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Abstract.	Dams	and	reservoirs	are	human-made	infrastructures	that	have	attracted	increasing	attentions	because	of	

their	societal	and	environmental	significance.	Towards	better	management	and	conservation	of	reservoirs,	a	dataset	10 

of	reservoir-catchment	characteristics	is	needed,	considering	that	the	amount	water	and	material	flowing	into	and	out	

of	reservoirs	depends	on	their	locations	on	the	river	network	and	the	properties	of	upstream	catchment.	To	date,	no	

dataset	exists	for	reservoir-catchment	characteristics.	The	aim	of	this	study	is	to	develop	the	first	database	featuring	

reservoir-catchment	characteristics	for	3254	reservoirs	with	storage	capacity totaling	682,595	km3	(73.2%	reservoir	

water	storage	capacity	in	China),	to	support	the	management	and	conservation	of	reservoirs	in	the	context	of	catchment	15 

level.	To	ensure	a	more	representative	and	accurate	mapping	of	local	variables	of	large	reservoirs,	reservoir	catchments	

are	delineated	into	full	catchments	(their	full	upstream	contributing	areas)	and	intermediate	catchments	(subtracting	

the	area	contributed	by	upstream	reservoirs	from	full	upstream	of	the	current	reservoir).	Using	both	full	catchments	

and	intermediate	catchments,	characteristics	of	reservoir	catchments	were	extracted,	with	a	total	of	512	attributes	in	

six	categories	(i.e.,	reservoir	and	catchment	body	characteristics,	topography,	climate,	soil	and	geology,	land	cover	and	20 

use,	 and	 anthropogenic	 activity	 characteristics).	 Besides	 these	 static	 attributes,	 time	 series	 of	 15	 meteorological	

variables	of	catchments	were	extracted	to	support	hydrological	simulations	for	a	better	understanding	of	drivers	of	

reservoir	environment	change.	Moreover,	we	provide	a	comprehensive	and	extensive	reservoir	data	set	on	water	level	

(data	available	for	20%	of	3,254	reservoirs),	water	surface	area	(99%),	storage	anomaly	(92%),	and	evaporation	(98%)	

from	multisource	satellites	such	as	radar	and	laser	altimeters	and	images	from	Landsat	and	Sentinel	satellites.	These	25 

products	significantly	enhance	spatial	and	temporal	coverage	 in	comparison	to	existing	similar	products	(e.g.,	67%	

increase	 in	 spatial	 resolution	 of	 water	 level	 and	 225%	 increase	 in	 storage	 anomaly)	 and	 contribute	 to	 our	

understanding	 of	 reservoir	 properties	 and	 functions	 within	 the	 Earth	 system	 by	 incorporated	 national	 or	 global	

hydrological	modeling.	In	situ	data	of	138	reservoirs	are	employed	in	this	study	as	a	valuable	reference	for	evaluation,	

thus	enhancing	our	confidence	in	the	data	quality	and	enhancing	our	understanding	of	accuracy	of	current	satellite	30 

datasets.	Along	with	 its	extensive	attributes,	 the	Reservoir	dataset	 in	China	(Res-CN)	can	support	a	broad	range	of	
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applications	such	as	water	resources,	hydrologic/hydrodynamic	modeling,	and	energy	planning.	Res-CN	is	on	Zenodo	

through	https://doi.org/10.5281/zenodo.7664489	(Shen	et	al.,	2022a).	

1	Introduction	

The	role	of	reservoirs	 in	the	hydrological	and	biogeochemical	cycles	 is	closely	tied	to	their	characteristics	of	water	35 

surface	area,	water	level,	evaporation,	and	storage	variation.	In	addition,	the	amount	and	rate	of	water	and	materials	

flowing	 into	 and	 out	 of	 reservoirs	 depends	 on	 their	 location	 in	 the	 river	 network,	 reservoir	 upstream	 catchment	

attributes	 (e.g.,	 catchment	 size,	 topography,	geology,	 soil,	 and	 land	cover)	as	well	 as	meteorological	variables	 (e.g.,	

precipitation,	and	temperature).	An	explicit	spatial	knowledge	of	all	these	characteristics	(see	in	Fig.	A1)	is	crucial	for	

determining	 surface	 water	 availability	 and	 modulating	 water	 flux	 interactions	 among	 various	 Earth	 system	40 

components,	 including	 terrestrial	water	 storage	 dynamics	 (Busker	 et	 al.,	 2019;	 Chaudhari	 et	 al.,	 2018);	 terrestrial	

carbon	cycle	(Marx	et	al.,	2017);	geochemical	cycle	(Maavara	et	al.,	2020);	surface	energy	budget	(Buccola	et	al.,	2016);	

climate-related	effects	 (Boulange	et	al.,	2021);	and	alterations	 in	 the	hydrological	and	ecological	processes	such	as	

sediment	reduction	(Li	et	al.,	2020),	degradation	of	water	quality	(Barbarossa	et	al.,	2020),	land	use	changing	pattern	

(Carpenter	et	al.,	2011),	and	fish	biodiversity	decline	(Ngor	et	al.,	2018).	Therefore,	to	fully	uncover	the	functioning	of	45 

reservoirs	for	better	scientific	studies	and	water	resources	managements,	it	is	essential	to	develop	a	comprehensive	

publicly	available	reservoir	data	set	in	the	context	of	growing	interest	of	reservoir	studies	and	water	managements.	

China	is	the	world’s	most	populous	country	that	has	undergone	an	impressive	average	GDP	growth	rate	of	10%	over	

the	past	two	decades	(Gleick,	2009).	Meanwhile,	it	has	simultaneously	experienced	notable	expansion	of	irrigation	and	

encountered	challenges	arising	from	limited	water	resources,	frequent	floods,	and	droughts	(Wang	et	al.,	2020).	To	50 

ensure	water	security,	reservoir	construction	is	proliferating	across	the	country.	As	of	2015,	China	had	constructed	

approximately	98,000	reservoirs	and	dams,	including	almost	40%	of	the	world's	largest	dams	(Song	et	al.,	2022).	The	

world's	largest	clean	energy	corridor,	comprised	of	six	mega	hydropower	dams,	is	newly	formed	in	China.	Despite	these	

developments,	 there	 remains	 a	 data	 gap	 regarding	 the	 surface	 water	 dynamics	 and	 upstream	 attributes	 of	 these	

reservoirs	at	the	catchment	level.	55 

In	recent	years,	multiple	efforts	have	been	made	to	produce	reservoir	inventories,	including	those	of	China.	For	the	

inventories	of	water	surface	area,	water	level,	evaporation,	and	storage	anomaly,	there	are	different	research	projects	

and	studies	producing	satellite	datasets	for	reservoirs	at	regional	and	global	scales	(Crétaux	et	al.,	2011;	Birkett	et	al.,	

2011;	Schwatke	et	al.,	2015;	Markert	et	al.,	2019;	Tourian	et	al.,	2022;	Tortini	et	al.,	2020;	Zhao	&	Gao,	2018;	Liu	et	al.,	

2021;	Donchyts	et	al.,	2022;	Vu	et	al.,	2022;	Tian	et	al.,	2022).	However,	information	of	reservoir	characteristics	is	still	60 

insufficient	and	scarce	across	different	regions.	The	majority	of	them	are	devoted	to	developing	a	particular	type	of	

reservoir	data	set	for	selected	globally	distributed	reservoirs	(Gao	et	al.,	2012;	Zhao	et	al.,	2022).	For	example,	Zhao	et	
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al.	 (2019)	 constructed	 the	 long-term	monthly	 evaporation	 time	 series	 for	 721	 reservoirs	 in	 the	U.S.	 by	 using	 four	

meteorological	forcings	and	Landsat-based	images.	Other	remotely	sensed	datasets	such	as	storage	anomalies	from	

(e.g.,	Busker	et	al.,	2019;	Hou	et	al.,	2022)	and	water	surface	areas	from	(Klein	et	al.,	2021)	are	not	publicly	accessible.	65 

Remotely	sensed	reservoir	datasets,	estimated	by	different	researchers,	are	usually	not	consistent	on	the	aspects	of	

target	water	bodies	and	data	sources,	which	make	it	difficult	to	provide	consistent	baseline	of	reservoir	characteristics	

for	a	specific	region	or	country.	For	example,	Khandelwal	et	al.	(2022)	generated	monthly	water	surface	areas	over	the	

new	 lake	 polygons	 while	 other	 studies	 produced	 water	 surface	 area	 time	 series	 over	 the	 reservoir	 and/or	 lake	

shapefiles	from	some	existing	databases	such	as	GRanD	(Lehner	at	al.,	2011)	and	HydroLAKES	(Messager	at	al.,	2016).	70 

In	addition,	there	is	no	systematic	assessment	of	whether	reservoir	water	levels	or	water	surface	areas	from	previous	

studies	and	databases	agree	with	one	another,	as	shown	in	this	study	by	many	reservoirs	whose	in	situ	measurements	

are	available.	Here,	we	list	remotely	sensed	databases	containing	Chinese	reservoirs	in	Supplementary	Table	S1.	Only	

a	small	number	of	reservoirs	are	available	from	these	databases.	In	three	popular	altimetry-based	reservoir	datasets	

(Hydroweb,	G-REALM,	and	DAHITI),	there	are	approximately	30	Chinese	reservoirs.	Although	Shen	et	al.	(2022b)	used	75 

GRanD	reservoir	shapefiles	and	multisource	altimeters	to	generate	a	data	set	of	water	level,	water	surface	area,	and	

storage	anomaly	for	338	Chinese	reservoirs	during	2010-2021,	there	is	still	room	for	additional	complements	to	the	

existing	databases	in	its	spatial	and	temporal	coverage.	

In	addition	 to	 the	 time	series	of	 reservoir	datasets	described	above,	 reservoir	upstream	catchment	attributes	 (e.g.,	

climate,	 geology	 &	 soil,	 topography,	 land	 cover,	 and	 anthropogenic	 activity	 characteristics)	 are	 also	 important	 as	80 

reservoirs	collect	materials	from	upstream	catchments.	These	attributes	affect	the	water	balance	and	water	quality	of	

a	 reservoir,	 such	 as	 temperature,	 dissolved	 oxygen,	 and	 turbidity	 (Yang	 et	 al.,	 2022).	 Moreover,	 the	 limnological	

properties	of	one	reservoir	have	the	potential	to	impact	other	reservoirs	through	the	transfer	of	water	mass,	nutrients,	

energy,	and	sediments	via	connecting	rivers,	as	previously	demonstrated	in	studies	by	Huziy	and	Sushama	(2017)	and	

Stieglitz	et	al.	(2003).	Thus,	researchers	can	better	understand	catchment-level	landscape	limnology	by	incorporating	85 

these	attributes	(Soranno	et	al.,	2010).	The	values	of	these	catchment-level	attributes	are	also	proved	in	the	Catchment	

Attributes	 and	MEteorology	 for	 Large-sample	 Studies	 (CAMELS)	 introduced	 by	 Addor	 et	 al.	 (2017)	 and	 follow-up	

studies	such	as	CAMLES-CL,	CMALES-BR,	CAMLES-GB,	(Alvarez-Garreton	et	al.,	2018;	Chagas	et	al.,	2020;	Coxon	et	al.,	

2020),	LamaH-CE	(Klingler	et	al.,	2021),	CCAM	(Hao	et	al.,	2021),	LakeALTAS	(Lehner	et	al.,	2022),	as	well	as	the	works	

by	Chen	et	al.	(2022)	and	Liu	et	al.	(2022).	However,	there	is	a	data	gap	of	reservoir-catchment	characteristics	in	China,	90 

and	even	the	geometric	boundaries	of	reservoir	upstream	catchment,	which	hindered	the	spatially	explicit	applications	

of	such	catchment	information.	Furthermore,	allocating	reservoirs	on	river	network	is	also	valuable	for	river	models	

incorporating	reservoirs	as	reservoir	datasets	and	river	network	datasets	are	usually	developed	independently,	and	

they	are	not	well	corresponding	and	could	cause	some	issues	when	integrating	reservoirs	in	river	model.	
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In	light	of	above,	we	build	upon	these	existing	studies	and	datasets	to	produce	a	new	publicly	available	comprehensive	95 

and	extensive	reservoir	dataset,	Res-CN	(Reservoir-ChiNa).	It	is	based	on	the	latest	global	reservoir	shapefiles	from	

GeoDAR	v1.1.	Additionally,	we	allocate	reservoirs	on	the	MERIT	Hydro	(Yamazaki	et	al.,	2019)	to	delineate	reservoir	

catchments	into	two	categories:	full	catchments	and	intermediate	catchments.	512	catchment-level	attributes	for	3254	

reservoirs	are	generated	at	full	catchments	and	intermediate	catchments	from	a	wide	range	of	satellite-,	reanalysis-,	

and	in-situ	based	data.	Besides,	time	series	of	reservoir	states	(i.e.,	water	level,	water	surface	area,	storage	anomaly,	100 

and	evaporation)	are	extracted	from	multiple	altimeters,	Landsat	and	Sentinel	images	and	other	satellites,	acting	as	a	

key	supplement	to	existing	products	owing	to	its	significantly	enhanced	spatial	and	temporal	coverages.	In	situ	data	of	

138	reservoirs	are	employed	in	this	study	as	a	valuable	reference	for	evaluation,	thus	enhancing	the	confidence	in	the	

data	quality	and	enhancing	the	understanding	of	accuracy	of	current	satellite	datasets.	Our	codes,	in	Python/R/GEE	

(Google	Earth	Engine),	are	freely	available	and	open	source.	The	code	can	be	applied	to	individual	applications,	other	105 

areas,	 and	 can	 further	 enrich	 the	 inventory	 if	 new	data	 available.	Results	of	 this	 study	 facilitated	managements	of	

reservoirs	 and	 relevant	 studies	 such	as	hydrological	modeling,	 environmental	 studies,	 and	 climate	 research	 in	 the	

spatially	explicit	context	of	reservoir	catchment-level	(Galelli	et	al.,	2022;	Dang	et	al.,	2020).	

2	Data	sources	and	methods	

China	has	more	than	98,000	reservoirs	and	dams	across	different	topographic	regions	and	landscapes	(MWR,	2016).	110 

However,	most	of	them	are	unmapped	(polygons	and	georeferenced	coordinates	not	available)	and	only	described	with	

standard	attributes.	Thus,	in	this	study,	we	focused	on	reservoirs	which	are	mapped	and	available	from	the	newest	

global	GeoDAR	database	(Wang	et	al.,	2022).	GeoDAR	v1.1	provides	global	reservoir	shapefiles	and	their	attributes	such	

as	storage	capacity,	 reservoir	purpose	and	 installed	capacity.	Reservoirs	are	mostly	clustered	 in	Yangtze	and	Pearl	

River	basins	(Fig.	1)	and	vary	greatly	in	size,	capacity,	and	purpose.	115 

As	we	aim	to	create	a	comprehensive	reservoir	data	set	in	China,	our	workflow	required	multiple	steps	and	geospatial	

techniques.	Here,	we	detail	the	data	and	methodologies	that	is	applied	to	create	water	level,	water	surface	area,	storage	

anomaly,	evaporation,	upstream	catchment	boundaries	and	catchment-level	characteristics.	The	flowcharts	and	source	

datasets	are	provided	in	the	Figures	A2-3,	Figures	S1-3,	and	Table	S2-8.	
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	120 
Figure	1.	Overview	of	the	reservoirs	contained	in	Res-CN,	and	the	dams	with	storage	capacity	(circle	color,	nan	means	not	available)	
and	water	surface	area	of	reservoirs	(circle	size).	The	black	lines	indicate	the	boundaries	of	the	ten	river	regions	within	Res-CN.	
Numbers	(1-10)	indicate:	1—Songhua	River;	2—Liao	River;	3—Hai	River;	4—Northwest	River;	5—Yellow	River;	6—Yangtze	River;	
7—Huai	River;	8—Southwest	River;	9—Pearl	River;	and	10—Southeast	River	regions.	

2.1	Data	and	methodology	for	generating	reservoir	water	level	125 

Water	level	time	series	for	the	Res-CN	reservoir	are	derived	from	various	satellite	altimeters:	Sentinel-3A,	Sentinel-3B,	

Jason-3,	 ICESat-2,	CroySat-2,	and	SARAL/AltiKa.	Each	altimeter	has	different	repeat	cycles,	geographical	coverages,	

retracking	 algorithms,	 and	measurement	 accuracies	 (Table	 S2).	 Apart	 from	 the	 official	 algorithms	 in	 their	 source	

products,	we	implemented	PPCOG	(primary	peak	center	of	gravity)	and	NPPTr[0.5/0.8]	(narrow	primary	peak	with	a	

0.5	or	0.8	threshold	value)	algorithms	into	Sentinel-3,	CroySat-2,	SARAL/AltiKa	to	derive	range	measurements	(Shen	130 

et	al.,	2022b).	Range	measurements	are	corrected	using	the	atmospheric	and	geophysical	corrections	from	their	source	

products	(Table	S2),	and	then	used	to	determine	water	level	of	each	sample.	We	reference	the	height	to	the	EGM2008	

geoid	(Pavlis	et	al.,	2012).	
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For	the	construction	of	reservoir	water	levels,	we	carried	out	the	following	steps	to	process	single	satellite	altimetric	

heights	from	each	retracking	algorithm	(Fig.	S1):	135 

§ Extraction	of	the	altimetric	data	within	the	GeoDAR	reservoir	shapefile.	

§ The	Global	Surface	Water	Explorer	was	used	to	select	altimetric	data	for	which	water	occurrence	is	greater	

than	10%	(Zhang	et	al.,	2020).	

§ Outlier	removal	for	each	pass	using	the	MAD	method	(median	of	absolute	deviation).	

§ We	remove	outliers	from	altimeter	data	with	heights	more	than	20	meters	from	the	DEM	(for	reservoirs	with	140 

large	variations,	we	set	a	threshold	of	40	meters).	

§ Construction	of	time	series	using	the	R	package	“tsHydro”	(Nielsen	et	al.,	2015).	

Through	 these	 steps,	 each	 satellite	 altimeter's	 SR	 (standard	 rate)	water	 level	 time	 series	with	different	 retracking	

algorithms	were	produced.	A	single	satellite	altimeter's	repeat	period	and	spatial	sampling	results	in	a	low	resolution	

for	SR	products.	For	example,	with	Sentinel-3A	ground	tracks	spaced	104	km	apart	at	the	equator,	it	may	be	possible	145 

to	obtain	altimetric	data	on	684	GeoDAR	reservoirs	in	China.	For	increased	resolution	and	to	overcome	the	limitations	

of	single	satellite	altimeter	spatial	and	temporal	sampling,	we	generated	HR	(high	rate)	water	level	time	series	products	

by	 integrating	single-satellite	SR	products.	Note	 that	we	used	altimetric	observations	 from	multi-mission	using	 the	

retracking	algorithm	with	the	smallest	RMSE	(root-mean-square	error)	value	calculated	with	in	situ	water	level.	To	

eliminate	systematic	differences	between	satellites,	we	used	two	methods:	the	first	method	is	by	directly	eliminating	150 

the	mean	water	level	differences	between	satellites	and	is	applicable	to	satellites	with	sufficient	overlap	periods;	the	

second	method	is	to	estimate	satellite	bias	using	reservoir	water	areas.	The	bias	was	estimated	by	minimizing	the	two-

dimensional	cost	function	of	area-water	level	coordinates	using	the	Gauss-Helmert	method	(Fig.	S1).	To	evaluate	the	

altimetric	data	quality,	we	calculated	the	standard	deviation	(SD)	of	altimetric	observations	and	RMSE	values	against	

in	situ	water	level	and	three	other	similar	existing	products	from	Hydroweb,	DAHITI,	and	G-REALM	wherever	available.	155 

Data	point	precision	is	determined	by	SD,	whereas	accuracy	is	determined	by	RMSE.	RMSE	is	calculated	by	comparing	

water	level	anomalies	between	gages	and	satellites.	In	situ	water	level	of	99	reservoirs	from	2015	to	2021	are	used	to	

validate	our	dataset.	

2.2	Data	and	methodology	for	generating	reservoir	water	surface	area	

Reservoir	water	surface	areas	can	be	extracted	from	an	available	global	inland	water	dataset	like	the	SWBD	(SRTM	160 

Water	Body	Data,	NASA	JPL,	2013),	the	GIEMS	(Global	Inundation	Extent	from	Multiple	Satellites,	Papa	et	al.,	2010b),	

GSW,	DAHITI,	Hydroweb,	Hydrosat,	Bluedot	Observatory	and	studies	from	Tortini	et	al.	(2020)	and	Shen	et	al.	(2022b).	

The	derived	reservoir	water	surface	area	estimations	are	limited	by	the	spatial	coverage	and	accuracy	restrictions	of	

the	initial	dataset.	As	such,	three	available	global	water	surface	area	products	are	developed	by	using	algorithms	that	

reclassify	contaminated	pixels	as	water,	i.e.,	the	GRSAD	(Zhao	&	Gao,	2018),	the	RealSAT	(Khandelwal	et	al.,	2022),	and	165 
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areas	of	medium-small	reservoirs	by	Donchyts	et	al.	(2022).	These	products	cover	only	a	portion	of	the	reservoirs	we	

studied	(e.g.,	908	overlapping	reservoirs	between	GRSAD	and	our	product)	and	use	different	algorithms	and	source	

datasets	(e.g.,	RealSAT	and	GRSAD	use	only	Landsat).	As	a	part	of	this	study,	we	employed	the	algorithm	developed	by	

Donchyts	et	al.	(2022)	to	generate	reservoir	water	surface	areas	by	using	Landsat	and	Sentinel-2	images.	The	algorithm	

has	been	applied	to	map	water	surface	areas	in	768	reservoirs	of	different	sizes	and	climate	zones	located	in	Spain,	170 

India,	South	Africa,	and	the	USA,	and	there	is	strong	evidence	to	suggest	that	it	performs	well	in	this	regard	(Donchyts	

et	al.,	2022).	For	a	given	reservoir,	the	procedures	are	as	follows:	

§ A	selection	of	cloudy	satellite	images	intersecting	the	reservoir	shapefile	is	made.	

§ Based	on	 the	global	 cloud	 frequency	dataset	 (Wilson,	2016),	 filter	out	 satellite	 images	 that	are	completely	

covered	by	clouds	and	correct	the	remaining	images	as	follows.	175 

§ Calculating	the	NDWI	(normalized	difference	water	index).	

§ A	Canny	edge	detection	algorithm	is	used	for	detecting	water/land	edges	and	defining	sampling	areas	around	

them	(Donchyts	et	al.,	2016).	

§ Utilizing	the	Otsu	algorithm	(Markert	et	al.,	2020)	to	determine	the	optimal	threshold	value,	then	obtaining	the	

water	mask	based	on	samples	of	NDWI	values	collected	within	the	sampling	area.	180 

§ Sampling	the	water	occurrence	along	the	edges	to	eliminate	falsely	detected	water	(water	pixels	that	were	not	

water).	

§ Water	occurrence	is	clipped	at	a	certain	occurrence	value	and	combined	with	water	mask	to	obtain	the	final	

water	mask.	

§ Using	a	quantization-based	temporal	outlier	filter	to	remove	any	errors	from	reservoir	waters.	185 

Using	these	procedures,	we	generated	monthly	reservoir	water	surface	areas	during	1984-2021.	We	evaluated	the	data	

quality	by	comparing	 it	 to	 in-situ	water	 levels,	altimetry	(HR	and	SR	products)	whenever	available,	and	previously	

available	products	from	GRSAD	and	RealSAT.	The	indicators	of	data	quality	were	rBIAS	(relative	bias),	CC,	and	rRMSE	

(relative	RMSE).	

2.3	Data	and	methodology	for	generating	reservoir	storage	anomaly	190 

Res-CN	estimates	of	reservoir	storage	anomaly	are	based	on	(1)	satellite-based	water	levels	and	water	surface	areas,	

and	 (2)	water	 surface	areas	and	DEMs	 (digital	 elevation	models)	 (Fig.	 S2).	The	basis	of	 these	 two	approaches	 is	 a	

reconstruction	of	the	hypsometry	curve	(water	surface	area-level	model)	using	overlapping	records	of	water	level	and	

water	surface	area	or	DEM.	Assuming	five	models	(linear,	polynomial,	exponential,	power,	and	logarithmic)	can	be	used	

to	describe	hypsometry	curves,	we	selected	the	model	with	the	highest	R2	value	as	the	reservoir's	hypsometry	curve.	195 

We	followed	the	following	steps	for	reservoirs	with	both	water	levels	and	water	surface	areas	records:	

§ Using	the	average	of	all	altimetric	measurements	in	a	month	to	calculate	the	monthly	reservoir	water	level.	
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§ A	scatterplot	of	monthly	water	level	and	water	surface	area	is	constructed,	and	errors	are	eliminated	from	the	

scatterplot.	

§ A	parametric	approach	is	used	to	generate	the	hypsometry	curve	(i.e.,	the	water	surface	area-level	model).	200 

§ Estimating	 the	 gap	measurements	 of	water	 levels	 and	water	 surface	 areas	 by	 applying	 the	 reconstructed	

hypsometry	curve.	

§ Calculating	storage	anomaly	∆𝑉	from	two	successive	pairs	of	water	level-water	surface	area	measurements	

(𝐻,𝐴),	Eq.	(1)	

∆𝑉! =
"
#
(𝐻! −𝐻!$") × (𝐴! + 𝐴!$"),        (1) 205 

For	reservoirs	with	water	surface	areas	only,	we	used	the	DEM-based	approach.	The	main	procedures	are	described	

below:	

§ Generating	the	water	surface	area-level-storage	model	through	DEM-based	approach	(Vu	et	al.,	2022).	

§ Calculating	storage	anomaly	by	combining	satellite-based	water	surface	areas	and	area-level-storage	model.	

As	a	result	of	these	steps,	we	determined	the	hypsometry	curve	and	time	series	of	storage	anomalies	for	each	reservoir.	210 

To	evaluate	the	storage	anomaly	data,	we	calculate	the	error	statistics	of	RMSE,	NRMSE	(normalized	root-mean-square	

error),	and	CC	(pearson	correlation	coefficient)	values	for	reservoirs	with	in	situ	observations.	In	situ	water	storage	of	

138	reservoirs	from	2015	to	2021	are	used	to	validate	our	dataset.	

2.4	Data	and	methodology	for	generating	reservoir	evaporation	

Reservoir	evaporation	estimates	can	be	extracted	from	two	available	global	reservoir	evaporation	products	produced	215 

by	the	Zhao	et	al.	(2022)	and	Tian	et	al.	(2022).	These	studies	covered	a	portion	of	the	reservoirs	we	studied	and	used	

the	same	robust	algorithm	by	Zhao	et	al.	(2019)	to	calculate	monthly	reservoir	evaporation	volume	(𝑉% ,	[m3/month])	

using	water	surface	area	(𝐴,	[km2]),	days	of	a	month	(days,	[-]),	and	evaporation	rate	(𝐸&'('&)*+& ,	[mm/day])	(Eq.	2).	

𝑉% = 𝐸&'('&)*+& × 𝐴 × d𝑎𝑦𝑠/1000	 	 	 	 	 	 	 	 	 	 (2)	

In	this	study,	we	applied	the	algorithm	as	well	considering	its	satisfactory	simulation	performance	for	the	evaporation	220 

rate	and	energy	balance	terms	(Eqs.	3-4).	It	quantifies	heat	storage	changes	(𝛿𝑈,	[MJ	m−2	d−1])	in	the	Penman	equation		

𝐸&'('&)*+& =
∆(.!$/0)234(#.662".789"):#

$%.'('($'))

4(;23)
	 	 	 	 	 	 	 	 (3)	

𝛿𝑈 = 𝜌<𝑐<ℎ
=*$=*%

;>
	 	 	 	 	 	 	 	 	 	 	 (4)	

where	𝐸&'('&)*+& 	is	 the	 reservoir	 evaporation	 rate	 (mm/d);	∆ 	is	 the	 slope	 of	 the	 saturation	 vapor	 pressure	 curve	

(kPa/°C);	𝑅? 	is	 the	 net	 radiation	 (MJ	 m−2	 d−1);	𝛾 	is	 the	 psychrometric	 constant	 (kPa/°C);	𝜆 	is	 the	 latent	 heat	 of	225 

vaporization	(MJ/kg);	𝑢#	is	the	wind	speed	at	2	m	height	(m/s);	and	𝐿@	is	the	monthly	reservoir	fetch	length	(m);	𝑒(	and	



9 
 

𝑒A	are	the	saturated	vapor	pressure	at	air	temperature	and	the	air	vapor	pressure	(kPa),	respectively;	𝜌<	is	the	density	

of	water	(kg	m−3);	𝑐<	is	the	specific	heat	of	water	(MJ	kg−1	°C−1);	h	is	the	average	water	depth	(m);	𝑇<	and	𝑇<B	are	the	

water	column	temperature	at	the	current	time	step,	and	at	the	previous	time	step	(°C),	respectively;	and	Δt	is	the	time	

step	(set	as	1	month	in	this	study).	230 

It	 is	 worth	 noting	 that	 this	 algorithm	 does	 not	 need	 parameter	 calibration	 and	 only	 requires	 the	𝐿@ ,	 h,	 and	 four	

meteorological	variables	(air	temperature	[°C],	wind	speed	[m/s],	vapor	pressure	deficit	[kPa],	and	surface	downward	

shortwave	radiation	[MJ	m−2	d−1]),	for	the	evaporation	rate	calculation.	In	previous	studies	(Zhao	et	al.,	2022;	Tian	et	

al.,	2022),	the	TerraClimate	dataset	(Abatzoglou	et	al.,	2018)	has	been	shown	to	be	the	most	appropriate	meteorological	

dataset	for	reliable	estimates	of	reservoir	evaporation	rates	compared	to	other	global	datasets.	Thus,	we	adopted	the	235 

TerraClimate	to	generate	meteorological	data	time	series	by	averaging	gridded	forcing	data	within	reservoir	shapefiles.	

Monthly	reservoir	fetch	values	𝐿@	were	calculated	using	(1)	reservoir	shapefile,	(2)	wind	direction	data	from	the	NCEP	

(National	Centers	for	Environmental	Prediction),	and	(3)	water	surface	area	time	series.	The	average	reservoir	water	

depths	h	are	taken	from	the	GRanD	and	HydroLAKES	datasets.	For	reservoirs	not	recorded	in	these	two	datasets,	we	

determined	their	water	depths	from	their	water	surface	areas	through	the	area-depth	curves	fitted	to	all	available	data.	240 

A	detailed	algorithm	flowchart,	all	equations,	and	examples	are	provided	in	the	Figure	S3	and	Zhao	et	al.	(2019).	

2.5	Data	and	methodology	for	generating	reservoir	catchment	boundaries	

In	this	study,	two	types	of	reservoir	upstream	catchment	boundaries	(hereafter,	referred	to	as	catchment)	are	defined:	

full	 catchments	 and	 intermediate	 catchments	 (Fig.	 2).	 The	 full	 catchment	 is	 defined	 as	 a	 reservoir’s	 full	 upstream	

contributing	area,	whereas	the	intermediate	catchment	is	determined	by	subtracting	the	area	contributed	by	upstream	245 

reservoirs	 from	the	catchment	area	of	 the	current	reservoir.	Obviously,	 full	catchments	are	 independent	with	each	

other,	but	 for	reservoirs	with	 larger	catchments,	 they	can	 lead	to	a	significant	 loss	of	 information	such	as	the	 local	

features	and	variability.	Thus,	intermediate	catchments,	which	are	part	of	the	large	river	networks,	can	complement	

this	information	and	ensures	more	representative	and	accurate	mapping	of	local	variables.	

To	 identify	 catchment	boundaries	 (Fig.	A2),	we	used	an	automatic	outlet	 relocation	algorithm	 (Xie	 et	 al.,	 2022)	 to	250 

automatically	delineate	a	large	amount	of	catchments.	This	algorithm	can	correct	the	river	networks	by	analyzing	the	

gradients	 of	 flow	 accumulations	 along	 the	 rivers	 and	 can	 rapidly	 delineate	 catchments	 (Xie	 et	 al.,	 2022).	 More	

importantly,	it	has	been	intensively	validated	in	1,398	catchments	of	varying	size	and	geographic	regions,	showing	94.1%	

of	catchments	were	correctly	delineated.	This	algorithm	requires	the	flow	directions	and	gauge	locations	as	input.	In	

this	study,	we	used	flow	directions	from	the	MERIT	Hydro	and	dam	locations	from	the	GeoDAR	dataset.	MERIT	Hydro	255 

is	a	new	global	hydrography	map	that	has	a	fine	resolution	of	90	m	and	shows	good	performance	in	terms	of	river	basin	

shape	and	flow	accumulation	area.	This	algorithm	can	generate	the	full	catchments	of	each	reservoir,	and	we	employed	

some	additional	operations	 to	remove	 topology	errors	and	obtain	 intermediate	catchments.	Firstly,	we	cleared	 the	
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holes	to	remove	topology	errors	across	full	catchments.	Secondly,	we	checked	the	full	catchments,	and	removed	the	

unrealistic	or	 incorrectly	catchments.	Thirdly,	we	generated	 intermediate	catchments	by	removing	the	overlapping	260 

areas	of	upstream	reservoirs	 from	the	 full	catchment	of	 the	current	reservoir	using	QGIS	3.24.	Lastly,	we	 fixed	the	

invalid	geometry	of	intermediate	catchments	by	eliminating	geometry	errors	(Text	S1).	

	
Figure	2.	An	example	of	the	types	of	catchment	delineations	in	Res-CN.	(a)	Catchment	delineation	A:	full	catchments,	which	are	
defined	as	the	entire	area	contributing	to	a	reservoir.	In	plot	(a),	full	catchment	of	reservoir	23720	overlaps	with	that	of	reservoir	265 
3205	and	that	of	6651.	(b)	Catchment	delineation	B:	 intermediate	catchment.	 In	plot	(b),	all	upstream	contributing	areas	of	the	
upstream	 reservoirs	 (3205	 and	 6651)	 are	 removed	 from	 the	 full	 catchment	 of	 reservoir	 23720,	 thus,	we	 get	 the	 intermediate	
catchment	of	reservoir	23720	(in	black	boundary).	Background	in	light	blue	indicates	other	catchments	not	shown	in	this	example.	
Source	of	background:	MERIT	Hydro	and	MERIT	DEM	(Yamazaki	et	al.,	2019).	

2.6	Data	and	methodology	for	generating	catchment-level	characteristics	270 

Catchment	attributes	can	be	categorized	into	six	types:	reservoir	and	catchment	body	characteristics,	climate,	geology	

&	 soil,	 topography,	 land	 cover,	 and	 anthropogenic	 activity	 characteristics.	 The	 sources	 for	 different	 datasets	were	

chosen	 to	 ensure	 use	 of	 high-quality,	most	 reputable,	 global	 coverage,	 theoretical	 impacts	 on	 reservoirs,	 and	high	

spatial	resolution	as	far	as	possible.	For	example,	the	NSCD	version	3	(National	station-based	climatic	data	set)	is	the	

most	widely	used	in	situ	meteorological	dataset	in	China,	while	the	MERIT	DEM	is	a	new	baseline	of	global	hydrography	275 

map.	 Here,	 we	 give	 a	 brief	 description	 of	 data	 processing,	 while	 the	 detailed	 interpretations,	 uncertainties,	 and	

limitations	of	source	datasets	are	available	in	Section	3	and	Supplementary	(Fig.	A3).	
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Some	necessary	data	 format	conversions	(e.g.,	netCDF	to	raster	 format)	and	reprojections	are	 firstly	conducted	 for	

related	attribute	datasets.	Then,	we	used	different	methods	to	calculate	catchment-level	characteristics	from	raster	and	

vector	data.	Statistics	values	were	calculated	for	raster	grids	within	each	catchment.	In	the	case	of	continuous	variables	280 

such	as	temperature	and	elevation,	we	calculated	their	mean,	maximum,	minimum,	and	range	values.	For	categorical	

variables	such	as	geological	maps	and	land	use	features,	we	calculated	the	percentages	of	each	variable	and	determined	

their	dominant	type.	The	implementation	for	processing	raster	data	is	done	in	the	local	Python	and	R	environments	

(package:	rasterstats)	and	the	GEE	platform.	For	vectorial	data	such	as	the	rivers	and	catchments	in	ESRI	shapefile	

format,	 the	 shape	 features	 of	 each	 catchment	 are	 calculated	 using	 the	 local	 Python	 scripts,	 and	 other	 catchment	285 

attributes	like	stream	density	are	determined	by	the	ratio	of	the	intersection	area	between	the	vectorial	data	and	the	

catchment	extent	layer	to	the	total	catchment	area.	After	repeating	these	procedures	for	each	catchment,	catchment-

level	attributes	are	prepared	for	both	full	catchments	and	intermediate	catchments.	

3	Results	and	discussion	

3.1	Description	of	the	Res-CN	database	290 

We	here	provide	a	summarized	information	on	the	components	of	the	Res-CN	in	Table	1.	Detailed	descriptions	of	each	

component	are	shown	in	the	following	sections	and	Supplementary	materials.	In	this	study,	we	constructed	reservoir-

catchment	characteristics	for	3254	reservoirs	recorded	in	the	GeoDAR	database	(Wang	et	al.,	2022)	with	water	surface	

areas	ranging	from	0.004	and	1373.77	km2	(Fig.	S4),	and	storage	capacity	totaling	682,595	km3	(73.2%	reservoir	water	

storage	 capacity	 in	 China).	 Using	 both	 full	 catchments	 and	 intermediate	 catchments,	 characteristics	 of	 reservoir	295 

catchments	were	extracted,	with	a	total	of	512	attributes	in	six	categories	(Table	1).	Besides,	time	series	of	reservoir	

states	such	as	water	level	and	water	surface	area	are	also	provided, with	their	comprehensive	evaluation	reports	(i.e.,	

statistics	and	figures	in	PDF	and	Excel	files)	based	on	in	situ	data	when	available.	For	more	details,	please	refer	to	the	

data	repository	and	the	following	sections.	
Table	1.	Summary	of	the	data	provided	in	the	Res-CN.	300 

	 Variable	 Number	of	
(reservoirs/catchments)	 Description	

Time	series	
of	reservoir	
states	

Water	level	(SR,	
a	total	of	650	
reservoirs)	

54	 From	Jason-3,	10-days,	2016-2022,	with	3	retracking	
algorithms	

192	 From	Sentinel-3A,	27-days,	2016-2022,	with	5	retracking	
algorithms	

194	 From	Sentinel-3B,	27-days,	2018-2022,	with	5	retracking	
algorithms	

215	 From	ICESat-2,	91-days,	2019-2022,	with	1	retracking	
algorithm	

347	 From	CryoSat-2,	369-days,	2010-2022,	with	3	retracking	
algorithms	
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229	 From	SARAL/AltiKa,	sub-cycles	of	15-17	days,	2016-2022,	
with	5	retracking	algorithms	

Water	level	(HR)	 250	 High	rate	(HR)	product	by	merging	standard	rate	(SR)	
products,	from	2010-2022,	sub-monthly	or	monthly	

Water	surface	
area	 3214	 Monthly	from	1984-2021	

Storage	anomaly	 2999	 Monthly	storage	anomaly	from	1984-2021	

Evaporation	 3185	 Monthly	evaporation	rate	and	volume	from	1984-2021	

Catchment-
level	
attributes	

Catchment	body	
characteristics	

3254	full	catchments,	435	
intermediate	catchments	

Two	types	of	reservoir	upstream	catchments,	reservoir	and	
catchment	body	attributes	(Tables	S9-10)	

Topography	 Same	as	above		 19	attributes	(Table	S10)	

Climate	data	 Same	as	above	 11	climatic	attributes	and	daily	time	series	of	metrological	
data	with	15	variables	from	1980-2022	(Tables	S11-12)	

Land	cover	 Same	as	above	 23	attributes	(Table	S13)	

Soil	&	Geology	 Same	as	above	 173	attributes	(Tables	S14-15)	

Anthropogenic	
activity	
characteristics		

Same	as	above	 288	attributes	(Table	S16)	

3.2	Res-CN	products	for	the	delineated	catchment	characteristics	

Res-CN	provides	3254	full	catchments	and	435	intermediate	catchments	(Fig.	3).	The	median	catchment	size	of	full	

catchments	is	294	km2,	with	a	range	of	0.94	to	981,473	km2.	The	plausibility	of	full	catchment	delineation	was	assessed	

by	comparing	the	area	of	the	delineated	catchments	with	the	areas	of	two	declared	references:	GRanD	(Lehner	et	al.,	

2011)	and	LakeATLAS	(Lehner	et	al.,	2022).	LakeATLAS	delineated	upstream	drainage	area	of	more	than	1.4	million	305 

lakes	 and	 reservoirs	 globally	 based	 on	 the	 lake	 pour	 points	 and	 the	 15	 arc-seconds	 drainage	 direction	 grids	 of	

HydroSHEDS.	A	similar	approach	was	applied	in	the	GRanD	to	estimate	the	areas	of	upstream	catchments	over	7,320	

reservoirs	globally.	To	compare	Res-CN	with	GRanD	and	LakeATLAS,	we	spatially	joined	reservoir	shapefiles	from	both	

datasets,	matching	reservoirs	that	overlapped	for	greater	than	90%	of	their	extent.	Based	on	this	subset	of	reservoirs,	

we	found	that	catchment	areas	delineated	in	this	study	corresponded	relatively	well	to	catchment	areas	in	both	GRanD	310 

(CC	=	0.99,	n	=	910)	and	LakeATLAS	(CC	=	0.91,	n	=	2147),	which	proves	the	reliability	of	our	delineated	catchments.	

Large	discrepancies	occur	 in	55	catchments,	whose	absolute	 relative	error	 is	 greater	 than	100%	(Fig.	 3e,	 f).	 Small	

reservoirs	located	near	confluences	between	rivers	of	different	sizes	are	more	likely	to	be	affected	by	this	issue,	as	a	

minor	spatial	mismatch	can	assign	a	reservoir	to	the	small	catchment	of	the	tributary	stream	rather	than	the	large	

catchment	of	the	mainstream,	and	vice	versa	(Fig.	S5).	The	differences	in	catchment	delineation	between	these	datasets	315 

result	from	differences	in	both	DEM	and	methods	for	flow	direction	correction	and	depression	filling	and	pour	points	

correction.	In	this	study,	the	widely	verified	MERIT	Hydro	flow	directions	at	3	arc-seconds	are	used,	and	we	suggest	
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that	cautions	should	be	taken	when	using	catchments	with	large	error	discrepancies	with	LakeATLAS,	which	is	based	

on	the	15	arc-seconds	drainage	direction	grids	of	HydroSHED	(Fig.	S5a).	Intermediate	catchments	provide	information	

regarding	 the	 variability	 of	 local	 features	 and	 upstream–downstream	 relationship.	 The	median	 catchment	 size	 of	320 

intermediate	catchment	is	936	km2,	with	a	range	of	1	to	279,424	km2.	

	
Figure	3.	Distribution	 of	 the	delineated	 catchments	 (intermediate	 catchments	 and	 full	 catchments).	Each	 category's	 histogram	
indicates	the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	number	of	basins,	while	the	Y-axis	represents	
each	subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	325 

3.3	Res-CN	products	for	time	series	of	reservoir	states 

3.3.1	Reservoir	water	level	

There	are	two	modes	of	reservoir	water	level	time	series	available	from	Res-CN:	SR	and	HR.	Fig.	4	demonstrates	their	

spatial	coverages,	data	source	and	availability,	and	evaluation	reports	against	in	situ	observations.	Among	them,	over	

200	reservoirs	are	visited	by	CroySat-2,	SARAL/AltiKa	and	ICESat-2,	and	only	192	and	54	reservoirs	are	covered	by	330 

Sentinel	3A and	Jason	3,	respectively	(Table	1).	Data	quality	was	generally	good	for	smaller	RMSE	values	(<	0.3	m),	

moderate	for	those	between	0.3	and	1.0	m,	and	relatively	poor	for	those	greater	than	1.0	m.	For	each	altimeter	and	HR	

product,	percentage	of	validated	reservoirs	with	good,	moderate	and	poor	data	quality	is	44%,33%,	23%	(Sentinel-3A:	

validated	in	34	reservoirs),	55%,	18%,	27%	(Sentinel-3B:	22),	38%,	37%,	25%	(SARAL/AltiKa:	8),	71%,	10%,	19%	

(ICESat-2:	31),	50%,	36%,	14%	(Jason-3:	14),	22%,	56%,	22%	(Cryosat-2:	27),	and	25%,	73%,	2%	(HR	products:	84).	335 

We	 found	 that	 in	most	 cases	 there	 is	 no	notable	 difference	 in	 terms	of	RMSE	values	 between	different	 retracking	
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algorithms	(Fig.	S6).	It	should	be	noted	that	multisource	altimetric	measurements	are	merged	for	a	specific	reservoir	

by	using	the	SR	time	series	with	the	lowest	RMSE	from	the	retracking	algorithm.	Fig.	5	shows	examples	of	HR	products	

over	a	sample	of	six	reservoirs	with	different	areas.	Single-altimetric	time	series	capture	reservoir	water	level	dynamics	

well,	leading	to	improved	temporal	resolution	of	HR	product.	A	cross	validation	of	the	time	series	against	other	existing	340 

databases	as	well	as	a	comparison	of	their	spatial	coverage	in	China	(Table	S1	and	Fig.	S7)	further	demonstrated	the	

advantages	of	our	products.	Water	levels	provided	by	Res-CN	generally	agree	with	those	provided	by	exsiting	similar	

products	(Hydroweb,	G-REALM,	and	DAHITI)	with	CC	values	exceeding	0.9,	although	there	are	some	discrepancies.	As	

an	example,	Res-CN	time	series	are	much	denser	and	less	noisy	than	Hydroweb's	in	most	reservoirs.	At	the	Sanhezha	

reservoir,	G-REALM	 failed	 to	 capture	 the	 clear	 fluctuation	pattern,	while	 large	discrepancies	were	 apparent	 at	 the	345 

Fengman	reservoir	in	2020	between	Res-CN	and	Hydroweb	(Fig.	S7).	

We	should	consider	some	limitations	for	further	improvements	despite	our	products'	good	performance	and	expanded	

spatial	coverage.	We	provided	the	uncertainty	information	for	each	value	of	the	time	series	in	the	data	product	file.	The	

SD	(standard	deviation)	estimates	can	quantify	the	accuracy	of	the	water	level	along	the	track	at	the	level	of	individual	

data	points	(Fig.	S8).	Water	level	time	series	for	each	reservoir	are	available	in	Rec-CN	as	EXCELs,	PDFs	and	detailed	350 

evaluation	reports	based	on	in	situ	data	when	available	(see	Section	of	data	availability	and	Fig.	S9).	In	our	study,	more	

than	 80%	 of	 reservoirs	with	 inadequate	 altimetric	measurements	 are	 removed	 due	 to	 the	 inherent	 limitations	 of	

satellite	 altimeters.	 There	 are	 still	 challenges	 to	 delivering	 useful	 measurements	 for	 certain	 reservoirs	 along	 the	

Yangtze	and	Yellow	rivers,	and	data	quality	 is	poor	 in	terms	of	RMSE	values	regardless	of	reservoir	size.	 It	may	be	

possible	 to	 apply	 advanced	 algorithms	 such	 as	machine-learning	 in	 future	 studies	 to	 achieve	 better	 performance	355 

regardless	of	whether	reservoirs	represent	different	behaviors.	
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Figure	4.	Data	data	availability	of	the	altimetric	reservoir	water	level	time	series	(a)	and	number	of	satellites	for	High-rate	products	
(b)	as	well	as	some	examples	to	illustrate	time	series	of	Standard-rate	products	over	nine	selected	reservoirs	(c-k).	
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	360 
Figure	5.	High-rate	water	level	time	series	over	reservoirs	Xinfengjiang	(264	km2)	from	Sentinel-3A,	SARAL/AltiKa,	Sentinel-3B,	
CryoSat-2	and	ICESat-2;	Three	Gorges	(852	km2)	from	Sentinel-3A,	SARAL/AltiKa,	Sentinel-3B,	CryoSat-2,	ICESat-2,	and	Jason-3;	
Guanting	(90	km2)	 from	Jason-3,	CryoSat-2,	 ICESat-2,	Sentinel-3A,	and	Sentinel-3B;	Ertan	(65	km2)	 from	Jason-3,	SARAL/AltiKa,	
ICESat-2,	Sentinel-3A,	and	Sentinel-3B;	and	Longyangxia	(285	km2)	from	SARAL/AltiKa,	CryoSat-2,	ICESat-2,	and	Sentinel-3B.	



17 
 

3.3.2	Reservoir	water	surface	area	365 

Res-CN	provides	monthly	reservoir	water	surface	area	data	derived	from	Landsat	and	Sentinel-2	images	during	1984-

2021,	along	with	their	detailed	evaluation	reports	(see	Section	of	data	availability).	We	compare	these	datasets	with	in	

situ	water	levels	and	altimetric	measurements	as	well	as	other	areal	datasets	(GRSAD	and	RealSAT).	RealSAT	generated	

681,137	monthly	Lake-surface	area	maps	from	Landsat	images	during	1984-2015	using	an	ORBIT	(Ordering-Based	

Information	 Transfer)	 approach	 that	 has	 been	 validated	 on	 94	 large	 reservoirs.	 As	 opposed	 to	 RealSAT,	 which	370 

generated	new	static	lake	polygons	from	water	occurrence	data,	GRSAD	used	existing	static	surface	water	polygons,	

HydroLAKES	and	GRanD,	to	create	monthly	areas	for	6,817	global	reservoirs	based	on	Landsat	images	over	the	last	35	

years.	The	139	reservoirs	with	daily	in-situ	observations	generally	show	good	agreement	in	terms	of	reservoir	area	

and	in	situ	water	level	time	series	with	81%	having	CC	values	higher	than	0.5.	The	CC	value	is	expected	to	decrease	for	

reservoirs	with	small	areal	sizes	or	steep	banks.	As	an	example,	the	CC	values	of	Gutian	and	Hengjiang	reservoirs	(10	375 

and	2	km2)	are	0.37	and	0.06,	respectively.	There	is	also	a	high	median	CC	value	of	0.70	in	Res-CN	water	surface	area	

against	 altimetric	 water	 level	 time	 series.	 As	 compared	 to	 HR	 altimetric	 water	 levels,	 approximately	 63%	 of	 244	

compared	reservoirs	have	good	CC	values	exceeding	0.5,	including	69	reservoirs	with	CC	values	>	0.8.	For	SR	altimetric	

water	levels,	approximately	63%	of	compared	557	reservoirs	have	good	CC	values	exceeding	0.5,	among	which	212	

reservoirs	show	very	good	agreement	with	CC	values	>	0.8.	To	compare	Res-CN	with	these	two	datasets,	we	spatially	380 

joined	 reservoir	 polygons	 from	 all	 datasets,	 identifying	 reservoirs	 with	 more	 than	 90%	 overlap.	 The	 subset	 of	

reservoirs	shows	good	agreement	with	GRSAD	(Fig.	6a,	median	CC	value	of	0.65,	rBIAS	=	-10%,	rRMSE	=	22%,	n	=	488)	

and	RealSAT	(Fig.	6b,	median	CC	value	=	0.64,	rBIAS	=	-5%,	rRMSE	=	20%,	n	=	288).	Since	RealSAT	and	our	collected	in	

situ	observations	do	not	overlap,	we	validated	only	the	GRSAD	datasets	against	in	situ	water	levels.	GRSAD	also	showed	

a	good	agreement	with	CC	values	higher	than	0.5	for	58%	of	139	reservoirs,	including	38	reservoirs	that	showed	a	very	385 

good	agreement	with	CC	values	>	0.8.	In	sum,	these	comparisons	suggest	that	our	data	set	is	reliable.	

Uncertainties	in	surface	water	area	estimates	are	generally	attributed	to	satellite	images	and	algorithms.	As	reported	

by	Zhao	et	al.	(2022),	the	uncertainty	of	Landsat-based	GRSAD	areal	dataset	is	6.1%.	In	this	study,	we	generated	a	more	

reliable	reservoir	water	area	product	by	fusing	both	Landsat	and	Sentinel-2	images	(Fig.	S10),	using	an	algorithm	that	

can	largely	reducing	the	impacts	of	cloud	contaminations	(Donchyts	et	al.,	2022).	There	is	strong	evidence	to	suggest	390 

that	this	algorithm	performs	well	in	this	regard,	as	it	has	been	widely	validated	in	768	reservoirs	of	different	sizes	and	

climate	zones	located	in	Spain,	India,	South	Africa,	and	the	USA	(Donchyts	et	al.,	2022).	Nevertheless,	some	limitations	

and	future	developments	should	be	considered.	Our	first	option	is	to	use	Sentinel-1	data	to	provide	more	information	

in	cloudy	regions.	Furthermore,	the	algorithm	may	be	improved	by	either	multiclass	Otsu	or	using	advanced	machine	

learning	methods.	395 
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Figure	6.	Cross	validation	of	reconstructed	monthly	reservoir	area	values	by	comparing	to	two	existing	global	datasets.	(a,	c,	and	d)	
Comparison	between	reconstructed	monthly	reservoir	areas	and	GRSAD.	(b,	e,	and	f)	Comparison	between	reconstructed	monthly	
reservoir	areas	and	RealSAT.	400 

3.3.3	Reservoir	storage	anomaly	

The	Res-CN	database	provides	monthly	reservoir	water	storage	anomaly	for	3254	Chinese	reservoirs	during	1984-

2021	using	DEM's	area-storage	model,	along	with	their	detailed	evaluation	reports	(see	Section	of	data	availability).	

74%	reservoirs	(89	of	119	validated	reservoirs	with	in	situ	data)	have	good	data	quality	with	a	RMSE	value	below	0.2	

km3	and	a	NRMSE	value	below	30%.	NRMSE,	CC,	and	RMSE	have	median	values	of	21%,	0.53,	and	0.03	km3,	respectively.	405 

Lowest	NRMSE	is	7%	in	the	Luhun	reservoir,	which	has	a	high	CC	value	of	0.90	and	low	RMSE	value	of	0.016	km3.	Figure	

7	 shows	variations	 in	water	 storage	 in	 small,	medium,	and	 large	 reservoirs	 located	 in	different	 climate	zones.	The	

remotely	 sensed	 storage	 anomalies	 generally	 agree	 with	 the	 observations	 represented	 by	 the	 statistical	 metrics,	

although	some	large	discrepancies	occur	in	peak	values.	We	find	that	our	error	statistics	in	terms	of	NRMSE	are	a	bit	

higher	than	previous	works	in	terms	of	NRMSE	below	20%	(Zhong	et	el.,	2020).	The	errors	result	from	the	inaccuracy	410 

of	the	area-storage	model	developed	by	DEM	as	well	as	the	error	of	water	surface	areas	at	certain	reservoirs.	To	solve	

this	problem,	we	provide	another	type	of	storage	variation	estimates	for	335	reservoirs	using	satellite	water	surface	

areas	and	water	levels	(see	section	2.3,	Shen	et	al.,	2022b).	The	accuracy	of	storage	anomalies	is	improved,	with	the	

median	statistics	of	CC,	NRMSE,	and	RMSE	of	0.89,	11%,	and	0.021	km3,	respectively.	
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The	uncertainties	in	storage	anomalies	are	primarily	attributed	to	three	sources,	i.e.,	the	altimetric	water	level,	water	415 

surface	area	estimations	 from	Landsat	 and	Sentinel-2	 images,	 and	 the	error	 resulting	 from	 their	 combination	 (the	

hypsometric	curve).	Fig.	S11	provides	an	example	that	illustrates	how	the	uncertainties	in	satellite	datasets	propagate	

to	storage	anomalies.	According	to	Shen	et	al.	(2022),	the	primary	source	of	error	in	storage	anomaly	is	water	surface	

area	and	the	hypsometric	curve.	Regarding	the	water	surface	area,	after	applying	the	algorithm	developed	by	Donchyts	

et	al.	(2022),	these	errors	and	impacts	can	be	reduced	to	a	large	extent.	Meanwhile,	we	employed	five	hypsometric	420 

relationships,	and	the	one	with	the	highest	R2	value	for	further	use.	For	more	than	80 %	reservoirs,	the	R2	values	are	

greater	 than	 0.5,	 providing	 a	 strong	 foundation	 for	 storage	 anomaly	 estimates.	 Nonetheless,	 the	 current	 satellite	

sensors	 have	 limitations,	 as	 evidenced	 by	 the	 significant	 discrepancies	 observed	 in	 peak	 values	 (Figure	 7).	 The	

increasing	temporal	resolution	and	data	accuracy	of	satellite	datasets,	such	as	the	SWOT	mission,	will	likely	improve	

the	accuracy	of	storage	anomaly	estimates	in	the	future.	425 
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Figure	7.	Time	series	of	water	surface	area	and	storage	anomaly	in	selected	reservoirs.	RMSE	(km3),	NRMSE,	and	CC	values	are	given	
at	the	top	of	each	subplot	when	in	situ	observations	available.	Note	that:	time	series	of	water	surface	area	and	storage	anomaly	of	
the	remaining	reservoirs	are	available	in	our	datasets.	430 

3.3.4	Reservoir	evaporation	

Res-CN	 provides	 monthly	 reservoir	 evaporation	 values	 for	 3254	 Chinese	 reservoirs	 during	 1984-2021.	 Detailed	

validations	of	the	algorithm	can	be	found	in	Zhao	et	al.	(2019;	2022)	and	Tian	et	al.,	(2021).	The	validation	of	simulated	

evaporation	at	an	annual	scale	from	Tian	et	al.	(2022)	at	47	reservoirs	was	summarized	in	Fig.	S12	through	a	literature	

review.	 The	 results	 in	 Fig.	 S12	 indicate	 that	 the	 modeled	 average	 annual	 evaporation	 rates	 match	 well	 with	 the	435 
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observed	 rates.	 Specifically,	 the	 percent	 bias	 (PBIAS),	 Nash-Sutcliffe	 efficiency	 (NSE),	 and	 root-mean-square	 error	

(RMSE)	were	found	to	be	0.02%,	0.82,	and	11.2	mm,	respectively.	This	high	level	of	agreement	suggests	that	the	Penman	

method	is	a	reliable	approach	for	calculating	reservoir	evaporation	rates	in	China.	Fig.	S13	shows	the	long-term	mean	440 

meteorological	variables	that	were	used	to	calculate	the	evaporation	rates.	We	found	that	reservoirs	 located	in	the	

southern	and	coastal	areas	have	significantly	larger	values	than	other	areas	due	to	larger	radiation	values.	For	example,	

the	mean	evaporation	for	613	reservoirs	in	Pearl	River	basin	is	1,210	mm/year,	while	the	mean	evaporation	for	26	

reservoirs	in	Songhua	River	basin	is	717	mm/year	(Fig.	8a).	With	respect	to	the	mean	reservoir	areas	(Fig.	8b),	small	

and	medium	reservoirs	are	widely	distributed	across	the	nation.	The	CC	values	between	the	mean	evaporation	rates	445 

and	the	surface	shortwave	radiation,	vapor	pressure	deficit,	mean	air	temperature,	and	wind	speed	are	0.88,	0.84,	0.86,	

and	0.88,	respectively.	

Despite	the	good	performance	of	the	algorithm,	some	limitations	are	worth	noting.	Uncertainties	in	the	evaporation	

estimates	are	generally	attributed	to	three	major	sources,	i.e.,	the	input	meteorological	forcings,	area	estimations	from	

Landsat	images,	and	the	limitations	of	the	algorithms.	As	reported	by	Zhao	et	al.	(2022),	the	uncertainty	of	reanalysis	450 

datasets	is	7.22%,	and	the	TerraClimate	datasets	used	in	this	study	produce	the	most	reliable	evaporation	estimates,	

resulting	in	a	total	uncertainty	value	of	9.93%.	Regarding	reservoir	water	surface	area,	after	applying	the	algorithm	

developed	by	Donchyts	et	al.	(2022),	these	impacts	can	be	reduced	to	a	large	extent.	There	is	some	room	for	improving	

evaporation	rate	calculation,	such	as	considering	the	effects	of	stratification	on	water	temperature	or	 including	the	

advective	heat	fluxes	from	reservoir	inflow,	outflow,	and	groundwater.	455 

	
Figure	8.	Validation	of	reconstructed	monthly	reservoir	evaporation	values.	(a)	Long-term	mean	evaporation	rates	and	(b)	water	
surface	areas	during	1984-2021.	

3.4	Res-CN	products	for	reservoir	catchment-level	characteristics	

3.4.1	Topographic	characteristics	460 

19	 topographic	 attributes	 are	 provided	 in	 Res-CN	 (Table	 S10).	 The	 catchment	 area,	 slope,	 and	 catchment-level	
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elevation	 (including	mean,	maximum,	minimum,	 and	 standard	 deviation	 values)	were	 calculated	 based	 on	MERIT	

Hydro	and	MERIT	DEM	(Yamazaki	et	al.,	2017;	2019).	Slope	was	calculated	using	the	algorithm	developed	by	Horn	

(1981).	 Moreover,	 we	 determine	 10	 indices	 of	 catchment	 shapes	 and	 stream	 network	 as	 they	 are	 vital	 in	 runoff	465 

generation	and	flood	situations.	Mvert_ang	is	defined	as	the	angle	between	the	longitudinal	axis	and	the	north	direction,	

while	 mvert_dist	 is	 a	 catchment's	 longitudinal	 axis	 distance.	 These	 two	 indices	 could	 determine	 the	 relative	

precipitation	trajectory	in	combination	with	wind	speed.	Elongation_ratio	is	a	measure	of	roundness	(i.e.,	the	higher,	

the	rounder)	of	the	catchment,	and	calculated	according	to	Subramanya	(2013).	Strm_dens	is	often	used	for	comparing	

catchments	as	 it	 is	a	function	of	many	catchment	attributes	such	as	climate,	soil,	and	geology.	We	used	the	MERIT-470 

Hydro	database	(Yamazaki	et	al.,	2019)	to	calculate	stream	density	and	length	within	a	catchment.	The	form	factor,	

shape	 factor,	circulatory	ratio,	relief	of	each	catchment	are	also	provided.	Besides,	we	also	added	“resArearatio”	 to	

describe	the	proportion	of	the	reservoir	water	surface	area	and	storage	to	the	catchment	area	(Fig.	S14).	High	average	

catchment	elevations	and	slopes	are	most	apparent	in	the	western	China,	which	extend	from	western	Yunnan–Guizhou	

Plateau	and	southern	Qinghai–Tibet	Plateau	to	the	northwestern	areas	(Fig.	9a	and	b).	The	streamflow	density	and	475 

resArearatio	are	relatively	high	in	the	central	of	the	Yangtze	River	basin,	where	the	artificial	reservoirs	are	densely	

distributed	(Fig.	9c	and	d).	High	elongation	ratios	are	widespread	in	China	and	mvert_ang	shows	high	values	in	the	

south	(Fig.	9e	and	f).	

 
Figure	 9.	Distribution	 of	 selected	 topographic	 characteristics	 of	 intermediate	 catchments	 and	 full	 catchments.	 Each	 category's	480 
histogram	indicates	the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	number	of	basins,	while	the	Y-axis	
represents	each	subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	
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3.4.2	Climatic	characteristics	

Res-CN	includes	daily	meteorological	time	series	and	11	attributes	reflecting	aspects	of	climatic	characteristics	(Tables	485 

S11-12).	In	this	study,	we	used	the	National	Station-based	Climatic	Data	set	V3	(NSCD)	to	compute	the	catchment-level	

climatic	 characteristics	 at	 full	 catchments	 and	 intermediate	 catchments.	 NSCD	 provides	 daily	meteorological	 time	

series	 during	 1951–2020	 and	 has	 near	 800	 stations	 in	 China,	 with	 the	 longest	 period	 of	 gauged	 observations	 of	

precipitation,	temperature,	evaporation,	wind	speed,	pressure,	sunshine	duration,	relative	humidity,	and	near	surface	

temperature.	The	ground	sites	were	sparse	before	1970	(Hao	et	al.,	2021).	To	ensure	data	quality	and	match	the	periods	490 

of	other	datasets	in	Res-CN,	we	used	the	latter	41	years	(from	1980	to	2020)	to	generate	a	gridded	data	set	based	on	

the	inverse	distance	weighting	interpolation	technique	(Fig.	A2).	Figure	10	shows	the	spatial	distribution	of	selected	

long-term	mean	meteorological	forcings	of	full	catchments	and	intermediate	catchments.	The	precipitation,	and	mean	

air	temperature	have	an	increasing	trend	from	northwest	to	southeast.	The	sunshine	durations	are	high	in	the	northern	

areas	where	latitude	is	high,	and	the	maximum	value	is	8.7	hour/day.	Wind	speed	is	generally	high	in	the	northern	495 

mountainous	areas,	southwestern,	and	coastal	parts.	The	average	evaporation	is	positively	correlated	with	sunshine	

duration	and	is	higher	in	Yellow	River	basin	and	southwest	parts.	

We	calculated	nine	attributes	for	NSCD	based	on	meteorological	data	between	1	October	1990	and	30	September	2020	

to	reflect	aspects	of	climatic	characteristics.	Using	the	Global	Aridity	Index	and	Potential	Evapotranspiration	Climate	

Database	version	3(Zomer	and	Trabucco,	2022),	we	derived	the	reference	evapotranspiration	(ET0)	and	aridity	index.	500 

Aridity	 is	 often	 calculated	 as	 a	 function	 of	 precipitation,	 temperature	 and	 ET0,	 and	 quantifies	 the	 precipitation	

availability	for	atmospheric	water	demand.	Long-term	daily	precipitation,	reference	evapotranspiration,	and	aridity	

index	(Fig.	10f)	characterize	the	long-term	climatic	characteristics.	The	seasonality	of	precipitation	(Fig.	10g)	and	the	

fraction	of	precipitation	 falling	as	 snow	(not	 shown)	are	 two	attributes	 characterizing	seasonality,	which	yield	 the	

yearly	maps	of	sinusoidal	precipitation	cycle.	Short-term	events	(e.g.,	heavy	rainfall	and	drought)	are	characterized	by	505 

the	frequency	and	duration	of	heavy	precipitation/dry	days,	and	their	most	likely	seasons	of	occurrence	(Fig.	10h,	i).	

High	precipitation	 is	most	 likely	to	occur	 in	summer	(Fig,	10h)	 for	86	%	of	all	3254	catchments,	whereas	dry	days	

usually	occur	in	winter	(Fig,	10i)	for	56	%	of	them.	

One	key	limitation	of	the	NSCD	is	that	these	gauged	stations	are	unevenly	distributed	across	the	nation,	and	densely	

grouped	in	the	eastern	and	middle	parts,	which	may	affect	the	accuracy	for	some	catchments.	Nevertheless,	the	NSCD	510 

meteorological	dataset	has	been	widely	used	as	the	most	reliable	observational	reference	by	many	studies	(Gu	et	al.,	

2022).	It	is	produced	from	a	larger	number	of	gauged	stations	and	followed	by	strict	quality-assurance	procedures	and	

consistence-check.	Its	accuracy	and	completeness	of	each	meteorological	variable	from	1951	to	2020	are	significantly	

improved	compared	with	similar	data	products	in	China,	the	missing	rate	of	data	of	each	element	is	generally	below	

1%,	and	the	correct	rate	of	data	is	close	to	100%.	Relative	humidity	suspicious	rate	0.6%,	large	evaporation	suspicious	515 

rate	1.2%,	great	wind	suspicious	rate	1.6%,	the	suspicious	rate	of	other	elements	does	not	exceed	one	thousandth	(Hao	
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et	al.,	2021).	The	error	rate	of	sunshine	hours	is	one	ten	thousandth,	and	there	is	no	wrong	data	for	other	meteorological	

variables.	

	
Figure	10.	Distribution	of	selected	long-term	mean	meteorological	variables	and	climate	indices	of	intermediate	catchments	and	520 
full	catchments.	Each	category's	histogram	indicates	the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	
number	of	basins,	while	the	Y-axis	represents	each	subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	

3.4.3	Land	cover	characteristics	

We	provide	three	vegetation	indices	(EVI,	enhanced	vegetation	index;	LAI,	leaf	area	index;	NDVI,	normalized	difference	

vegetation	 index),	 two	 indicators	of	 land	use	 (GPP,	gross	primary	productivity;	NPP,	net	primary	production),	 two	525 

average	rooting	depths	(50	%	and	99	%),	and	10	land	cover	classes	in	each	catchment	(Table	S13).	LAI	was	derived	

from	the	MODIS	MCD15A3H	dataset	with	a	temporal	resolution	of	4	days	and	a	spatial	resolution	of	500	m	(Myneni	et	

al.,	2015)	and	used	for	characterizing	vegetation	growth.	NDVI	and	EVI	were	derived	from	the	MODIS	MOD13Q1	(Didan,	
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2021)	and	used	to	monitor	and	classify	vegetation.	These	vegetation	indices	were	computed	as	the	maximum,	minimum,	

or	difference	(e.g.,	LAImax,	LAImin,	and	LAIdiff).	LAImax	measures	the	maximum	evaporative	and	vegetation	interception	530 

capacity,	and	LAIdiff	shows	its	temporal	variations.	GPP	and	NPP	were	derived	from	MODIS	MOD17A2H	(Running	et	al.,	

2021a)	 and	MOD17A3HGF	 (Running	 et	 al.,	 2021b)	 dataset,	 respectively,	 and	 calculated	 for	 the	whole	 period	 of	 1	

February	2000	to	1	January	2022.	Meanwhile,	the	time	series	of	both	vegetation	indices	and	indicators	of	land	use	are	

also	provided	 in	 the	Res-CN.	Rooting	depths	 are	 important	parameters	 to	 characterize	 the	water	holding	 capacity	

underground	and	annual	evapotranspiration	of	topsoil.	We	calculated	two	average	rooting	depths	(i.e.,	50	%	and	99	%)	535 

based	on	the	IGBP	(International	geosphere–biosphere	programme)	classification	(Zeng	2001).	

Each	catchment	was	described	using	10	land	cover	classes	based	on	ESA	WorldCover	10	m	(Zanaga	et	al.,	2021).	This	

dataset	is	a	new	baseline	of	global	land	cover	product	at	10	m	spatial	resolution	for	2020	in	almost	near-real	time	based	

on	both	Sentinel-1	and	Sentinel-2	data.	Sentinel-1	can	provide	complimentary	information	on	the	observed	structural	

characteristics	of	land	cover	in	areas	where	the	Sentinel-2	images	were	covered	by	clouds.	Thus,	the	combination	of	540 

Sentinel-1	and	Sentinel-2	data	enables	mapping	land	cover	almost	in	real	time.	It	includes	11	land	cover	classes	and	an	

overall	accuracy	of	75%,	providing	valuable	information	for	food	security,	carbon	assessment,	biodiversity,	and	climate	

modelling.	The	dominant	class	and	fractions	of	each	class	were	computed	at	the	GEE	platform.	

Some	limitations	of	these	datasets	are	identified.	First,	misclassification	of	ESA	WorldCover	occurs	in	areas	of	irrigated	

agriculture	and	wetlands	due	to	the	high	similarity	of	their	hyperspectral	spectrum.	Second,	although	Res-CN	provide	545 

time	series	of	vegetation	indices,	it	should	be	noted	that	NDVI	often	provides	inaccurate	measurements	of	vegetation	

density,	the	accuracy	of	which	can	only	be	guaranteed	by	long-term	measurements.	In	addition,	NDVI	cannot	provide	

quantitative	estimates	of	vegetation	density,	so	other	attributes	(i.e.,	LAI)	are	provided	as	a	complement.	

Trees	are	prevalent	across	the	nation,	and	grasslands	and	croplands	are	another	two	dominant	land	cover	in	China.	

Grassland	has	higher	 coverage	 largely	 in	 the	Hai	River	Basin	and	 the	Yellow	River	Basin	 (Fig.	 11c).	Croplands	are	550 

widespread	in	China,	especially	in	the	Yellow	River,	Yangtze	River,	and	Huai	River	basins	with	a	low	mean	slope	(Fig.	

11d).	Fraction	of	barren	sparse	vegetation	is	quite	small	across	the	nation	(Fig.	11e).	Natural	wetlands	or	water	bodies	

are	mainly	distributed	in	the	Yangtze	River	Basin	and	areas	surrounding	the	Bo	seas,	and	these	water	bodies	are	mainly	

artificial	reservoirs	and	natural	lakes	(Fig.	11f).	Catchments	with	a	relatively	high	faction	of	snow	and	ice	are	mainly	

located	in	the	Tibet	plateau,	the	source	region	of	large	rivers	in	China	(not	shown).	A	small	proportion	of	the	catchment	555 

area	is	typically	considered	as	“built-up”,	and	6%	of	the	catchments	have	impervious	area	greater	than	0.05	(not	shown).	

There	is	a	spatial	correlation	between	LAImax	and	LAIdiff	with	trees	fraction	(CC	=	0.74	and	CC	=	0.60,	respectively).	LAIdiff	

has	values	similar	 to	LAImax	over	most	areas	but	should	be	smaller	 in	areas	with	a	high	proportion	of	 trees	due	 to	

permanent	 green	 cover.	Negative	 correlation	 is	 evident	 between	 the	NDVImax	 (Fig.	 11i,	 CC	 =	 −0.78)	 and	 the	mean	

catchment	elevation	(Fig.	9c).	560 
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Figure	11.	Distribution	 of	 selected	 land	 cover	 characteristics	 of	 intermediate	 catchments	 and	 full	 catchments.	 Each	 category's	
histogram	indicates	the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	number	of	basins,	while	the	Y-axis	
represents	each	subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	

3.4.4	Soil	&	geology	characteristics	565 

Res-CN	provided	154	attributes	to	characterize	physical	and	chemical	properties	of	soil	(Tables	S14).	The	pH	in	H2O,	

cation	exchange	capacity	(CEC),	bulk	density,	and	organic	carbon	content	were	determined	from	the	SoilGrids250m	

dataset	(SG250,	Hengl	et	al.,	2017).	The	SoilGrids250	dataset	predicted	soil	properties	at	six	different	soil	layers	(i.e.,	

0-	0.05m,	0.05-0.15m,	0.15-0.3m,	0.3-0.6m,	0.6-1m,	and	1-2m)	using	machine	learning	techniques,	utilizing	data	from	

approximately	150,000	soil	profiles	and	158	environmental	covariates	derived	from	remote	sensing	data	on	a	global	570 

scale.	Data	within	Res-CN	are	provided	for	each	soil	layer	and	all	soil	layers	using	depth-weighted	averaging	method.	

Soil	pH	is	an	important	variable	as	it	controls	many	other	soil	biological,	chemical,	and	physical	properties.	CEC	defines	



27 
 

the	sum	of	exchangeable	cations	that	soil	can	hold	and	is	therefore	a	measure	of	fertility	nutrient	retention	capacity. 

The	density	and	organic	carbon	content	refer	to	the	mass	of	organic	carbon	per	unit	volume	and	mass,	respectively.	

Besides	SG250,	the	dataset	of	soil	hydraulic	and	thermal	parameters	produced	by	Dai	et	al.	(2019)	was	also	used.	Dai	575 

et	al.	(2019)	generated	six	soil	layers	of	global	soil	hydraulic	and	thermal	parameters	with	four	products	of	vertical	

profiles	available	using	multiple	PTFs	(Pedotransfer	Functions)	based	on	SG250	and	soil	dataset	from	Shangguan	et	al.	

(2014).	We	adopted	the	products	with	the	vertical	resolutions	of	SG250	and	computed	soil	characteristics	(saturated	

water	content,	saturated	hydraulic	conductivity,	and	other	thermal	parameters)	for	all	soil	layers.	Additional	attributes	

derived	from	Shangguan	et	al.	(2013)	include	clay,	silt,	sand,	and	rock	fragment	proportions,	soil	profile	depth,	and	soil	580 

organic	carbon	content.	With	the	use	of	the	polygon	linkage	method,	this	database	provides	soil	physical	and	chemical	

attributes	 for	 land	 surface	modeling	 in	 China	 at	 a	 30	 arcsec	 resolution.	 Proportions	 of	 clay,	 silt,	 sand	 refer	 to	 the	

fractions	of	the	particles	<	0.002	mm,	particles	≥	0.002	mm	and	≤	0.05	mm,	and	particles	>	0.05	mm	and	<	2	mm	in	the	

fraction	of	particles	smaller	than	2	mm,	respectively.	SOC	is	a	key	variable	for	ecosystems	and	affects	moisture	regimes	

and	ground	thermal.	585 

Geology	characteristics	are	described	by	19	attributes	(i.e.,	subsurface	porosity,	permeability,	and	lithological	classes)	

derived	from	global	lithological	map	(GliM,	Hartmann	and	Moosdorf,	2012)	and	global	hydrogeology	maps,	(GLHYMPS,	

Gleeson	 et	 al.,	 2014)	 datasets	 (Table	 S15).	 The	 two	 important	 parameters	 for	 ground	water	modeling,	 subsurface	

porosity	and	permeability,	came	from	the	GLHYMPS.	Subsurface	porosity	is	a	measure	of	the	ability	of	the	subsurface	

to	store	water,	while	permeability	is	a	measure	of	the	ability	of	the	rock	to	transmit	fluids.	Both	these	two	parameters	590 

show	a	high	spatial	correlation	with	GliM	map,	as	hydraulic	properties	in	GLHYMPS	are	based	primarily	on	lithological	

classes	of	GLiM.	We	computed	the	catchment-level	characteristics	by	applying	an	arithmetic	mean	method	for	porosity	

and	arithmic	scale	geometric	mean	method	for	permeability.	The	lithological	classes	were	derived	from	the	GliM,	which	

was	created	by	summarizing	92	regional	lithological	maps	and	offers	three	classification	levels	of	detail.	In	this	study,	

we	 adopted	 the	 first	 level	 of	 GLiM,	 that	 has	 16	 lithological	 classes.	 Proportions	 of	 each	 lithological	 class	 and	 the	595 

dominant	class	are	documented	in	our	datasets.	

There	are	some	limitations	with	these	datasets.	Firstly,	The	GLHYMPS	module	is	primarily	useful	for	analyzing	regional	

scales,	i.e.,	scales	larger	than	5	km,	where	the	effects	of	local	heterogeneities	such	as	fault	zones	are	negligible	(Gleeson	

et	al.,	2014).	Secondly,	GLHYMPS	is	not	adequate	for	analysis	at	regions	dominated	by	unsaturated	processes	such	as	

deeply	weathered	soils,	as	it	is	modeled	for	saturated	conditions	(Huscroft	et	al.,	2018).	Thirdly,	data	quality	varies	600 

depending	on	location,	based	on	raw	regional	geological	maps	available	in	different	resolutions	and	data	quality.	In	this	

study,	the	resolution	of	the	Chinese	raw	data	sources	is	slightly	lower	than	that	of	GLiM	(Hao	et	al.,	2021).	

The	soil	pH	value	is	high	in	the	northern	and	northeastern	China,	and	the	saturated	water	content	is	low	in	this	area	

(Fig.	12a	and	b).	High	values	of	CEC	can	be	found	in	central	and	northeastern	China	and	forested	parts	on	the	Qinghai–

Tibet	Plateau	(Fig.	12c).	The	clay	content	 is	 low	 in	 the	northern	China,	while	 the	sand	content	shows	 the	opposite	605 
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pattern	(Fig.	12d	and	e).	The	silt	content	has	a	wide	predominance	pattern	in	China,	particularly	in	the	middle	and	

northeastern	parts	(Fig.	12f).	Moreover,	we	found	that	soil	characteristics	are	correlated	with	other	attributes	from	

Res-CN	as	they	are	predicted	by	fusing	multisource	covariates	such	as	climate	and	landscape	attributes.	For	example,	

the	soil	texture	(i.e.,	sand,	silt,	and	clay	contents)	shows	similar	pattern	of	the	aridity	index	(Fig.	12e	and	Fig.	10f).	SOC	

has	a	high	correlation	value	with	surface	slope	(Fig.	12c	and	Fig.	10b,	R2	=	0.94).	The	geology	attributes	have	a	clear	610 

latitude	distribution,	and	the	main	lithological	classes	include	acid	plutonic	rocks	(21%	of	the	catchments),	siliciclastic	

sedimentary	(20%),	mixed	sedimentary	(19%),	and	carbonate	sedimentary	(17%).	Medium	subsurface	porosity	and	

high	permeability	are	typically	in	north	and	coastal	surrounding	the	Bohai	Sea	areas	with	abundant	unconsolidated	

sediments,	and	high	porosity	and	 low	permeability	are	often	associated	with	mixed	sedimentary	rocks	 in	northern	

Inner	Mongolia,	western	Yunnan–Guizhou	Plateau	and	southern	Qinghai–Tibet	Plateau	(Fig.	12h,	i,	and	e).	Interestingly,	615 

high	values	of	subsurface	porosity	are	not	necessarily	accompanied	by	high	values	of	permeability,	producing	a	more	

heterogeneous	spatial	pattern	(Fig.	12h)	than	that	in	Fig.	12i.	There	may	be	differences	in	permeability	and	porosity	

due	to	the	different	rock	structures	of	GLiM	(Gleeson	et	al.,	2014).	
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Figure	12.	Distribution	of	selected	soil	and	geology	characteristics	of	intermediate	catchments	and	full	catchments.	Each	category's	620 
histogram	indicates	the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	number	of	basins,	while	the	Y-axis	
represents	each	subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	

3.4.5	Anthropogenic	activity	characteristics	

We	 computed	 four	 categories	 of	 anthropogenic	 activities	 in	 the	 catchments,	 including	 population	 count,	 human	

footprint,	nighttime	lights,	and	road	density	(Table	S16).	Population	counts	were	derived	from	the	GPW	v4.11	(Gridded	625 

population	of	the	world,	Center	for	International	Earth	Science	Information	Network	–	CIESIN	-	Columbia	University,	

2018).	This	collection	produces	human	population	estimates	for	five	years	(i.e.,	2000,	2005,	2010,	2015,	and	2020)	at	

a	gridded	resolution	of	30	arc-seconds.	Human	footprint	is	a	measure	of	human	activities	that	use	natural	resources	on	

Earth	and	was	extracted	from	the	Global	Human	Footprint	dataset	(Venter	et	al.,	2016).	This	database	measures	the	

cumulative	environmental	impact	of	indirect	and	direct	human	activities	in	1993	and	2009,	and	was	produced	by	eight	630 
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inputs:	 electric	 infrastructure,	 population	 density,	 built	 environments,	 pastures,	 crop	 lands,	 roads,	 railroads,	 and	

navigable	waterways.	Nighttime	lights	are	a	measure	of	human	activity	intensity	and	were	derived	from	the	DMSP-OLS	

Nighttime	Lights	version	4	(Defense	Meteorological	Program-Operational	Line-Scan,	Doll,	2008).	This	database	can	

detect	visible	and	near-infrared	emission	sources	at	night	and	consists	of	cloud-free	composites	made	using	all	 the	

available	archived	DMSP-OLS	smooth	resolution	data	at	a	resolution	of	30	arc-seconds.	The	“avg_lights_x_pc”	in	this	635 

dataset	is	used	in	this	study	and	represents	the	mean	value	of	cloud-free	light	detections	in	the	visible	band.	The	road	

density	was	obtained	from	Global	Roads	Inventory	Project	(Meijer	et	al.,	2018),	providing	global	raster	datasets	of	road	

density	at	a	5	arcminutes	spatial	resolution.	Using	60	geospatial	datasets	on	road	infrastructure,	this	inventory	gathers,	

harmonizes,	and	integrates	over	21	million	km	of	roads	by	country.	

These	datasets	are	subject	to	some	limitations.	First,	cumulative	pressures	of	human	footprint	are	static	through	time	640 

due	to	a	lack	of	available	data,	which	would	lead	to	an	underestimation	of	human	footprint	if	those	pressures	expanded	

at	an	above-average	rate.	Second,	some	static	pressures,	like	the	pollution	and	invasive	species	are	not	considered	in	

the	cumulative	pressures	of	human	footprint.	Third,	the	GRIP	datasets	cannot	quantify	historic	road	expansion	due	to	

the	missing	information	on	the	year	of	construction.	Fourth,	DMSP-OLS	has	the	blooming	effect	(i.e.,	overestimation	of	

lit	area)	due	to	the	low	spatial	resolution	and	the	reflectance	of	light	from	adjacent	water	bodies.	645 

Figure	13	illustrates	the	spatial	distribution	of	four	anthropogenic	indices	in	the	catchments.	Road	density,	population	

count,	lights,	and	human	footprint	show	the	similar	patterns,	suggesting	that	intense	human	activities	are	distributed	

in	the	coastal	lines	surrounding	the	East	and	Bo	seas,	middle,	and	northeastern	China	and	there	is	almost	no	human	

activity	in	the	northwestern	China	due	to	high	elevation	and	harsh	environment.	
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	650 
Figure	13.	Distribution	of	human	activity	characteristics	of	intermediate	and	full	catchments.	Each	category's	histogram	indicates	
the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	number	of	basins,	while	the	Y-axis	represents	each	
subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	

4	Data	availability	

Res-CN	archive	can	be	found	here	https://doi.org/10.5281/zenodo.7664489	(Shen	et	al.,	2022a).	They	are	distributed	655 

with	a	CC-BY	license.	The	files	provided	are	(A)	shapefiles,	(B)	full	catchments	containing	all	catchment-level	attributes	

such	as	climate,	topographic,	 land	cover,	soil,	geological,	anthropogenic	activities,	and	time	series	of	meteorological	

variables,	 (C)	 intermediate	 catchments,	 (D)	 reservoir	 states	 (i.e.,	water	 level,	water	 surface	 area,	 evaporation,	 and	

storage	anomaly),	(E)	info	English	file	containing	more	information	of	RES-CN,	and	validation	figures	containing	the	
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figures	depicting	the	time	series	of	reservoir	states	and	detailed	evaluation	reports	based	on	in	situ	data	when	available.	660 

All	input	datasets	are	summarized	in	the	supplements	and	kindly	acknowledged.	

5	Summary,	applications	and	outlook	

In	this	study,	we	have	produced	a	comprehensive	and	extensive	data	of	reservoir-catchment	characteristics	in	China,	

Res-CN,	which	complementarily	improved	the	existing	reservoir	datasets.	We	demonstrated	that	the	construction	of	

Res-CN	involved	a	first	known	effort	to	construct	catchment-level	characteristics	of	reservoirs	for	our	delineated	full	665 

catchments	and	intermediate	catchments	of	reservoirs.	512	static	catchment-level	attributes	for	3254	reservoirs	in	six	

categories	(i.e.,	reservoir	and	catchment	body	characteristics,	topography,	climate,	soil	and	geology,	land	cover	and	use,	

and	anthropogenic	activity	characteristics)	are	included	in	Res-CN.	Additionally,	15	climatic	variables	were	extracted	

at	 daily	 scale,	 which	 can	 drive	 machine	 learning	 models	 or	 hydrological	 models	 for	 simulations.	 Alongside	 the	

catchment-level	attributes,	we	produced	a	significantly	enhanced	spatial	and	temporal	coverage	(e.g.,	67%	increase	in	670 

spatial	resolution	of	water	level	and	225%	increase	in	storage	anomaly)	of	water	level	(data	available	for	20%	of	3,254	

reservoirs),	water	surface	area	(99%),	storage	anomaly	(92%),	and	evaporation	(98%)	by	utilizing	multiple	satellites	

such	as	operational	satellite	altimeters	and	imagery	data.	In	situ	data	of	138	reservoirs	are	employed	in	this	study	as	a	

valuable	reference	for	evaluation,	thus	enhancing	our	confidence	in	the	data	quality	and	enhancing	our	understanding	

of	accuracy	of	current	satellite	datasets.	We	have	considered	and	discussed	the	deficits,	limitations,	and	uncertainties	675 

of	Res-CN	for	further	applications.	

We	envision	that	Res-CN	with	its	comprehensive	and	extensive	attributes	can	provide	strong	supports	to	a	wide	range	

of	applications	and	disciplines.	Firstly,	our	two	types	of	catchments	along	with	their	catchment-level	attributes	allow	

investigations	within	individual	catchments	and	interconnected	river	networks.	For	example,	as	illustrated	in	Figure	2,	

users	may	quantify	the	relative	contributions	of	upstream	reservoirs	and	local	drainage	catchment	on	water	quality	680 

(e.g.,	algae	contributions	and	water	color)	of	downstream	reservoir	by	tracking	temperature	and	nutrient	flows	from	

upstream	reservoirs	and	intermediate	catchments	(e.g.,	Hou	et	al.,	2022;	Yang	et	al.,	2022).	Besides,	water	and	sediment	

transfer	can	be	also	more	accurately	simulated	in	such	a	spatially	explicit	context	if	appropriate	approaches	are	used.	

Machine-learning	methods	make	it	possible	to	predict	reservoir	storage	change	at	1-	to	3-month	lead	from	reservoir	

upstream	attributes	and	time-series	of	reservoir	states	(Tiwari	et	al.,	2019).	Secondly,	Res-CN	provide	thus	far	the	most	685 

comprehensive	 reservoir	 states	 in	China	 for	 assessing impacts	 of	 reservoir	 regulation	 and	dynamics.	Tracking	 the	

spatiotemporal	balance	of	reservoir	evaporative	and	water	storage	can	provide	a	basis	for	local	water	management	in	

a	warming	climate	(Di	Baldassarre	et	al.,	2019).	The	reservoir	operational	rules	or	impacts	of	reservoir	regulation	on	

flow	regimes	are	possibly	to	be	inferred	from	reservoir	water	dynamics	in	Res-CN	(Vu	et	al.,	2022).	This	is	particularly	

true	if	the	reservoir	inflow	is	also	utilized.	Recently,	the	gridded	natural	runoff	provided	by	Gou	et	al.	(2021)	provides	690 
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exciting	opportunities	for	quantifying	the	human	water	regulation	in	combination	with	Res-CN	(Dang	et	al.,	2022;	Shin	

et	al.,	2020).	Thirdly,	our	extracted	catchment-level	attributes	can	contribute	to	a	better	understanding	of	reservoir	

water	amount	and	water	quality	changes	by	spatially	incorporating	geophysical	and	anthropogenic	characteristics	of	

their	 upstream	 catchments	 and	 their	 respective	 contributions.	 For	 example,	 cropland	 in	 reservoir	 upstream	

catchments	 controls	 the	 nutrient-driven	 primary	 production,	 while	 wetland	 coverage	 affects	 dissolved	 organic	695 

material	 transport	downstream,	ultimately	 impacting	primary	production	and	CO2	emissions	 in	 lakes	(Balmer	and	

Downing,	2011;	Borges	et	al.,	2022;	Maberly	et	al.,	2013).	Gradient	and	altitude	in	the	reservoir	geological	attributes	

may	affect	greenhouse	gas	emissions	and	biogeochemistry	of	a	reservoir	(Casas-Ruiz	et	al.,	2020).	Furthermore,	these	

catchment-level	attributes	can	be	used	to	explore	water	fluxes	and	sediment	transportation	even	in	reservoirs	that	

have	not	been	sampled.	Studies	on	cascading	patterns	in	reservoir	attributes	found	that	each	attribute	may	display	700 

linear	function	of	catchment	area,	concluding	that	cascading	patterns	of	each	attribute	have	different	implications	for	

dam	management	(Faucheux	et	al.,	2022).	For	instance,	one	study	combined	knowledge	of	catchment	attributes	with	

economic,	climate,	and	landscape	data	to	inform	reservoir	removal	decisions	in	California's	Central	Valley	basin	(Null	

et	 al.,	 2014).	 Lastly,	 carbon	 dioxide	 emissions	 from	 reservoirs	 show	 significant	 spatial	 and	 seasonal	 variation,	

highlighting	the	importance	of	hydrology	in	terrestrial–reservoir	carbon	transfers	and	the	need	to	consider	this	effect	705 

when	plumbing	terrestrial	carbon	budgets.	Res-CN	also	offers	exciting	opportunities	to	address	changes	in	reservoir	

storage	that	may	be	linked	to	carbon	dioxide	emissions	changes.	

Although	Res-CN	presents	significant	improvements	over	existing	datasets	and	holds	potential	for	various	applications	

identified	above,	a	few	limitations	should	be	acknowledged.	Res-CN	is	generated	using	GeoDAR	v1	shapefiles	(Wang	et	

al.,	2022)	instead	of	the	newly	produced	datasets	by	Song	et	al.	(2022),	which	added	an	additional	near	sixty	thousand	710 

very	small	 reservoir	 shapefiles	 (<	1	km2).	As	 this	 study	aims	 to	provide	a	comprehensive	and	extensive	dataset	of	

reservoir-catchment	 characteristics	 in	 China	 for	 a	 better	 understanding	 of	 reservoir	 impacts	 on	 hydrological	 and	

biochemical	cycles,	these	thousands	of	very	small	reservoirs	are	not	included	in	our	study.	Meanwhile,	it	is	currently	

not	feasible	to	generate	satellite-based	datasets	for	these	small	reservoirs	due	to	the	limitations	of	current	satellite	

altimetry	missions,	which	are	unable	to	detect	such	reservoirs	because	of	the	sparsity	of	their	altimetric	ground	tracks.	715 

These	additional	small	reservoirs	only	account	for	8%	of	total	water	capacity	in	China.	Nonetheless,	users	can	freely	

access	 our	 codes	 to	 calculate	 any	 reservoir	 attributes	 for	 individual	 applications,	 other	 areas,	 and	 can	 enrich	 the	

inventory	if	new	data	available.	

6	Code	availability	

All	scripts	for	generating	our	reservoir	datasets	are	available	in	the	data	product.	720 
Deleted: publicly	

Deleted: 	(Once	the	paper	accepted,	it	would	be	uploaded	at	the	
same	DOI	of	Res-CN)

Deleted: 	A	copy	of	all	scripts	is	available	for	peer	reviewers	
upon	request.725 
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Appendix.	

 
Figure	A1.	Illustration	of	the	datasets	provided	in	our	Res-CN.	

 
Figure	A2.	Flowchart	of	the	algorithm	for	generating	reservoir	upstream	catchments.	745 
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Figure	A3.	Flowchart	for	generating	reservoir	upstream	catchment-level	characteristics.	(Overview	of	the	methodology	at	the	left	
panel,	we	give	the	detailed	steps	for	generating	each	attribute	based	on	our	provided	codes.	Users	can	freely	access	our	codes	in	our	
Res-CN	product.		
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Québec	 Driven	 by	 Watershed	 Slope,	 JGR	 Biogeosciences,	 126(1),	 e2020JG005863,	995 

https://doi.org/10.1029/2020JG005863,	2020.		

Maavara,	T.,	Chen,	Q.,	Van	Meter,	K.,	Brown,	L.	E.,	Zhang,	J.,	Ni,	J.,	and	Zarfl,	C.:	River	dam	impacts	on	biogeochemical	

cycling,	Nature	Reviews	Earth	&	Environment,	1,	103–116,	2020.		

Barbarossa,	V.,	Schmitt,	R.	J.,	Huijbregts,	M.	A.,	Zarfl,	C.,	King,	H.,	and	Schipper,	A.	M.:	Impacts	of	current	and	future	large	

dams	on	the	geographic	range	connectivity	of	freshwater	fish	worldwide,	P.	Natl.	Acad.	Sci.	USA,	117,	3648–1000 

3655,	2020.		

Carpenter,	S.	R.,	Stanley,	E.	H.,	and	Vander	Zanden,	M.	J.:	State	of	the	world’s	freshwater	ecosystems:	physical,	chemical,	

and	biological	changes,	Annu.	Rev.	Env.	Resour.,	36,	75–99,	2011.		

Gleick,	P.	H.	The	World’s	Water	2008-2009	79–100	(Island	Press,	2009).	

Wang,	X.,	Xiao,	X.,	Zou,	Z.	Dong,	J.,	Qin,	Y.,	Doughty,	R.	B.,	Menarguez,	M.	A.,	Chen,	B.,	Wang,	J.,	Ye,	H.,	Ma,	J.,	Zhong,	Q.,	1005 

Zhao,	B.,	and	Li.	B.:	Gainers	and	losers	of	surface	and	terrestrial	water	resources	in	China	during	1989–2016,	

Nat.	Commun.,	11,	3471,	https://doi.org/10.1038/s41467-020-17103-w,	2020.	

Song,	C.,	Fan,	C.,	Zhu,	 J.,	Wang,	 J.,	 Sheng,	Y.,	Liu,	K.,	Chen,	T.,	Zhan,	P.,	Luo,	S.,	Yuan,	C.,	and	Ke,	L.:	A	comprehensive	

geospatial	 database	 of	 nearly	 100 000	 reservoirs	 in	 China,	 Earth	 Syst.	 Sci.	 Data,	 14,	 4017–4034,	

https://doi.org/10.5194/essd-14-4017-2022,	2022.	1010 

Huziy, O., and Sushama, L.: Impact of lake–river connectivity and interflow on the Canadian RCM simulated regional climate 

and hydrology for Northeast Canada, Climate Dynamics, 48, 709-725, https://doi.org/10.1007/s00382-016-3104-9, 

2017. 	

Stieglitz, M., Shaman, J., McNamara, J., Engel, V., Shanley, J., and Kling, G. W.: An approach to understanding hydrologic 

connectivity on the hillslope and the implications for nutrient transport, Global Biogeochemical Cycles, 17(4), 1105, 1015 

https://doi.org/10.1029/2003GB002041, 2003. 

Soranno, P. A., Cheruvelil, K. S., Webster, K. E., Bremigan, M. T., Wagner, T., and Stow, C. A.: Using landscape limnology 

to classify freshwater ecosystems for multi-ecosystem management and conservation, Bioscience, 60(6), 440–454, 

https://doi.org/10.1525/bio.2010.60.6.8, 2010. 


