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Summary: 

General Comments of Reviewer 1#: 

Yang et al's work mapped the seasonal leaf area index (LAI) of three leaf age cohorts 

(i.e., young, mature, and old leaves) to interpret the phenological seasonality in tropical 

and subtropical forests. They accomplished this by calculating gross primary 

productivity (GPP) from TROPOMI solar-induced chlorophyl fluorescence (SIF) 

observations. They validated the results with ground-based observations of leaf 

dynamics, and with a satellite-based vegetation index (EVI). They obtained good 

agreement between simulated and observed LAI. 

Response: We appreciate the time and efforts of the editor and referees in reviewing 

this manuscript and the valuable suggestions offered. Please see our response to your 

comments in the supplement below. 

 

 

Overall evaluation: 

Comment 1: 

The global relevance of the study is incontestable and is underscored by the novelty of 

such dataset. When published, it will be an important contribution for the understanding 

of tropical forests phenology. However, the manuscript needs substantial review of the 

English style as there are numerous language mistakes, which makes the 

comprehension of the text difficult. 

Response: Thank you for the positive comments on the novelty of our proposed dataset. 

We agree with the reviewer that it is essential to ensure that our manuscript is written 

clearly and effectively in English. We have conducted a thorough review of our 

manuscript to address any language mistakes and improved the overall readability of 

the text. 

 

 

Minor Comments: 

Besides extensive review of the English style that I am not listing here, a few minor 

points need to be observed: 

Response: Thank again for your concern on English style which we have improved 

thoroughly and asked a company to help polish the English language. For the minor 

comments raised by the reviewer, the point-to-point responses listed below. 

 

Comment 2: Line 39: “very fine collections of monthly LAI”. What does fine 

collections mean? Fine-scale? 

Response: Yes, “fine collections of monthly LAI” means “fine-scale collections of 



monthly LAI”. This has been revised in the manuscript. 

 

Comment 3: Line 94-95: GPP is not the same thing as photosynthesis! 

Response: Totally agree. To be cautious, we have revised the sentence as “For this 

purpose, we first simplified that canopy GPP was composed of three parts that were 

produced from young, mature and old leaves, respectively. GPP was then expressed as 

a function of the sum of the product of each LAI cohort (i.e., young, mature and old 

leaves, denoted as LAIyoung, LAImature, and LAIold, respectively) and corresponding net 

CO2 assimilation rate (An, denoted as Anyoung, Anmature, and Anold for young, mature and 

old leaves, respectively) (Equation 1).”. (In revision lines 123-128) 

 

Comment 4: Figure 5: Improve figure caption by clarifying which panels (left or right) 

represent the simulated and observed LAIs; 

Response: We apologize for the confusion. We have revised the figure caption of Figure 

5 to clarify which panels represent the simulated and observed LAIs, as follows like this 

one: “Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison 

with observed data at 3 sites in tropical Asia. (Panels a, d and g) simulated LAIs; 

(panels b, e and h) observed LAIs; (panels c, f and i) scatterplots between simulated 

and observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots 

are LAIold.” 

 

Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (Panels a, d and g) simulated LAIs; (panels 

b, e and h) observed LAIs; (panels c, f and i) scatterplots between simulated and 



observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are 

LAIold. 

 

Comment 5: The authors provided the reference to Keller et al 2001 as a source for in 

situ samples of Vc,max, but I don’t think the citation is accurate. The referred paper is 

about biomass estimates and allometric equations; 

Response: Thank you for your careful review of the manuscript. The correct reference 

for in situ samples of Vc,max is: “Menezes, J., Garcia, S., Grandis, A., Nascimento, H., 

Domingues, T. F., Guedes, A. V., Aleixo, I., Camargo, P., Campos, J., Damasceno, A., 

Dias-Silva, R., Fleischer, K., Kruijt, B., Cordeiro, A. L., Martins, N. P., Meir, P., Norby, 

R. J., Pereira, I., Portela, B., Rammig, A., Ribeiro, A. G., Lapola, D. M., and Quesada, 

C. A.: Changes in leaf functional traits with leaf age: when do leaves decrease their 

photosynthetic capacity in Amazonian trees? Tree Physiology, 42(5), 922-938, 

https://doi.org/10.1093/treephys/tpab042, 2021”. We have updated the reference 

accordingly in the revised version of the manuscript. 

 

Comment 6: A key reference that should be included in the manuscript: 

https://doi.org/10.1111/nph.15726 

Response: Thank you for the recommendation. We have reviewed the reference and 

found that the 4-year of measured data in the reference is very useful for us. We have 

therefore included it in the revised version of our manuscript and cited it appropriately, 

as follows “Similar mechanism was also observed by the ground-based LiDAR which 

showed an increasing trend in upper canopy leaf area index (LAI) during the dry season, 

whereas a decrease in lower canopy LAI (more old leaves) (Smith et al., 2019).”. (In 

revision lines 86-88) 

 

Reference: 

Menezes, J., Garcia, S., Grandis, A., Nascimento, H., Domingues, T. F., Guedes, A. V., 

Aleixo, I., Camargo, P., Campos, J., Damasceno, A., Dias-Silva, R., Fleischer, K., 

Kruijt, B., Cordeiro, A. L., Martins, N. P., Meir, P., Norby, R. J., Pereira, I., Portela, 

B., Rammig, A., Ribeiro, A. G., Lapola, D. M., and Quesada, C. A.: Changes in 

leaf functional traits with leaf age: when do leaves decrease their photosynthetic 

capacity in Amazonian trees? Tree Physiology, 42(5), 922-938, 

https://doi.org/10.1093/treephys/tpab042, 2021. 

Smith, M. N., Stark, S. C., Taylor, T. C., Ferreira, M. L., de Oliveira, E., Restrepo-Coupe, 

N., Chen, S., Woodcock, T., dos Santos, D. B., Alves, L. F., Figueira, M., de 

Camargo, P. B., de Oliveira, R. C., Aragão, L. E. O. C., Falk, D. A., McMahon, S. 

M., Huxman, T. E. and Saleska, S. R.: Seasonal and drought-related changes in 

leaf area profiles depend on height and light environment in an Amazon forest. 

New Phytol, 222: 1284-1297. https://doi.org/10.1111/nph.15726, 2019. 

 

 



General Comments of Reviewer 2#: 

This work produced the first grid dataset of leaf age-dependent LAI product that is 

classified into young, mature, and old types, over the tropical evergreen broadleaved 

forests from satellite observations. It is an interesting work, and the overall framework 

is clear. The topic fits the ESSD, but there are still some major issues in this work that 

need to be addressed before this manuscript can be published. Some overall and point-

to-point are provided below. I hope these comments are useful and constructive to 

improve this manuscript. 

Response: Thanks for the valuable comments and nice suggestions. We have carefully 

studied them and made corresponding revisions in the revised manuscript. The point-

to-point responses are listed below. 

 

Major Comments: 

Comment 1: The manuscript need to be thoroughly polished. 

Response: Thanks. We have thoroughly revised the manuscript following the reviewer’s 

comments, e.g., totally rewrote the Introduction (see responses to Comment 4), added 

Study area and data (see responses to Comment 5), added new sites for validations (see 

responses to Comment 3), added new analyses of uncertainties (see responses to 

Reviewer 3#). Finally, we also asked a company to polish our English language, 

including grammar, syntax, and sentence structure, to improve the readability of the 

manuscript. 

 

Comment 2: Abstract cannot summarize this work well, particularly for describing 

results, accuracy, and performance (Lines 37-48). Alternatively, add some quantitative 

metrics in Abstract, e.g., how much accuracy can be reached for the site- and 

continental-scale validation and comparison (Lines 38-43), and how LAI cohort 

perform well with satellite data analysis (Lines 45-48), and also, using concise language 

to shorten Lines 49-52. 

Response: Thank your suggestions. To better summarize the results, accuracy, and 

performance, we have added some quantitative metrics to the abstract. Specifically, we 

found that our approach achieved accuracy of Ryoung=0.36, Rmature=0.77, Rold=0.59 for 

LAIyoung, LAImature and LAIold compared to in situ observation. On the regional average, 

the mean correlation coefficient between monthly EVI and LAIyoung+mature was up to 0.61. 

Furthermore, the Lad-LAI can capture the spatial pattern of dry-season “green-up” in 

satellite data analysis. Finally, we streamlined the language in original manuscript 

lines 49-52. The abstract revised as suggested as follows: 

“Quantification of large-scale leaf age-dependent leaf area index has been lacking 

in tropical and subtropical evergreen broadleaved forests (TEFs) despite the recognized 

importance of leaf age in influencing leaf photosynthetic capacity in this biome. Here, 

we simplified the canopy leaves of TEFs into three age cohorts (i.e., young, mature and 

old one with different photosynthesis capacity (Vc,max)) and proposed a novel neighbor-

based approach to develop a first grid dataset of monthly leaf age-dependent LAI 

product (referred to as Lad-LAI) at 0.25-degree spatial resolution over the continental 

scale during 2001-2018 from satellite observations of sun-induced chlorophyll 



fluorescence (SIF) that was reconstructed from MODIS and TROPOMI (the 

TROPOspheric Monitoring Instrument). The new Lad-LAI products show good 

performance in capturing the seasonality of three LAI cohorts, i.e., young (LAIyoung) 

(R=0.36), mature (LAImature) (R=0.77) and old (LAIold) (R=0.59) leaves, at the eight 

sites (four in south America, three in subtropical Asia and one in Congo) and can also 

represent their interannual dynamics at the Barrocolorado site, with R being equal to 

0.54, 0.64 and 0.49 for LAIyoung, LAImature and LAIold, respectively. Additionally, the 

abrupt drops in LAIold are mostly consistent with the seasonal litterfall peaks at 53 in 

situ measurements across the whole tropical region (R=0.82). The LAI seasonality of 

young and mature leaves also agrees well with the seasonal dynamics of Enhanced 

Vegetation Index (EVI) (R=0.61), which is a good proxy of effective leaves. Spatially, 

the grid Lad-LAI captures a dry-season green-up of canopy leaves across the wet 

Amazonia areas where mean annual precipitation exceeds 2,000 mm yr−1, consistent 

with previous satellite-based analyses. The spatial patterns clustered from the three LAI 

cohorts also coincide with those clustered from climatic variables over the whole TEF 

region. The seasonality of LAIyoung, LAImature and LAIold derived from the estimated GPP 

based on a simple linear SIF-GPP relationship show the highest correlation with the in 

situ measurements at 8 observed sites compared with those derived from Orbiting 

Carbon Observatory-2-based SIF (GOSIF) GPP and eddy covariance flux tower 

measurements (FLUXCOM) GPP. Additionally, the Lad-LAI products developed by the 

neighbor-based approach using 2*2 and 4*4 neighboring pixels show stable 

seasonality in LAIyoung, LAImature and LAIold across the whole tropical region, 

respectively. We provide the average seasonality of three LAI cohorts as the main 

dataset, and their time-series as a supplementary dataset. These two products are 

available at https://doi.org/10.6084/m9.figshare.21700955.v3 (Yang et al., 2022).” 

 

Comment 3: I just concerned the results were validated by only three sites (one in 

subtropical Asia and two in Amazon). Can not find more sites to validate? For example, 

eddy covariance data and may find more details from papers (DOI: 

10.1126/science.aad5068; https://doi.org/10.1016/j.agrformet.2013.04.031). More 

ground validation can show the robustness and accuracy of this dataset. 

Response: Thanks. The sites of the first literature provided by the reviewer are K67 and 

K34 sites in original manuscript Figure 5 that have been used for validations in this 

study. For the second literature provided by the reviewer, there is no observed LAI 

seasonality with different leaf age cohorts (young, mature and old) although it also 

applied a simple leaf-flush model to simulate leaves variability. 

Following the reviewer’s suggestion, in the new version, we added 5 more sites to 

validate the LAI datasets, e.g., Barrocolorado site in Panama, Eucflux site in southern 

Amazon, Congoflux site in Congo, Gutian and Banna sties in subtropical China. 



 

Figure 1. Study areas over tropical and subtropical evergreen broadleaves forests 

(TEF). Red triangles: observed GPP seasonality at four eddy covariance (EC) tower 

sites. Blue pentangles: observed LAI cohorts at eight camera-based observation sites. 

Black circles: observed litterfall seasonality at 53 observation sites. 
 

Till now, there are totally 8 sites for ground validations. Validation results were 

shown in Figures 3-5 in revised manuscript. All ground observations are consistent with 

the proposed Lad-LAI products. We have added the results details in the revised 

manuscript as follows: 

“In south America, at K67, K34 and Eucflux sites, both in situ and simulated 

LAIyoung and LAImature decrease at early dry season around February and convert to 

increase at early wet season around June (Fig. 3 a, b, d, e, j, k). At the Barrocolorado 

site, LAIyoung increases from the late dry to early wet season around Mar in response to 

the increasing incoming shortwave radiation and in contrast, LAImature starts to increase 

at wet season around June (Fig. 3 g, h). However, in subtropical Asia, LAIyoung and 

LAImature increase during the wet season and peak with largest rainfall at June or July 

at Din, Gutian and Banna sites (Fig. 5 a, b, d, e, g, h). In Congo, we only found one 

site (Congoflux) with six months observation period (from May to October). The 

seasonality of LAIyoung and LAImature are similar as those in tropical Asia while having 

smaller variations in magnitude due to the moderate seasonality of sunlight the Equator 

region (Fig. 4 a, b). Overall, there is a reverse pattern for LAIold seasonality compared 

to LAImature for all the eight sites.” (In revision lines 408-420) 

 



 

Figure 3. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 4 sites in south America. (Panels a, d, g and j) simulated LAIs; (panels 

b, e, h and k) observed LAIs; (panels c, f, i and l) scatterplots between simulated and 

observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are 

LAIold. 

 
Figure 4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at one site in Congo. (a) Simulated LAIs; (b) observed LAIs; and (c) 

scatterplots between simulated and observed LAIs. Limegreen dots are LAIyoung; green 

dots are LAImature; orange dots are LAIold. 



 
Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (Panels a, d and g) simulated LAIs; (panels b, 

e and h) observed LAIs; (panels c, f and i) scatterplots between simulated and observed 

LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are LAIold. 

 

Comment 4: Introduction can be considered to re-organize, as the current version 

seems lack some logics and useful information. 

Response: Thanks for the comments on the introduction section. We have reorganized 

it as follows: 

“Tropical and subtropical evergreen broadleaved forests (TEFs) account for 

approximately 34% of global terrestrial primary productivity (GPP) (Beer et al., 2010) 

and 40-50% of the world's gross forest carbon sink (Pan et al., 2011; Saatchi et al., 

2011). Despite a perennial canopy, TEFs shed and rejuvenate their leaves continuously 

throughout the year, leading to significant seasonality in canopy leaf demography (Wu 

et al., 2016; Chen et al., 2021). This phenological changes in leaf demography is the 

primary cause of GPP seasonality in TEFs (Saleska et al., 2003; Sayer et al., 2011; Leff 

et al., 2012) and thus largely regulates their seasonal carbon sinks (Beer et al., 2010; 

Aragao et al., 2014; Saatchi et al., 2011). 

A key plant trait linking canopy phenology with GPP seasonality was shown to be 

leaf age (Wu et al., 2017; Xu et al., 2017). At leaf scale, the newly-flushed young leaves 

and maturing leaves show higher maximum carboxylation rates (Vc,max) than the old 

leaves being replaced (De Weirdt et al., 2012; Chen et al., 2020). Such age-dependent 

variations in Vc,max is associated with changes in leaf nutritional contents (nitrogen, 

phosphorus and potassium etc.) and stomatal conductance over time (Menezes et al., 

2021). Xu et al. (2017) and Menezes et al. (2021) monitored in situ leaf age and leaf 

demography combined with leaf-level Vc,max in Amazonian TEFs and found that Vc,max 

of newly-flushed leaves increases rapidly with leaf longevity, peaks at approximately 2-

month old and then declines gradually as leaf grows older (leaf age > 2 months). At 



canopy scale, it was hypothesized that leaf demography and seasonal differences in leaf 

age compositions of tree canopies control the GPP seasonality in TEFs (Wu et al., 2016; 

Albert et al., 2018). Similar mechanism was also observed by the ground-based LiDAR 

which showed an increasing trend in upper canopy leaf area index (LAI) during the dry 

season, whereas a decrease in lower canopy LAI (more old leaves) (Smith et al., 2019). 

Wu et al. (2016) classified canopy leaves of Amazonian TEFs into three leaf age cohorts 

(young: 1-2 months, mature: 3-5 months and old: ≥ 6 months). LAI of young and mature 

leaves increases during the dry seasons and consequently promotes dry-season canopy 

photosynthesis. Based on above age-dependent Vc,max at leaf scale (Xu et al., 2017) and 

LAI seasonality of different leaf age cohorts at canopy scale (Wu et al., 2016), Chen et 

al. (2020; 2021) developed a climate-triggered leaf litterfall and flushing model and 

successfully represented the seasonality of canopy leaf demography and GPP at four 

Amazonian TEF sites. Overall, leaf age-dependent LAI seasonality is one of the vital 

biotic factors in influencing the GPP seasonality in TEFs (Wu et al., 2016; Chen et al., 

2020). 

Although the leaf age-dependent LAI seasonality can be well documented at site 

level using phenology cameras (Wu et al., 2016), it is still rarely studied and remains 

unclear at the continental scale. The key causation is that leaf flushing and litterfall of 

TEFs in different climatic regions experience different seasonal constraints of water 

and light availability during recurrent dry and wet seasons (Brando et al., 2010; Chen 

et al., 2020; Davidson et al., 2012; Xiao et al., 2005). Thus, the seasonal patterns of 

LAI in different leaf age cohorts become very complex at the continental scale (Chen et 

al., 2020; Xu et al., 2015). Satellite-based remote sensing (Saatchi et al., 2011, Guan et 

al., 2015) and land surface model (LSM) technologies (De Weirdt et al., 2012; Chen et 

al., 2020; 2021) are two commonly used approaches for detecting the spatial 

heterogeneity of plant phenology at a large scale. However, for satellite-based studies, 

most optical signals are saturated in TEFs due to the dense covered canopies and thus 

fail to capture the seasonality of total LAI in TEFs, much less decompose the LAI into 

different leaf age cohorts. These limitations prevent satellite-based studies from 

accurately representing the age-dependent LAI seasonality. Moreover, most ESM 

models also show poor performances in simulating the LAI seasonality in different leaf 

age cohorts (De Weirdt et al., 2012; Chen et al., 2020). This is because that the 

underling mechanisms linking seasonal water and light availability with leaf flushing 

and litterfall seasonality are currently highly debated and remain elusive at regional 

scale (Leff et al., 2012; Saleska et al., 2003; Sayer et al., 2011). This vague notion 

imposes a challenge for accurately modeling continental-scale GPP seasonality in most 

LSMs (Restrepo-Coupe et al., 2017; Chen et al., 2021). 

To fill the research gap, this study aims to produce a global grid dataset of leaf 

age-dependent LAI seasonality product (Lad-LAI) over the whole TEF biomes from 

2001 to 2018. For this purpose, we first simplified that canopy GPP was composed of 

three parts that were produced from young, mature and old leaves, respectively. GPP 

was then expressed as a function of the sum of the product of each LAI cohort (i.e., 

young, mature and old leaves, denoted as LAIyoung, LAImature, and LAIold, respectively) 

and corresponding net CO2 assimilation rate (An, denoted as Anyoung, Anmature, and Anold 



for young, mature and old leaves, respectively) (Equation 1). Then, we proposed a 

novel neighbor-based approach to derive the values of three LAI cohorts. It was 

hypothesized that forests in adjacent four cells in the grid map exhibited consistent 

seasonality in both GPP, and LAI cohorts (LAIyoung, LAImature, and LAIold). Based on this 

assumption, we applied Equation 1 to each pixel and combined the four equations of 

2*2 neighboring pixels to derive the three LAI cohorts using a linear least-squares with 

constrained method. An was calculated using the Farquhar-von Caemmerer-Berry 

(FvCB) leaf photochemistry model (Farquhar et al., 1980); and GPP was linearly 

derived from an arguably better proxy—TROPOMI (the TROPOspheric Monitoring 

Instrument) Solar-Induced Fluorescence (SIF) based on a simple SIF-GPP relationship 

established by Chen et al. (2022) (see Methods for details). This grid dataset of three 

LAI cohorts provides new insights into tropical and subtropical phenology with more 

details of sub-canopy level of leaf seasonality in different leaf age cohorts and will be 

helpful for developing accurate tropical phenology model in ESMs.” 

 

Comment 5: It would be better to add a Study area and data used session to introduce 

some relevant information and Figure 1. 

Response: We agree with the reviewer that a “2. Study area and material” section is 

needed, to introduce some relevant information and Figure 1. The text was added in the 

“Study area and material” as follows: 

“2. Study area and material 

2.1 Tropical and subtropical evergreen broadleaved forest biomes 

In this study, we focused on the whole tropical and subtropical evergreen broadleaf 

forests (TEFs). The pixels labeled TEFs according to the International Geosphere-

Biosphere Program (IGBP) classification were extracted as the study area based on the 

0.05° spatial resolution MODIS land cover map (Fig. 1) (MCD12C1, Sulla-Menashe 

et al., 2018). The study area contains three regions: South America (30°S–18°N; 40°W–

90°W), the world's largest and most biodiverse tropical rain forest, Congo (10°S–10°N; 

10°W−30°E), the western part of the Africa TEF region, and Tropical Asia (20°S–30°N; 

70°E−150°E), covering the Indo-China Peninsula, the majority of the Malay 

Archipelago and the northern Australia. 

 

Figure 1. Study areas over tropical and subtropical evergreen broadleaves forests 

(TEF). Red triangles: observed GPP seasonality at four eddy covariance (EC) tower 

sites. Blue pentangles: observed LAI cohorts at eight camera-based observation sites. 

Black circles: observed litterfall seasonality at 53 observation sites. 



 

2.2 Input datasets for calculating GPP and An parameters 

The TROPOspheric Monitoring Instrument (TROPOMI) Solar-Induced 

Fluorescence (SIF) data were used to derive the continent-scale GPP (denoted as 

RTSIF-derived GPP) according to the SIF-GPP relationship established by Chen et al. 

(2022) which used 15.343 as a transformation coefficient to covert SIF to GPP. The air 

temperature data from ERA5-Land (Zhao, Gao et al., 2020), vapor pressure deficits 

(VPD) data from ERA-Interim (Yuan et al., 2019) and downward shortwave solar 

radiation (SW) from Breathing Earth System Simulator (BESS) (Ryu et al., 2018) were 

used to calculate KC, KO, Γ*, Rdark and Vc,max and thus to calculate An according to 

equations in Table S4 . The calculation processes were illustrated in Fig. 2. All datasets 

were aggregated at the same spatial (0.125°) and temporal resolutions (month) (Table 

S3). 

 

2.3 Datasets for validating leaf age-dependent LAI seasonality 

Ground-based seasonal LAI cohorts and litterfall data. Top-of-canopy imageries 

observed by ground-based phenology cameras were used to decompose canopy LAI 

into LAIyoung, LAImature and LAIold. In total, imageries from eight observation sites across 

the whole TEF region were used to validate the simulating results (blue pentangles in 

Fig. 1, Table S1). Additionally, the seasonal litterfall data from 53 in situ sites (black 

circles in Fig. 1, Table S6) spanning the TEFs were collected from globally published 

articles to compare with the phase of simulated LAIold seasonality (see Methods for 

details). The multiyear monthly litterfall data were averaged to the monthly mean to 

compare with the seasonality of simulated LAIold. Four eddy covariance flux tower sites 

(red triangles in Fig. 1, Table S2) provided in situ seasonal GPP data to evaluate the 

seasonality of RTSIF-derived GPP. 

Satellite-based seasonal EVI data. To evaluate the LAI seasonality of 

photosynthesis-effective leaves, i.e., young and mature leaves, this study used satellite-

based MODIS Enhanced Vegetation Index (EVI) (Huete et al., 2002; Lopes et al., 2016; 

Wu et al., 2018) as a remotely sensed proxies alternatives of effective leaf area changes 

and new leaf flush, i.e., LAIyoung+mature (Wu et al., 2016; Xu et al., 2015). To prove the 

robustness of the products over a large spatial coverage, the seasonal LAI cohorts of 

young and mature leaves were evaluated against the enhanced vegetation index (EVI) 

product, which was considered as a proxy for leaf area changes of photosynthetic 

effective leaves (Xu et al., 2015; Wu et al., 2016; de Moura et al., 2017).” 

 

Comment 6: Authors used a constant value (LAI = 7) of total LAI in tropical and 

subtropical EBFs., but the valid range of LAI is generally 0 to 10. Thus, I expect to see 

more evidence for selecting 7 or a sensitivity analysis of threshold can also be 

implemented. 

Response: Thanks for your valuable comment regarding the selection of LAI constant 

in our manuscript. We have thoroughly collected relative studies to determine the 

appropriate LAI for tropical and subtropical EBFs. Results were shown in Figure S3, 

S4 and Table S5. Results showed that there are slightly spatial and seasonal variations 



in totally LAI (around 6.0) across the pantropical forests. Thus, we have revised the LAI 

constant value to 6.0 in the revised manuscript and updated Lad-LAI products 

accordingly. 

 

Table S5. Information of total LAI mean values from previously published literatures. 

NO. LAI mean Sites  Methods Ref. 

1 6.0 
ORCHIDEE 

TrBE module 
Module De Weirdt et al., 2012 

2 5.88 K34 observation Wu et al., 2016 

3 5.45 
Tapajo´s 

National Forest 
observation Asner et al., 2003 

4 6.04 
Barro Colorado 

Island 
observation Wirth et al., 2001 

5 6.0 
Costa Rican 

Forest 
observation Clark et al., 2008;  

6 5.89 K67 observation Wu et al., 2016 

7 5.9 
Tapajo´s 

National Forest 
observation Brando et al., 2008 

8 5.7 K67 observation Smith et al., 2019 

9 5.34 Congo observation de Wasseige et al., 2003 

10 5.93 Xishuangbanna observation Li et al., 2010 

11 5.67 Dinghushan observation Zhao, Chen et al., 2020 

 

 

Figure S3. The distribution map of measured LAI sites from previously published 

literatures. 

 

Figure S4. The seasonality of observed total LAI values from previously published 

literatures. 

 



Comment 7: The format of Equation (1) should be: GPP = 𝐿𝐴𝐼𝑦𝑜𝑢𝑛𝑔 × 𝐴𝑛𝑦𝑜𝑢𝑛𝑔 

+ 𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 × 𝐴𝑛𝑚𝑎𝑡𝑢𝑟𝑒 + 𝐿𝐴𝐼𝑜𝑙𝑑 × 𝐴𝑛𝑜𝑙𝑑. 

Response: Thanks for the correction. We have revised Equation (1) as GPP = 𝐿𝐴𝐼yo𝑢𝑛𝑔 

× 𝐴𝑛𝑦𝑜𝑢𝑛𝑔 + 𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 × 𝐴𝑛𝑚𝑎𝑡𝑢𝑟𝑒 + 𝐿𝐴𝐼𝑜𝑙𝑑 × 𝐴𝑛𝑜𝑙𝑑 according to your suggestion. 

 

Comment 8: It is weird why all R values are 0.99 in Fig.3? 

Response: It is a typo. We have revised the R values of this figure and moved it to 

Supplementary Figures as Figure S1 in the revised manuscript. 

 
Figure S1. Comparisons between monthly RTSIF-derived GPP (red) and observed 

GPP at eddy covariance (EC) tower sites (blue). (a-b) Au-Rob, (c-d) BR-Sa1, (e-f) BR-

Sa3, and (g-h) GF-Guy. 

 

Comment 9: Fig.3 is not supposed to place at Method part, can move it into results or 

supplementary materials; and Fig.4 is not a contribution of this work, can move it into 

supplementary materials. 

Response: Thanks. We have moved Figure 3 and Figure 4 to the Supplementary Figures 

Figure S1 and Figure S2, respectively, as suggested by the reviewer. 

 

Comment 10: Lines 351-355, can provide some scatterplots between Lad-LAI 

products and sites observations, rather than providing quantified accuracy metrics only. 

Response: It is a nice suggestion. We have added scatterplots between Lad-LAI 



products and sites observations in Figures 3-5 right panel. The scatterplots are shown 

as follows. 

 
Figure R1. The scatterplots of simulated LAIs generated from RTSIF-derived GPP 

against observed LAIs at 8 camera-based observation sites across study area. 
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General Comments of Reviewer 3#: 

This paper introduces a novel dataset of age-dependent LAI for tropical and subtropic 

evergreen forests. Such a dataset is highly valuable and much in need to understand the 

dynamics of tropical canopy structure under climate change and improve the robustness 

of Earth System Models in reconstructing past dynamics and projecting future scenarios. 

The study estimated three LAI age cohorts based on a neighbor-based decomposition 

model and SIF-derived GPP data. The seasonality of leaf demography and its spatial 

variations is evaluated against ground-based measurements, and satellite observations, 

and analyzed with regard to other independent studies from climate controls. Results 

suggested a robust representation of the spatial variability in seasonality, which will be 

useful for improving Earth System Models. Overall, I find the dataset to be valuable 

and significant. I especially appreciate the authors’ efforts in collecting and synthesizing 

ground-based observations globally to evaluate the products. However, I have some 

concerns regarding the robustness of the neighbor-based decomposition approach, the 

absence of evaluation regarding interannual dynamics, and the uncertainties in GPP 

estimations. I hope the authors will consider these points and provide further 

clarification in their responses and/or revisions. Please find my major comments and 

minor for clarification below. 

Response: Thanks so much for the constructive comments and suggestions regarding 

our manuscript. We have revised the manuscript thoroughly regarding the robustness 

of the neighbor-based decomposition approach, the absence of evaluation regarding 

interannual dynamics, and the uncertainties in GPP estimations as commented by 

reviewer, to  

(1) To prove the robustness of the neighbor-based decomposition approach, we 

compared the Lad-LAI products generated based 2*2 neighbor pixels and 4*4 neighbor 

pixels. The seasonality and magnitudes of LAI of young, mature and old leaf cohorts 

are consistent between the two datasets (Figure 14, S11). (See responses to Comment 

1). 

(2) To evaluate the interannual dynamics of Lad-LAI, we could only find one 

ground site (Barrocolorado site in Panama) with time-series camera-based 

phenological imageries. Results showed that Lad-LAI could detect the interannual 

dynamic but more in situ observations are in need to test the robustness (Figure 6). 

(See responses to Comment 2). 

(3) To test the uncertainties caused by the GPP estimation, we added two GPP 

products, i.e., GOSIF-derived GPP and FLUXCOM GPP for comparisons. Results 

showed that the Lad-LAI generated from SIF-derived GPP show highest consistent with 

the in situ observed LAI seasonality of different leaf age cohorts (Figure 17, R2-R4). 

(See responses to Comment 3). 

 

Major Comments: 

Comment 1: The approach using spatially adjacent GPP information to solve the leaf 

age composition is interesting but needs more justification on its robustness. With four 

observations (from four neighboring pixels) to solve three unknowns (LAI cohorts), the 

system does not have much space or tolerance for observation uncertainties (that is GPP, 



please see a related comment below). I suggest providing goodness-of-fit metrics from 

the least squares to evaluate the model performance. However, this still may not be 

informative due to a limited number of observations and lack of variations between the 

neighboring cells. Ideally, one solution would be to include more observations (for 

example, by increasing the number neighboring pixels from 4 to 8) to improve the 

robustness and accuracy of the models, but that also means a decrease in the spatial 

resolution of the product. 

Response: Thanks for nice suggestion in testing the robustness of the neighbor-based 

decomposition approach. Following your comments, we have increased the number of 

adjacent pixels from 4 (2*2) to 16 (4*4) to produce another version of Lad-LAI products 

with spatial resolution of 0.5-degree. Then, we compared the monthly LAIyoung, LAImature, 

LAIold between the two datasets in the 8 clustered regions. Results showed that the 

seasonality of LAIyoung, LAImature, LAIold are highly consistent in the 8 clustered regions 

(Figure 14, S11), and the correlation coefficients of LAIyoung, LAImature, LAIold between 

the two datasets are Ryoung= 0.63, Rmature= 0.68, Rold= 0.95, respectively, implying the 

robustness of neighbor-based decomposition approach in decomposing the monthly 

LAIyoung, LAImature and LAIold from the monthly GPP using Equation 1. 

 

 

Figure 14. The seasonality of LAIyoung, LAImature, LAIold between 0.25-degree and 0.5-

degree Lad-LAI datasets in the 8 clustered regions. Limegreen color represents LAIyoung; 

green color represents LAImature; and orange color represents LAIold. Solid lines 

represent 0.25-degree dataset and the dashed lines represent 0.5-degree dataset. 

 



 

Figure S11. The scatterplot of 0.25-degree LAIyoung, LAImature, LAIold against 0.5-degree 

LAI cohort datasets in the 8 clustered regions. 

 

Comment 2: While the age-dependent LAI product is produced at monthly time steps 

over 2001-2018, it has only been validated and evaluated in terms of its LAI seasonality 

(i.e. multi-year average climatology). The reliability and usefulness of this product in 

representing interannual variabilities of leaf demography are highly uncertain. Thus, I 

strongly encourage the authors to evaluate the interannual temporal dynamics, even if 

only limited, since ground observations are often insufficient. The reliability of this 

product in terms of representation seasonality vs. interannual variabilities should be 

explicitly stated in the abstract, and thoroughly discussed in the main text, to prevent 

misuse of the dataset. I also suggest providing LAI cohorts seasonality as the main 

product, and the temporal dynamics as a supplementary dataset with a clear note of 

usage provided along with the product. 

Response: We appreciate for the reviewer’s comment. We totally agree that it is 

important to evaluate the interannual temporal dynamics of the age-dependent LAI 

product. As said by the reviewer that the time-series ground observations are very 

limited, we could only find one ground site (Barrocolorado site in Panama) with time-

series camera-based phenological imageries, to evaluate the interannual dynamics of 

Lad-LAI. Results showed that Lad-LAI could detect the interannual dynamic. The 

correlation coefficients (R) of the timeseries of LAIyoung, LAImature, LAIold between the 

two datasets are 0.54, 0.64, 0.49, respectively (Figure 6). However, more in situ 



observations are in need to test the robustness. We thoroughly discussed the timeseries 

variability of LAI cohort dataset. We presented the temporal variations of LAIyoung, 

LAImature, LAIold across 8 sub-regions classified by the K-means clustering analysis 

(Figure S6). Results showed that, for example, the LAImature increased significantly due 

to 2015 drought in Amazon basin (e.g., sub-region S2, Figure S6) and southeast Asia 

(e.g., sub-region S7, Figure S6), indicating good capability of detecting the dynamics 

of LAIyoung, LAImature, LAIold in response to climate disturbances. 

 

 
Figure 6. Timeseries of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at Barrocolorado site in Panama. (a) Simulations LAIs; (b) observation 

LAIs; and (c) scatterplots between simulated and observed LAIs. 

 

  

Figure S6. Timeseries of simulated LAIyoung, LAImature, and LAIold in 8 sub-regions 

classified by the K-means clustering analysis. Limegreen represents LAIyoung; green 

represents LAImature; and orange represents LAIold. 

 

We also agree with the suggestion to provide the LAI cohorts seasonality as the 

main product and the temporal dynamics as a supplementary dataset. In addition, we 

provided information of data quality control (QC) for the Lad-LAI product to prevent 

data misuse. In the QC system (Table S7), data quality is divided into four levels: level 

1 represents the highest quality; level 2 and level 3 represent good and acceptable 

quality, respectively; and level 4 warns to be used cautiously. This QC product is 

generated according to the goodness of fit (residual sum of squares, RSS) (Melgosa et 

al., 2008) obtained from the constrained least-squares method used to estimate derive 

monthly Lad-LAI data. Results showed that more than 92.62% of pixels are with QC at 

best and gool levels and only less than 5.62% are with QC at level 4 (Figure S5). 



 

Table S7 Information of data quality control (QC) for the Lad-LAI product 

QC class QC value residual sum of squares (RSS) 

Best 1 0-1 

Good 2 1-4 

Acceptable 3 4-9 

Cautious use 4 >9 

 

 

Figure S5. Spatial patterns of seasonal quality control (QC) datasets. 

 

Comment 3: SIF-GPP relationships used to estimate GPP in this study were based on 

only four sites with ground observations, that may not fully represent the tropical areas 

over the globe. Therefore, GPP estimations from SIF are subject to high uncertainties 

with possibly large biases. Given that the analytical approach used to solve does not 

consider uncertainties, the impact of GPP estimation uncertainties on age-dependent 

LAI estimates should be carefully discussed. 

Response: Thank you for the valuable comment. To test the uncertainties caused by the 

GPP estimation, we added two more GPP products, i.e., GOSIF-derived GPP and 

FLUXCOM GPP, to produce two versions of Lad-LAI products, for comparisons. 

Firstly, we need to clarify that the overall regression slope of 15.343 in the 8-day 

between GPP and RTSIF represent over the regional average (Chen et al., 2022), not 

from SIF-GPP relationships based on only four sites with ground observations. Chen 



et al. (2022) established the linear relationship between RTSIF and GPP using 76 sites 

GPP data from the FLUXNET 2015 Tier 1 dataset in both 8-day and annual timescale 

(Fig. 8 in Chen et al. (2022)), indicating that RTSIF is tightly related to GPP. According 

to Chen et al. (2022), RTSIF was in good agreement with FLUXNET GPP for almost 

all biomes at the 8-day timescale, indicating strong SIF-GPP correlations for different 

biomes. 

Second, to test the uncertainties of different SIF-GPP relationship on our analyses, 

we used the GOSIF-derived GPP products to produce another version of Lad-LAI. The 

GOSIF-derived GPP are generated based on various SIF-GPP relationships for the 

period from 2000 to 2020. According to Li and Xiao (2019), at site-level, the universal 

and biome-specific SIF-GPP relationships are established based on SIF soundings from 

OCO-2 and GPP data from 64 EC sites. And at grid cell level, a SIF-GPP relationship 

is established based on 0.05° GOSIF data and tower GPP. All these SIF-GPP 

relationships with different forms (universal and biome-specific, with and without 

intercept) at both site and grid cell levels performed well in estimating GPP globally. 

We also used an independent GPP product—FLUXCOM GPP products to produce a 

third version of Lad-LAI. The FLUXCOM GPP are estimated from machine learning to 

merge carbon flux measurements from FLUXNET eddy covariance towers with remote 

sensing and meteorological data. We compared the seasonality of three GPP datasets 

in 8 sub-regions classified by the K-means clustering analysis. Results showed that the 

GPP seasonality are mostly consistent in 8 sub-regions (Figure S12). 

 

 

Figure S12. Seasonality of RTSIF-derived GPP (yellow lines), GOSIF-derived GPP 

(pink lines) and FLUXCOM GPP (blue lines) datasets in 8 sub-regions classified by 

the K-means clustering analysis. (a-c) South America; (d-e) Congo; (f-h) tropical Asia. 

 

For the three versions of Lad-LAI products, eight camera-based observation sites 

are used for compare the accuracy of the corresponding simulated LAI cohorts 



(Figures R2-R4). We also compared the seasonal variability between three versions 

products in 8 sub-regions classified by the K-means clustering analysis (Figure 17). 

Results showed that the Lad-LAI generated from RTSIF-derived GPP show highest 

consistent with the in situ observed LAI seasonality of different leaf age cohorts 

(Figures R2-R4). The highest accuracies of the seasonality of LAIyoung, LAImature, LAIold 

between the observed sites and the three datasets are all come from the Lad-LAI 

generated from RTSIF-derived GPP, Ryoung vs RTSIF-derived GPP= 0.36, Rmature vs RTSIF-derived 

GPP = 0.77, Rold vs RTSIF-derived GPP = 0.59, respectively. 

In general, three versions of Lad-LAI products all performed well in 8 sub-regions 

with the consistent seasonal variability (Figure 17). On regional average, sub-regions 

S4, S5, S6, S7 and S8 show high consistent seasonality of LAIyoung, LAImature, and LAIold 

between these three products; whereas the Lad-LAI generated from GOSIF-derived 

GPP performs a little poor in capturing the seasonality of LAI cohorts in Amazon (sub-

regions S1, S2 and S3). 

 

Figure R2. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 4 sites in south America. (Panels a, e, i and m) simulated LAIs from 

RTSIF-derived GPP; (panels b, f, j and n) camera-based observed LAIs; (panels c, g, 

k and o) simulated LAIs from GOSIF-derived GPP; and (panels d, h, l and p) simulated 

LAIs from FLUXCOM GPP. 

  

Figure R3. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at one site in Congo. (a) Simulated LAIs from RTSIF-derived GPP; (b) 

camera-based observed LAIs; (c) simulated LAIs from GOSIF-derived GPP; and (d) 



simulated LAIs from FLUXCOM GPP. 

  
Figure R4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (Panels a, e and i) simulated LAIs from RTSIF-

derived GPP; (panels b, f and j) camera-based observed LAIs; (panels c, g and k) 

simulated LAIs from GOSIF-derived GPP; and (panels d, h and l) simulated LAIs from 

FLUXCOM GPP. 

 

Figure 17. Seasonality of simulated LAIyoung, LAImature, and LAIold from three version 

products in 8 sub-regions classified by the K-means clustering analysis. Solid lines 

represent LAI generated from RTSIF-derived GPP; dashed lines represent LAI 

generated from GOSIF-derived GPP; and dotted lines represent LAI generated from 

FLUXCOM GPP. Limegreen represents LAIyoung; green represents LAImature; and 

orange represents LAIold. 

 

Comment 4: Please note that evaluation against EVI is not entirely independent, since 

the RT-SIF dataset was a reconstruction from MODIS NBAR surface reflectance data. 



Response: Thanks for pointing this out. To be cautious, we have removed the statements 

of using “independent” in the revised manuscript. For the capability of using EVI as a 

proxy for validating the seasonality young and mature leaves, Huete et al. (2006) found 

that Amazon rainforests green-up in dry season due to sunlight derive the synchronous 

canopy leaf turnover the young and mature leaves. And de Moura et al. (2017) 

compared tower and MODIS data with leaf flush and LAI from young to old leaves, and 

found an EVI increase toward September that closely tracked the modeled LAI of 

young/mature leaves (3–5 months). The MODIS EVI products are very sensitive to 

changes in NIR reflectance (Galvão et al., 2011) and young and mature leaves also 

could reflect more near-infrared (NIR) light than the older leaves replaced (Toomey et 

al., 2009). We have added such explanation in the new version. 

“It is because that EVI are very sensitive to changes in near-infrared (NIR) 

reflectance (Galvão et al., 2011) while young and mature leaves also reflect more NIR 

signals than the older leaves they replace (Toomey et al., 2009).” (In revision lines 497-

500). 

 

Comment 5: The manuscript needs improvements in language and grammar. I suggest 

carefully revising it to improve clarity. 

Response: For the improvements in language and grammar of the manuscript, we 

totally rewrote the Introduction (see responses to Comment 9 and Review 2# Comment 

4), largely revised the Study area and data sections (see responses to Review 2# 

Comment 5). Finally, we also asked a company to polish our English language, 

including grammar, syntax, and sentence structure, to improve the readability of the 

manuscript. 

 

 

Specific Comments: 

Abstract: 

Comment 6: Please specify the temporal span, temporal and spatial resolution of the 

LAI product.  

Response: Thanks for your comment. We revised it as suggested. The abstract revised 

as follows: 

“Here, we simplified the canopy leaves of TEFs into three age cohorts (i.e., young, 

mature and old one with different photosynthesis capacity (Vc,max)) and proposed a 

novel neighbor-based approach to develop a first grid dataset of monthly leaf age-

dependent LAI product (referred to as Lad-LAI) at 0.25-degree spatial resolution over 

the continental scale during 2001-2018 from satellite observations of sun-induced 

chlorophyll fluorescence (SIF) that was reconstructed from MODIS and TROPOMI (the 

TROPOspheric Monitoring Instrument).” (In revision lines 32-39) 

 

Comment 7: L36: It should be noted that this is a SIF dataset that was reconstructed 

from MODIS and TROPOMI to avoid confusion. 

Response: Thanks for your reminder. We have corrected it. (See responses to Comment 

6) 



 

Comment 8: L40-41: Since the RTSIF is reconstructed from MODIS surface 

reflectance data, the evaluation against EVI is not precisely “independent”.  

Response: Thanks again. We have removed the statements of using “independent” in 

the revised manuscript. 

 

 

Introduction: 

Comment 9: L103: The last paragraph of the Introduction should be shortened with a 

brief summary of the method and findings. 

Response: Done as suggested. We have shortened this paragraph with a brief summary 

of the method and findings as follows. 

“To fill the research gap, this study aims to produce a global grid dataset of leaf 

age-dependent LAI seasonality product (Lad-LAI) over the whole TEF biomes from 

2001 to 2018. For this purpose, we first simplified that canopy GPP was composed of 

three parts that were produced from young, mature and old leaves, respectively. GPP 

was then expressed as a function of the sum of the product of each LAI cohort (i.e., 

young, mature and old leaves, denoted as LAIyoung, LAImature, and LAIold, respectively) 

and corresponding net CO2 assimilation rate (An, denoted as Anyoung, Anmature, and Anold 

for young, mature and old leaves, respectively) (Equation 1). Then, we proposed a 

novel neighbor-based approach to derive the values of three LAI cohorts. It was 

hypothesized that forests in adjacent four cells in the grid map exhibited consistent 

seasonality in both GPP, and LAI cohorts (LAIyoung, LAImature, and LAIold). Based on this 

assumption, we applied Equation 1 to each pixel and combined the four equations of 

2*2 neighboring pixels to derive the three LAI cohorts using a linear least-squares with 

constrained method. An was calculated using the Farquhar-von Caemmerer-Berry 

(FvCB) leaf photochemistry model (Farquhar et al., 1980); and GPP was linearly 

derived from an arguably better proxy—TROPOMI (the TROPOspheric Monitoring 

Instrument) Solar-Induced Fluorescence (SIF) based on a simple SIF-GPP relationship 

established by Chen et al. (2022) (see Methods for details). This grid dataset of three 

LAI cohorts provides new insights into tropical and subtropical phenology with more 

details of sub-canopy level of leaf seasonality in different leaf age cohorts and will be 

helpful for developing accurate tropical phenology model in ESMs.” 

 

 

Method: 

Comment 10: L132-133: How much are the spatial variations in the constant LAI value? 

Response: We analyzed the measured LAI values from previously published literatures 

and found there are slightly spatial and seasonal variations in totally LAI (Figure S3, S4). 

A constant total LAI value (around 6.0) can be used for most evergreen broadleaf forests. 

 



 

Figure S3. The distribution map of measured LAI sites from previously published 

literatures. 

  

Figure S4. The seasonality of observed total LAI values from previously published 

literatures. 

 

Comment 11: L147-168: Using GPP-SIF relationships based on only four sites is 

suspect to extrapolation issues over the entire areas. 

Response: We apologies for this mistake describe. We have corrected it. The revised as 

follows:  

“The grid GPP data over the whole EBFs were derived from SIF (denoted as 

RTSIF-derived GPP) using a linear SIF-GPP regression model (see sect. 3.2) which 

were established based on in situ GPP from 76 eddy covariance (EC) sites (Chen et al., 

2022).” (In revision lines 219-221) 

 

Comment 12: L155: VPD data sources are different between Table S3 and Figure 2. 

ERA5-Land is at 0.1 degree instead of 0.05 deg? Can you double check?  

Response: Thank you for your attention to detail. VPD datasets was calculated from 

ERA Interim datasets. And the spatial resolution of air temperature datasets from 

ERA5-Land is at 0.1 degree. We corrected it in revised Supplementary Table S3. 

 

Comment 13: L175: Could you please provide the GPP-SIF relationship equation and 

overall goodness-of-fit? 

Response: Yes. The overall regression slope of 15.343 in the 8-day between GPP and 

RTSIF represent the regional average, which was provided by Chen et al., 2022, not 

from SIF-GPP relationships based on only four sites with ground observations. Chen 

et al. (2022) explored the relationship between RTSIF and GPP using 76 sites GPP 

data from the FLUXNET 2015 Tier 1 dataset, and found that there is a linear 

relationship between RTSIF and GPP in both 8-day and annual timescale (Fig. 8 in 

Chen et al. (2022)), indicating that RTSIF is tightly related to GPP. And they also 



reported RTSIF was in good agreement with FLUXNET GPP for almost all biomes at 

the 8-day timescale, indicating strong SIF-GPP correlations for different biomes. We 

also provided the GPP-SIF relationship equation and goodness-of-fit (R) at each eddy 

covariance (EC) tower site in Figure S1 a, c, e, and g plots. 

 

Figure S1. Comparisons between monthly RTSIF-derived GPP (red) and observed 

GPP at eddy covariance (EC) tower sites (blue). (a-b) Au-Rob, (c-d) BR-Sa1, (e-f) BR-

Sa3, and (g-h) GF-Guy. 

 

Comment 14: L270-271: Note that the RTSIF product is reconstructed from MODIS 

using the short-term TROPOMI data as a training set. Therefore, the evaluation against 

EVI is not independent. 

Response: Yes, we agree with your comment and appreciate your reminder. To be 

cautious, we have removed the statements of using “independent” in the revised 

manuscript. 

 

Comment 15: L273: Can you please elaborate on how EVI reflects young and mature 

leaves, not old ones? 

Response: Previous studies which used independent satellite observations from lidar 



and optical sensors reported a consistent phenomenon — dry-season greening in 

Amazon forests (Saleska et al., 2007; Huete et al., 2006; Myneni et al., 2007). And one 

of the potential biophysical mechanisms of this seasonal greening in Amazon forests is 

synchronous canopy leaf turnover (Huete et al., 2006; Brando et al., 2010; Doughty et 

al., 2008) and young leaves flushing. The young leaves could reflect more near-infrared 

(NIR) light than the older leaves replaced (Toomey et al., 2009). The MODIS EVI 

products are very sensitive to changes in NIR reflectance (Galvão et al., 2011). As 

results, when MODIS EVI products were corrected for these effects using the Multi-

Angle Implementation of Atmospheric Correction Algorithm (MAIAC), an EVI increase 

toward September that closely tracked the modeled LAI of young/mature leaves (3–5 

months) (de Moura et al., 2017). We have added such explanation in the new version. 

“It is because that EVI are very sensitive to changes in near-infrared (NIR) 

reflectance (Galvão et al., 2011) while young and mature leaves also reflect more NIR 

signals than the older leaves they replace (Toomey et al., 2009).” (In revision lines 497-

500). 

 

Comment 16: L274: Specify MSD 

Response: MSD is the abbreviation for Mean Squared Deviation. The analysis of MSD 

clearly identified the simulation vs. measurement contrasts with larger deviation than 

others; the correlation–regression approach tended to focus on the contrasts with lower 

correlation and regression line far from the equality line. It was shown results of the 

MSD-based analysis were easier to interpret than those of regression analysis. This is 

because the three MSD components are simply additive and all constituents of the MSD 

components are explicit. This approach will be useful to quantify the deviation of 

calculated values obtained with this model from measurements. In revision lines 330-

331, we have specified MSD. 

 

Comment 17: Figure S1: the figure is too blur to read. 

Response: We divided into 3 classes for all those sites by region, south America, Congo, 

tropical Asia. Thanks. 

 



 

Figure S8. Seasonality of LAIyoung, LAImature, LAIold, litterfall, RTSIF-derived GPP, EVI, 

Tair, VPD and SW at 22 sites in south America. 

 

Figure S9. Seasonality of LAIyoung, LAImature, LAIold, litterfall, RTSIF-derived GPP, EVI, 

Tair, VPD and SW at 7 sites in Congo. 



 

Figure S10. Seasonality of LAIyoung, LAImature, LAIold, litterfall, RTSIF-derived GPP, EVI, 

Tair, VPD and SW at 24 sites in tropical Asia. 

 

Comment 18: L326: Please specify which variable (x,y) is estimated or observed. 

Response: Thanks. In original manuscript L326, in general, simulated value for LAI is 

denoted as X, and measured value is denoted as Y. Specifically, in original manuscript 

L351-355, to quantify the sites accuracy, MSD was calculated by X as estimated and Y 

as observed. In original manuscript Figure 8, to calculate MSD (LAIyoung+mature & EVI), 

X is LAIyoung+mature and Y is EVI. We have added such explanation in the new version. 

“and 𝑥𝑖  is the simulated data at time t, and 𝑦𝑖  is the observed one at time t 

(month).” (In revision lines 377-378) 

 

 

Result: 

Comment 19: Figure 5: It’s not clear which is estimated versus observed data. 

Response: Thanks for your comments. We have clarified in Figure 5 caption that the 

left column represents the simulated values, the middle column represents the observed 

values, and the right column shows the scatterplot. 

 



 

Figure 3. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 4 sites in south America. (Panels a, d, g and j) simulated LAIs; (panels 

b, e, h and k) observed LAIs; (panels c, f, i and l) scatterplots between simulated and 

observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are 

LAIold. 

 

Figure 4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at one site in Congo. (a) Simulated LAIs; (b) observed LAIs; and (c) 

scatterplots between simulated and observed LAIs. Limegreen dots are LAIyoung; green 

dots are LAImature; orange dots are LAIold. 



 
Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (Panels a, d and g) simulated LAIs; (panels b, 

e and h) observed LAIs; (panels c, f and i) scatterplots between simulated and observed 

LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are LAIold. 

 

Comment 20: L355-357: This sentence is a bit unclear. Can you elaborate on the 

“trade-off”?  

Response: Yes. In tropical and subtropical evergreen broadleaved forests, trees adapt 

their leaf phenology to avoid unfavorable environments such as limited light and water, 

and maximize their growth rate (Kikuzawa 1995; Vico et al., 2015). And the “trade-off” 

between the phenology of mature and old leaves means that these forests exhibit 

complex leaf shedding and rejuvenation strategies in response to moisture and light 

availability, and these strategies depend on soil water, atmospheric vapor pressure 

deficit, and incoming solar radiation. Specifically, leaf shedding in the dry season may 

be an adaptive response to soil water deficits (Asner et al., 2010; Brando et al., 2010) 

or atmospheric aridity (Xu et al., 2017). Alternatively, leaf shedding in non-water-

limited conditions may constitute an adaptive strategy to replace senescent leaves with 

efficient young leaves to maximize photosynthesis (Chen et al., 2020). To avoid unclear 

description, we no longer use "trade-off" in revised manuscript. 

 

Comment 21: L359-360: Should one of the “early wet season” be “dry season”? 

Response: Yes, we apologies for this mistake. The first one should be “early dry 

season”. We corrected it in revised as follow: “In south America, at K67, K34 and 

Eucflux sites, both in situ and simulated LAIyoung and LAImature decrease at early dry 

season around February and convert to increase at early wet season around June (Fig. 

3 a, b, d, e, j, k).” (Lines 408-411 in revised manuscript) 

 

 



Comment 22: L397: Chen et al., 2019 is not found in the reference list. 

Response: Thank you for your attention to detail. “Chen et al., 2019” in caption of 

Figure 6 actually corresponds to this one in the reference list: Chen, X., Ciais, P., 

Maignan, F., Zhang, Y., Bastos, A., Liu, L., Bacour, C., Fan, L., Gentine, P., Goll, D., 

Green, J., Kim, H., Li, L., Liu, Y., Peng, S., Tang, H., Viovy, N., Wigneron, J. P., Wu, J., 

Yuan, W., and Zhang, H.: Vapor Pressure Deficit and Sunlight Explain Seasonality of 

Leaf Phenology and Photosynthesis Across Amazonian Evergreen Broadleaved Forest, 

Global Biogeochemical Cycles, 35, 10.1029/2020gb006893, 2021. We have corrected 

the mistake cite in the revised version and checked and confirmed all the references. 

 

Comment 23: L395: Is it possible to keep a consistent number of clusters between the 

three datasets? For example, can you set eight clusters in Lad-LAI, so the southeast 

Asia area has three clusters consistent with plots d-f. This will make it easier to compare 

the datasets. 

Response: Thank you for your constructive suggestion. We have updated the southeast 

Asia area to have three clusters consistent with plots d-f in Lad-LAI dataset, in order to 

make it easier to compare the datasets. The corresponding statistic figures has been 

updated accordingly. 

 

 

Figure 7. Comparison of sub-regions of Lad-LAI products (plots g-i) with those of 

climatic factors classified by the K-means clustering analysis (plots a-c) (Chen et al., 

2021) and those of the three climate-phenology regimes (plots d-f) developed by Yang 

et al. (2021). 

 



  

Figure 8. Seasonality of simulated LAIyoung, LAImature, and LAIold in 8 sub-regions 

classified by the K-means clustering analysis. 

  

Figure 10. Statistics of the Pearson correlation coefficient (R) between seasonality of 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 8 

clustered sub-regions. 



  

Figure 11. Statistics of the mean squared deviation (MSD) between seasonality of 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 8 

clustered sub-regions. 

 

Comment 24: L413: I wonder if you have any hypothesis for the low performance in 

southeast Asia in comparison with other regions? (Figure 8a-c) 

Response: Yes. Compared to tropical evergreen forests of the Amazon and Africa, 

tropical Asian forests exhibit the lowest sensitivity of solar-induced chlorophyll 

fluorescence (SIF) due to the combined effects of very few dry-season observations and 

more pronounced cloudiness effects (Guan et al., 2015; 2016). We have added such 

explanation in the new version. 

“This happens because that the accuracy of Lad-LAI in representing the 

seasonality of LAI cohorts depends highly on that of input SIF data, which is low 

sensitive to canopy phenology and shows marginally small seasonal changes nearby 

the Equator, for example in tropical Asia (Guan et al., 2015; 2016).” (In revision lines 

516-520) 

 

Comment 25: Figure 12: Please increase font size. It’s not clear which line represents 

site data. Can you also illustrate the meaning of the dots? 

Response: Thank you for your comment. In the revised version, we have increased the 

font size of Figure 13 in new version and added a legend to clarify which lines represent 

the site data. The orange dots in plots a-i represent the point with an abrupt decrease 

in LAIold and the black dots in plots a-i represent the point with litterfall peak. The black 

dots in plot j (right panel) represent the days when LAIold has an abrupt decrease 

(DayLAIold) against the days when monthly litterfall peaks (Daylitterfall). 



 

Figure 13. Evaluation of simulated LAIold using ground-observed litterfall seasonality. 

(a-i) Days of an abrupt decrease in LAIold in comparison with days of corresponding 

litterfall peak at 9 specific sites for examples. The orange curves represent simulated 

LAIold. Dots on the orange curves represent the point with an abrupt decrease in LAIold. 

The black curves represent observed seasonal litterfall mass. The dots on the black 

curves represent the point with litterfall peak. (j) Comparisons of the days when LAIold 

has an abrupt decrease (DayLAIold) against the days when monthly litterfall peaks 

(Daylitterfall). 
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