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General Comments of Reviewer 3#: 

This paper introduces a novel dataset of age-dependent LAI for tropical and subtropic 

evergreen forests. Such a dataset is highly valuable and much in need to understand the 

dynamics of tropical canopy structure under climate change and improve the robustness 

of Earth System Models in reconstructing past dynamics and projecting future scenarios. 

The study estimated three LAI age cohorts based on a neighbor-based decomposition 

model and SIF-derived GPP data. The seasonality of leaf demography and its spatial 

variations is evaluated against ground-based measurements, and satellite observations, 

and analyzed with regard to other independent studies from climate controls. Results 

suggested a robust representation of the spatial variability in seasonality, which will be 

useful for improving Earth System Models. Overall, I find the dataset to be valuable 

and significant. I especially appreciate the authors’ efforts in collecting and synthesizing 

ground-based observations globally to evaluate the products. However, I have some 

concerns regarding the robustness of the neighbor-based decomposition approach, the 

absence of evaluation regarding interannual dynamics, and the uncertainties in GPP 

estimations. I hope the authors will consider these points and provide further 

clarification in their responses and/or revisions. Please find my major comments and 

minor for clarification below. 

Response: Thanks so much for the constructive comments and suggestions regarding 

our manuscript. We have revised the manuscript thoroughly regarding the robustness 

of the neighbor-based decomposition approach, the absence of evaluation regarding 

interannual dynamics, and the uncertainties in GPP estimations as commented by 

reviewer, to  

(1) To prove the robustness of the neighbor-based decomposition approach, we 

compared the Lad-LAI products generated based 2*2 neighbor pixels and 4*4 neighbor 

pixels. The seasonality and magnitudes of LAI of young, mature and old leaf cohorts 

are consistent between the two datasets (Figure R4, R5) (See responses to Comment 1). 

(2) To evaluate the interannual dynamics of Lad-LAI, we could only find one 

ground site (Barrocolorado site in Panama) with time-series camera-based 

phenological imageries. Results showed that Lad-LAI could detect the interannual 

dynamic but more in situ observations are in need to test the robustness (Figure S3) 

(See responses to Comment 2). 

(3) To test the uncertainties caused by the GPP estimation, we added two GPP 

products, i.e., GOSIF-derived GPP and FLUXCOM GPP for comparisons. Results 

showed that the Lad-LAI generated from SIF-derived GPP show highest consistent with 

the in situ observed LAI seasonality of different leaf age cohorts (Figure R6-R10). (See 

responses to Comment 3). 

 



Major Comments: 

Comment 1: The approach using spatially adjacent GPP information to solve the leaf 

age composition is interesting but needs more justification on its robustness. With four 

observations (from four neighboring pixels) to solve three unknowns (LAI cohorts), the 

system does not have much space or tolerance for observation uncertainties (that is GPP, 

please see a related comment below). I suggest providing goodness-of-fit metrics from 

the least squares to evaluate the model performance. However, this still may not be 

informative due to a limited number of observations and lack of variations between the 

neighboring cells. Ideally, one solution would be to include more observations (for 

example, by increasing the number neighboring pixels from 4 to 8) to improve the 

robustness and accuracy of the models, but that also means a decrease in the spatial 

resolution of the product.  

Response: Thanks for nice suggestion in testing the robustness of the neighbor-based 

decomposition approach. Following your comments, we have increased the number of 

adjacent pixels from 4 (2*2) to 16 (4*4) to produce another version of Lad-LAI products 

with spatial resolution of 0.5-degree. Then, we compared the monthly LAIyoung, LAImature, 

LAIold between the two datasets in the 8 clustered regions. Results showed that the 

seasonality of LAIyoung, LAImature, LAIold are highly consistent in the 8 clustered regions 

(Figure R4, R5), and the correlation coefficients of LAIyoung, LAImature, LAIold between 

the two datasets are Ryoung= 0.63, Rmature= 0.68, Rold= 0.95, respectively, implying the 

robustness of neighbor-based decomposition approach in decomposing the monthly 

LAIyoung, LAImature and LAIold from the monthly GPP using Equation 1. 

 

 

Figure R4. The seasonality of LAIyoung, LAImature, LAIold between 0.25-degree and 0.5-

degree LAI cohort datasets in the 8 clustered regions. The limegreen color represents 

LAIyoung; green color represents LAImature; and orange color represents LAIold. The solid 

lines represent 0.25-degree dataset and the dashed lines represent 0.5-degree datasets. 

 



 

Figure R5. The scatterplot of 0.25-degree LAIyoung, LAImature, LAIold against 0.5-degree 

LAI cohort datasets in the 8 clustered regions. 

 

Comment 2: While the age-dependent LAI product is produced at monthly time steps 

over 2001-2018, it has only been validated and evaluated in terms of its LAI seasonality 

(i.e. multi-year average climatology). The reliability and usefulness of this product in 

representing interannual variabilities of leaf demography are highly uncertain. Thus, I 

strongly encourage the authors to evaluate the interannual temporal dynamics, even if 

only limited, since ground observations are often insufficient. The reliability of this 

product in terms of representation seasonality vs. interannual variabilities should be 

explicitly stated in the abstract, and thoroughly discussed in the main text, to prevent 

misuse of the dataset. I also suggest providing LAI cohorts seasonality as the main 

product, and the temporal dynamics as a supplementary dataset with a clear note of 

usage provided along with the product. 

Response: We appreciate for the reviewer’s comment. We totally agree that it is 

important to evaluate the interannual temporal dynamics of the age-dependent LAI 

product. As said by the reviewer that the time-series ground observations are very 

limited, we could only find one ground site (Barrocolorado site in Panama) with time-

series camera-based phenological imageries, to evaluate the interannual dynamics of 

Lad-LAI. Results showed that Lad-LAI could detect the interannual dynamic. The R2 of 

the timeseries of LAIyoung, LAImature, LAIold between the two datasets are 0.30, 0.41, 0.24, 



respectively (Figure S3). However, more in situ observations are in need to test the 

robustness. We thoroughly discussed the timeseries variability of LAI cohort dataset. 

We presented the temporal variations of LAIyoung, LAImature, LAIold across 8 sub-regions 

classified by the K-means clustering analysis (Figure S4). The results demonstrated a 

consistent pattern of interannual variation, implying potential good capability of 

detecting abnormal events (e.g. subregion s7). 

 

 

Figure S3. Timeseries of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at Barrocolorado site in Panama. (a) simulations LAIs; (b) observation 

LAIs; and (c) scatterplots between simulated and observed LAIs. 

 

 

Figure S4. Timeseries of simulated LAIyoung, LAImature, and LAIold in 8 sub-regions 

classified by the K-means clustering analysis. Limegreen represents LAIyoung; green 

represents LAImature; and orange represents LAIold. 

 

We also agree with the suggestion to provide the LAI cohorts seasonality as the 

main product and the temporal dynamics as a supplementary dataset. In addition, we 

provided information of data quality control (QC) for the Lad-LAI product to prevent 

data misuse. In the QC system (Table S6), data quality is divided into four levels: level 

1 represents the highest quality; level 2 and level 3 represent good and acceptable 

quality, respectively; and level 4 warns to be used cautiously. This QC product is 

generated according to the goodness of fit (residual sum of squares, RSS) (Melgosa et 

al., 2008, 2011) obtained from the constrained least-squares method used to estimate 

derive monthly Lad-LAI data. Results showed that more than 92.62% of pixels are with 

QC at best and gool levels and only less than 5.62% are with QC at level 4. 

 



Table S6 Information of data quality control (QC) for the Lad-LAI product 

QC class QC value residual sum of squares (RSS) 

Best 1 0-1 

Good 2 1-4 

Acceptable 3 4-9 

Cautious use 4 >9 

 

 

Figure S8. Spatial patterns of seasonal QC datasets. 

 

Comment 3: SIF-GPP relationships used to estimate GPP in this study were based on 

only four sites with ground observations, that may not fully represent the tropical areas 

over the globe. Therefore, GPP estimations from SIF are subject to high uncertainties 

with possibly large biases. Given that the analytical approach used to solve does not 

consider uncertainties, the impact of GPP estimation uncertainties on age-dependent 

LAI estimates should be carefully discussed. 

Response: Thank you for the valuable comment. To test the uncertainties caused by the 

GPP estimation, we added two more GPP products, i.e., GOSIF-derived GPP and 

FLUXCOM GPP, to produce two versions of Lad-LAI products, for comparisons. 

Firstly, we need to clarify that the overall regression slope of 15.343 in the 8-day 

between GPP and RTSIF represent over the regional average (Chen et al., 2022), not 

from SIF-GPP relationships based on only four sites with ground observations. Chen 

et al. (2022) established the linear relationship between RTSIF and GPP using 76 sites 



GPP data from the FLUXNET 2015 Tier 1 dataset in both 8-day and annual timescale 

(Fig. 8 in Chen et al. (2022)), indicating that RTSIF is tightly related to GPP. According 

to Chen et al. (2022), RTSIF was in good agreement with FLUXNET GPP for almost 

all biomes at the 8-day timescale, indicating strong SIF-GPP correlations for different 

biomes. 

Second, to test the uncertainties of different SIF-GPP relationship on our analyses, 

we used the GOSIF-derived GPP products to produce another version of Lad-LAI. The 

GOSIF-derived GPP are generated based on various SIF-GPP relationships for the 

period from 2000 to 2020. According to Li and Xiao (2019), at site-level, the universal 

and biome-specific SIF-GPP relationships are established based on SIF soundings from 

OCO-2 and GPP data from 64 EC sites. And at grid cell level, a SIF-GPP relationship 

is established based on 0.05° GOSIF data and tower GPP. All of these SIF-GPP 

relationships with different forms (universal and biome-specific, with and without 

intercept) at both site and grid cell levels performed well in estimating GPP globally. 

We also used an independent GPP product—FLUXCOM GPP products to produce a 

third version of Lad-LAI. The FLUXCOM GPP are estimated from machine learning to 

merge carbon flux measurements from FLUXNET eddy covariance towers with remote 

sensing and meteorological data. We compared the seasonality of three GPP datasets 

in 8 sub-regions classified by the K-means clustering analysis. Results showed that the 

GPP seasonality are mostly consistent in 8 sub-regions (Figure R6). 

 

 

Figure R6. Seasonality of RTSIF-derived GPP (yellow lines), GOSIF-derived GPP 

(pink lines) and FLUXCOM GPP (blue lines) datasets in 8 sub-regions classified by 

the K-means clustering analysis. (a-c) South American; (d-e) Congo; (f-h) tropical Asia. 

 

For the three versions of Lad-LAI products, eight camera-based observation sites 

are used for compare the accuracy of the corresponding simulated LAI cohorts (Figure 

R7, R8, R9). We also compared the seasonal variability between three versions products 



in 8 sub-regions classified by the K-means clustering analysis (Figure R10). Results 

showed that the Lad-LAI generated from RTSIF-derived GPP show highest consistent 

with the in situ observed LAI seasonality of different leaf age cohorts (Figure R7, R8, 

R9). The highest accuracies of the seasonality of LAIyoung, LAImature, LAIold between the 

observed sites and the three datasets are all come from the Lad-LAI generated from 

RTSIF-derived GPP, R2
young vs RTSIF-derived GPP= 0.41, R2

mature vs RTSIF-derived GPP = 0.62, R2
old 

vs RTSIF-derived GPP = 0.63, respectively. 

In general, three versions of Lad-LAI products all performed well in 8 sub-regions 

with the consistent seasonal variability (Figure R10). In subregion s3, s6 and s8 keep 

the high consistent seasonal variability among three products, particularly. But the 

Lad-LAI generated from GOSIF-derived GPP performs a little poor in Amazon (sub-

region s1, s2 and s3). 

 

Figure R7. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 4 sites in South American. (panels a, e, i and m) simulated LAIs from 

RTSIF-derived GPP; (panels b, f, j and n) camera-based observed LAIs; (panels c, g, 

k and o) simulated LAIs from GOSIF-derived GPP; and (panels d, h, l and p) simulated 

LAIs from FLUXCOM GPP. 

 

Figure R8. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at one site in Congo. (a) simulated LAIs from RTSIF-derived GPP; (b) 

camera-based observed LAIs; (c) simulated LAIs from GOSIF-derived GPP; and (d) 

simulated LAIs from FLUXCOM GPP. 



 
Figure R9. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (panels a, e and i) simulated LAIs from RTSIF-

derived GPP; (panels b, f and j) camera-based observed LAIs; (panels c, g and k) 

simulated LAIs from GOSIF-derived GPP; and (panels d, h and l) simulated LAIs from 

FLUXCOM GPP. 

 

Figure R10. Seasonality of simulated LAIyoung, LAImature, and LAIold from three version 

products in 8 sub-regions classified by the K-means clustering analysis. Limegreen 

represents LAIyoung; green represents LAImature; and orange represents LAIold. 

 

Comment 4: Please note that evaluation against EVI is not entirely independent, since 

the RT-SIF dataset was a reconstruction from MODIS NBAR surface reflectance data. 

The manuscript needs improvements in language and grammar. I suggest carefully 

revising it to improve clarity. 

Response: Thanks for pointing this out. To be cautious, we have removed the statements 

of using “independent” in the revised manuscript. For the capability of using EVI as a 



proxy for validating the seasonality young and mature leaves, Huete et al. (2006) found 

that Amazon rainforests green-up in dry season due to sunlight derive the synchronous 

canopy leaf turnover the young and mature leaves. And de Moura et al. (2017) 

compared tower and MODIS data with leaf flush and LAI from young to old leaves, and 

found an EVI increase toward September that closely tracked the modeled LAI of 

young/mature leaves (3–5 months). The MODIS EVI products are very sensitive to 

changes in NIR reflectance (Galvão et al., 2011) and young and mature leaves also 

could reflect more near-infrared (NIR) light than the older leaves replaced (Toomey et 

al., 2009). We have added such explanation in the new version. 

For the improvements in language and grammar of the manuscript, we totally 

rewrote the Introduction (see responses to Comment 8 and Review 2# Comment 4), 

largely revised the Study area and data sections (see responses to Review 2# Comment 

5). Finally, we also asked a company to polish our English language, including 

grammar, syntax, and sentence structure, to improve the readability of the manuscript. 

 

 

Specific Comments: 

Abstract: 

Comment 5: Please specify the temporal span, temporal and spatial resolution of the 

LAI product.  

Response: Thanks for your comment. We revised it as suggested. The abstract revised 

as follows: “Here, we simplified the canopy leaves of TEFs into three age cohorts, i.e., 

young, mature and old one, with different photosynthesis capacity (Vc,max) and proposed 

a novel neighbor-based approach to develop a first monthly grid dataset with 0.25-

degree spatial resolution of leaf age-dependent LAI product (referred to as Lad-LAI) 

during 2001-2018 over the continental scale from satellite observations of sun-induced 

chlorophyll fluorescence (SIF) that was reconstructed from MODIS and TROPOMI (the 

TROPOspheric Monitoring Instrument) as a proxy of leaf photosynthesis.” 

 

Comment 6: L36: It should be noted that this is a SIF dataset that was reconstructed 

from MODIS and TROPOMI to avoid confusion. 

Response: Thanks for your reminder. We have corrected it. (See responses to Comment 

5) 

 

Comment 7: L40-41: Since the RTSIF is reconstructed from MODIS surface 

reflectance data, the evaluation against EVI is not precisely “independent”.  

Response: Thanks again. We have removed the statements of using “independent” in 

the revised manuscript. 

 

 

Introduction: 

Comment 8: L103: The last paragraph of the Introduction should be shortened with a 

brief summary of the method and findings. 

Response: Done as suggested. We have shortened this paragraph with a brief summary 



of the method and findings as follows. 

“To fill the research gap, this study aims to produce a grid dataset of leaf age-

dependent LAI seasonality product (Lad-LAI) at the continental scale over the TEF 

biomes from 2001 to 2018. For this purpose, we simplified that canopy GPP was 

composed of three parts that are produced from young, mature and old leaves, 

respectively; and based on this assumption, GPP was expressed as a function of the 

sum of the product of each LAI cohort (i.e., young, mature and old leaves, denoted as 

LAIyoung, LAImature, and LAIold, respectively) and corresponding net CO2 assimilation 

rate (An, denoted as Anyoung, Anmature, and Anold for young, mature and old leaves, 

respectively) (Equation 1). Then, we proposed a novel neighbor-based approach to 

derive the values of three LAI cohorts. It is hypothesized that forests in adjacent four 

cells in the grid map exhibit consistent magnitude and seasonality of GPP, LAIyoung, 

LAImature, and LAIold. By applying Equation 1 to each of the four selected cells, we 

combined the four equations to derive the three LAI cohorts using a linear least-squares 

with constrained method. An is calculated using the Farquhar-von Caemmerer-Berry 

(FvCB) leaf photochemistry model (Farquhar et al., 1980); and GPP is linearly derived 

from an arguably better proxy—TROPOMI (the TROPOspheric Monitoring Instrument) 

Solar-Induced Fluorescence (SIF) calibrated by eddy covariance GPP data (See 

Methods for details). This grid dataset of three LAI cohorts provides new insights into 

tropical and subtropical phenology with more details of sub-canopy level of leaf 

seasonality in different leaf age cohorts and will be helpful for developing accurate 

tropical phenology model in ESMs.” 

 

 

Method: 

Comment 9: L132-133: How much are the spatial variations in the constant LAI value? 

Response: We analyzed the measured LAI values mentioned in other studies and found 

there are slightly spatial and seasonal variations in totally LAI (Figure R1, R2). A constant 

total LAI value (around 6.0) can be used for most evergreen broadleaf forests. 

 

 

Figure R1. The measured LAI sites distribution map. 



 

Figure R2. The seasonality of observed total LAI values from other studies. 

 

Comment 10: L147-168: Using GPP-SIF relationships based on only four sites is 

suspect to extrapolation issues over the entire areas. 

Response: We apologies for this mistake describe. We have corrected it. The revised as 

follows: “The GPP is derived from SIF (denoted as RTSIF-derived GPP) using a linear 

regression model (see sect. 2.2) based on the relationship between RTSIF and EC-

observed GPP from 76 sites (Chen et al., 2022).” 

 

Comment 11: L155: VPD data sources are different between Table S3 and Figure 2. 

ERA5-Land is at 0.1 degree instead of 0.05 deg? Can you double check?  

Response: Thank you for your attention to detail. VPD datasets was calculated from 

ERA Interim datasets. 

 

Comment 12: L175: Could you please provide the GPP-SIF relationship equation and 

overall goodness-of-fit? 

Response: Yes. The overall regression slope of 15.343 in the 8-day between GPP and 

RTSIF actually represent the regional average, which was provided by Chen et al., 2022, 

not from SIF-GPP relationships based on only four sites with ground observations. 

Chen et al. (2022) explored the relationship between RTSIF and GPP using 76 sites 

GPP data from the FLUXNET 2015 Tier 1 dataset, and found that there is a linear 

relationship between RTSIF and GPP in both 8-day and annual timescale (Fig. 8 in 

Chen et al. (2022)), indicating that RTSIF is tightly related to GPP. And they also 

reported RTSIF was in good agreement with FLUXNET GPP for almost all biomes at 

the 8-day timescale, indicating strong SIF-GPP correlations for different biomes. 

 

Comment 13: L270-271: Note that the RTSIF product is reconstructed from MODIS 

using the short-term TROPOMI data as a training set. Therefore, the evaluation against 

EVI is not independent. 

Response: Yes, we agree with your comment and appreciate your reminder. We will use 

more accurate descriptions in the revised manuscript. 

 

Comment 14: L273: Can you please elaborate on how EVI reflects young and mature 

leaves, not old ones? 

Response: Previous studies which used independent satellite observations from lidar 

and optical sensors reported a consistent phenomenon — dry-season greening in 



Amazon forests (Saleska et al., 2007; Huete et al., 2006; Myneni et al., 2007). And one 

of the potential biophysical mechanisms of this seasonal greening in Amazon forests is 

synchronous canopy leaf turnover (Huete et al., 2006; Brando et al., 2010; Doughty et 

al., 2008) and young leaves flushing. The young leaves could reflect more near-infrared 

(NIR) light than the older leaves replaced (Toomey et al., 2009). The MODIS EVI 

products are very sensitive to changes in NIR reflectance (Galvão et al., 2011). As 

results, when MODIS EVI products were corrected for these effects using the Multi-

Angle Implementation of Atmospheric Correction Algorithm (MAIAC), an EVI increase 

toward September that closely tracked the modeled LAI of young/mature leaves (3–5 

months) (de Moura et al., 2017). 

 

Comment 15: L274: Specify MSD 

Response: MSD is the abbreviation for Mean Squared Deviation. The analysis of MSD 

clearly identified the simulation vs. measurement contrasts with larger deviation than 

others; the correlation–regression approach tended to focus on the contrasts with lower 

correlation and regression line far from the equality line. It was shown results of the 

MSD-based analysis were easier to interpret than those of regression analysis. This is 

because the three MSD components are simply additive and all constituents of the MSD 

components are explicit. This approach will be useful to quantify the deviation of 

calculated values obtained with this model from measurements. We have added more 

details to specify MSD in revision. 

 

Comment 16: Figure S1: the figure is too blur to read. 

Response: We divided into 3 classes for all those sites by region, South American, 

Congo, tropical Asia. Thanks. 

 
Figure S5. Seasonality of LAIyoung, LAImature, LAIold, litterfall, EVI, RTSIF-derived GPP, 



Tair, VPD and SW at South American 22 sites. 

 

Figure S6. Seasonality of LAIyoung, LAImature, LAIold, litterfall, EVI, RTSIF-derived GPP, 

Tair, VPD and SW at Congo 7 sites. 

 
Figure S7. Seasonality of LAIyoung, LAImature, LAIold, litterfall, EVI, RTSIF-derived GPP, 

Tair, VPD and SW at tropical Asia 24 sites. 

 

Comment 17: L326: Please specify which variable (x,y) is estimated or observed. 

Response: Thanks. In original manuscript L326, in general, simulated value for LAI is 

denoted as X, and measured value is denoted as Y. Specifically, in original manuscript 

L351-355, to quantify the sites accuracy, MSD was calculated by X as estimated and Y 

as observed. In original manuscript Figure 8, to calculate MSD (LAIyoung+mature & EVI), 

X is LAIyoung+mature and Y is EVI. 

 

 

Result: 

Comment 18: Figure 5: It’s not clear which is estimated versus observed data. 

Response: Thanks for your comments. We have clarified in Figure 5 caption that the 

left column represents the simulated values, the middle column represents the observed 

values, and the right column shows the scatterplot. 



 

 

Figure 3. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 4 sites in South American. (panels a, d, g and j) simulated LAIs; 

(panels b, e, h and k) observed LAIs; (panels c, f, i and l) scatterplots between simulated 

and observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots 

are LAIold. 

 

Figure 4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at one site in Congo. (a) simulated LAIs; (b) observed LAIs; and (c) 

scatterplots between simulated and observed LAIs. Limegreen dots are LAIyoung; green 

dots are LAImature; orange dots are LAIold. 



 

Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (panels a, d and g) simulated LAIs; (panels b, 

e and h) observed LAIs; (panels c, f and i) scatterplots between simulated and observed 

LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are LAIold. 

 

Comment 19: L355-357: This sentence is a bit unclear. Can you elaborate on the 

“trade-off”?  

Response: Yes. In tropical and subtropical evergreen broadleaved forests, trees adapt 

their leaf phenology to avoid unfavorable environments such as limited light and water, 

and maximize their growth rate (Kikuzawa 1995; Vico et al., 2015). And the “trade-off” 

between the phenology of mature and old leaves means that these forests exhibit 

complex leaf shedding and rejuvenation strategies in response to moisture and light 

availability, and these strategies depend on soil water, atmospheric vapor pressure 

deficit, and incoming solar radiation. Specifically, leaf shedding in the dry season may 

be an adaptive response to soil water deficits (Asner et al., 2010; Brando et al., 2010) 

or atmospheric aridity (Xu et al., 2017). Alternatively, leaf shedding in non-water-

limited conditions may constitute an adaptive strategy to replace senescent leaves with 

efficient young leaves to maximize photosynthesis (Chen et al., 2020). 

 

Comment 20: L359-360: Should one of the “early wet season” be “dry season”? 

Response: Thank you for your comment. The “early wet season” contain a period of 

dry season rather than refer to the same period as the dry season. The “early wet season” 

refer to the transitional period between the end of the dry season and the beginning of 

the wet season. 

 

Comment 21: L397: Chen et al., 2019 is not found in the reference list. 

Response: Thank you for your attention to detail. “Chen et al., 2019” in caption of 

Figure 6 actually corresponds to this one in the reference list: Chen, X., Ciais, P., 



Maignan, F., Zhang, Y., Bastos, A., Liu, L., Bacour, C., Fan, L., Gentine, P., Goll, D., 

Green, J., Kim, H., Li, L., Liu, Y., Peng, S., Tang, H., Viovy, N., Wigneron, J. P., Wu, J., 

Yuan, W., and Zhang, H.: Vapor Pressure Deficit and Sunlight Explain Seasonality of 

Leaf Phenology and Photosynthesis Across Amazonian Evergreen Broadleaved Forest, 

Global Biogeochemical Cycles, 35, 10.1029/2020gb006893, 2021. We have corrected 

the mistake cite in the revised version and checked and confirmed all the references. 

 

Comment 22: L395: Is it possible to keep a consistent number of clusters between the 

three datasets? For example, can you set eight clusters in Lad-LAI, so the southeast 

Asia area has three clusters consistent with plots d-f. This will make it easier to compare 

the datasets. 

Response: Thank you for your constructive suggestion. We have updated the southeast 

Asia area to have three clusters consistent with plots d-f in Lad-LAI dataset, in order to 

make it easier to compare the datasets. The corresponding statistic figures has been 

updated accordingly. 

 

 

Figure 6. Comparison of sub-regions of Lad-LAI products (plots g-i) with those of 

climatic factors classified by the K-means clustering analysis (plots a-c) (Chen et al., 

2021) and those of the three climate-phenology regimes (plots d-f) developed by Yang 

et al. (2021). 

 



 

Figure 7. Seasonality of simulated LAIyoung, LAImature, and LAIold in 8 sub-regions 

classified by the K-means clustering analysis. 

 
Figure 9. Statistics of the Pearson correlation coefficient between seasonality of 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 8 

clustered sub-regions. (a-e and g-i): the histogram of correlation coefficients; (f): mean 

of correlation coefficients in each sub-region 



 
Figure 10. Statistics of the Mean squared deviation (MSD) between seasonality of 

simulated LAIyoung+mature and MODIS Enhanced Vegetation Index (EVI) in the 8 

clustered sub-regions. (a-e and g-i): the histogram of MSD; (f): mean of MSD in each 

sub-region. 

 

Comment 23: L413: I wonder if you have any hypothesis for the low performance in 

southeast Asia in comparison with other regions? (Figure 8a-c) 

Response: Yes. Compared to tropical evergreen forests of the Amazon and Africa, 

tropical Asian regions exhibit the lowest sensitivity of solar-induced chlorophyll 

fluorescence (SIF) (Guan et al., 2015; 2016). 

 

Comment 24: Figure 12: Please increase font size. It’s not clear which line represents 

site data. Can you also illustrate the meaning of the dots? 

Response: Thank you for your comment. In the revised version, we have increased the 

font size of Figure 12 and added a legend to clarify which lines represent the site data. 

The orange dots in plots a-i represent the sharpest decreases day of old leaves and the 

black dots in plots a-i represent the peak day of litterfall mass. The black dots in plot j 

(right panel) represent the days when LAIold decreases sharpest (DayLAIold) against the 

days when monthly litterfall peaks (Daylitterfall). 



 

Figure 12. Evaluation of simulated LAIold using site-observed litterfall seasonality. (a-

i) Days of a sharping decrease in LAIold in comparison with days of corresponding 

litterfall peak at 9 specific sites for examples. The orange lines represent old leaves 

from simulation and dots represent the sharpest decrease day of old leaves. The black 

lines represent observed litterfall mass and dots represent the peak day of litterfall mass. 

(j) Comparisons of the days when LAIold decreases sharpest (DayLAIold) against the days 

when monthly litterfall peaks (Daylitterfall). 
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