pearson correlation coefficient (R) and mean squared deviation (MSD) 522 

between seasonality of simulated LAIyoung+mature and MODIS Enhanced Vegetation 523 
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Index (EVI). 524 

 525 

 526 

Figure 10. Statistics of the Pearson correlation coefficient (R) between seasonality of 527 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 8 528 

clustered sub-regions.  529 

 530 

Figure 11. Statistics of the mean squared deviation (MSD) between seasonality of 531 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 8 532 

clustered sub-regions. 533 

 534 

Additionally, previous studies indicated large-scale dry-season green-up area over 535 
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tropical and subtropical region (i.e., Guan et al., 2015, Tang et al., 2017, Myneni et al., 536 

2007) where the average annual precipitation exceeds 2,000 mm yr−1. Here, we 537 

calculated the differences (Δ) between wet- and dry-season LAIyoung+mature (i.e., 538 

LAIyoung+ LAImature), to test whether the Lad-LAI can capture this green-up spatial 539 

pattern. Spatial patterns of ΔLAIyoung+mature (Fig. 12) are similar to those developed by 540 

(Guan et al., 2015), with higher LAIyoung+mature during the dry season (blue area) in large 541 

areas north of the Equator. This indicates an emergence of new leaf flush and increase 542 

of mature leaves, resulting the canopy “green-up” phenomenon observed by previous 543 

satellite-based signals. It is interesting to note that the total areas (blue regions in Fig. 544 

12) of this dry-season green up shown by LAIyoung+mature is smaller than those shown by 545 

SIF signals that almost everywhere north of the Equator. That is because that new and 546 

mature leaves often have quite a higher photosynthetic capacity than old leaves. A slight 547 

or moderate “green-up” in new and mature leaves (i.e., increase in LAIyoung+mature) 548 

would boost strong increase in photosynthesis, inducing significant “green-up” shown 549 

by photosynthesis-related signals, e.g., SIF data. Therefore, photosynthesis proxies 550 

likely overestimate the areas with “green-up” of new leaves during the dry seasons in 551 

the real world. 552 

 553 

Figure 12. Spatial pattern of dry-season green-up using wet-season LAIyoung+mature 554 

minus dry-season LAIyoung+mature. 555 

 556 

4.4 Sub-regional evaluations of grid LAIold seasonality using site-based litterfall 557 

observations 558 

The seasonal patterns of LAIold were evaluated indirectly using ground-based 559 
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seasonal litterfall observations from 53 sites over the tropical and subtropical EBFs 560 

(black circles in Fig. 1, Figs. S8-S10), Here, we selected 9 specific sites (Fig. 13) with 561 

different patterns of litterfall seasonality and LAIold seasonality, to illustrate the 562 

analyses results. Fig. 13 a-i illustrate the days when there is an abrupt decrease in 563 

monthly LAIold, which are closely to monthly litterfall peak. The days when LAIold 564 

decreases sharpest (DayLAIold) agree well with the days when their monthly litterfall 565 

peaks (Daylitterfall) (Fig. 13 j), mostly distributed near the diagonal lines (R=0.82). This 566 

validation from seasonal litterfall data indirectly demonstrate the robustness of the 567 

LAIold seasonality of the Lad-LAI product. 568 

 569 

Figure 13. Evaluation of simulated LAIold using ground-observed litterfall seasonality. 570 

(a-i) Days of an abrupt decrease in LAIold in comparison with days of corresponding 571 

litterfall peak at 9 specific sites for examples. The orange curves represent simulated 572 

LAIold. Dots on the orange curves represent the point with an abrupt decrease in LAIold. 573 

The black curves represent observed seasonal litterfall mass. The dots on the black 574 

curves represent the point with litterfall peak. (j) Comparisons of the days when LAIold 575 

has an abrupt decrease (DayLAIold) against the days when monthly litterfall peaks 576 

(Daylitterfall). 577 

 578 

4.5 Testing potential uncertainties of the Lad-LAI products 579 

To prove the robustness of the neighbor-based decomposition approach, we 580 

compared the Lad-LAI products generated based on 2*2 neighboring pixels with those 581 
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4*4 based on neighboring pixels. Results show that the seasonality of LAIyoung, 582 

LAImature and LAIold in the 0.5-degree Lad-LAI products based on 4*4 neighboring 583 

pixels are highly consistent with those of the 0.25-degree one based on 2*2 neighboring 584 

pixels across the whole tropical region (Fig. 14), with the correlation coefficients (R) 585 

being equaling to 0.63, 0.68 and 0.95, respectively (Fig. S11). 586 

 587 

Figure 14. The seasonality of LAIyoung, LAImature, LAIold between 0.25-degree and 0.5-588 

degree Lad-LAI datasets in the 8 clustered regions. Limegreen color represents LAIyoung; 589 

green color represents LAImature; and orange color represents LAIold. Solid lines 590 

represent 0.25-degree dataset and the dashed lines represent 0.5-degree dataset. 591 

 592 

To test the uncertainties caused by the GPP estimation, we added two more GPP 593 

products, i.e., GOSIF-derived GPP (Li and Xiao, 2019) and FLUXCOM GPP (Jung et 594 

al., 2019), to produce another two versions of Lad-LAI products. The GPP seasonality 595 

coincide well between these three data sources across all the 8 sub-regions (Fig. S12). 596 

By comparing with the ground-based LAI cohorts at eight observation sites, results 597 

show that the Lad-LAI generated from RTSIF-derived GPP show highest correlation 598 

and minimal deviation with the in situ measurements, with R equaling to 0.36, 0.77 and 599 

0.59 and MSD equaling to 0.45, 0.69 and 0.62 for LAIyoung, LAImature, and LAIold, 600 
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respectively (Figs. 15-16, S13-S15). Additionally, we also compared the seasonal 601 

variability of LAIyoung, LAImature, and LAIold between three Lad-LAI versions in 8 sub-602 

regions classified by the K-means clustering analysis (Fig. 17). In general, three 603 

versions of Lad-LAI products all performed well in 8 sub-regions with the consistent 604 

seasonal variability (Fig. 17). On regional average, sub-regions S4, S5, S6, S7 and S8 605 

show high consistent seasonality of LAIyoung, LAImature, and LAIold between these three 606 

products; whereas the Lad-LAI generated from GOSIF-derived GPP performs a little 607 

poor in capturing the seasonality of LAI cohorts in Amazon (sub-regions S1, S2 and 608 

S3). 609 

 610 

Figure 15. Seasonality of simulated LAIyoung, LAImature, and LAIold from GOSIF-611 

derived GPP in comparison with observed data at 8 sites. (a) K67; (b) K34; (c) 612 

Barrocolorado; (d) Eucflux; (e) Din; (f) Gutian; (g) Banna; (h) Congoflux. 613 

 614 

Figure 16. Seasonality of simulated LAIyoung, LAImature, and LAIold from FLUXCOM 615 

GPP in comparison with observed data at 8 sites. (a) K67; (b) K34; (c) Barrocolorado; 616 

(d) Eucflux; (e) Din; (f) Gutian; (g) Banna; (h) Congoflux. 617 
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 618 

Figure 17. Seasonality of simulated LAIyoung, LAImature, and LAIold from three version 619 

products in 8 sub-regions classified by the K-means clustering analysis. Solid lines 620 

represent LAI generated from RTSIF-derived GPP; dashed lines represent LAI 621 

generated from GOSIF-derived GPP; and dotted lines represent LAI generated from 622 

FLUXCOM GPP. Limegreen represents LAIyoung; green represents LAImature; and 623 

orange represents LAIold. 624 

 625 

5 Discussion 626 

Leaf age-dependent LAI performs well in describing the seasonal replacements of 627 

canopy leaves in TEFs (Wu et al., 2016; Chen et al., 2020), showing to be a critical 628 

plant trait for representing the tropical and subtropical phenology (Doughty and 629 

Goulden, 2008; Saleska et al., 2007). However, to our knowledge, there are currently 630 

no continental-scale information of such leaf age-dependent LAI data over the whole 631 

TEFs, as it can neither be mapped from sparse site observations (Wu et al., 2016), nor 632 

be modeled from ESMs which are triggered by unclear climatic drivers (Chen et al., 633 

2020). These hinder global researches on accurately simulations of large-scale 634 

photosynthesis (GPP) seasonality using remote sensing approaches and ESMs (Chen et 635 

al., 2020).  636 
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The Lad-LAI product developed in this study is a new continental-scale grid dataset 637 

of monthly LAI in different leaf age cohorts. Although lacking of enough in situ 638 

observations for adequate validations, the seasonality of three LAI cohorts performs 639 

well at the eight sites (four in south America, three in subtropical Asia and one in Congo) 640 

with very fine-scale collections of monthly LAIyoung, LAImature, and LAIold. To test the 641 

robustness of the grid Lad-LAI products over the whole TEFs, the seasonality of 642 

LAImature seasonality are also validated pixel by pixel using satellite-based EVI products 643 

and the phase of LAIold seasonality are compared with the those of seasonal litterfall 644 

data from 53 site measurements, respectively. Moreover, the LAIyoung+mature from the 645 

new Lad-LAI products can also directly represent the large-scale dry-season green-up 646 

of canopy leaves north of the Equator. Overall, direct and indirect evaluations both 647 

demonstrated the robustness of the developed Lad-LAI products. 648 

It should be noted that, over the regions with large magnitude of annual 649 

precipitation nearby the Equator, there is no obvious dry seasons and thus tree canopy 650 

phenology changes smaller than higher-latitude ones throughout the year (Yang et al., 651 

2021). The LAI of young, mature and old leaf cohorts all show a bimodal phenology 652 

with marginally small seasonal changes nearby the Equator, which is captured by  the 653 

developed Lad-LAI product. Secondly, we used a constant coefficient to transfer from 654 

SIF data to GPP and also assume a constant value for the total LAI over the whole TEFs, 655 

which might bring unexpected uncertainties. This can be seen from the MSD 656 

evaluations, where the bias-related term dominates the total MSD, especially in regions 657 

nearby the Equator. However, this bring less impacts on the seasonality of Lad-LAI, as 658 

the phase-related term of MSD is much smaller. 659 

Additionally, the maximum carboxylation rate (Vc,max) of leaves changes 660 

significantly with leaf age (Xu et al., 2017). Currently, most Earth system models 661 

(ESMs) define Vc,max as a function of leaf age whereas their relationship is still less well 662 

understood in TEFs due to sparse in-situ measurements (Chen et al., 2020). This 663 

consequentially leads to the poor representation of LAI and GPP seasonality in ESMs 664 
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(De Weirdt et al., 2012). To overcome this challenge, here we simplified the tree canopy 665 

into three big leaves (i.e., young, mature and old) in TEFs, similar as the two-big leaves 666 

model developed for temperate and boreal forests (Best et al., 2011; Clark et al., 2011; 667 

Harper et al., 2016), which simplified tree canopy into sun and shade leaves. However, 668 

some uncertain remains on the assumption, as it neglects the spatial and temporal 669 

variations of Vc,max, which also changes with seasonal climate anomaly and also differs 670 

between nearby pixels in high heterogeneous forest ecosystems. This assumption may 671 

bring uncertainties for simulating seasonal An and therefore influence the seasonality 672 

of Lad-LAI. 673 

In summary, we developed a new method to produce the first global grid dataset of 674 

leaf age-dependent LAI product across the whole EBFs over the continental scale. 675 

Although some uncertainties might remain, the Lad-LAI products could provide 676 

seasonal age-dependent LAI data at the pixel-level to develop a common phenology 677 

model for the whole tropical and subtropical EBFs in ESMs that are currently run at a 678 

coarser resolution. Besides, with the development of remote sensing technology, finer 679 

temporal and spatial resolutions of SIF products will enable finer temporal and spatial 680 

resolutions maps of Lad-LAI products in the future. 681 

 682 

6. Data availability 683 

The 0.25-degree leaf age-dependent LAI seasonality (Lad-LAI) data from 2001-684 

2018 are presented in this paper as the main one, and their time-series are as a 685 

supplementary dataset. The two datasets are available at 686 

https://doi.org/10.6084/m9.figshare.21700955.v3 (Yang et al., 2022). Besides, we also 687 

provided another two versions of Lad-LAI generated from GOSIF-derived GPP and 688 

FLUXCOM GPP, respectively. These datasets are compressed in GeoTiff, with a spatial 689 

reference of WGS84. Each file in those dataset is named like “LAI_{leaf age}_{spatial 690 

resolution}_{month/year-month}.tif”. 691 

 692 



 

31 

 

7. Conclusion 693 

This study for the first-time mapped continental-scale grid dataset of monthly LAI 694 

in three leaf age cohorts from 2001-2018 RTSIF data. The LAI seasonality of young, 695 

mature and old leaves was evaluated using in situ measurements of seasonal LAI data, 696 

satellite based EVI and in situ measurements of seasonal litterfall data. The evaluations 697 

from these datasets demonstrate the robustness of the seasonality of three leaf age 698 

cohorts. The new Lad-LAI products indicate diverse patterns over the whole tropical 699 

and subtropical regions. In central and south Amazon, LAIyoung and LAImature decrease 700 

at early dry season around February and convert to increase at early wet season around 701 

June. On the contrary, in subtropical Asia, LAIyoung and LAImature increase during the 702 

wet season and peak with largest rainfall at June or July. In regions nearby the Equator, 703 

the LAI cohorts show a bimodal phenology but with marginally small changes in 704 

magnitudes. The proposed method will enable to produce finer temporal and spatial 705 

resolutions maps of Lad-LAI products by using precise temporal and spatial resolutions 706 

data as the inputs. The Lad-LAI products will be help for diagnosing the adaption of 707 

tropical and subtropical forest to climate change; and will also help improve the 708 

development of phenology models in ESMs. 709 
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