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General Comments of Reviewer 2#: 

This work produced the first grid dataset of leaf age-dependent LAI product that is 

classified into young, mature, and old types, over the tropical evergreen broadleaved 

forests from satellite observations. It is an interesting work, and the overall framework 

is clear. The topic fits the ESSD, but there are still some major issues in this work that 

need to be addressed before this manuscript can be published. Some overall and point-

to-point are provided below. I hope these comments are useful and constructive to 

improve this manuscript. 

Response: Thanks for the valuable comments and nice suggestions. We have carefully 

studied them and made corresponding revisions in the revised manuscript. The point-

to-point responses are listed below. 

 

Major Comments: 

Comment 1: The manuscript need to be thoroughly polished. 

Response: Thanks. We have thoroughly revised the manuscript following the reviewer’s 

comments, e.g. totally rewrote the Introduction (see responses to Comment 4), added 

Study area and data (see responses to Comment 5), added new sites for validations (see 

responses to Comment 3), added new analyses of uncertainties (see responses to 

Reviewer 3#). Finally, we also asked a company to polish our English language, 

including grammar, syntax, and sentence structure, to improve the readability of the 

manuscript. 

 

Comment 2: Abstract cannot summarize this work well, particularly for describing 

results, accuracy, and performance (Lines 37-48). Alternatively, add some quantitative 

metrics in Abstract, e.g., how much accuracy can be reached for the site- and 

continental-scale validation and comparison (Lines 38-43), and how LAI cohort 

perform well with satellite data analysis (Lines 45-48), and also, using concise language 

to shorten Lines 49-52. 

Response: Thank your suggestions. To better summarize the results, accuracy, and 

performance, we have added some quantitative metrics to the abstract. Specifically, we 

found that our approach achieved accuracy of R2
young=0.41, R2

mature=0.62, R2
old=0.63 

for LAIyoung, LAImature and LAIold compared to in situ observation. On the regional 

average, the mean correlation coefficient between monthly EVI and LAIyoung+mature was 

up to 0.61. Furthermore, the Lad-LAI can capture the spatial pattern of dry-season 

“green-up” in satellite data analysis. Finally, we streamlined the language in original 

manuscript lines 49-52. The abstract revised as suggested as follows: 

“Quantification of large-scale leaf age-dependent leaf area index has been lacking 

in tropical and subtropical evergreen broadleaved forests (TEFs) despite the recognized 



importance of leaf age in influencing leaf photosynthetic capacity in this region. Here, 

we simplified the canopy leaves of TEFs into three age cohorts, i.e., young, mature and 

old one, with different photosynthesis capacity (Vc,max) and proposed a novel neighbor-

based approach to develop a first monthly grid dataset with 0.25-degree spatial 

resolution of leaf age-dependent LAI product (referred to as Lad-LAI) during 2001-

2018 over the continental scale from satellite observations of sun-induced chlorophyll 

fluorescence (SIF) that was reconstructed from MODIS and TROPOMI (the 

TROPOspheric Monitoring Instrument) as a proxy of leaf photosynthesis. The new Lad-

LAI products showed good seasonality of three LAI cohorts, i.e., young (LAIyoung) 

(R2=0.41), mature (LAImature) (R
2=0.62) and old (LAIold) (R

2=0.63) leaves, at the eight 

sites (four in south American, three in subtropical Asia and one in Congo) and also 

performed well in representing their interannual dynamics, with R2 being equal to 0.30, 

0.41 and 0.24 for LAIyoung, LAImature and LAIold at Barrocolorado site, respectively. 

Additionally, the days when LAIold decreases sharpest are mostly consistent with those 

of seasonal litterfall peaks at 53 in situ measurements across the whole tropical region 

(R=0.82). The LAI seasonality of young and mature leaves also agree well with the 

Enhanced Vegetation Index (EVI) products (R=0.61), which is a good proxy of effective 

leaves. The spatial patterns clustered from the three LAI cohorts coincide with those 

clustered from climatic variables and can also capture a dry-season green-up of canopy 

leaves across the wet Amazonia areas where mean annual precipitation exceeds 2,000 

mm yr−1, consistent with previous satellite data analysis. We added GOSIF-derived 

GPP and FLUXCOM GPP to test the potential uncertainties caused by GPP estimation 

based on SIF-GPP relationship. RTSIF-derived GPP based on simple SIF-GPP 

relationship showed the highest correlation with LAIyoung, LAImature and LAIold at 8 

observed sites among the three versions. The new Lad-LAI also show stable seasonality 

in LAIyoung, LAImature and LAIold across the whole tropical region based on both 2*2 and 

4*4 neighboring pixels, with R being equal to 0.63, 0.68 and 0.95, respectively. Here, 

we provide the average seasonality of three LAI cohorts as the main dataset, and their 

time-series as a supplementary dataset. The Lad-LAI products are available at 

https://doi.org/10.6084/m9.figshare.21700955.v3 (Yang et al., 2022).” 

 

Comment 3: I just concerned the results were validated by only three sites (one in 

subtropical Asia and two in Amazon). Can not find more sites to validate? For example, 

eddy covariance data and may find more details from papers (DOI: 

10.1126/science.aad5068; https://doi.org/10.1016/j.agrformet.2013.04.031). More 

ground validation can show the robustness and accuracy of this dataset. 

Response: Thanks. The sites of the first literature provided by the reviewer are K67 and 

K34 sites in original manuscript Figure 5 that have been used for validations in this study. 

For the second literature provided by the reviewer, there is no observed LAI seasonality 

with different leaf age cohorts (young, mature and old) although it also applied a simple 

leaf-flush model to simulate leaves variability. 

Following the reviewer’s suggestion, in the new version, we added 5 more sites to 

validate the LAI datasets, e.g. Barrocolorado site in Panama, eucflux site in southern 

Amazon, congoflux site in Congo, Gutian and Banna sties in subtropical China. 



 

Figure 1. Study areas over tropical and sub-tropical for evergreen broadleaves forests. Red 

triangles: four sites of EC-observed GPP seasonality. Blue pentangles: camera-based 

observation sites of three LAI cohort seasonality. Black circles: observation sites of 

litterfall seasonality. 

 

Till now, there are totally 8 sites for ground validations. Validation results were shown 

in Figures 3-5. All ground observations are consistent with the proposed Lad-LAI products. 

Please see details in the revised manuscript. 

 

Figure 3. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 4 sites in South American. (panels a, d, g and j) simulated LAIs; 

(panels b, e, h and k) observed LAIs; (panels c, f, i and l) scatterplots between simulated 

and observed LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots 

are LAIold. 



 

Figure 4. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at one site in Congo. (a) simulated LAIs; (b) observed LAIs; and (c) 

scatterplots between simulated and observed LAIs. Limegreen dots are LAIyoung; green 

dots are LAImature; orange dots are LAIold. 

 

Figure 5. Seasonality of simulated LAIyoung, LAImature, and LAIold in comparison with 

observed data at 3 sites in tropical Asia. (panels a, d and g) simulated LAIs; (panels b, 

e and h) observed LAIs; (panels c, f and i) scatterplots between simulated and observed 

LAIs. Limegreen dots are LAIyoung; green dots are LAImature; orange dots are LAIold. 

 

Comment 4: Introduction can be considered to re-organize, as the current version 

seems lack some logics and useful information. 

Response: Thanks for the comments on the introduction section. We have reorganized 

it as follows: 

“Tropical and subtropical evergreen broadleaved forests (TEFs) account for 

approximately 34% of global terrestrial primary productivity (GPP) (Beer et al., 2010) and 

40-50% of the world's gross forest carbon sink (Pan et al., 2011; Saatchi et al., 2011). 

Despite a perennial canopy, TEFs shed and rejuvenate their leaves continuously throughout 

the year, leading to significant seasonality in canopy leaf demography (Wu et al., 2016; 

Chen et al., 2021). This phenological changes in leaf demography is the primary cause of 

GPP seasonality in TEFs (Saleska et al., 2003; Sayer et al., 2011; Leff et al., 2012) and 

thus largely regulates their seasonal carbon sinks (Beer et al., 2010; Aragao et al., 2014; 



Saatchi et al., 2011). 

A key plant trait linking canopy phenology with GPP seasonality was shown to be leaf 

age (Wu et al., 2017; Xu et al., 2017). At leaf scale, the newly-flushed young leaves and 

maturing leaves show higher maximum carboxylation rates (Vc,max) than the old leaves 

being replaced (de Weirdt et al., 2012; Chen et al., 2020). Such age-dependent variations 

in Vc,max is associated with changes in leaf nutritional contents (nitrogen, phosphorus and 

potassium etc.) and stomatal conductance over time (Menezes et al., 2021). Xu et al. (2017) 

and Menezes et al. (2021) monitored in situ leaf age and leaf demography combined with 

leaf-level Vc,max in Amazonian TEFs and found that Vc,max of newly-flushed leaves increases 

rapidly with leaf longevity, peaks at approximately 2-month old and then declines gradually 

as leaf grows older (leaf age > 2 months). At canopy scale, it is hypothesized that leaf 

demography and seasonal differences in leaf age compositions of tree canopies control the 

GPP seasonality in TEFs (Wu et al., 2016; Albert et al., 2018). It has been confirmed that 

similar mechanism occurs in the ground-based LiDAR observation of upper canopy 

LAI (more young and mature leaves) increasing during the dry season, whereas lower 

canopy LAI (more old leaves) decreasing (Smith et al., 2019). Wu et al. (2016) classified 

canopy leaves of Amazonian TEFs into three leaf age cohorts (young leaves: 1–2 months, 

mature: 3–5 months and old: ≥ 6 months) and found that LAI (leaf area index) of young 

and mature leaves increases and consequently promotes canopy photosynthesis during the 

dry seasons. Based on above age-dependent Vc,max at leaf scale (Xu et al., 2017) and LAI 

seasonality of different leaf age cohorts at canopy scale (Wu et al., 2016), Chen et al. (2020; 

2021) developed a climate-triggered leaf litterfall and flushing model and successfully 

represented the seasonality of canopy leaf demography and GPP at four Amazonian TEF 

sites. These studies suggest that leaf age-dependent LAI seasonality is one of the vital biotic 

factors in influencing the GPP seasonality in TEFs (Wu et al., 2016; Chen et al., 2020). 

Although the leaf age-dependent LAI seasonality can be well documented at site level 

using phenology cameras (Wu et al., 2016), it is still rarely studied and remains unclear at 

the continental scale. The key causation is that leaf flushing and litterfall of TEFs in 

different climatic regions experience different seasonal constraints of water and light 

availability during recurrent dry and wet seasons (Brando et al., 2010; Chen et al., 2020; 

Davidson et al., 2012; Xiao et al., 2005). Thus, the seasonal patterns of LAI in different 

leaf age cohorts became very complex at the continental scale (Chen et al., 2020; Xu et al., 

2015). Satellite-based remote sensing (Saatchi et al., 2011, Guan et al., 2015) and land 

surface model (LSM) technologies (de Weirdt et al., 2012; Chen et al., 2020; Chen et al., 

2021) are two commonly used approaches for detecting the spatial heterogeneity of plant 

phenology at a large scale. However, for satellite-based studies, most optical signals are 

saturated in TEFs due to the dense covered canopies and thus fail to capture the seasonality 

of total LAI in TEFs, much less decompose the LAI into different leaf age cohorts. These 

limitations prevented satellite-based studies from accurately representing the age-

dependent LAI seasonality. Moreover, most ESM models also show poor performances in 

simulating the LAI seasonality in different leaf age cohorts (de Weirdt et al., 2012; Chen et 

al., 2020). This is because that the underling mechanisms linking seasonal water and light 

availability with leaf flushing and litterfall seasonality are currently highly debated and 

remain elusive at regional scale (Leff et al., 2012; Saleska et al., 2003; Sayer et al., 2011). 



This vague notion imposes a challenge for accurately modeling continental-scale GPP 

seasonality in most LSMs (Restrepo-Coupe et al., 2017; Chen et al., 2021). 

To fill the research gap, this study aims to produce a grid dataset of leaf age-dependent 

LAI seasonality product (Lad-LAI) at the continental scale over the TEF biomes from 2001 

to 2018. For this purpose, we simplified that canopy GPP was composed of three parts that 

are produced from young, mature and old leaves, respectively; and based on this 

assumption, GPP was expressed as a function of the sum of the product of each LAI cohort 

(i.e., young, mature and old leaves, denoted as LAIyoung, LAImature, and LAIold, respectively) 

and corresponding net CO2 assimilation rate (An, denoted as Anyoung, Anmature, and Anold for 

young, mature and old leaves, respectively) (Equation 1). Then, we proposed a novel 

neighbor-based approach to derive the values of three LAI cohorts. It is hypothesized that 

forests in adjacent four cells in the grid map exhibit consistent magnitude and seasonality 

of GPP, LAIyoung, LAImature, and LAIold. By applying Equation 1 to each of the four selected 

cells, we combined the four equations to derive the three LAI cohorts using a linear least-

squares with constrained method. An is calculated using the Farquhar-von Caemmerer-

Berry (FvCB) leaf photochemistry model (Farquhar et al., 1980); and GPP is linearly 

derived from an arguably better proxy—TROPOMI (the TROPOspheric Monitoring 

Instrument) Solar-Induced Fluorescence (SIF) calibrated by eddy covariance GPP data 

(See Methods for details). This grid dataset of three LAI cohorts provides new insights into 

tropical and subtropical phenology with more details of sub-canopy level of leaf seasonality 

in different leaf age cohorts and will be helpful for developing accurate tropical phenology 

model in ESMs.” 

 

Comment 5: It would be better to add a Study area and data used session to introduce 

some relevant information and Figure 1. 

Response: We agree with the reviewer that a “2. Study area and material” section is 

needed, to introduce some relevant information and Figure 1. The text was added in the 

“Study area and material” as follows: 

“2. Study area and material 

2.1 Tropical and subtropical evergreen broadleaved forest biomes 

In this study, we focused on pan tropical and subtropical evergreen broadleaf 

forests (TEFs). The pixels that belong to TEFs according to the International 

Geosphere-Biosphere Program (IGBP) classification were extracted as the study area 

based on the 0.05° spatial resolution MODIS land cover map (Figure 1) (MCD12C1, 

Sulla-Menashe et al., 2018). The study area contains three regions: South American 

(30°S–18°N; 40°W–90°W), the world's largest and most biodiverse tropical rain forest, 

Congo (10°S–10°N; 10°E−30°E), the western part of the Africa TEF region, and 

Tropical Asia (20°S–30°N; 70°E−150°E), covering the Indo-China Peninsula, the 

majority of the Malay Archipelago and the northern Australia. 



 

Figure 1. Study areas over tropical and sub-tropical for evergreen broadleaves forests. 

Red triangles: four sites of EC-observed GPP seasonality. Blue pentangles: camera-

based observation sites of three LAI cohort seasonality. Black circles: observation sites 

of litterfall seasonality. 

 

2.2 Input datasets for calculating GPP and An parameters 

The TROPOMI (the TROPOspheric Monitoring Instrument) Solar-Induced 

Fluorescence (SIF) data are used to derive the continent-scale GPP (denoted as RTSIF-

derived GPP) according to the SIF-GPP relationship established by Chen et al. (2022). 

The air temperature data from ERA5-land (Zhao, Gao et al., 2020), vapor pressure 

deficits (VPD) data from ERA-Interim (Yuan et al., 2019) and downward shortwave 

solar radiation (SW) from Breathing Earth System Simulator (BESS) (Ryu et al., 2018) 

were used to calculate KC, KO, Γ*, Rdark and Vc,max and thus to calculate An according 

to equations in Table S4-part1 and Table S4-part4. The calculation processes were 

illustrated in Figure 2. All datasets were aggregated at the same spatial (0.125°) and 

temporal resolutions (month). 

 

2.3 Datasets for validating leaf age-dependent LAI seasonality 

Ground-based seasonal LAI cohorts and litterfall data. Top-of-canopy imageries 

observed by phenology cameras were used to decompose the in situ seasonal LAIyoung, 

LAImature, and LAIold data. In total, imageries from eight observation sites across the 

TEFs are used to validate the simulating results (blue pentangles in Fig. 1, Table S1). 

Additionally, the seasonal litterfall data from 53 in situ sites (black circles in Fig. 1) 

spanning the TEFs are collected from globally published articles to compare with the 

phase of LAIold seasonality (see Methods for details). The multiyear monthly litterfall 

data were averaged to the monthly mean to compare with the simulated seasonality of 

LAIold. Four eddy covariance flux tower sites (red triangles in Fig. 1) provide in-situ 

GPP data to evaluate the seasonality of RTSIF-derived GPP. 

Satellite-based seasonal MODIS EVI data. To evaluate the LAI seasonality of 

photosynthesis-effective leaves, i.e. young and mature leaves, this study used satellite-

based MODIS Enhanced Vegetation Index (EVI) from independent sensors (Huete et 

al., 2002; Lopes et al., 2016; Wu et al., 2018) as a remotely sensed proxies alternatives 

of effective leaf area changes and new leaf flush, i.e., LAIyoung+mature (Wu et al., 2016; 

Xu et al., 2015). To prove the robustness of the products over a large spatial coverage, 

the seasonal LAI cohorts of young and mature leaves are evaluated against the 

enhanced vegetation index (EVI) product, which is considered as a proxy for leaf area 

changes of photosynthetic effective leaves (Xu et al., 2015; Wu et al., 2016).” 



 

Comment 6: Authors used a constant value (LAI = 7) of total LAI in tropical and 

subtropical EBFs., but the valid range of LAI is generally 0 to 10. Thus, I expect to see 

more evidence for selecting 7 or a sensitivity analysis of threshold can also be 

implemented. 

Response: Thanks for your valuable comment regarding the selection of LAI constant in 

our manuscript. We have thoroughly collected relative studies to determine the appropriate 

LAI for tropical and subtropical EBFs. Results were shown in Figure R1, R2 and Table R1. 

Results showed that there are slightly spatial and seasonal variations in totally LAI (around 

6.0) across the pantropical forests. Thus, we have revised the LAI constant value to 6 in the 

revised manuscript and updated Lad-LAI products accordingly. 

 

Table R1. Information of total LAI mean values from the references. 

NO. LAI mean Sites  Methods Ref. 

1 6.0 
ORCHIDEE 

TrBE module 
Module 

de Weirdt et al., 

2012 

2 5.88 K34 observation Wu et al., 2016 

3 5.45 
Tapajo´s 

National Forest 
observation Asner et al., 2003 

4 6.04 
Barro Colorado 

Island 
observation Wirth et al., 2001 

5 6.0 
Costa Rican 

Forest 
observation Clark et al., 2008;  

6 5.89 K67 observation Wu et al., 2016 

7 5.9 
Tapajo´s 

National Forest 
observation Brando et al., 2008 

8 5.7 K67 observation Smith et al., 2019 

9 5.34 Congo observation 
de Wasseige et al., 

2003 

10 5.93 Xishuangbanna observation Li et al., 2010 

11 5.67 Dinhushan observation 
Zhao, Chen et al., 

2020 

 

 

Figure R1. The measured LAI sites distribution map. 



 

Figure R2. The seasonality of observed total LAI values from other studies. 

 

Comment 7: The format of Equation (1) should be: GPP = 𝐿𝐴𝐼𝑦𝑜𝑢𝑛𝑔 × 𝐴𝑛𝑦𝑜𝑢𝑛𝑔 

+ 𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 × 𝐴𝑛𝑚𝑎𝑡𝑢𝑟𝑒 + 𝐿𝐴𝐼𝑜𝑙𝑑 × 𝐴𝑛𝑜𝑙𝑑. 

Response: Thanks for the correction. We have revised Equation (1) as GPP = 𝐿𝐴𝐼𝑦𝑜𝑢𝑛𝑔 

× 𝐴𝑛𝑦𝑜𝑢𝑛𝑔 + 𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 × 𝐴𝑛𝑚𝑎𝑡𝑢𝑟𝑒 + 𝐿𝐴𝐼𝑜𝑙𝑑 × 𝐴𝑛𝑜𝑙𝑑. according to your suggestion. 

 

Comment 8: It is weird why all R values are 0.99 in Fig.3? 

Response: It is a typo. We have revised the R values of this figure and moved it to 

Supplementary Figures as Figure S1 in the revised manuscript. 

 
Figure S1. Comparisons between monthly RTSIF-derived GPP (red) and EC-observed 

GPP (blue). (a-b) Au-Rob, (c-d) BR-Sa1, (e-f) BR-Sa3, and (g-h) GF-Guy. 

 



Comment 9: Fig.3 is not supposed to place at Method part, can move it into results or 

supplementary materials; and Fig.4 is not a contribution of this work, can move it into 

supplementary materials. 

Response: Thanks. We have moved Figure 3 and Figure 4 to the Supplementary Figures 

Figure S1 and Figure S2, respectively, as suggested by the reviewer. 

 

Comment 10: Lines 351-355, can provide some scatterplots between Lad-LAI 

products and sites observations, rather than providing quantified accuracy metrics only. 

Response: It is a nice suggestion. We have added scatterplots between Lad-LAI 

products and sites observations in Figures 3-5 right panel. The scatterplots are shown 

as follows. 

 

Figure R3. The scatterplots of simulated LAIs against observed LAIs at 8 camera-

based observation sites across study area. 
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