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Abstract 27 

Surface ozone is an important air pollutant detrimental to human health and vegetation 28 

productivity. Regardless of its short atmospheric lifetime, surface ozone has 29 

significantly increased since the 1970s across the Northern Hemisphere, particularly in 30 

China. However, high temporal resolution surface ozone concentration data is still 31 
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lacking in China, largely hindering accurate assessment of associated environmental 32 

and human health impacts. Here, we collected hourly ground ozone observations (over 33 

6 million records), meteorological data, remote sensing products, and social-economic 34 

information, and applied the Long Short-Term Memory (LSTM) recurrent neural 35 

networks to map hourly surface ozone data (HrSOD) at a 0.1° × 0.1° resolution across 36 

China during 2005–2020. Benefiting from its advantage in time-series prediction, the 37 

LSTM model well captured the spatiotemporal dynamics of observed ozone 38 

concentrations, with the sample-based, site-based, and by-year cross-validation 39 

coefficient of determination (R2) values being 0.72, 0.65 and 0.71, and root mean square 40 

error (RMSE) values being 11.71 ppb (mean = 30.89 ppb), 12.81 ppb (mean = 30.96 41 

ppb) and 11.14 ppb (mean = 31.26 ppb), respectively. Air temperature, atmospheric 42 

pressure, and relative humidity were found to be the primary influencing factors. 43 

Spatially, surface ozone concentrations were high in northwestern China and low in the 44 

Sichuan Basin and northeastern China. Among the four megacity clusters in China, 45 

namely the Beijing-Tianjin-Hebei region, the Pearl River Delta, the Yangtze River 46 

Delta, and the Sichuan Basin, surface ozone concentration kept decreasing before 2016. 47 

However, it tended to increase thereafter in the former three regions, though an abrupt 48 

decrease in surface ozone concentrations occurred in 2020. Overall, the HrSOD 49 

provides critical information for surface ozone pollution dynamics in China and can 50 

support fine-resolution environmental impact and human health risk assessment. The 51 

data set is available at https://doi.org/10.5281/zenodo.7415326 (Zhang et al., 2022).  52 

                                                                                                                                                                                                                                                                    53 

1 Introduction 54 

Ozone (O3) is an important constituent of the atmosphere and is ubiquitously present in 55 

both the troposphere and the stratosphere. Stratospheric ozone protects life on Earth by 56 

absorbing harmful solar ultraviolet (UV) rays (Norval et al., 2007; Slaper et al., 1997; 57 

van der Leun et al., 2003). Tropospheric ozone is a major gaseous pollutant produced 58 

in a series of complex reactions between volatile organic compounds (VOCs) and 59 
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nitrogen oxides (NOx) in the presence of sunlight (Wang et al., 2017a). Exposure to 60 

high-concentration surface ozone can cause severe impacts on human health, inducing 61 

high morbidity in respiratory, cardiopulmonary, and cardiovascular diseases (Berman 62 

et al., 2012; Li et al., 2018; Magzamen et al., 2017). Moreover, surface ozone of high 63 

concentrations could damage the leaf cell structure of plants and thus decrease natural 64 

vegetation productivity, crop yield and quality (Cooper et al., 2014; Giles, 2005; Lu et 65 

al., 2018; Tian et al. 2016). 66 

 67 

In the past decades, the number of ozone pollution events has increased significantly, 68 

particularly in highly populated and developed regions (Huang et al., 2018; Ma et al., 69 

2016; Maji and Namdeo, 2021; Sahu et al., 2021). Real-time surface ozone monitoring 70 

networks have been established on a regional basis around the world (Chang et al., 71 

2017). But their coverage is still insufficient in both space and time, due to uneven 72 

distribution of monitoring sites and lack of mid- to long-term continuous records in the 73 

majority of the world (Chang et al., 2017; Lu et al., 2018). In contrast, satellite remote 74 

sensing can monitor the spatial and temporal variability of ozone at regional to global 75 

scales. For instance, the Ozone Monitoring Instrument (OMI) on the Aura satellite, 76 

launched in 2004, provides global daily total column ozone retrievals. Nonetheless, 77 

satellite-based estimates of surface ozone concentrations are not available at high 78 

spatial and temporal resolutions (Liu et al., 2010; Shen et al., 2019). Hence, various 79 

models have been developed to extrapolate site observations, refine satellite retrievals, 80 

or fuse them to generate long-term, high-quality surface ozone datasets (e.g., Liu et al., 81 

2020; Wei et al., 2022).    82 

 83 

These models, according to their underlying principles, can be generally grouped into 84 

chemical transport models (CTMs), geostatistical models, and machine learning models. 85 

CTMs are physics-based, accounting for atmospheric chemical reactions, emission 86 

inventories, meteorological conditions and transport of atmospheric pollutants, but 87 
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usually are prone to high uncertainties in emission inventories and model assumptions 88 

(Liu et al., 2018; Sun et al., 2019; Travis et al., 2016). Geostatistical models, such as 89 

Kriging interpolation (Adam-Poupart et al., 2014), land-use regression (LUR), 90 

Bayesian maximum entropy (BME; Chen et al., 2020a), and geographically weighted 91 

regression (GWR; Zhang et al., 2020), estimate surface ozone by fitting its relationships 92 

with the influential factors. However, collinearity (the non-independence of predictor 93 

variables) in these geostatistical models usually makes them difficult to estimate 94 

accurately (Jumin et al., 2020; Liu et al., 2020). Machine learning models, such as 95 

random forest (Wei et al., 2022) and Extreme Gradient Boosting (Liu et al., 2020), have 96 

also been widely used due to their strong data-mining ability. Yet ozone concentrations 97 

were not independent at individual time points, multiple predictor variables were 98 

correlated at different time points, which was neglected in long time series predictions 99 

of ozone. 100 

 101 

In recent years, surface ozone pollution in China has become increasingly serious, with 102 

frequent large-scale high ozone pollution events (Li et al., 2017a; Mousavinezhad et al., 103 

2021; Wang et al., 2017b). Since 2013, China has established a national ozone 104 

observation network (Lu et al., 2018), utilizing which several gridded surface ozone 105 

products were generated (Li et al., 2021; Xue et al., 2020). However, gridded products 106 

covering an hourly time-step are still lacking in China. Such a data gap impedes 107 

accurate assessment of environmental and human health impacts of surface ozone. For 108 

example, in estimating ozone damage to vegetation productivity, hourly ozone data is 109 

usually required for stomatal ozone flux models (e.g., Feng et al., 2012) or generating 110 

ozone exposure index (Ren et al., 2007; Mills et al., 2011). Moreover, hourly ozone 111 

data is advantageous over that at coarser temporal resolution in determining ozone 112 

exposure of humans (Kim et al., 2011; Niu et al., 2022). 113 

 114 

To address the issue, here we developed a deep learning model based on the Long Short-115 
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Term Memory (LSTM) recurrent neural networks to generate hourly surface ozone data 116 

(HrSOD) at a spatial resolution of 0.1°×0.1° from 2005 to 2020 over China. The paper 117 

is organized as follows: the data and methods are introduced in Sect. 2; the results 118 

regarding model validation, spatiotemporal variations of surface ozone across China, 119 

and surface ozone changes in key regions are presented in Sect. 3; comparison of 120 

HrSOD with previous studies and the key variables determining surface ozone 121 

dynamics are discussed in Sect. 4; data availability is described in Sect. 5; and the 122 

conclusions are summarized in Sect. 6. 123 

 124 

2 Data and methods 125 

2.1 Data 126 

2.1.1 Surface ozone observation data  127 

Over six million records of hourly surface ozone concentration measurements during 128 

2015–2020 were obtained from the real-time air quality monitoring platform of the 129 

China National Environmental Monitoring Centre (CNEMC; http://www.cnemc.cn/, 130 

last access: 20 December, 2021). The monitoring network was expanded to more than 131 

1500 monitoring sites from 2013 to 2020, covering 31 provinces and 368 cities across 132 

mainland China. However, these monitoring sites are mainly located in the eastern 133 

region of China, with a much lower site distribution density in the northwest (Fig. 1).  134 
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 135 

Figure 1. Spatial distribution of surface ozone observation sites in China. The color 136 

indicates the annual mean surface ozone concentrations at each site during 2015–2020. 137 

The bold black lines indicate the boundaries of four megacity clusters of China, namely 138 

the Beijing-Tianjin-Hebei (BTH) region, the Pearl River Delta (PRD), the Sichuan 139 

Basin (SCB), and the Yangtze River Delta (YRD). 140 

 141 

Hourly ozone concentrations are measured at all monitoring sites by continuous 142 

monitoring instruments, and the unit of ozone reported by CNEMC is μg m－3 (standard 143 

atmospheric conditions at a temperature of 273 K and a pressure of 1013.25 hPa; 1 μg 144 

m－3 = 0.467 ppb). According to the Ambient Air Quality Standard (GB3095-2012; 145 

MEPC, 2012) set by the Ministry of Environmental Protection of China (MEPC) for 146 

ozone concentration data norms and standards, the ozone data were screened by 147 

eliminating outliers and null values. The annual mean hourly ozone concentrations 148 

ranged from 14–48 ppb in the period 2015–2020 in China, with areas of high ozone 149 
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concentrations mainly in eastern China, especially in the four densely populated 150 

megacity clusters of China, i.e., the Beijing-Tianjin-Hebei (BTH) region, the Pearl 151 

River Delta (PRD), the Sichuan Basin (SCB) and the Yangtze River Delta (YRD; Fig. 152 

1). 153 

 154 

2.1.2 Predictor variables 155 

The predictor variables include meteorological factors, land use, population, gross 156 

domestic product, remote sensed total column ozone products, and surface ozone 157 

concentration observations (see Table 1). 158 

 159 

(1) Climate data 160 

A total of seven climatic variables (solar radiation intensity, temperature, relative 161 

humidity, pressure, horizontal wind velocity, vertical wind velocity, and precipitation) 162 

were obtained from the ERA5-Land reanalysis dataset (Table 1). The dataset has a 163 

spatial resolution of 0.1° × 0.1° (about 9 km) and an hourly time-step and was produced 164 

by the European Centre for Medium-Range Weather Forecasts (ECMWF; 165 

https://www.ecmwf.int/en/forecasts, last access: 20 December, 2021). The ERA5 166 

reanalysis data combines land surface model simulations with ground and satellite 167 

observations (Albergel et al., 2018; Hersbach et al., 2020), and has been widely used 168 

across the world (Muñoz-Sabater et al., 2021). It has also been validated in China, 169 

showing good performance in air temperature (Zou et al., 2022), solar radiation (Jiang 170 

et al., 2020), and precipitation (Jiang et al., 2021).  171 

 172 

(2) Remote sensing data 173 

We collected remote sensing data including OMI Level 3 global daily total ozone grid 174 

product (OMITO3G; in DU; Pawan, 2012) and ozone profile products (PROFOZ; 175 

v0.9.3, level 2) measured by the OMI, which is carried by the Earth Observing System 176 

(EOS) Aura satellite. The OMI provided daily and near-global column concentration 177 
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data (0.25° × 0.25°) and profiles (13 km × 24 km) of O3, NO2, SO2, HCHO. The ozone 178 

profile product contained 24 vertical ozone layers (Mcpeters et al., 2008), of which the 179 

first layer was selected to represent surface ozone in this study.  180 
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(3) Auxiliary data 183 

Socio-economic data reflect human living and production activities, which are major 184 

sources of ozone precursors (VOCs and NOx). Thus, it is also an important factor for 185 

ozone simulation. We obtained population distribution data and Gross Domestic 186 

Product (GDP) data with 1 km spatial resolution from the Resource and Environmental 187 

Science and Data Center, Chinese Academy of Sciences (Xu et al., 2017). The data has 188 

a time interval of five years and thus it is available in four years (2005, 2010, 2015, and 189 

2020) during the study period. The nationwide land use data was derived from the 190 

Moderate Resolution Imaging Spectroradiometer (MODIS; Friedl and Sulla-Menashe, 191 

2015) product (at a resolution of 0.05°).  192 

 193 

(4) Data processing 194 

We constructed a 0.1º × 0.1º grid over China and averaged concurrent surface ozone 195 

measurements of monitoring sites within a grid cell to obtain grid-level surface ozone 196 

concentrations. In addition, all predictor variables (including climate data, land use data, 197 

population distribution, GDP data, and remote sensing data) were aggregated or 198 

resampled to the targeted grid resolution of 0.1º × 0.1º using the nearest neighbor 199 

interpolation and bilinear interpolation approach (Fig. 2). 200 

 201 

 202 

Figure 2. Flowchart for generating hourly surface ozone data (HrSOD) across China. 203 
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2.2 Model development 204 

2.2.1 The long short-term memory network model 205 

The long short-term memory network is a special type of recurrent neural networks 206 

(RNNs) that differs from traditional neural networks. The traditional artificial neural 207 

network (ANN) is fully connected between layers and has no connection within a 208 

specific layer, whereas the hidden layers of RNNs are connected (Hochreiter et al., 209 

1997). The output of an RNN is not only affected by the current input features but also 210 

influenced by the output of the previous or next moment, hence RNNs have better 211 

performance in estimating time-series and have been widely used to proceed sequence 212 

data (Goodfellow et al., 2016). 213 

 214 

The LSTM can further overcome the limitations of conventional RNNs that they could 215 

be trapped by vanishing gradient or exploding gradient during training (Bengio et al., 216 

1994; Razvan et al., 2013). It excels through integrating input gates, forgetting gates, 217 

and output gates into the cell structure. The input gates control whether a cell value can 218 

be added to a memory cell, the forgetting gates determine the weight of the value, and 219 

the output gates determine which information eventually is output from the cell. The 220 

LSTM has a long-term memory capability, which is ideal to predict long time-series of 221 

historical ozone concentrations. 222 

 223 

Specifically, based on LSTM, we built a five-layer neural network model for surface 224 

ozone concentration prediction. It consists of an input layer, two LSTM layers, one 225 

Dense layer (also called the fully connected layers), and an output layer (Table 2). The 226 

data specification for the model input layer is in a 3-dimensional format (n_samples, 227 

n_time_steps, n_features), n_samples represents the batch size for training, 228 

n_time_steps is the time window of 24 hours, representing the first 24 hours’ O3 229 

sequence to predict the O3 at the 25th hour, and n_features is the number of 12 variables 230 

in the training set. The number of neurons in each hidden layer is 50, and we used mean 231 
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absolute error (MAE) as the loss function and the Adaptive moment estimation (Adam) 232 

as the optimization algorithm. The model was trained for 50 epochs with a batch size 233 

of 3000. The CNEMC ground measurements were used as the target for the model 234 

training and validation. 235 

Table 2. Detailed configuration of the neural network 236 

Configuration Value 

Training algorithm Long Short-Term Memory (LSTM)  

Number of hidden layers 3 

Number of neurons in a hidden layer 50 

Number of input variables 12 

Number of output variables 1 

Training data percentage 90 % 

Validation data percentage 10 % 

Data normalization Minmax 

Loss function Mean absolute error (MAE) 

Optimization algorithm Adaptive moment estimation (Adam) 

 237 

2.2.2 Model evaluation 238 

The 10-fold cross-validation (CV) approach was utilized to evaluate the performance 239 

of the LSTM model, with three sampling strategies, namely sample-based CV, site-240 

based CV and by-year CV, corresponding to the model’s performances on capturing 241 

overall, spatial and temporal patterns, respectively. In each strategy, 90 % of the total 242 

surface ozone observations were randomly sampled for training, and the rest 10 % was 243 

used for validation, the process of which was repeated 10 times. The overall adjusted 244 

coefficient of determination (R2), root mean square error (RMSE), linear regression 245 

slope, and intercept were calculated to evaluate the performance of the model.  246 

 247 
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3 Results 248 

3.1 Model validation 249 

At the hourly time-scale, the LSTM model obtained R2 values of 0.72, 0.65, 0.71 using 250 

three CV sampling methods (sample-based, site-based and by-year), respectively, and 251 

the corresponding RMSE values were 11.71 ppb, 12.81 ppb, 11.14 ppb (Figs. 3a–c). At 252 

the daily time-step, the model’s performance improved with R2 values being 0.71, 0.63, 253 

0.71 (sample-based, site-based, and by-year) and RMSE values being 8.53 ppb, 9.61 254 

ppb, and 7.97 ppb (Figs. 3d–f). The predictive ability of the model further improved at 255 

the monthly time-step, with higher R2 values of 0.82, 0.72, 0.84 (sample-based, site-256 

based, and by-year) and smaller RMSE values of 5.14 ppb, 6.54 ppb, 4.39 ppb (sample-257 

based, site-based, and by-year (Figs. 3g–i). 258 

 259 

Among the three CV sampling strategies, the site-based CV (Figs. 3b, e, h) R2 values 260 

were slightly lower than the sample-based CV (Figs. 3a, d, g) R2 values and by-year CV 261 

(Figs. 3c, f, i) R2 values, while the RMSE values were slightly higher than the sample-262 

based CV RMSE values and by-year CV RMSE values. It is noted that the model 263 

underestimated surface ozone when it was at high concentrations, but this bias was 264 

largely ameliorated at the monthly time-step (Figs. 3g–i). 265 
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 266 

Figure 3. Comparisons between model estimated surface ozone concentrations and 267 

observations across China. The panels are sample-based cross validations at hourly, 268 

daily and monthly time-steps (a, d, g), site-based cross validations at hourly, daily and 269 

monthly time-steps (b, e, h), and by-year cross validations at hourly, daily and monthly 270 

time-steps (c, f, i). The dashed and black lines represent the 1:1 lines and the linear 271 

regression lines, respectively. 272 
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3.2 Spatiotemporal variations of surface ozone across China 273 

 274 

Figure 4. Diurnal (a) and interannual (b) variations of mean surface ozone 275 

concentrations in China during 2005–2020. Boxplots indicate the median (horizontal 276 

line) and interquartile ranges (boxes) and the whiskers specify the maximum and 277 

minimum values. 278 

 279 

Fig. 4a shows the diurnal variations of mean hourly surface O3 concentrations across 280 

China during 2005-2020. The diurnal variation presented a unimodal curve, which 281 

started to increase at around 9:00–10:00 (UTC + 8) and peaked at around 15:00 (UTC 282 

+ 8) reaching about 46 ppb. After that, the hourly mean O3 concentrations gradually 283 

declined to about 25–28 ppb. The annual average O3 concentration across China (Fig. 284 

4b) ranged from 32.56 ± 7.59 ppb to 33.61 ± 7.16 ppb during 2005–2020. During the 285 

first part of the period (2005–2016), ozone concentrations remained stable. However, 286 

after 2016 the O3 concentration showed a significantly increasing trend from 2016 287 

(32.75 ± 7.17 ppb) to 2019 (33.61 ± 7.16 ppb), and then an abrupt decrease by 2020 288 

(33.09 ± 6.93 ppb). 289 
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 290 

Figure 5. Mean annual O3 concentrations during the periods 2005–2012 (a), and 2013–291 

2020 (b), with their difference also shown (c). 292 

 293 

Fig. 5a and Fig. 5b show the mean annual surface ozone concentrations in China from 294 

2005 to 2012 and from 2013 to 2020, respectively. The spatial distribution of surface 295 

ozone concentrations was similar and did not change significantly over the 16-year 296 

period. High O3 concentrations were primarily in the northwest of China, while areas 297 

with low O3 concentrations were mainly located in the Sichuan Basin and the northern 298 
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part of northeast China. Compared to the first eight years, mean annual surface ozone 299 

concentrations in the last eight years increased by 0–2 ppb in most northern regions of 300 

China (Fig. 5c). In particular, the BTH region experienced a faster increase of 2–5 ppb. 301 

In contrast, in southern China, surface O3 concentrations had generally decreased, 302 

especially in the southern coastal regions, which decreased by 2–5 ppb. 303 

 304 

 305 

Figure 6. Seasonal average surface ozone concentrations from 2005 to 2020 across 306 

China in spring (a), summer (b), autumn (c), and winter (d). 307 

 308 

The multi-year mean seasonal O3 concentrations were predicted to be 37.64 ± 3.35, 309 

39.16 ± 2.37, 28.40 ± 3.17, and 25.07 ± 2.60 ppb in spring (March–May), summer 310 

(June–August), autumn (September–November), and winter (December, January, and 311 

February), respectively (Fig. 6). Surface ozone concentrations in spring were higher in 312 

northern and eastern China. In summer, the areas with high ozone concentrations were 313 

North China, the Northwestern District of China and southern Inner Mongolia. The 314 
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hotspot areas with high O3 concentrations in autumn shrink sharply and spread to the 315 

southeast coast. During winter, the areas of high O3 concentrations almost disappeared 316 

in southeastern China. 317 

 318 

3.3 Surface ozone changes in key regions 319 

 320 

Figure 7. Temporal dynamics of mean annual mean surface O3 concentrations in the 321 

BTH (a), SCB (b), PRD (c), and YRD (d) regions. BTH: Beijing-Tianjin-Hebei region; 322 

SCB: Sichuan Basin; PRD: Pearl River Delta; YRD: Yangtze River Delta. 323 

 324 

Among the four megacity clusters, mean annual surface ozone concentrations in BTH 325 

(mean = 31.63 ppb), YRD (mean = 32.85 ppb), and PRD (mean = 30.28 ppb) regions 326 

were higher than in the SCB (mean = 23.33 ppb) region during 2005–2020 (Fig. 7). In 327 

the BTH region (Fig. 7a), surface ozone concentrations remained stable from 2005 to 328 

2015. However, after 2015 it showed a continuous and noticeable increase from 31.07 329 

± 3.31 ppb in 2015 to 33.72 ± 3.34 ppb in 2019, before decreasing to 32.99 ± 3.19 ppb 330 

in 2020. In the PRD and YRD regions (Figs. 7c and d), the annual ozone concentrations 331 

showed an obvious decline from 29.59 ± 3.94 and 34.01 ± 2.85 ppb in 2013 to 27.35 ± 332 
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3.41 ppb and 31.01 ± 2.96 ppb in 2016, respectively, and then increased from 2016 to 333 

30.70 ± 4.39 ppb and 33.84 ± 3.21 ppb in 2019. Same with BTH, both regions 334 

experienced a decrease in ozone concentrations in 2020. In contrast, annual surface 335 

ozone concentrations in the SCB region were constantly low and had a slow decreasing 336 

trend. 337 

 338 

 339 

Figure 8. Mean monthly surface ozone concentrations in China and the four hotspot 340 

regions of BTH (a), SCB (b), PRD (c), and YRD (d). BTH: Beijing-Tianjin-Hebei 341 

region; SCB: Sichuan Basin; PRD: Pearl River Delta; YRD: Yangtze River Delta. 342 

 343 

The seasonal patterns of surface ozone concentrations were different in four key regions 344 

(Fig. 8). The monthly mean ozone concentrations were higher than 38.00 ppb across 345 

China from April to July and less than 24.00 ppb in January, November, and December. 346 

The ozone concentrations in BTH were unimodal distribution and gradually increased 347 

with time, peaking in June (55.58 ppb) and then began to decline, reaching the lowest 348 

value in December (15.22 ppb). Unlike BTH, the other three regions (YRD, SCB, and 349 

PRD) showed a bimodal pattern. The first peak of ozone concentrations occurred in 350 

May (45.29 ppb in YRD, 31.76 ppb in PRD, and 30.99 ppb in SCB), and the ozone 351 
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concentrations in the YRD, PRD, and SCB reached the second peak in September 352 

(38.53 ppb), October (40.55 ppb), and August (29.90 ppb), respectively. The lowest 353 

surface ozone concentrations were found to be 18.35 ppb (YRD in December), 23.03 354 

ppb (PRD in January), and 14.11 ppb (SCB in December). 355 

 356 

4 Discussion 357 

4.1 Comparison with previous studies 358 

To make comparisons with previous studies, we also generated maximum daily average 359 

8-hour ozone (MDA8) concentration using the HrSOD data. The HrSOD MDA8 O3 360 

concentrations compared equally (Table 3) with previous products produced on the 361 

daily or monthly scales, indicating that HrSOD is reliable in deriving ozone exposure 362 

indexes at longer time-scales. The mean annual HrSOD MDA8 O3 concentrations 363 

(2005–2020) was 43.56 ppb (Figure S1) and it showed no significant trend during the 364 

period 2005 to 2015 but tended to increase after 2016 with a growth rate of 0.44 ppb yr365 

－1 (p < 0.005), similar to previous reports (Liu et al. 2020; Wei et al. 2022; Xue et al. 366 

2020; Table S1). The spatial distributions of mean annual and seasonal HrSOD MDA8 367 

ozone concentrations were also consistent with existing research (Liu et al. 2020; Meng 368 

et al. 2022; Figs. S2 and S3). Areas with higher ozone concentrations in summer were 369 

concentrated in the North China Plain (NCP), due to decreasing PM2.5 concentrations 370 

and high NOx emissions, as well as the influence of rapidly increasing temperatures 371 

(2017–2019) and foehn winds (Li et al., 2020). Pollution in southeastern China is more 372 

severe in autumn, which may be related to the Asian summer monsoon, tropical 373 

cyclones, and sea-land winds (Liu et al. 2020).  374 

 375 

 376 

 377 

 378 

 379 
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Table 3. Comparison with the model performance of previous studies in predicting 380 

surface ozone in China. 381 

Method 
Time 

Range 
Metric 

Accuracy (R2/ RMSE) 

(ppb) Reference         

Hourly        Daily Monthly 

GWR 2014 Monthly – – 0.81/– Zhang et al. (2020) 

Data fusion 2013–2017 [O3] MDA8 – 0.70/12.23 0.69 / 9.01 Xue et al. (2020) 

XGBoost 2005–2017 [O3] MDA8 – 0.78/10.03 0.90/5.17 Liu et al. (2020) 

RF 2015 [O3] MDA8 – 0.69/12.42 0.71/8.87 Zhan et al. (2018) 

STET 2013–2020 [O3] MDA8 – 0.83/8.82 0.90/5.80 Wei et al. (2022) 

RF 2013–2019 [O3] MDA8 – 0.80/9.77 0.83/6.612 Meng et al. (2022) 

LUR/BME 2015 [O3] MDA8 – 0.80/10.97 – Chen et al. (2020a) 

LSTM 2005–2020 

[O3] MDA8 

(derived from 

HrSOD) 

– 0.73/11.37 0.82/6.85 This study 

LSTM 2005–2020 Hourly 0.72/11.71 0.71/8.53 0.82/5.14 This study 

LSTM: Long Short-Term Memory; XGBoost: Extreme Gradient Boosting; RF: 382 

Random Forest; STET: Space-Time extremely randomized trees; LUR/BME: land-use 383 

regression/Bayesian maximum entropy; GWR: geographically weighted regression.384 
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4.2 Key variables in estimating surface ozone concentrations 385 

The importance of different variables in the LSTM model was calculated by the 386 

permutation importance method (François et al., 2006). Specifically, the feature 387 

importance was determined by the degree of decline in the performance score of the 388 

model after the random rearrangement of different features. As shown in Fig. S4, air 389 

temperature, surface pressure, relative humidity, day of year (DOY), and downwelling 390 

surface radiation were the top five factors affecting the spatiotemporal variability of 391 

surface ozone concentrations in China, consistent with previous studies (e.g., Wei et al. 392 

2022). 393 

 394 

The importance of air temperature in predicting surface ozone concentrations is mainly 395 

reflected in two aspects. On the one hand, temperature and UV radiation intensity has 396 

a strong correlation and can be used to characterize UV radiation intensity; on the other 397 

hand, high temperatures contribute to the volatilization of ozone precursors (such as 398 

biogenic volatile organic compounds) and accelerate the rate of photochemical 399 

reactions (Xu et al., 2011). There is a significantly negative correlation between ozone 400 

concentrations and atmospheric pressure, as changes in air pressure are usually 401 

correlated with temperature. For example, low pressure corresponds to higher 402 

temperatures, and when the near-surface is controlled by low pressure, pollutants from 403 

surrounding areas converge towards the center, driven by high-pressure air masses, 404 

resulting in a sharp increase in ozone concentrations in the center of the low pressure 405 

(Kovač-Andrić et al., 2009). The relative humidity is negatively correlated with O3 406 

concentrations because the high relative humidity generally corresponds to 407 

precipitation, fog, and other weathers that do not have strong UV radiation, which is 408 

not conducive to the occurrence of photochemical reactions and the further 409 

development of O3 pollution. Furthermore, precipitation facilitates the removal of 410 

pollutants such as O3 (Chen et al., 2020b; Li et al., 2017b). The importance of DOY 411 

indicates there is temporal autocorrelation in ozone concentrations of neighboring days. 412 

GDP and population data show levels of urbanization, fossil fuel consumption, and 413 

other socio-economic activities, which are closely related to emissions of ozone 414 
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precursors such as NOx and VOCs (Trainer et al., 2000). Although DSR is not the most 415 

important variable, it also makes a great contribution to simulating O3 concentrations, 416 

which is necessary for the photochemical reactions of O3 generation (Chen et al., 417 

2020b).  418 

 419 

4.3 The driving factors for surface ozone concentrations in key regions 420 

The four city clusters (BTH, PRD, SCB, and YRD) are key areas for the Chinese 421 

government to combat air pollution. However, they have different meteorological 422 

conditions, climatic backgrounds, and levels of economic development, resulting in 423 

differences in surface ozone concentration variabilities (Yan et al., 2021). The increase 424 

in surface ozone concentrations in the BTH region was mainly attributable to 425 

anthropogenic emissions (VOCs and NOx), as well as a rapid reduction in PM2.5, which 426 

slowed down the sink of hydrogen peroxide radicals and thus accelerated ozone 427 

production. The meteorological conditions of lower humidity and strong solar radiation 428 

also contributed to ozone pollution (Li et al., 2019; Mousavinezhad et al., 2021; Wei et 429 

al., 2021). In the YRD, PRD and SCB, meteorological factors had a greater influence 430 

on surface ozone concentration changes after 2016, with the increase in ozone 431 

concentrations in the YRD attributed to increased solar radiation and temperature, and 432 

lower atmospheric pressure. Simulation results from the three-dimensional air quality 433 

model and system also indicated that greenhouse gas emissions caused changes in 434 

meteorological factors that led to increased O3 concentrations in the YRD region (Xie 435 

et al., 2017). Weaker meridional winds, lower relative humidity, and higher 436 

temperatures escalated ozone pollution in the PRD region from 2016 to 2018. A 437 

decrease in solar radiation and planetary boundary layer height accelerated the decrease 438 

in ozone concentrations in the SCB region after 2017 (Mousavinezhad et al., 2021). In 439 

addition, ozone concentrations in three areas (BTH, YRD, and PRD) decreased in 2020, 440 

mainly due to COVID-19 lockdown (Wei et al., 2022). 441 

 442 

4.4 Uncertainties and limitations 443 

In this research, uncertainties exist in several aspects. First, the monitoring stations were 444 
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mainly concentrated in the central-eastern region of China, which potentially could not 445 

fully capture the relationship between surface ozone concentrations and environmental 446 

factors in western China. Moreover, most monitoring stations were in urban areas, 447 

resulting in limitations of the model in estimating surface ozone concentrations in 448 

natural and agricultural ecosystems. Second, the input data may also cause uncertainty. 449 

For example, ERA5 reanalysis data underestimates surface temperatures in the coastal 450 

urban agglomerations of southeast China and the Tibetan Plateau region (Li et al., 2022; 451 

Zou et al., 2022), which may lead the model to underestimate ozone concentrations. To 452 

further improve ozone estimation accuracy, it is necessary to improve the accuracy of 453 

meteorological data, land use maps, as well as socio-economic data. In addition, the 454 

mismatch in temporal resolution between OMI remote sensing data and ozone 455 

measurements may also affect the final estimation accuracy. Although the temporal 456 

trends of surface ozone concentrations are well captured by the LSTM networks, spatial 457 

information, such as the changes in pollutant concentrations due to the emission and 458 

transport of surrounding pollutants are not fully considered. Therefore, the current deep 459 

learning model can be further improved by combining other algorithms. For instance, 460 

CNN networks have powerful feature extraction capability and can be combined with 461 

LSTM to generate an integrated CNN-LSTM model, which makes better use of the 462 

temporal memory strengths and feature representation capability in prediction. 463 

 464 

4.5 Potential applications of HrSOD 465 

Compared to current available surface ozone products in China, HrSOD covers a longer 466 

time range and has a higher temporal resolution. This enables it to support more robust 467 

historical environmental impact and human health risk assessments. HrSOD can be 468 

used to derive various ozone exposure indicators, such as seasonal 7-h mean O3 469 

concentrations (M7), seasonal 12-h mean O3 concentrations (M12; Legge et al., 1995), 470 

sum of all hourly average concentrations > 60 μg kg－1 (SUM06; Lefohn and Foley, 471 

1992), cumulative ozone exposure index based on sigmoid-weighted daytime O3 472 

concentrations (W126; Fuhrer et al., 1997), accumulated hourly O3 concentration over 473 

a threshold of X μg kg－1 during daylight hours (AOTX; Fuhrer et al., 1997). Therefore, 474 
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HrSOD can meet various requirements by ozone impact models, providing flexibility 475 

for assessing ozone effects on ecosystem (Ren et al., 2007) and epidemiological studies 476 

(Huangfu and Atkinson, 2020).  477 

 478 

5 Data availability 479 

The HrSOD dataset is available on the Zenodo repository at 480 

https://doi.org/10.5281/zenodo.7415326 (Zhang et al., 2022). The gridded ozone 481 

concentration data are provided in NetCDF format at 0.1° spatial resolution and hourly 482 

temporal resolution during 2005–2020 in ppb. The file size is 40 GB. The daily data is 483 

a NetCDF file and the file is named "YYYYMMDD.nc", where "YYYY", "MM" and 484 

"DD'' refer to the year, month, and day of the file.  485 

 486 

6 Conclusions 487 

In this study, we trained and validated a LSTM model to estimate HrSOD during 2005–488 

2020 across China. The predictor variables included meteorological factors, remote 489 

sensing data, socio-economic data, and land use data, and more than six million ground 490 

station monitoring records were collected as reference data. Compared with 491 

observations, the model showed good performances at diurnal, seasonal to annual time-492 

scales and site to regional levels. HrSOD showed that surface O3 concentrations in 493 

China tended to increase from 2016 to 2019 due to anthropogenic and meteorological 494 

factors such as temperature, humidity, and radiation intensity, despite a decrease in 2020 495 

due to COVID-19 lockdown. In summary, HrSOD had high spatial and temporal 496 

accuracies, long time ranges and high temporal resolution, enabling it to be easily 497 

converted to various evaluation indicators for ecosystem and human health assessments.  498 
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