
Dear Handling topical editor Dalei Hao, 

Thank you for your prompt and thorough handling of our manuscript "essd-2022-422." 
We are grateful for your expeditious review and appreciated your swift response to our 
submission. We are pleased to receive the positive feedback from the referees on our 
datasets. We have meticulously considered all of the comments and made the 
appropriate modifications and revisions as recommended. If you require any further 
assistance, please do not hesitate to contact us. 

Here, we briefly summarize the main changes in our revised manuscript considering 
the moderate issues raised by the reviewers. 

§ We uploaded all validation figures in our datasets to help the readers to better 
understand our study, to address the main issue raised by Reviewer 1. 

§ We have corrected some mistakes in the supplementary materials, thoroughly 
proofread the manuscript and made the necessary revisions to improve the 
clarity of our manuscript, to address the main issue raised by Reviewer 1 and 2. 

§ We have discussed the uncertainties of the dataset in the revised manuscript 
(section 3.3.1-3.3.3), to address the main issue raised by Reviewer 2. 

§ We added more explanations in the introduction and summary, applications, 
and outlook to argue the value of reservoir-catchment attributes in our datasets, 
to address the main issue raised by Reviewer 2 and Reviewer 3. 

§ We performed strict data quality control to eliminate any potentially 
problematic data points, and data version 2 is released as the final dataset for 
our manuscript that is under consideration for being published in ESSD. 

Hope the revised manuscript and data are to your satisfaction and meet the standard 
of ESSD journal. 

Best, 

Youjiang Shen. 

  



Reviewer #1 Comment on essd-2022-422 (Anonymous Referee #1) 

Dear Anonymous Referee #1, 

We have carefully reviewed your comments and have made the necessary revisions to 
our manuscript. Please find attached a point-by-point response to your feedback, 
marked in purple. We hope that our revised manuscript (in red) can help the readers to 
better understand our study. 

Kind regards. 

General comments 

Shen et al. presented a very comprehensive reservoir dataset for China, Res-CN. The 
new dataset includes water area, water level, storage variations, and corresponding 
catchment characteristics that derived from multiple sources (i.e., satellite, reanalysis, 
and observation, etc). The authors also validated Res-CN with in-situ observations at 
selected reservoirs to demonstrate the accuracy of the dataset. It provides valuable 
information for hydrological modelers to investigate water managements and the 
impacts on (eco)hydrological cycle. Although I think Res-CN represents a significant 
contribution to improve our understanding of reservoir dynamics and water 
management in hydrological modeling, some parts were not clearly presented 
/explained in the main text because Res-CN contains extensive information. 
Additionally, some figures were missing in the supplementary materials. So, I 
recommend revision before publication. Please find my comments in the following. 
R1C0: We thank you for your thoughtful review of our manuscript and for recognizing 
the comprehensive nature of our Res-CN dataset for China. We are pleased to hear 
that you agree that our dataset, which includes a variety of data sources such as 
satellite, reanalysis, and observation, can provide valuable information for hydrological 
modelers to better understand water management and the (eco)hydrological cycle. 
We appreciate your feedback on the presentation of our work and understand that the 
extensive information included in Res-CN may have led to some parts being less 
clearly explained in the main text and supplementary. We have carefully reviewed your 
comments and made the necessary revisions to improve the clarity of our manuscript. 
We have also corrected some mistakes in the supplementary materials. 
We thank you for the opportunity to revise our manuscript before publication, and we 
hope that our updated version meets the standards of the journal. We hope that our 
Res-CN dataset can serve as an important resource for hydrological modelers and 
researchers in the field, and we appreciate your time and effort in reviewing our work. 
If you have any further suggestions or comments, please do not hesitate to let us 
know. 



Major Comments 

1. The authors mentioned in the introduction Line 99 that in-situ data of 138 reservoirs 
were used to validate the Res-CN, but the validations at a few reservoirs are shown in 
the result section, with summary in the main text. It is necessary to show the 
validations explicitly for all the 138 reservoirs that demonstrate the accuracy of Res-CN. 

R1C1: We apologize for the inadvertent omission of the validation figures for the 138 
reservoirs in our Res-CN dataset. We have taken corrective measures by uploading the 
figures to the link of our Res-CN data product 
(https://doi.org/10.5281/zenodo.7664489), and we kindly request that you access 
them from there. 

Considering the extensive information contained within the supplementary file, we 
recognize the potential benefits of incorporating the validation figures - which, due to 
their size, span multiple pages - in our data product to facilitate user access and 
convenience. However, we also recognize the importance of maintaining a balance 
between completeness and conciseness in the main text. Consequently, we have 
presented only a subset of validations for select reservoirs alongside the overall 
evaluation accuracy. Nevertheless, we would like to assure users that all validation 
information is available in the data products. We are confident that this balance 
between completeness and conciseness is in line with the expectations of our readers, 
and we encourage them to refer to the data products for more detailed information. 

The validation figures for all 138 reservoirs can be found in the "validation_figures" 
folder, which includes the time series of reservoir water level, water area, storage 
variation, and evaporation. In the "water level" directory, the time series of reservoir 
water level are available in two modes, i.e., high rate product and standard rate, along 
with their comprehensive evaluation reports and figures in PDF and TXT files. The 
"water area" directory provides the monthly area time series of reservoirs, 
accompanied by their comprehensive evaluation Excel files, including CC values 
compared with satellite-based water level, in situ water level, and other areal time 
series from other studies. Finally, the "storage variation" directory includes the time 
series and comprehensive evaluation figures in PDF files, which include statistical 
metrics. 

Thank you for your feedback, and we hope that the inclusion of these validation 
figures will facilitate the use of our Res-CN dataset. 

2. There are a lot of information provided by Res-CN, but some are not clearly 
explained. It mentioned in the introduction that 3,254 reservoirs were presented in this 
dataset, but in Table 2, the topography are available for 3,689 reservoirs. Table S10 



summarized 18 attributes of topography, but it listed 19 attributes in Table 2. I can find 
23 attributes in Table S13 for land cover. In addition, please clarify how the 173 is 
estimated from Table S14-S15 for the Soil & Geology. And how the 288 attributes are 
identified from Table S16 for Anthropogenic activity? Please clarify Table 2 and clearly 
link to the supplementary materials. 

R1C2: Thank you for bringing up your concerns regarding the Table 2 and tables in the 
supplementary. 

1. For attributes of topography, we indeed provided 19 attributes and made 
corrections in Table S10, and associated texts in the main text section 3.4.1. 

Please find the modified Tables below. 

Table	S10.	Attributes	of	topography	provided	in	the	Res-CN.	

Attribute	 Unit	 Description	 Data	source	and	reference	

length m	

The	length	of	the	main	stream	measured	from	
the	basin	outlet	to	the	remotest	point	on	the	
basin	boundary.	The	main	stream	is	identified	
by	starting	from	the	basin	outlet	and	moving	up	
the	catchment.	

Subramanya	(2013)	

area km2	 Calculated	catchment	area	
Merri-Hydro	(Yamazaki	et	al.,	
2019),	GeoDAR	(Wang	et	al.,	
2022)	

elev m	 Mean	catchment	elevation	 Merit-DEM	(Yamazaki	et	al.,	
2019)	

elev_max m	 Maximum	catchment	elevation	 See	above	

elev_min m	 Minimum	catchment	elevation	 See	above	

elev_std m	 Standard	deviation	of	elevation	in	catchment	 See	above	

elev_range m	 Range	of	catchment	elevation	(maximum	minus	
minimum	elevation)	 See	above	

slope m	km-1	 Mean	catchment	slope,	Horn	(1981)	 See	above	

mvert_dist km	
Horizontal	distance	from	the	farthest	point	of	
the	catchment	to	the	corresponding	gauge	
(length	axis)	

Merri-Hydro	(Yamazaki	et	al.,	
2019)	

mvert_ang degree	

Angle	between	the	north	direction	and	
connection	from	farthest	point	of	catchment	to	
the	corresponding	gauge	(length	axis);	e.g.,	
direction	from	north	(farthest	catchment	point)	
to	south	(gauge):180	degree,	direction	from	
east	to	west:	270	degree	

See	above	

elongation_ratio -	

Ratio:	elongation	ratio,	i.e.,	ratio	between	the	
diameter	of	an	equivalent	circle	and	the	area	of	
the	catchment	area	to	its	length,	Schumm	
(1956)	

Subramanya,	K.	(2013)	

strm_dens km	km-2	 Ratio:	stream	density,	i.e.,	ratio	of	lengths	of	
streams	and	the	catchment	area	 See	above	



resArea km2	 reservoir	area.	 Wang	et	al.	(2022)	

form_factor -	 Ratio:	catchment	area	/	(length)2	 Subramanya,	K.	(2013)	

shape_factor -	 Ratio:	(catchment	length)2	/	catchment	area	 See	above	

circulatory_ratio -	 Ratio:	perimeter	of	the	catchment	/	perimeter	
of	the	circle	whose	area	is	that	of	the	basin	 See	above	

compactness_coefficient -	 Ratio:	perimeter	of	the	catchment	/	perimeter	
of	the	circle	whose	area	is	that	of	the	basin	 See	above	

resArearatio -	 Ratio:	reservoir	area	/	catchment	area	
Merri-Hydro	(Yamazaki	et	al.,	
2019),	GeoDAR	(Wang	et	al.,	
2022)	

relief -	 Ratio:	mean	catchment	elevation	/	Maximum	
catchment	elevation	 See	above	

 
Main text: 19 topographic attributes are provided in Res-CN (Table S10). 

2. For attributes of land cover, we indeed provided 23 attributes as shown in Table 
S13, we have corrected it to 23 in Table 2. 

3. A total of 173 attributes pertaining to soil and geology are provided. Specifically, 
Table S14 presents 28 distinct soil attributes while Table S1 describes 19 
geology attributes. Within the 28 soil attributes, 21 are represented across 7 
levels encompassing six soil layers as well as the entire soil layer. An instance of 
this is the cation exchange capacity (CEC) of the soil, which has 7 associated 
attributes denoted as cec_1, cec_2, …, cec_6, and cec, indicating the CEC of the 
first to sixth soil layers and the entire soil layer. More explanations are added in 
the supplementary tables. 

Please find the modified Tables below. 

Table	S14.	Attributes	of	soil	provided	in	the	Res-CN.	

Attribute	 Unit	 Description	 Data	source	

bdod* kg	dm-3	 Bulk	density	of	the	fine	earth	fraction	 SoilGrids250	m	(Hengl	et	al.,	2017)a	

cec* cmol	kg-1	 Cation	exchange	capacity	of	the	soil	 See	above	

soc* g	kg-1	 Soil	organic	carbon	content	in	the	fine	
earth	fraction	 See	above	

phh2o* 10	 Soil	pH	 See	above	

pdep cm	 Soil	profile	depth	 Shangguan	et	al.	(2013)	

cl %	 Percentage	of	clay	content	of	the	soil	
material	 See	above	

sa %	 Percentage	of	sand	content	of	the	soil	
material	 See	above	

por cm3 cm-3	 Porosity	 See	above	



si %	 Percentage	of	silt	content	of	the	soil	
material	 See	above	

grav %	 Rock	fragment	content	 See	above	

som %	 Soil	organic	carbon	content	 See	above	

log_k_s* cm	d-1	 Log-10	transformation	of	saturated	
hydraulic	conductivity	

Soil	hydraulic	and	thermal	
parameters	(Dai	et	al.,	2019)a	

theta_s* cm3 cm-3	 Saturated	water	content	 See	above	

tksatu* W	m-1	K-
1	

Thermal	conductivity	of	unfrozen	
saturated	soils	 See	above	

csol* J/(m3K)	 Volumetric	heat	capacity	of	soil	solids	in	a	
unit	soil	volume	 See	above	

lambda* -	 Pore	size	distribution	index	for	the	
Campbell	model	 See	above	

log_vgm_n* -	 Log-10	transformation	of	a	shape	
parameter	for	the	VG	model	 See	above	

psi_s* cm	 Saturated	suction	for	the	Campbell	model	 See	above	

tkdry* W	m-1	K-
1	 Thermal	conductivity	of	dry	soils	 See	above	

tksatf* W	m-1	K-
1	

Thermal	conductivity	of	frozen	saturated	
soils	 See	above	

vf_clay_s* cm3 cm-3	 Volumetric	fration	of	clay	 See	above	

vf_gravels_s* cm3 cm-3	 Volumetric	fration	of	gravel	 See	above	

vf_om_s* cm3 cm-3	 Volumetric	fration	of	SOM	 See	above	

vf_quartz_mineral_s* cm3 cm-3	 Volumetric	fration	of	quartz	within	
mineral	soils	 See	above	

vf_sand_s* cm3 cm-3	 Volumetric	fration	of	sand	 See	above	

vf_silt_s* cm3 cm-3	 Volumetric	fration	of	silt	 See	above	

vgm_alpha* cm-1	 The	inverse	of	the	air-entry	value	for	the	
VG	model	 See	above	

vgm_theta_r* cm3 cm-3	 Residual	moisture	content	for	the	VG	
model	 See	above	

*	Within	the	aforementioned	28	soil	variables,	21	variables	marked	with	*	are	represented	across	7	levels	encompassing	
six	soil	layers	as	well	as	the	entire	soil	layer.	An	instance	of	this	is	the	cation	exchange	capacity	(CEC)	of	the	soil,	which	has	
7	associated	attributes	denoted	as	cec_1,	cec_2,	…,	cec_6,	and	cec,	indicating	the	CEC	of	the	first	to	sixth	soil	layers	and	the	
entire	soil	layer,	i.e.,	at	six	layers	of	0–0.05,	0.05–0.15,	0.15–0.30,	0.30–0.60,	0.60–1.00,	and	1.00–2.00m,	as	well	as	the	
whole	soil	layer.	In	this	sense,	we	provided	154	soil	attributes.	
	
Main text: Res-CN provided 154 attributes to characterize physical and chemical 
properties of soil (Tables S14). 

4. A total of 288 attributes pertaining to soil and geology are provided. Within the 
population category, there are five included attributes, namely 
population_2000, population_2005, population_2010, population_2015, and 
population_2020. As for the Nighttime light category, which comprises of 
“avg_vis”, “stable_lights”, “cf_cvg”, and “avg_lights_x_pct”, both the mean and 



sum values for each variable are provided for all available time frames. To 
illustrate, the variable mean_cf_cvg_101994 denotes the mean value of cf_cvg 
for the month of October in 1994. Accordingly, a total of 288 anthropogenic 
attributes have been provided. More explanations are added in the 
supplementary tables. 

Please find the modified Tables below. 

Table	S16.	Attributes	of	anthropogenic	activity	provided	in	the	Res-CN.	

Attribute	 Unit	 Description	 Data	source	

population* -	 Population	for	the	years	2000,	2005,	2010,	
2015,	and	2020	

Gridded	Population	of	
the	World	(GPW)	
database	v4.11	

avg_vis* -	 The	average	of	the	visible	band	digital	
number	values	with	no	further	filtering	

DMSP-OLS	Nighttime	
Lights	v4	dataset	(Doll,	
2008)	

stable_lights* -	 The	cleaned	up	avg_vis	contains	the	lights	
from	cities,	towns,	and	other	sites	with	
persistent	lighting,	including	gas	flares.	
Ephemeral	events,	such	as	fires,	have	been	
discarded.	The	background	noise	was	
identified	and	replaced	with	values	of	zero	

See	above	

cf_cvg* -	 Cloud-free	coverages	tally	the	total	number	
of	observations	that	went	into	each	30-arc	
second	grid	cell.	This	band	can	be	used	to	
identify	areas	with	low	numbers	of	
observations	where	the	quality	is	reduced.	

See	above	

avg_lights_x_pct* -	 The	average	visible	band	digital	number	
(DN)	of	cloud-free	light	detections	
multiplied	by	the	percent	frequency	of	light	
detection.	The	inclusion	of	the	percent	
frequency	of	detection	term	normalizes	the	
resulting	digital	values	for	variations	in	the	
persistence	of	lighting.	For	instance,	the	
value	for	a	light	only	detected	half	the	time	
is	discounted	by	50%.	Note	that	this	product	
contains	detections	from	fires	and	a	variable	
amount	of	background	noise	

See	above	

reproject_grip4_total_dens_m_km2 m	
km-2	

Road	density	 Global	Roads	Inventory	
Project	(GRIP)	dataset	
(Meijer	et	al.,	2018)	

reproject_hfp2009 -	 The	Human	Footprint	camp	of	cumulative	
pressures	on	the	environment	in	2009	

Global	Human	Footprint	
v2	dataset	(Venter	et	al.,	
2016)	

reproject_hfp1993 	 The	Human	Footprint	camp	of	cumulative	
pressures	on	the	environment	in	1993	

Global	Human	Footprint	
v2	dataset	(Venter	et	al.,	
2016)	

* Within	the	population	category,	there	are	five	included	attributes,	namely	population_2000,	population_2005,	
population_2010,	population_2015,	and	population_2020.	As	for	the	Nighttime	light	category,	which	comprises	of	avg_vis,	
stable_lights,	cf_cvg,	and	avg_lights_x_pct,	both	the	mean	and	sum	values	for	each	variable	are	provided	for	all	available	
time	frames.	To	illustrate,	the	variable	mean_cf_cvg_101994	denotes	the	mean	value	of	cf_cvg	for	the	month	of	October	in	
1994.	Accordingly,	a	total	of	288	anthropogenic	attributes	have	been	provided.	

5. Yes, we indeed provide all data for 3254 reservoirs. In this study, we delineated 
reservoir upstream catchment and provided two types of catchments, i.e., full 



catchment and intermediate catchment. Res-CN provides 3254 full catchments 
and 435 intermediate catchments (See Fig. 2). So, that’s why for catchment-
level attributes the number should be 3254 full catchments + 435 intermediate 
catchments. 

	
Figure	2.	Types	of	catchment	delineation	in	Res-CN	shown	with	an	example.	(a)	Catchment	delineation	A:	full	
catchments,	which	are	defined	as	the	full	upstream	contributing	area	of	a	reservoir.	In	plot	(a),	the	area	of	reservoir	
23720	overlaps	with	that	of	reservoir	3205	and	that	of	6651.	(b)	Catchment	delineation	B:	intermediate	catchment.	
In	plot	(b),	all	upstream	contributing	areas	of	the	upstream	reservoirs	(3205	and	6651)	are	removed	from	the	full	
catchment	of	reservoir	23720,	thus,	we	get	the	intermediate	catchment	of	reservoir	23720	(in	black	boundary).	
Background	in	light	blue	indicates	other	catchments	not	shown	in	this	example.	Source	of	background:	MERIT	Hydro	
and	MERIT	DEM	(Yamazaki	et	al.,	2019).	

In summary, we have carefully checked and made corrections in the Table 2 and all 
tables in supplementary. Please find the modified Table 2 as well. 

Table	2.	Summary	of	the	data	provided	in	the	Res-CN.	

	 Variable	
Number	of	
(reservoirs/catchment
s)	

Description	

Time	series	
of	
reservoir	
states	

Water	level	(SR,	
a	total	of	650	
reservoirs)	

54	 From	Jason-3	mission,	10-days,	2016-2022,	with	3	
retracking	algorithms	

192	 From	Sentinel-3A	mission,	27-days,	2016-2022,	with	5	
retracking	algorithms	

194	 From	Sentinel-3B	mission,	27-days,	2018-2022,	with	5	
retracking	algorithms	

215	 From	ICESat-2	mission,	90-days,	2019-2022,	with	1	
retracking	algorithm	

347	 From	CryoSat-2	mission,	369-days,	2010-2022,	with	3	
retracking	algorithms	



229	 From	SARAL/AltiKa	mission,	35-days,	2016-2022,	with	5	
retracking	algorithms	

Water	level	
(HR)	 250	 High	rate	(HR)	product	by	merging	SR	products,	from	

2010-2020,	sub-monthly	or	monthly	

Water	area	 3214	 Monthly	from	1984-2021	

Storage	
variation	 2999	 Monthly	storage	variation	from	1984-2021	

Evaporation	 3185	 Monthly	evaporation	rate	and	volume	from	1984-2021	

Catchment-
level	
attributes	

Reservoir	and	
catchment	
shapefile		

3254	full	catchments,	
435	intermediate	
catchments	

Two	types	of	reservoir	upstream	catchments,	catchment	
shapefile	attributes	(Tables	S9-10)	

Topography	
3254	full	catchments,	
435	intermediate	
catchments	

19	attributes	(Table	S10)	

Climate	data	 Same	as	above	
11	climatic	attributes	and	daily	time	series	of	
metrological	data	with	15	variables	from	1980-2022	
(Tables	S11-12)	

Land	cover	 Same	as	above	 23	attributes	(Table	S13)	

Soil	&	Geology	 Same	as	above	 173	attributes	(Tables	S14-15)	

Anthropogenic	
activity	 Same	as	above	 288	attributes	(Table	S16)	

  



3. It will be useful to add more details for the water areas at line 88. For example, the 
range of 0.004-1373.77 [km2] is very wide. A histogram of the water areas will be useful 
for the end-users because researchers have different focuses. For example, a 
watershed hydrologist may be interested in relatively small reservoirs, but an Earth 
system modeler may only need large reservoirs. Also, it will be helpful to list some 
major reservoirs based on the water areas (e.g., first ten or twenty?). As argued by the 
author, the largest reservoir area is 1,373.77 [km2], but this number is not consistent 
with my source. 

R1C3: We have added the histogram of the water areas and listed out top 10 reservoirs 
based on the water areas in the supplementary file. In the data product, apart from the 
shapefile, we added one more excel file to list all reservoirs attributes such as 
reservoir’s area, Chinese name, and GeoDAR ID. 

See added figure below:

 

Figure	S7.	Distribution	of	reservoir	area	values	and	Top	20	reservoirs	based	on	area	size	in	our	data	product.	For	more	
information	such	as	area,	name	and	ID	of	all	reservoirs,	please	refer	to	our	data	product.		

In this study, we focused on reservoirs for which are mapped and available from the 
newest global GeoDAR database (Wang et al., 2022, 
https://doi.org/10.5281/zenodo.6163413). We checked the GeoDAR again, and found 



that the largest reservoir area in China is 1,373.77 [km2]. To clarify this issue, we 
changed the text as follows:  

In	this	study,	we	constructed	reservoir-catchment	characteristics	for	3254	reservoirs	recorded	in	the	GeoDAR	
database	(Wang	et	al.,	2022),	with	water	areas	ranging	from	0.004	and	1373.77	km2(Fig.	S7),	with	a	total	
water	storage	capacity of	682,595	km3	accounting	for	73.2%	Chinese	reservoir	water	storage	capacity. 

References: 

Wang, J., Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., Zhu, J., Fan, C., McAlister, J. M., Sikder, S., Sheng, Y., Allen, 
G. H., Crétaux, J.-F., and Wada, Y.: GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and 
geolocations, Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, 2022. 

Minor Comments: 

Line 42, Please capitalize Earth. 

Changed as suggested. 

Line 76-78: “In addition, there is no systematic assessment of whether reservoir water 
levels or water areas from previous studies and databases agree with one another, as 
shown in this study by many reservoirs whose in situ measurements are available.”. I 
don’t understand this statement, are you trying to argue your results suggests the 
results from previous studies are biased when compared to in-situ measurements? 

Yes, rather than biases, to be fair, we just mentioned that there are some differences 
among these datasets. Thus, we say try our best to do some cross comparison and 
validation against gauged measurements. 

For example, for our area dataset that using a algorithm developed by Donchyts et al. 
(2022), we compared them with water level time series (in situ and altimetric 
measurements) and the water level of two other, similar areal datasets: i.e., GRSAD 
(Zhao and Gao, 2018) and ReaLSAT (Khandelwal et al., 2022). Based on all the 
compared reservoirs available, we found that our SWA time series show good 
agreement to values in GRSAD (median CC value of 0.64, rBIAS = −9 %, rRMSE = 26 %, 
and n = 338) and ReaLSAT (median CC value = 0.68, rBIAS = −10 %, rRMSE = 22 %, and 
n = 47) datasets. See figure Fig. S3 below: Overall, these comparisons suggest a good 
level of trustworthiness in our water area time series. 



 
Figure	S3.	Graphs	showing	reservoir	water	area	time	series	against	in	situ	water	levels,	altimetric	water	levels	
from	high	and	standard	rates,	and	GRSAD	and	ReaLSAT	area	time	series	for	a	sample	of	reservoirs	of	varying	areas.	

For water level, we validation against in situ data and three similar datasets, finding 
some differences, see figure Fig. S2 below. We argue that some differences can be 
found when comparing them together. some large discrepancies can be found in 
certain reservoirs, e.g., the Shuifeng reservoir (Fig. S2. 16) did not show a clear 
fluctuation pattern as captured by G-REALM, for the periods in 2020 between our 
dataset and Hydroweb at the Fengman reservoir (Fig. S2. 3). Our datasets are denser 
than Hydroweb over most reservoirs (Fig. S2. 5) and can be less noisy. These 
advantages would benefit the continuity and accuracy of the remotely sensed WSE 
and RWSC. Overall, this comparison demonstrated that performance of our datasets 
approximates accuracy of existing global altimetry datasets. 



	
Figure	S2.	Comparison	between	our	water	level	time	series	and	other	existing	similar	databases.	

References: 

Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Iceland, C., and Schmeier, S.: High-resolution 
surface water dynamics in Earth's small and medium-sized reservoirs, Sci. Rep., 12, 13776, https://doi.org/10.1038/s41598-
022-17074-6, 2022. 
Khandelwal, A., Karpatne, A., Ravirathinam, P. Ghosh, R., Wei. Z., Dugan, H. A., Hanson, P. C., and Kumar, V.: ReaLSAT, a 
global dataset of reservoir and lake surface area variations, Sci. Data, 9, 356, https://doi.org/10.1038/s41597-022-01449-5, 
2022 
Zhao, G. and Gao, H.: Automatic Correction of Contaminated Images for Assessment of Reservoir Surface Area Dynamics, 
Geophys. Res. Letters, 45, 6092–6099, https://doi.org/10.1029/2018GL078343, 2018. 

Line 80: “there are approximately 30 Chinese” Do you mean there are approximately 30 
reservoirs from China? 

Changed as: there are approximately 30 Chinese reservoirs. 



Line 106: Please provide the source or reference for the number of 98,000. 

Yes, we added the reference below. 

References: 

MWR: Hydrologic Data Yearbook, Ministry of Water Resources (MWR), ISBN 9771009737167, 2016. 

Line 109: Are the 3,254 reservoirs from GeoDAR? 

Yes, we used the reservoirs shapefiles from GeoDAR. 

Line 135: What is your criteria for reservoirs with large variations. 

The threshold used in our study was obtained based on previous research (Jiang et al. 
2017 RSE). However, as our study covers many reservoirs, some of which may 
experience water level fluctuations exceeding 40 meters, we adjusted the threshold 
for certain reservoirs. In fact, we set a series of thresholds, such as 20, 30, 40, and 50 
m, for each reservoir. We found that this parameter was not sensitive because the 
method used in the next step estimates along-track water level in the presence of 
outlying measurements (Nielsen et al. 2015). 

References: 

Liguang Jiang, Karina Nielsen, Ole Baltazar Andersen, Peter Bauer-Gottwein, CryoSat-2 radar altimetry for monitoring 
freshwater resources of China, Remote Sensing of Environment, 200, 2017, 125-139, 
https://doi.org/10.1016/j.rse.2017.08.015. 

Nielsen, K., Stenseng, L., Andersen, O. B., Villadsen, H., and Knudsen, P.: Validation of CryoSat-2 SAR mode based lake levels, 
Remote Sens. Environ., 171, 162–170, https://doi.org/10.1016/j.rse.2015.10.023, 2015. 

Line 165: I am confused about this statement. Is this “768 reservoirs” from this study? If 
so, please clarify it. If not, please cite reference to support it. 

No, these reservoirs are from Spain, India, South Africa, and the USA, and the 
algorithm is validated using data from 768 reservoirs located in these four countries. 
We have revised the sentence as follows:  

The algorithm has been applied to map water areas in 768 reservoirs of different sizes 
and climate zones located in Spain, India, South Africa, and the USA, and there is 
strong evidence to suggest that it performs well in this regard (Donchyts et al., 2022). 

References: 



Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Iceland, C., and Schmeier, S.: High-resolution 
surface water dynamics in Earth's small and medium-sized reservoirs, Sci. Rep., 12, 13776, https://doi.org/10.1038/s41598-
022-17074-6, 2022. 

Line 243-244: Add reference or results to show the validation of delineation for the 
1,398 catchments. 

Yes, we added the reference below. 

References: 

Xie, J., Liu, X., Bai, P., and Liu, C.: Rapid watershed delineation using an automatic outlet relocation algorithm, Water Resour. 
Res., 58, e2021WR031129, https://doi.org/10.1029/2021WR031129, 2022. 

Line 305-306: The authors explain the large errors occurs in 55 catchments are because 
the size of the catchments is small. But Figure 3d and f show the large errors also occur 
in large reservoirs. The spatial map is not very clear to show where the errors from. 
Consider plotting the comparison with the reference dataset using the scatter plot. 

A scatter plot is added in our supplementary file. The explanations can be found 
below. 

Main text: To compare Res-CN with GRanD and LakeATLAS, we spatially joined 
reservoir shapefiles from both datasets, matching reservoirs that overlapped for 
greater than 90% of their extent. Based on this subset of reservoirs, we found that 
catchment areas delineated in this study corresponded relatively well to catchment 
areas in both GRanD (CC = 0.999, n = 910) and LakeATLAS (CC = 0.910, n = 2147), 
which proves the reliability of our delineated catchments. Large discrepancies occur 
in 55 catchments, whose absolute relative error is greater than 100% (Fig. 3e, f). Small 
reservoirs located near confluences between rivers of different sizes are more likely to 
be affected by this issue, as a minor spatial mismatch can assign a reservoir to the 
small catchment of the tributary stream rather than the large catchment of the 
mainstream, and vice versa (Fig. S8). The differences in catchment delineation 
between these datasets result from differences in both DEM and methods for flow 
direction correction and depression filling and pour points correction. In this study, 
the widely verified MERIT Hydro flow directions are used, and we suggest that 
cautions should be taken when using catchments with large error discrepancies with 
LakeATLAS, which is based on the drainage direction grids of HydroSHED (Fig. S8a). 



 

Figure	S8.	Comparison	of	the	areas	of	delineated	catchments	in	this	study	with	those	of	LakeATLAS	(Lehner	et	
al.,	2022),	and	those	of	GRanD	reported	value	(Lehner	et	al.,	2011).	

References: 

Lehner, B., Messager, M. L., Korver, M. C. and Linke, S.: Global hydro-environmental lake characteristics at high spatial 
resolution. Sci. Data, 9, 351, https://doi.org/10.1038/s41597-022-01425-z, 2022. 

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, 
J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisseret, D.: High-resolution mapping of the world's reservoirs and 
dams for sustainable river-flow management, Front. Ecol. Environ., 9, 494–502, https://doi.org/10.1890/100125, 2011. 

Line 326-328: I am not sure if RMSE is a good metric to indicate error for the water 
level. The magnitude of water level varies with reservoir size. So, RMSE = 0.3m is 
considered as small error for a large reservoir, but it can be significant for a small 
reservoir. Since the time series of water levels are compared, some evaluation metric 
like NSE or KGE can provide more information about the evaluation. 

I partially agree with your suggestions. The root mean square error (RMSE) is a 
common practice in satellite altimetry research, as evidenced by several references 
listed below. It is important to note that satellite altimetry measurements have a 
relatively coarse resolution, usually on a monthly or sub-monthly basis, which is why 
other metrics such as the Nash-Sutcliffe efficiency (NSE) or Kling-Gupta efficiency 
(KGE) are seldom used in this field. Nonetheless, we provide users with both the 
correlation coefficient (CC) value and time series of PDF figures for each reservoir to 
consider. 

References: 



Gao, H., Birkett, C., and Lettenmaier, D. P.: Global monitoring of large reservoir storage from satellite remote sensing, Water 
Resour. Res., 48, W09504, https://doi.org/10.1029/2012WR012063, 2012. 

Jiang, L., Nielsen, K., Dinardo, S., Andersen, O. B., and Bauer-Gottwein, P.: Evaluation of Sentinel-3 SRAL SAR altimetry over 
Chinese rivers, Remote Sens. Environ., 237, 111546, https://doi.org/10.1016/j.rse.2019.111546, 2020. 

Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., and Sneeuw, N.: HydroSat: geometric quantities 
of the global water cycle from geodetic satellites, Earth Syst. Sci. Data, 14, 2463–2486, https://doi.org/10.5194/essd-14-
2463-2022, 2022. 

Vu, D. T., Dang, T. D., Galelli, S., and Hossain, F.: Satellite observations reveal 13 years of reservoir filling strategies, operating 
rules, and hydrological alterations in the Upper Mekong River basin, Hydrol. Earth Syst. Sci., 26, 2345–2364, 
https://doi.org/10.5194/hess-26-2345-2022, 2022. 

Line 330: There is no Fig. S7 in supplementary materials. 

Sorry for this. It should be Fig. S1. 

Line 335: There is no Fig. S8 in supplementary materials. 

Sorry for this. It should be Fig. S2. 

Line 372-373: Fig.6a and b plot the water areas comparisons from all the reservoirs and 
months, then what does the median CC mean?  Did you also estimate the CC for each 
reservoir? Please clarify what does the median CC mean. Also, it is critical to show the 
evaluation at site level to demonstrate the accuracy of Res-CN. 

Hope the R1C1 reponse addressed your concern. The validation figures for all 138 
reservoirs can be found in the "D reservoir states" folder. We hope that the inclusion of 
these validation figures will facilitate the use of our Res-CN dataset. 

For each reservoir, we calculate the correlation coefficient (CC) value and determine 
the median value of all the CC values. Therefore, the median CC refers to the median 
of these individual CC values. 

Line 384: NRMSE, CC and RMSE have median values of 21%,0.53, and 0.03 km3, 
respectively. 

Changed as suggested. Thank you very much. 

Line 391: Please specify the number of available reservoirs when using the water areas 
and water levels to derive the storage variations. Are they the same reservoirs that 
used the DEM’s area-storage model? 

We have added this information in the sentence: 



To solve this problem, we provide another type of storage variation estimates for 335 
reservoirs using satellite water areas and water levels (see section 2.3, Shen et al., 
2022b). 

Yes, they are the same reservoirs as all reservoirs have the storage variation estimates 
that used the DEM’s area-storage model. 

Line 412: Please clarify this sentence:” Long-term mean meteorological variables 
calculated the evaporation rates are available in Fig.S9.” 

The figure should be Fig. S3. We have added this information in the sentence: 

Long-term mean meteorological variables that were used to calculate the evaporation 
rates are depicted in Fig. S3. 
Line 424: Consider changing the colormap for Figure 8b, because the map doesn’t show 
any variation of water areas (e.g., only blue shows up). 

We have replotted this figure as follows. 

	
Figure	8.	Validation	of	reconstructed	monthly	reservoir	evaporation	values.	(a)	Long-term	mean	evaporation	rates	and	
(b)	water	surface	areas	during	1984-2020.	

Line 533: Were machine learning methods used in this study to derive the soil 
properties at different depths? If so, please specify what algorithm was used and how it 
was applied in this study. If machine learning methods were used in existing dataset to 
derive the soil properties, please clarify it. 

Yes, we just used the existing dataset that are based on the machining learning 
methods. Sorry for the confusion and we have clarified the sentences as follows. 

The SoilGrids250 dataset predicted soil properties at six different soil layers (i.e., 0-
0.05m, 0.05-0.15m, 0.15-0.3m, 0.3-0.6m, 0.6-1m, and 1-2m) using machine learning 



techniques, utilizing data from approximately 150,000 soil profiles and 158 
environmental covariates derived from remote sensing data on a global scale. 

Line 593: “Earth”. 

Changed as suggested. 

  



Reviewer #2 Comment on essd-2022-422 (Anonymous Referee #2) 

Dear Anonymous Referee #2, 

Thank you for your time and efforts in reviewing our manuscript. Please find attached 
point-to-point responses regarding your comments (marked in purple) and made 
corresponding changes in the main manuscript (in red). We hope that the improved 
manuscript can help the readers to better understand our study. 

Kind regards. 

Summary: 

This study presents time series data on hydrometeorological, topographic, and 
catchment attributes for over 3000 Chinese reservoirs. The authors have brought 
together datasets from many disparate sources, including in-situ data/information and 
satellite products, which is a commendable effort. The methods used are technically 
sound and the final product derived could be of great value for many purposes 
including hydrological modeling, water resource management, and ecosystem 
studies. The results presented provide many insights on reservoir attributes with a 
large spatial and temporal coverage. Therefore, this study is worthy of publication; 
however, there are certain issues that require further attention. In terms of 
presentation quality, the paper is generally well written but is not devoid of certain 
typos, grammatical errors, unclear statements. The authors should very carefully 
proofread the entire manuscript before submitting it again. My overall assessment is 
that the paper can be published after major revisions. I provided my detailed 
comments below. 

R2C0: Thank you for your recognition of the strengths of our study. We appreciate 
your constructive feedback and have carefully considered all of your suggestions and 
comments. We agree that the paper required attention to certain issues, such as 
typographical errors, grammatical mistakes, and unclear statements. We have 
thoroughly proofread the manuscript and made the necessary revisions to address all 
of your concerns. 

We hope that these revisions have improved the overall quality of the manuscript. We 
are grateful for your time and expertise in reviewing our work, and we believe that 
your feedback has made a valuable contribution to the study's scientific value. Thank 
you again for your comments, and we hope that the revised manuscript will meet your 
expectations. 

Major comments: 



L66: I suggest rephrasing the statement, especially for “failed”. The many studies 
noted by the authors have substantially advanced our ability to better monitor and 
model reservoirs globally. Perhaps, the datasets could be incomplete and there are 
more opportunities to develop relatively more comprehensive datasets, but I suggest 
giving a bit more positive bend to this statement; “failed” seems a bit unfair! 

R2C1: We agree that the previous efforts mentioned in our manuscript have 
substantially advanced our understanding of global reservoir monitoring and 
modeling. Our aim was to highlight the potential for relatively more comprehensive 
datasets. Upon reflection, we acknowledge that the term "failed" may be overly 
negative and unfair. We have rephrased this statement in the revised manuscript to 
reflect our intent more accurately and to give a more positive bend. We have now 
emphasized the opportunities for further improvements in data collection and 
highlighted the potential for even more extensive datasets in the future. Thank you for 
your feedback, and we appreciate the opportunity to improve the clarity and accuracy 
of our manuscript. Upon further consideration of the context, we have decided to 
delete the statement as it was deemed inappropriate. 

L89-90: some modeling studies that have dealt with such challenges could be cited 
here including (Dang et al., 2022; Dang et al., 2020; Galelli et al., 2022; Shin et al., 
2020) 

R2C2: Yes, thanks for your kind reminder and we carefully checked that all studies 
mentioned are highly related to our reservoir datasets. We cited all these studies in the 
section of Introduction, Summary and application. 

See main text below: 

Results	of	this	study	facilitated	managements	of	reservoirs	and	relevant	studies	such	as	
hydrological	modeling,	environmental	studies,	and	climate	research	in	the	spatially	explicit	
context	of	reservoir	catchment-level	(Dang	et	al.,	2020;	Galelli	et	al.,	2022). 

This	is	particularly	true	if	the	reservoir	inflow	is	also	utilized.	Recently,	the	gridded	natural	
runoff	provided	by	Gou	et	al.	(2021)	provides	exciting	opportunities	for	quantifying	the	
human	water	regulation	in	combination	with	Res-CN	(Dang	et	al.,	2022;	Shin	et	al.,	2020). 

References 

Dang, H., Pokhrel, Y., Shin, S., Stelly, J., Ahlquist, D., Du Bui, D., 2022. Hydrologic balance and inundation dynamics of 
Southeast Asia's largest inland lake altered by hydropower dams in the Mekong River basin. Science of The Total 
Environment, 831: 154833. 

Dang, T.D., Vu, D.T., Chowdhury, A.K., Galelli, S., 2020. A software package for the representation and optimization of water 
reservoir operations in the VIC hydrologic model. Environmental Modelling & Software, 126: 104673. 



Galelli, S., Dang, T.D., Ng, J.Y., Chowdhury, A., Arias, M.E., 2022. Opportunities to curb hydrological alterations via dam re-
operation in the Mekong. Nature Sustainability: 1-12. 

Shin, S., Pokhrel, Y., Yamazaki, D., Huang, X., Torbick, N., Qi, J., Pattanakiat, S., Ngo-Duc, T., Nguyen, T.D., 2020. High 
Resolution Modeling of River-Floodplain-Reservoir Inundation Dynamics in the Mekong River Basin. Water Resources 
Research, 56(5): e2019WR026449. 

L84: what does “states” mean here? 

R2C3: we have reprahsed as: In addition to the time series of reservoir datasets 
described above, 

L85 and elsewhere: I don’t think a “catchment shapefile” is a “catchment attribute”; file 
is a file. There are many other such instances where certain terminologies are not 
properly used. Also, what the “anthropogenic activity” – used in a singular form 
implies there is one such activity that is being considered. 

R2C4: Thank you for your comments regarding the terminology used in our 
manuscript. We appreciate your keen attention to detail and agree that the 
terminology used should be precise and accurate. Upon review, we agree that the 
term "catchment attribute" was not an appropriate descriptor for the catchment 
shapefile used in our study, and we have removed “catchment shapefile” here and 
revised the main text accordingly.Regarding the use of the term "anthropogenic 
activity", we apologize for any confusion this may have caused. We have revised as 
“anthropogenic activity characteristics” in the manuscript to better reflect the multiple 
anthropogenic activities that were considered in our analysis. 

We appreciate your feedback and attention to detail, and we believe that the revisions 
we have made will improve the clarity and accuracy of our manuscript. 

Section 2.1: Why was 10% threshold used for the GSW data? The same question applies 
for 20 and 40 meters. Please provide justification. Further, I could imagine all of the 
many products used in these methods contain substantial uncertainties (being 
primarily remote sensing based). How would those uncertainties affect the outcomes 
derived here and how did the authors deal with these issues? 

R2C5: A low threshold of 10% is chosen for two reasons: (1) Water occurrences are 
expected to be low for the newly built reservoirs and (2) a lower threshold ensures that 
a higher number of potential measurements are preselected. We provided a reference 
here for justification (Zhang et al., 2020). 
The threshold of 20 and 40 meters was set in previous studies (Jiang et al. 2017 RSE). 
In fact, we set a series of thresholds, such as 20, 30, 40, and 50 m, for each reservoir. 
Interestingly, we found that this parameter was not sensitive because the method of 
tsHydro (https://github.com/cavios/tshydro) used in the next step estimates along-



track water level in the presence of outlying measurements (Nielsen et al. 2015), and 
also provides the uncertainties for each value in the time series. You can be found in 
the corresponding data product file. For example, in the “D reservoir states”/”water 
level”/Standard Rate/OBS/S3A/, the csv files contains, “year”, “month”, 
“demical_year”,”s3a_wl”, and “s3a_wlsd”. 
We have discussed the sources of uncertainties, and their impacts in each section 
(considered your comments below). 
Main text: 

• Section 3.3.1: We	provided	the	uncertainty	information	for	each	value	of	the	time	series	in	the	
data	product	file.	The	SD	(standard	deviation)	estimates	can	quantify	the	accuracy	of	the	water	level	
along	the	track	at	the	level	of	individual	data	points	(Fig.	S8).	Water	level	time	series	for	each	
reservoir	are	available	in	Rec-CN	as	EXCELs,	PDFs	and	detailed	evaluation	reports	based	on	in	situ	
data	when	available	(see	Section	of	data	availability). 

 

Fig.	S8.	Uncertainties	for	each	value	in	the	time	series	of	reservoir	water	level.	In	the	figure,	black	line	refers	to	the	
observed	water	level,	black	dot	refers	to	altimetric	water	level,	error	bar	quantifies	the	uncertainty	of	each	value.	Taking	
20	reservoirs	in	the	Standard	rate	product	as	an	example,	1-4	are	taken	from	Jason-3	mission,	5-8	are	from	SARAL/AltiKa	
mission,	9-12	are	from	Sentinel-3A	mission,	13-16	are	from	Sentinel-3B	mission,	17-20	are	from	CryoSat-2	mission.	All	
uncertainties	values	are	available	in	our	product.	

• Section 3.3.2: Uncertainties	in	surface	water	area	estimates	are	generally	attributed	to	satellite	
images	and	algorithms.	As	reported	by	Zhao	et	al.	(2022),	the	uncertainty	of	Landsat-based	GRSAD	
areal	dataset	is	6.1%.	In	this	study,	we	generated	a	more	reliable	reservoir	water	area	product	by	
fusing	both	Landsat	and	Sentinel-2	images	(Fig.	S9),	using	an	algorithm	that	can	largely	reducing	the	
impacts	of	cloud	contaminations	(Donchyts	et	al.,	2022).	There	is	strong	evidence	to	suggest	that	this	
algorithm	performs	well	in	this	regard,	as	it	has	been	widely	validated	in	768	reservoirs	of	different	



sizes	and	climate	zones	located	in	Spain,	India,	South	Africa,	and	the	USA	(Donchyts	et	al.,	2022).	
Nevertheless,	some	limitations	and	future	developments	should	be	considered.	Our	first	option	is	to	
use	Sentinel-1	data	to	provide	more	information	in	cloudy	regions.	Furthermore,	the	algorithm	may	
be	improved	by	either	multiclass	Otsu	or	using	advanced	machine	learning	methods.	

 
Figure	S9.	Graphs	showing	reservoir	water	area	time	series	against	in	situ	water	levels,	altimetric	water	levels	from	high	
and	standard	rates,	and	GRSAD	and	ReaLSAT	area	time	series	for	a	sample	of	reservoirs	of	varying	areas	(Shen	et	al.,	
2022b).	

• Section 3.3.3: The	uncertainties	in	storage	anomalies	are	primarily	attributed	to	three	sources,	
i.e.,	the	altimetric	water	level,	water	surface	area	estimations	from	Landsat	and	Sentinel-2	images,	
and	the	error	resulting	from	their	combination	(the	hypsometric	curve).	Fig.	S10	provides	an	
example	that	illustrates	how	the	uncertainties	in	satellite	datasets	propagate	to	storage	anomalies.	
According	to	Shen	et	al.	(2022),	the	primary	source	of	error	in	storage	anomaly	is	water	surface	area	
and	the	hypsometric	curve.	Regarding	the	water	surface	area,	after	applying	the	algorithm	developed	
by	Donchyts	et	al.	(2022),	these	errors	and	impacts	can	be	reduced	to	a	large	extent.	Meanwhile,	we	
employed	five	hypsometric	relationships,	and	the	one	with	the	highest	R2	value	for	further	use.	For	
more	than	80 %	reservoirs,	the	R2	values	are	greater	than	0.5,	providing	a	strong	foundation	for	
storage	anomaly	estimates.	Nonetheless,	the	current	satellite	sensors	have	limitations,	as	evidenced	
by	the	significant	discrepancies	observed	in	peak	values	(Figure	7).	The	increasing	temporal	
resolution	and	data	accuracy	of	satellite	datasets,	such	as	the	SWOT	mission,	will	likely	improve	the	
accuracy	of	storage	anomaly	estimates	in	the	future. 



 
Figure	S10.	Graphs	showing	an	example	that	illustrates	how	the	uncertainties	in	satellite	datasets	propagate	to	storage	
anomalies.	Error	series	and	relationships	of	reservoir	elevation-storage.	Error	series	of	(a)	SWE-derived	RWSC	(i.e.,	storage	
anomaly),	(b)	WSE-derived	RWSC	and	water	level	change,	(c)	WSE	(i.e.,	water	level).	(d)	and	(e)	Relationships	of	elevation-
storage.	The	numbers	on	the	x-axis	(a,	b,	c)	refer	to	the	IDs	of	SWE,	WSE,	and	WSE	change	observations,	respectively.	For	
more	details	about	the	propagation	process,	please	find	the	reference	Shen	et	al.,	(2020):	https://doi.org/10.3390/rs14040815.	

• References: 

Liguang Jiang, Karina Nielsen, Ole Baltazar Andersen, Peter Bauer-Gottwein, CryoSat-2 radar altimetry for monitoring 
freshwater resources of China, Remote Sensing of Environment, 200, 2017, 125-139, 
https://doi.org/10.1016/j.rse.2017.08.015. 

Nielsen, K., Stenseng, L., Andersen, O. B., Villadsen, H., and Knudsen, P.: Validation of CryoSat-2 SAR mode based lake levels, 
Remote Sens. Environ., 171, 162–170, https://doi.org/10.1016/j.rse.2015.10.023, 2015. 

Shen, Y., Liu, D., Jiang, L., Tøttrup, C., Druce, D., Yin, J., Nielsen, K., Bauer-Gottwein, P., Wang, J., and Zhao X.: Estimating 
reservoir release using multi-source satellite datasets and hydrological modeling techniques, Remote Sens., 14, 815, 
https://doi.org/10.3390/rs14040815, 2022. 

Zhao, G., Li, Y., Zhou, L., and Gao, H.: Evaporative water loss of 1.42 million global lakes. Nat. Commun., 13, 3686, 
https://doi.org/10.1038/s41467-022-31125-6, 2022. 



Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Iceland, C., and Schmeier, S.: High-resolution 
surface water dynamics in Earth’s small and medium-sized reservoirs, Sci. Rep., 12, 13776, https://doi.org/10.1038/s41598-
022-17074-6, 2022. 

The comment above regarding uncertainty applies to Sections 2.2 and 2.3 as well. I 
suggest that the authors discuss various uncertainty sources and their impacts. 

R2C6: We appreciate the reviewers' insightful and helpful comments on our 
manuscript. We have revised the manuscript according to the reviewer’s suggestion. 
We have discussed the uncertainties of the dataset in the revised manuscript (section 
3.3.1-3.3.3) to facilitate the usage of this dataset. We did our best to collect the most 
reliable datasets to date and will regularly update the related datasets in the future to 
ensure their timeliness. Hope R2C5 response addressed your concern. 

Figure 3 caption: please add unit to the x-axis of the histograms or provide a note in 
the caption. I wondered why the panels are organized in this specific order – why not 
swap (e) and (f) so that the same categories sit adjacent to each other. 

R2C7: We have changed the figure 3 as suggested. 

 

Fig.	3.	Distribution	of	the	delineated	catchments	(intermediate	catchments	and	full	catchments).	Each	category's	
histogram	indicates	the	number	of	basins	(out	of	3254).	In	a	histogram,	the	X-axis	represents	the	number	of	basins,	while	
the	Y-axis	represents	each	subplot's	title.	Circle	sizes	are	proportional	to	catchment	areas.	

Figure 4 and others: The Zenodo link was not active, so I couldn’t make sure if all the 
datasets were shared. Are all in-situ datasets included in the publicly shared database? 



R2C8: From my location in Japan, I have verified the accessibility of the Zenodo link 
(https://doi.org/10.5281/zenodo.7664489). I apologize for any inconvenience caused. 
All data presented in the figures and tables has been shared on Zenodo, with the 
exception of certain in situ reservoir water level and storage data. 
We obtained daily water level and storage data spanning 2015–May 2021 for 93 
reservoirs from the local watershed agency 
(http://113.57.190.228:8001/web/Report/BigMSKReport, last access: 15 October 2022) 
and National Hydrological Information Centre for validation 
(http://xxfb.mwr.cn/index.html, last access: 15 October 2022). 
However, the in-situ datasets are updated day-by-day, thus, not possible to download 
the historical time series. I apologize for not making our collected in-situ datasets 
publicly available on Zenodo as we have a federal grant that limits the sharing of in-
situ dataset. Moreover, we have no right to make all of them publicly available, now. 
Anyway, we are happy to share most of these data for users to do some case studies, 
please feel free to contact the corresponding author (yjshen2020@gmail.com). 

Figure 7: Why does Res-CN under or overshoot storage for many reservoirs (e.g., 
panels 7,8 etc.)? 

R2C9: Yes, we add more explanations and discussed the uncertainties as well as 
limitations in this section. Please also note that for Fig. 7 panels 9-12, our data indeed 
captured the large peak values for most reservoirs (2, 0.5, 0.2 km3). 

Main text: The	Res-CN	database	provides	monthly	reservoir	water	storage	anomaly	for	3254	Chinese	
reservoirs	during	1984-2020	using	DEM's	area-storage	model,	along	with	their	detailed	evaluation	reports	
(see	Section	of	data	availability). 

The	remotely	sensed	storage	anomalies	generally	agree	with	the	observations	represented	by	the	statistical	
metrics,	although	some	large	discrepancies	occur	in	peak	values. 

The	uncertainties	in	storage	anomalies	are	primarily	attributed	to	three	sources,	i.e.,	the	altimetric	water	level,	

water	 surface	 area	 estimations	 from	 Landsat	 and	 Sentinel-2	 images,	 and	 the	 error	 resulting	 from	 their	

combination	(the	hypsometric	curve).	Fig.	S10	provides	an	example	that	illustrates	how	the	uncertainties	in	

satellite	datasets	propagate	to	storage	anomalies.	According	to	Shen	et	al.	(2022),	the	primary	source	of	error	

in	storage	anomaly	is	water	surface	area	and	the	hypsometric	curve.	Regarding	the	water	surface	area,	after	

applying	the	algorithm	developed	by	Donchyts	et	al.	(2022),	these	errors	and	impacts	can	be	reduced	to	a	large	

extent.	Meanwhile,	we	employed	 five	hypsometric	 relationships,	 and	 the	one	with	 the	highest	R2	 value	 for	

further	use.	For	more	than	80 %	reservoirs,	the	R2	values	are	greater	than	0.5,	providing	a	strong	foundation	

for	storage	anomaly	estimates.	Nonetheless,	the	current	satellite	sensors	have	limitations,	as	evidenced	by	the	

significant	 discrepancies	 observed	 in	 peak	 values	 (Figure	 7).	 The	 increasing	 temporal	 resolution	 and	 data	

accuracy	of	satellite	datasets,	such	as	the	SWOT	mission,	will	likely	improve	the	accuracy	of	storage	anomaly	

estimates	in	the	future.	



	
Figure	7.	Time	series	of	water	surface	area	and	storage	anomaly	in	selected	reservoirs.	RMSE	(km3),	NRMSE,	and	CC	
values	are	given	at	the	top	of	each	subplot	when	in	situ	observations	available.	Note	that:	time	series	of	water	surface	area	
and	storage	anomaly	of	the	remaining	reservoirs	are	available	in	our	datasets.	

Figure 8: I can’t really tell whether this is a good/bad match between the three? I 
suggest adding some statistical measures such as RMSE and also a seasonal 
climatology panel on the right (could be just for the period with observed data). 

R2C10: We adopted the validation from Tian et al., (2021) for evaluation of reservoir 
evaporation product considering we found that our pan evaporation is not the 
observed evaporation, and we cannot provide the source of this dataset. Thus, revised 
the figure 8 and re-create figure s11 for validation. Please find our revised text below: 

Res-CN	provides	monthly	reservoir	evaporation	values	for	3254	Chinese	reservoirs	during	1984-2021.	
Detailed	validations	of	the	algorithm	can	be	found	in	Zhao	et	al.	(2019;	2022)	and	Tian	et	al.,	(2021).	The	



validation	of	simulated	evaporation	at	an	annual	scale	from	Tian	et	al.	(2022)	at	47	reservoirs	was	
summarized	in	Fig.	S11	through	a	literature	review.	The	results	in	Fig.	S11	indicate	that	the	modeled	average	
annual	evaporation	rates	match	well	with	the	observed	rates.	Specifically,	the	percent	bias	(PBIAS),	Nash-
Sutcliffe	efficiency	(NSE),	and	root-mean-square	error	(RMSE)	were	found	to	be	0.02%,	0.82,	and	11.2	mm,	
respectively.	This	high	level	of	agreement	suggests	that	the	Penman	method	is	a	reliable	approach	for	
calculating	reservoir	evaporation	rates	in	China.	Fig.	S12	shows	the	long-term	mean	meteorological	variables	
that	were	used	to	calculate	the	evaporation	rates.	

	

Figure	S11.	Observed	and	modeled	average	annual	evaporation	for	47	reservoirs	(Tian	et	al.,	2021).	

	
Figure	8.	Validation	of	reconstructed	monthly	reservoir	evaporation	values.	(a)	Long-term	mean	evaporation	rates	and	
(b)	water	surface	areas	during	1984-2020.	
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Figure 9 caption: are these just “topographic” characteristics or in general 
“catchment” characteristics? 

R2C11: Yes, we checked it. These are topographic characteristics. 

Sections 3.4.2 – 3.4.4: The results and graphics here are nice; however, I wonder what 
the utility of these data/outcomes are. I suggest that the authors shed some light in 
the intro section and subsequently in the results section regarding why these specific 
attributes are chosen, and why/how these are useful, for example, for modeling 
hydrology considering reservoirs. 

R2C12: Our study involved the integration of multiple attributes, offering a good 
dataset to comprehending the features of reservoir-catchments in China 
systematically. The Res-CN dataset holds considerable potential in advancing the 
comprehension of the processes involved in Chinese reservoirs. We have further 
elaborated on this dataset in the introduction, summary, and applications sections. 
Hope this addressed your concerns. 

Introduction: 
The	role	of	reservoirs	in	the	hydrological	and	biogeochemical	cycles	is	closely	tied	to	their	characteristics	of	

water	surface	area,	water	level,	evaporation,	and	storage	variation.	In	addition,	the	amount	and	rate	of	water	

and	materials	 flowing	 into	 and	out	 of	 reservoirs	 depends	 on	 their	 location	 in	 the	 river	 network,	 reservoir	

upstream	 catchment	 attributes	 (e.g.,	 catchment	 size,	 topography,	 geology,	 soil,	 and	 land	 cover)	 as	 well	 as	

meteorological	 variables	 (e.g.,	 precipitation,	 and	 temperature).	 An	 explicit	 spatial	 knowledge	 of	 all	 these	

characteristics	(see	in	Fig.	A1)	is	crucial	for	determining	surface	water	availability	and	modulating	water	flux	

interactions	among	various	Earth	system	components,	including	terrestrial	water	storage	dynamics	(Busker	et	

al.,	2019;	Chaudhari	et	al.,	2018);	terrestrial	carbon	cycle	(Marx	et	al.,	2017);	geochemical	cycle	(Maavara	et	al.,	

2020);	 surface	 energy	 budget	 (Buccola	 et	 al.,	 2016);	 climate-related	 effects	 (Boulange	 et	 al.,	 2021);	 and	

alterations	 in	 the	 hydrological	 and	 ecological	 processes	 such	 as	 sediment	 reduction	 (Li	 et	 al.,	 2020),	

degradation	of	water	quality	(Barbarossa	et	al.,	2020),	land	use	changing	pattern	(Carpenter	et	al.,	2011),	and	

fish	biodiversity	decline	(Ngor	et	al.,	2018).	Therefore,	to	fully	uncover	the	functioning	of	reservoirs	for	better	

scientific	 studies	 and	 water	 resources	 managements,	 it	 is	 essential	 to	 develop	 a	 comprehensive	 publicly	

available	reservoir	data	set	in	the	context	of	growing	interest	of	reservoir	studies	and	water	managements.	

In	addition	to	the	time	series	of	reservoir	datasets	described	above,	reservoir	upstream	catchment	attributes	

(e.g.,	 climate,	 geology	 &	 soil,	 topography,	 land	 cover,	 and	 anthropogenic	 activity	 characteristics)	 are	 also	



important	as	reservoirs	collect	materials	from	upstream	catchments.	These	attributes	affect	the	water	balance	

and	water	 quality	 of	 a	 reservoir,	 such	 as	 temperature,	 dissolved	 oxygen,	 and	 turbidity	 (Yang	 et	 al.,	 2022).	

Moreover,	the	limnological	properties	of	one	reservoir	have	the	potential	to	impact	other	reservoirs	through	

the	transfer	of	water	mass,	nutrients,	energy,	and	sediments	via	connecting	rivers,	as	previously	demonstrated	

in	studies	by	Huziy	and	Sushama	(2017)	and	Stieglitz	et	al.	(2003).	Thus,	researchers	can	better	understand	

catchment-level	 landscape	limnology	by	incorporating	these	attributes	(Soranno	et	al.,	2010).	The	values	of	

these	 catchment-level	 attributes	 are	 also	 proved	 in	 the	 Catchment	 Attributes	 and	MEteorology	 for	 Large-

sample	 Studies	 (CAMELS)	 introduced	 by	 Addor	 et	 al.	 (2017)	 and	 follow-up	 studies	 such	 as	 CAMLES-CL,	

CMALES-BR,	CAMLES-GB,	(Alvarez-Garreton	et	al.,	2018;	Chagas	et	al.,	2020;	Coxon	et	al.,	2020),	LamaH-CE	

(Klingler	et	al.,	2021),	CCAM	(Hao	et	al.,	2021),	LakeALTAS	(Lehner	et	al.,	2022),	as	well	as	the	works	by	Chen	

et	al.	(2022)	and	Liu	et	al.	(2022).	However,	there	is	a	data	gap	of	reservoir-catchment	characteristics	in	China,	

and	even	 the	geometric	boundaries	of	 reservoir	upstream	catchment,	which	hindered	 the	 spatially	explicit	

applications	 of	 such	 catchment	 information.	 Furthermore,	 allocating	 reservoirs	 on	 river	 network	 is	 also	

valuable	for	river	models	incorporating	reservoirs	as	reservoir	datasets	and	river	network	datasets	are	usually	

developed	independently,	and	they	are	not	well	corresponding	and	could	cause	some	issues	when	integrating	

reservoirs	in	river	model.	

Summary, applications and outlook:  
We	envision	that	Res-CN	with	 its	comprehensive	and	extensive	attributes	can	provide	strong	supports	to	a	

wide	range	of	applications	and	disciplines.	Firstly,	our	two	types	of	catchments	along	with	their	catchment-

level	 attributes	 allow	 investigations	 within	 individual	 catchments	 and	 interconnected	 river	 networks.	 For	

example,	as	illustrated	in	Figure	2,	users	may	quantify	the	relative	contributions	of	upstream	reservoirs	and	

local	drainage	catchment	on	water	quality	(e.g.,	algae	contributions	and	water	color)	of	downstream	reservoir	

by	tracking	temperature	and	nutrient	flows	from	upstream	reservoirs	and	intermediate	catchments	(e.g.,	Hou	

et	al.,	2022;	Yang	et	al.,	2022).	Besides,	water	and	sediment	transfer	can	be	also	more	accurately	simulated	in	

such	a	spatially	explicit	context	if	appropriate	approaches	are	used.	Machine-learning	methods	make	it	possible	

to	predict	reservoir	storage	change	at	1-	to	3-month	lead	from	reservoir	upstream	attributes	and	time-series	

of	reservoir	states	(Tiwari	et	al.,	2019).	Secondly,	Res-CN	provide	thus	far	the	most	comprehensive	reservoir	

states	 in	 China	 for	 assessing	 impacts	 of	 reservoir	 regulation	 and	 dynamics.	 Tracking	 the	 spatiotemporal	

balance	 of	 reservoir	 evaporative	 and	water	 storage	 can	 provide	 a	 basis	 for	 local	 water	management	 in	 a	

warming	 climate	 (Di	 Baldassarre	 et	 al.,	 2019).	 The	 reservoir	 operational	 rules	 or	 impacts	 of	 reservoir	

regulation	on	 flow	regimes	are	possibly	 to	be	 inferred	 from	reservoir	water	dynamics	 in	Res-CN	(Vu	et	al.,	

2022).	 This	 is	 particularly	 true	 if	 the	 reservoir	 inflow	 is	 also	 utilized.	 Recently,	 the	 gridded	natural	 runoff	

provided	by	Gou	et	al.	(2021)	provides	exciting	opportunities	for	quantifying	the	human	water	regulation	in	

combination	with	Res-CN	(Dang	et	al.,	2022;	Shin	et	al.,	2020).	Thirdly,	our	extracted	catchment-level	attributes	

can	contribute	to	a	better	understanding	of	reservoir	water	amount	and	water	quality	changes	by	spatially	

incorporating	 geophysical	 and	 anthropogenic	 characteristics	 of	 their	 upstream	 catchments	 and	 their	

respective	contributions.	For	example,	cropland	in	reservoir	upstream	catchments	controls	the	nutrient-driven	



primary	 production,	 while	 wetland	 coverage	 affects	 dissolved	 organic	 material	 transport	 downstream,	

ultimately	impacting	primary	production	and	CO2	emissions	in	lakes	(Balmer	and	Downing,	2011;	Borges	et	

al.,	 2022;	 Maberly	 et	 al.,	 2013).	 Gradient	 and	 altitude	 in	 the	 reservoir	 geological	 attributes	 may	 affect	

greenhouse	gas	emissions	and	biogeochemistry	of	a	reservoir	(Casas-Ruiz	et	al.,	2020).	Furthermore,	 these	

catchment-level	attributes	can	be	used	to	explore	water	fluxes	and	sediment	transportation	even	in	reservoirs	

that	have	not	been	sampled.	Studies	on	cascading	patterns	in	reservoir	attributes	found	that	each	attribute	may	

display	linear	function	of	catchment	area,	concluding	that	cascading	patterns	of	each	attribute	have	different	

implications	 for	dam	management	(Faucheux	et	al.,	2022).	For	 instance,	one	study	combined	knowledge	of	

catchment	 attributes	with	 economic,	 climate,	 and	 landscape	 data	 to	 inform	 reservoir	 removal	 decisions	 in	

California's	 Central	 Valley	 basin	 (Null	 et	 al.,	 2014).	 Lastly,	 carbon	dioxide	 emissions	 from	 reservoirs	 show	

significant	 spatial	 and	 seasonal	 variation,	 highlighting	 the	 importance	of	 hydrology	 in	 terrestrial–reservoir	

carbon	transfers	and	the	need	to	consider	this	effect	when	plumbing	terrestrial	carbon	budgets.	Res-CN	also	

offers	 exciting	opportunities	 to	 address	 changes	 in	 reservoir	 storage	 that	may	be	 linked	 to	 carbon	dioxide	

changes.	

 
Figure	A1.	Illustration	of	the	datasets	provided	in	our	Res-CN.	
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Section 3.4.5: Again, why are these specific human activities selected for analysis and 
how are those useful? 

R2C13: Yes, Hope the above R2C12 response addressed your concern. 
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for the Tibetan Plateau, Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, 2022. 

Related to the above comments on the utility of various characteristics, I would 
suggest adding one figure on the ratio of reservoir storage and/or surface area to 
catchment size. 

R2C14: Thanks for your reminder! Actually the ratio of reservoir storage and/or surface 
area to catchment size is already included in the dataset of “topographic 
characteristics”. We have created the figure S13 as suggested. 

Main text:	Besides,	we	also	added	“resArearatio”	to	describe	the	proportion	of	the	
reservoir	water	surface	area	to	the	catchment	area	(Fig.	S13). 

 

Figure	S13.	Spatial	distribution	of	the	ratios	of	reservoir	water	surface	area	and	storage	to	catchment	area.	Note:	not	all	
reservoir	water	storage	data	are	available	from	the	GeoDAR	database	(Wang	et	al.,	2022). 

Overall/General: the number of reservoirs selected for various purposes is different 
and validation is provided for a limited subset. Please try to have consistency and 
expand the validation effort. 

R2C15: We apologize for the inadvertent omission of the validation figures for the 138 
reservoirs in our Res-CN dataset. We have taken corrective measures by uploading the 



figures to the same Zenodo link of our Res-CN data product, and we kindly request 
that you access them from there https://doi.org/10.5281/zenodo.7664489. 

Considering the extensive information contained within the supplementary file, we 
recognize the potential benefits of incorporating the validation figures - which, due to 
their size, span multiple pages - in our data product to facilitate user access and 
convenience. However, we also recognize the importance of maintaining a balance 
between completeness and conciseness in the main text. Consequently, we have 
presented only a subset of validations for select reservoirs alongside the overall 
evaluation accuracy. Nevertheless, we would like to assure users that all validation 
information is available in the data products. We are confident that this balance 
between completeness and conciseness is in line with the expectations of our readers, 
and we encourage them to refer to the data products for more detailed information. 

The validation figures for all 138 reservoirs can be found in the "validation_figures" 
folder, which includes the time series of reservoir water level, water area, storage 
variation, and evaporation. In the "water level" directory, the time series of reservoir 
water level are available in two modes, i.e., high rate product and standard rate, along 
with their comprehensive evaluation reports and figures in PDF and TXT files. The 
"water area" directory provides the monthly area time series of reservoirs, 
accompanied by their comprehensive evaluation Excel files, including CC values 
compared with satellite-based water level, in situ water level, and other areal time 
series from other studies. Finally, the "storage variation" directory includes the time 
series and comprehensive evaluation figures in PDF files, which include statistical 
metrics. 

Thank you for your feedback, and we hope that the inclusion of these validation 
figures will facilitate the use of our Res-CN dataset. 

Minor/Editorial comments: 

L48, “…especially driven by climate warming and …”: not clear “what” is driven by 
climate and population; revisions needed. 

We have rephrased as follows: 
it is essential to develop a comprehensive publicly available reservoir data set in the 
context of growing interest of reservoir studies and water managements. 

L80: should be “altimetry-based reservoir datasets” and “Chinese reservoirs” 

Thanks, we have changed as: 



In three popular altimetry-based reservoir datasets (Hydroweb, G-REALM, and DAHITI), 
there are approximately 30 Chinese reservoirs. 

L101: please spell out GEE 

Thanks, we have changed as: 

GEE (Google Earth Engine) 

L108: delete “for” 

Thanks, we have deleted it. 

Figure 1 caption and elsewhere: I suggest “water SURFACE area” instead of “water 
area”; this applies to Section 2.2 as well. 

Thanks, we have changed as water surface area throughout the paper. 

L133: please check grammar. 

We have rephrased it: 

The Global Surface Water Explorer was used to select altimetric data for which water 
occurrence is greater than 10% (Zhang et al., 2020). 

Figure 3 caption: “dimensionless XX? is indicated ….” 

We deleted this sentence, and not show this symbol. 
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Thanks, we have cited all these valuable studies in the main text. 

Introduction: Results of this study facilitated managements of reservoirs and relevant 
studies such as hydrological modeling, environmental studies, and climate research in 
the spatially explicit context of reservoir catchment-level (Galelli et al., 2022; Dang et 
al., 2020). 

Summary and applications: This is particularly true if the reservoir inflow is also 
utilized. Recently, the gridded natural runoff provided by Gou et al. (2021) provides 
exciting opportunities for quantifying the human water regulation in combination with 
Res-CN (Dang et al., 2022; Shin et al., 2020). 

  



Reviewer #3 Comment on essd-2022-422 (Anonymous Referee #3) 

Dear Anonymous Referee #3, 

Thank you for your time and efforts in reviewing our manuscript. Please find attached 
point-to-point responses regarding your comments (marked in purple) and made 
corresponding changes in the main manuscript (in red). We hope that the improved 
manuscript can help the readers to better understand our study. 

Kind regards. 

General comments 

Dams and reservoirs play an important role in water resource management and 
regulation. The authors provided new and comprehensive reservoir datasets over 
China (the Reservoir dataset in China, Res-CN), which featured reservoir-catchment 
characteristics for 3254 reservoirs. I have the following concerns for authors in 
ongoing revision and improvements. 

R3C0: Thank you for your recognition of the strengths of our study. We appreciate 
your constructive feedback and have carefully considered all of your suggestions and 
comments. We hope that these revisions have improved the overall quality of the 
manuscript. We are grateful for your time and expertise in reviewing our work, and we 
believe that your feedback has made a valuable contribution to the study's scientific 
value. Thank you again for your comments, and we hope that the revised manuscript 
will meet your expectations. 

Authors may need to provide more details on why they only focus on reservoirs in 
China, and why they chose to use GeoDAR while a more recent study published more 
comprehensive reservoir dataset for China. 

R3C1: Thank for your constructive comments. We have re-organized the introduction, 
adding more details on the reason why we only focus on Chinese reservoirs, and 
thanks for altering us about the new data, we have explained it in the Summary, 
applications and outlook. We acknowledge all great efforts made by our scientific 
members. We argue the new added reservoir shapefiles are mainly very small 
reservoirs. Our study aims to provide a comprehensive and extensive dataset of 
reservoir-catchment characteristics in China for a better understanding of reservoir 
impacts on hydrological and biochemical cycles, these thousands of very small 
reservoirs are not included in our study. Thus, Res-CN still shows significant 
improvements and unique contribution in its comprehensive and complete 
information. We hope that our datasets will contribute to the development of more 
effective water quality management strategies for Chinese reservoirs and serve as a 



valuable resource for researchers and policymakers in this field. Please find the revised 
texts below. Hope it addressed your concerns. 

Introduction:  
The	role	of	reservoirs	in	the	hydrological	and	biogeochemical	cycles	is	closely	tied	to	their	characteristics	of	

water	surface	area,	water	level,	evaporation,	and	storage	variation.	In	addition,	the	amount	and	rate	of	water	

and	materials	 flowing	 into	 and	out	 of	 reservoirs	 depends	on	 their	 location	 in	 the	 river	 network,	 reservoir	

upstream	 catchment	 attributes	 (e.g.,	 catchment	 size,	 topography,	 geology,	 soil,	 and	 land	 cover)	 as	 well	 as	

meteorological	 variables	 (e.g.,	 precipitation,	 and	 temperature).	 An	 explicit	 spatial	 knowledge	 of	 all	 these	

characteristics	(see	in	Fig.	A1)	is	crucial	for	determining	surface	water	availability	and	modulating	water	flux	

interactions	among	various	Earth	system	components,	including	terrestrial	water	storage	dynamics	(Busker	et	

al.,	2019;	Chaudhari	et	al.,	2018);	terrestrial	carbon	cycle	(Marx	et	al.,	2017);	geochemical	cycle	(Maavara	et	al.,	

2020);	 surface	 energy	 budget	 (Buccola	 et	 al.,	 2016);	 climate-related	 effects	 (Boulange	 et	 al.,	 2021);	 and	

alterations	 in	 the	 hydrological	 and	 ecological	 processes	 such	 as	 sediment	 reduction	 (Li	 et	 al.,	 2020),	

degradation	of	water	quality	(Barbarossa	et	al.,	2020),	land	use	changing	pattern	(Carpenter	et	al.,	2011),	and	

fish	biodiversity	decline	(Ngor	et	al.,	2018).	Therefore,	to	fully	uncover	the	functioning	of	reservoirs	for	better	

scientific	 studies	 and	 water	 resources	 managements,	 it	 is	 essential	 to	 develop	 a	 comprehensive	 publicly	

available	reservoir	data	set	in	the	context	of	growing	interest	of	reservoir	studies	and	water	managements.	

China	is	the	world’s	most	populous	country	that	has	undergone	an	impressive	average	GDP	growth	rate	of	10%	

over	the	past	two	decades	(Gleick,	2009).	Meanwhile,	it	has	simultaneously	experienced	notable	expansion	of	

irrigation	 and	 encountered	 challenges	 arising	 from	 limited	water	 resources,	 frequent	 floods,	 and	droughts	

(Wang	et	al.,	2020).	To	ensure	water	security,	reservoir	construction	is	proliferating	across	the	country.	As	of	

2015,	China	had	constructed	approximately	98,000	reservoirs	and	dams,	including	almost	40%	of	the	world's	

largest	dams	(Song	et	al.,	2022).	The	world's	largest	clean	energy	corridor,	comprised	of	six	mega	hydropower	

dams,	is	newly	formed	in	China.	Despite	these	developments,	there	remains	a	data	gap	regarding	the	surface	

water	dynamics	and	upstream	attributes	of	these	reservoirs	at	the	catchment	level.	

In	recent	years,	multiple	efforts	have	been	made	to	produce	reservoir	inventories,	including	those	of	China.	For	

the	 inventories	 of	 water	 surface	 area,	 water	 level,	 evaporation,	 and	 storage	 anomaly,	 there	 are	 different	

research	projects	and	studies	producing	satellite	datasets	for	reservoirs	at	regional	and	global	scales	(Crétaux	

et	al.,	2011;	Birkett	et	al.,	2011;	Schwatke	et	al.,	2015;	Markert	et	al.,	2019;	Tourian	et	al.,	2022;	Tortini	et	al.,	

2020;	Zhao	&	Gao,	2018;	Liu	et	al.,	2021;	Donchyts	et	al.,	2022;	Vu	et	al.,	2022;	Tian	et	al.,	2022).	However,	

information	of	reservoir	characteristics	is	still	insufficient	and	scarce	across	different	regions.	

5	Summary,	applications	and	outlook	

Although	Res-CN	presents	 significant	 improvements	 over	 existing	 datasets	 and	holds	 potential	 for	 various	

applications	identified	above,	a	few	limitations	should	be	acknowledged.	Res-CN	is	generated	using	GeoDAR	v1	

shapefiles	(Wang	et	al.,	2022)	instead	of	the	newly	produced	datasets	by	Song	et	al.	(2022),	which	added	an	



additional	 near	 sixty	 thousand	 very	 small	 reservoir	 shapefiles	 (<	 1	 km2).	 As	 this	 study	 aims	 to	 provide	 a	

comprehensive	 and	 extensive	 dataset	 of	 reservoir-catchment	 characteristics	 in	 China	 for	 a	 better	

understanding	 of	 reservoir	 impacts	 on	hydrological	 and	biochemical	 cycles,	 these	 thousands	 of	 very	 small	

reservoirs	 are	not	 included	 in	our	 study.	Meanwhile,	 it	 is	 currently	not	 feasible	 to	 generate	 satellite-based	

datasets	 for	 these	 small	 reservoirs	due	 to	 the	 limitations	of	 current	 satellite	 altimetry	missions,	which	are	

unable	to	detect	such	reservoirs	because	of	the	sparsity	of	their	altimetric	ground	tracks.	These	additional	small	

reservoirs	only	account	for	8%	of	total	water	capacity	in	China.	Nonetheless,	users	can	freely	access	our	codes	

to	calculate	any	reservoir	attributes	for	individual	applications,	other	areas,	and	can	enrich	the	inventory	if	new	

data	available.	

 
Figure	A1.	Illustration	of	the	datasets	provided	in	our	Res-CN.	
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Authors have provided comprehensive climatic characteristics (L450~L451) and 
human activity characteristics of reservoirs but did not explicitly state why these 
characteristics should be provided. Therefore, I suggest that the authors to offer a 
more compelling motivation to start their Introduction, and also discuss why these 
much informaiton is needed for understanding reservoir changes. Otherwise it may 
look like too much information to digest for certain users. 

R3C2: Our study involved the integration of multiple attributes, offering a good 
dataset to comprehending the features of reservoir-catchments in China 
systematically. The Res-CN dataset holds considerable potential in advancing the 
comprehension of the processes involved in Chinese reservoirs. We have further 
elaborated on this dataset in the introduction, summary, and applications sections. 
Hope this addressed your concerns. 

Introduction: 
The	role	of	reservoirs	in	the	hydrological	and	biogeochemical	cycles	is	closely	tied	to	their	characteristics	of	

water	surface	area,	water	level,	evaporation,	and	storage	variation.	In	addition,	the	amount	and	rate	of	water	

and	materials	 flowing	 into	 and	out	 of	 reservoirs	 depends	 on	 their	 location	 in	 the	 river	 network,	 reservoir	

upstream	 catchment	 attributes	 (e.g.,	 catchment	 size,	 topography,	 geology,	 soil,	 and	 land	 cover)	 as	 well	 as	

meteorological	 variables	 (e.g.,	 precipitation,	 and	 temperature).	 An	 explicit	 spatial	 knowledge	 of	 all	 these	

characteristics	(see	in	Fig.	A1)	is	crucial	for	determining	surface	water	availability	and	modulating	water	flux	

interactions	among	various	Earth	system	components,	including	terrestrial	water	storage	dynamics	(Busker	et	



al.,	2019;	Chaudhari	et	al.,	2018);	terrestrial	carbon	cycle	(Marx	et	al.,	2017);	geochemical	cycle	(Maavara	et	al.,	

2020);	 surface	 energy	 budget	 (Buccola	 et	 al.,	 2016);	 climate-related	 effects	 (Boulange	 et	 al.,	 2021);	 and	

alterations	 in	 the	 hydrological	 and	 ecological	 processes	 such	 as	 sediment	 reduction	 (Li	 et	 al.,	 2020),	

degradation	of	water	quality	(Barbarossa	et	al.,	2020),	land	use	changing	pattern	(Carpenter	et	al.,	2011),	and	

fish	biodiversity	decline	(Ngor	et	al.,	2018).	Therefore,	to	fully	uncover	the	functioning	of	reservoirs	for	better	

scientific	 studies	 and	 water	 resources	 managements,	 it	 is	 essential	 to	 develop	 a	 comprehensive	 publicly	

available	reservoir	data	set	in	the	context	of	growing	interest	of	reservoir	studies	and	water	managements.	

In	addition	to	the	time	series	of	reservoir	datasets	described	above,	reservoir	upstream	catchment	attributes	

(e.g.,	 climate,	 geology	 &	 soil,	 topography,	 land	 cover,	 and	 anthropogenic	 activity	 characteristics)	 are	 also	

important	as	reservoirs	collect	materials	from	upstream	catchments.	These	attributes	affect	the	water	balance	

and	water	 quality	 of	 a	 reservoir,	 such	 as	 temperature,	 dissolved	 oxygen,	 and	 turbidity	 (Yang	 et	 al.,	 2022).	

Moreover,	the	limnological	properties	of	one	reservoir	have	the	potential	to	impact	other	reservoirs	through	

the	transfer	of	water	mass,	nutrients,	energy,	and	sediments	via	connecting	rivers,	as	previously	demonstrated	

in	studies	by	Huziy	and	Sushama	(2017)	and	Stieglitz	et	al.	(2003).	Thus,	researchers	can	better	understand	

catchment-level	 landscape	limnology	by	incorporating	these	attributes	(Soranno	et	al.,	2010).	The	values	of	

these	 catchment-level	 attributes	 are	 also	 proved	 in	 the	 Catchment	 Attributes	 and	MEteorology	 for	 Large-

sample	 Studies	 (CAMELS)	 introduced	 by	 Addor	 et	 al.	 (2017)	 and	 follow-up	 studies	 such	 as	 CAMLES-CL,	

CMALES-BR,	CAMLES-GB,	(Alvarez-Garreton	et	al.,	2018;	Chagas	et	al.,	2020;	Coxon	et	al.,	2020),	LamaH-CE	

(Klingler	et	al.,	2021),	CCAM	(Hao	et	al.,	2021),	LakeALTAS	(Lehner	et	al.,	2022),	as	well	as	the	works	by	Chen	

et	al.	(2022)	and	Liu	et	al.	(2022).	However,	there	is	a	data	gap	of	reservoir-catchment	characteristics	in	China,	

and	even	 the	geometric	boundaries	of	 reservoir	upstream	catchment,	which	hindered	 the	 spatially	explicit	

applications	 of	 such	 catchment	 information.	 Furthermore,	 allocating	 reservoirs	 on	 river	 network	 is	 also	

valuable	for	river	models	incorporating	reservoirs	as	reservoir	datasets	and	river	network	datasets	are	usually	

developed	independently,	and	they	are	not	well	corresponding	and	could	cause	some	issues	when	integrating	

reservoirs	in	river	model.	

Summary, applications and outlook:  
We	envision	that	Res-CN	with	 its	comprehensive	and	extensive	attributes	can	provide	strong	supports	to	a	

wide	range	of	applications	and	disciplines.	Firstly,	our	two	types	of	catchments	along	with	their	catchment-

level	 attributes	 allow	 investigations	 within	 individual	 catchments	 and	 interconnected	 river	 networks.	 For	

example,	as	illustrated	in	Figure	2,	users	may	quantify	the	relative	contributions	of	upstream	reservoirs	and	

local	drainage	catchment	on	water	quality	(e.g.,	algae	contributions	and	water	color)	of	downstream	reservoir	

by	tracking	temperature	and	nutrient	flows	from	upstream	reservoirs	and	intermediate	catchments	(e.g.,	Hou	

et	al.,	2022;	Yang	et	al.,	2022).	Besides,	water	and	sediment	transfer	can	be	also	more	accurately	simulated	in	

such	a	spatially	explicit	context	if	appropriate	approaches	are	used.	Machine-learning	methods	make	it	possible	

to	predict	reservoir	storage	change	at	1-	to	3-month	lead	from	reservoir	upstream	attributes	and	time-series	

of	reservoir	states	(Tiwari	et	al.,	2019).	Secondly,	Res-CN	provide	thus	far	the	most	comprehensive	reservoir	

states	 in	 China	 for	 assessing	 impacts	 of	 reservoir	 regulation	 and	 dynamics.	 Tracking	 the	 spatiotemporal	



balance	 of	 reservoir	 evaporative	 and	water	 storage	 can	 provide	 a	 basis	 for	 local	 water	management	 in	 a	

warming	 climate	 (Di	 Baldassarre	 et	 al.,	 2019).	 The	 reservoir	 operational	 rules	 or	 impacts	 of	 reservoir	

regulation	on	 flow	regimes	are	possibly	 to	be	 inferred	 from	reservoir	water	dynamics	 in	Res-CN	(Vu	et	al.,	

2022).	 This	 is	 particularly	 true	 if	 the	 reservoir	 inflow	 is	 also	 utilized.	 Recently,	 the	 gridded	natural	 runoff	

provided	by	Gou	et	al.	(2021)	provides	exciting	opportunities	for	quantifying	the	human	water	regulation	in	

combination	with	Res-CN	(Dang	et	al.,	2022;	Shin	et	al.,	2020).	Thirdly,	our	extracted	catchment-level	attributes	

can	contribute	to	a	better	understanding	of	reservoir	water	amount	and	water	quality	changes	by	spatially	

incorporating	 geophysical	 and	 anthropogenic	 characteristics	 of	 their	 upstream	 catchments	 and	 their	

respective	contributions.	For	example,	cropland	in	reservoir	upstream	catchments	controls	the	nutrient-driven	

primary	 production,	 while	 wetland	 coverage	 affects	 dissolved	 organic	 material	 transport	 downstream,	

ultimately	impacting	primary	production	and	CO2	emissions	in	lakes	(Balmer	and	Downing,	2011;	Borges	et	

al.,	 2022;	 Maberly	 et	 al.,	 2013).	 Gradient	 and	 altitude	 in	 the	 reservoir	 geological	 attributes	 may	 affect	

greenhouse	gas	emissions	and	biogeochemistry	of	a	reservoir	(Casas-Ruiz	et	al.,	2020).	Furthermore,	 these	

catchment-level	attributes	can	be	used	to	explore	water	fluxes	and	sediment	transportation	even	in	reservoirs	

that	have	not	been	sampled.	Studies	on	cascading	patterns	in	reservoir	attributes	found	that	each	attribute	may	

display	linear	function	of	catchment	area,	concluding	that	cascading	patterns	of	each	attribute	have	different	

implications	 for	dam	management	(Faucheux	et	al.,	2022).	For	 instance,	one	study	combined	knowledge	of	

catchment	 attributes	with	 economic,	 climate,	 and	 landscape	 data	 to	 inform	 reservoir	 removal	 decisions	 in	

California's	 Central	 Valley	 basin	 (Null	 et	 al.,	 2014).	 Lastly,	 carbon	dioxide	 emissions	 from	 reservoirs	 show	

significant	 spatial	 and	 seasonal	 variation,	 highlighting	 the	 importance	of	 hydrology	 in	 terrestrial–reservoir	

carbon	transfers	and	the	need	to	consider	this	effect	when	plumbing	terrestrial	carbon	budgets.	Res-CN	also	

offers	 exciting	opportunities	 to	 address	 changes	 in	 reservoir	 storage	 that	may	be	 linked	 to	 carbon	dioxide	

changes.	
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Although authors argued the need for intermediate catchments, however, I still failed 
to understand how data for these intermediate ones can be used to understand 
changes in reservoirs as I thought it may be missing essential water balance 
components? Can authors add more discussions and also clarify? 

R3C3: We have added explanations in the Summary, applications, and outlook. Hope 
the above comments addressed your concern. Taking the first application as an 
example, we can use the modeled outflow or sediment of upstream reservoirs, and 
modeled sediment or water mass in the local drainage catchment of the downstream 
reservoir catchment (i.e., intermediate catchment in Fig 2b) to explore the quantify the 
relative contributions of upstream reservoirs and local drainage catchment on water 
quality (e.g., algae contributions and water color) of downstream reservoir by tracking 
temperature and nutrient flows from upstream reservoirs and intermediate 
catchments (e.g., Hou et al., 2022; Yang et al., 2022). 



We	envision	that	Res-CN	with	 its	comprehensive	and	extensive	attributes	can	provide	strong	supports	to	a	

wide	range	of	applications	and	disciplines.	Firstly,	our	two	types	of	catchments	along	with	their	catchment-

level	 attributes	 allow	 investigations	 within	 individual	 catchments	 and	 interconnected	 river	 networks.	 For	

example,	as	illustrated	in	Figure	2,	users	may	quantify	the	relative	contributions	of	upstream	reservoirs	and	

local	drainage	catchment	on	water	quality	(e.g.,	algae	contributions	and	water	color)	of	downstream	reservoir	

by	tracking	temperature	and	nutrient	flows	from	upstream	reservoirs	and	intermediate	catchments	(e.g.,	Hou	

et	al.,	2022;	Yang	et	al.,	2022).	Besides,	water	and	sediment	transfer	can	be	also	more	accurately	simulated	in	

such	a	spatially	explicit	context	if	appropriate	approaches	are	used.	Machine-learning	methods	make	it	possible	

to	predict	reservoir	storage	change	at	1-	to	3-month	lead	from	reservoir	upstream	attributes	and	time-series	

of	reservoir	states	(Tiwari	et	al.,	2019). 

	
Figure	2.	An	example	of	the	types	of	catchment	delineations	in	Res-CN.	(a)	Catchment	delineation	A:	full	catchments,	
which	are	defined	as	the	entire	area	contributing	to	a	reservoir.	In	plot	(a),	full	catchment	of	reservoir	23720	overlaps	
with	that	of	reservoir	3205	and	that	of	6651.	(b)	Catchment	delineation	B:	intermediate	catchment.	In	plot	(b),	all	
upstream	contributing	areas	of	the	upstream	reservoirs	(3205	and	6651)	are	removed	from	the	full	catchment	of	
reservoir	23720,	thus,	we	get	the	intermediate	catchment	of	reservoir	23720	(in	black	boundary).	Background	in	light	
blue	indicates	other	catchments	not	shown	in	this	example.	Source	of	background:	MERIT	Hydro	and	MERIT	DEM	
(Yamazaki	et	al.,	2019).	

Other Comments 

L243: there's no need to mention computational time, unless you can provide details 
on the platform because it is highly platform dependent. 

Reply: Thank for your comment, we have rephrased it: 



This algorithm can correct the river networks by analyzing the gradients of flow accumulations along the rivers and 
can rapidly delineate catchments. 

L365~L370: I suggest that the author should place these introductions after L358 
(GRSAD and RealSAT) to make the content more cohesive. 

Reply: I completely agree with you and appreciate your constructive feedback. These 
sentences are positioned after L358 is to enhance the cohesiveness of the overall 
content. 

We	compare	these	datasets	with	in	situ	water	levels	and	altimetric	measurements	as	well	as	other	areal	
datasets	(GRSAD	and	RealSAT).	RealSAT	generated	681,137	monthly	Lake-surface	area	maps	from	Landsat	
images	during	1984-2015	using	an	ORBIT	(Ordering-Based	Information	Transfer)	approach	that	has	been	
validated	on	94	large	reservoirs.	As	opposed	to	RealSAT,	which	generated	new	static	lake	polygons	from	
water	occurrence	data,	GRSAD	used	existing	static	surface	water	polygons,	HydroLAKES	and	GRanD,	to	create	
monthly	areas	for	6,817	global	reservoirs	based	on	Landsat	images	over	the	last	35	years.	

L381~L382: Why the time period of reservoir storage variation is from 1984 to 2020, 
not 1984~2021? 

Reply: Upon careful review of the information, we have identified an error in our 
manuscript. The correct date range should be 1984-2021 instead of what was 
previously stated. We apologize for any confusion this may have caused. However, we 
want to assure you that the rest of the manuscript, including Table 2, contains 
accurate information. We have corrected the mistake in Line 381-382. 

L395: Please explain the two peak values of in-situ in 2021 (Figure.7 and Figure.8). 

Reply: For the figure 7: Yes, we add more explanations and discussed the uncertainties 
as well as limitations in this section. Please also note that for Fig. 7 panels 9-12, our 
data indeed captured the large peak values for most reservoirs (2, 0.5, 0.2 km3). 

Main text: The	Res-CN	database	provides	monthly	reservoir	water	storage	anomaly	for	3254	Chinese	
reservoirs	during	1984-2020	using	DEM's	area-storage	model,	along	with	their	detailed	evaluation	reports	
(see	Section	of	data	availability). 

The	remotely	sensed	storage	anomalies	generally	agree	with	the	observations	represented	by	the	statistical	
metrics,	although	some	large	discrepancies	occur	in	peak	values. 

The	uncertainties	in	storage	anomalies	are	primarily	attributed	to	three	sources,	i.e.,	the	altimetric	water	level,	

water	 surface	 area	 estimations	 from	 Landsat	 and	 Sentinel-2	 images,	 and	 the	 error	 resulting	 from	 their	

combination	(the	hypsometric	curve).	Fig.	S10	provides	an	example	that	illustrates	how	the	uncertainties	in	

satellite	datasets	propagate	to	storage	anomalies.	According	to	Shen	et	al.	(2022),	the	primary	source	of	error	

in	storage	anomaly	is	water	surface	area	and	the	hypsometric	curve.	Regarding	the	water	surface	area,	after	

applying	the	algorithm	developed	by	Donchyts	et	al.	(2022),	these	errors	and	impacts	can	be	reduced	to	a	large	



extent.	Meanwhile,	we	employed	 five	hypsometric	 relationships,	 and	 the	one	with	 the	highest	R2	 value	 for	

further	use.	For	more	than	80 %	reservoirs,	the	R2	values	are	greater	than	0.5,	providing	a	strong	foundation	

for	storage	anomaly	estimates.	Nonetheless,	the	current	satellite	sensors	have	limitations,	as	evidenced	by	the	

significant	 discrepancies	 observed	 in	 peak	 values	 (Figure	 7).	 The	 increasing	 temporal	 resolution	 and	 data	

accuracy	of	satellite	datasets,	such	as	the	SWOT	mission,	will	likely	improve	the	accuracy	of	storage	anomaly	

estimates	in	the	future.	

	
Figure	7.	Time	series	of	water	surface	area	and	storage	anomaly	in	selected	reservoirs.	RMSE	(km3),	NRMSE,	and	CC	
values	are	given	at	the	top	of	each	subplot	when	in	situ	observations	available.	Note	that:	time	series	of	water	surface	area	
and	storage	anomaly	of	the	remaining	reservoirs	are	available	in	our	datasets.	



 
Figure	S10.	Graphs	showing	an	example	that	illustrates	how	the	uncertainties	in	satellite	datasets	propagate	to	storage	
anomalies.	Error	series	and	relationships	of	reservoir	elevation-storage.	Error	series	of	(a)	SWE-derived	RWSC	(i.e.,	storage	
anomaly),	(b)	WSE-derived	RWSC	and	water	level	change,	(c)	WSE	(i.e.,	water	level).	(d)	and	(e)	Relationships	of	elevation-
storage.	The	numbers	on	the	x-axis	(a,	b,	c)	refer	to	the	IDs	of	SWE,	WSE,	and	WSE	change	observations,	respectively.	For	
more	details	about	the	propagation	process,	please	find	the	reference	Shen	et	al.,	(2020):	https://doi.org/10.3390/rs14040815.	

For Figure 8: We revised the figure 8 and re-create figure s11 for validation. Please find 
our revised text below: 

Res-CN	provides	monthly	reservoir	evaporation	values	for	3254	Chinese	reservoirs	during	1984-2021.	
Detailed	validations	of	the	algorithm	can	be	found	in	Zhao	et	al.	(2019;	2022)	and	Tian	et	al.,	(2021).	The	
validation	of	simulated	evaporation	at	an	annual	scale	from	Tian	et	al.	(2022)	at	47	reservoirs	was	
summarized	in	Fig.	S11	through	a	literature	review.	The	results	in	Fig.	S11	indicate	that	the	modeled	average	
annual	evaporation	rates	match	well	with	the	observed	rates.	Specifically,	the	percent	bias	(PBIAS),	Nash-
Sutcliffe	efficiency	(NSE),	and	root-mean-square	error	(RMSE)	were	found	to	be	0.02%,	0.82,	and	11.2	mm,	
respectively.	This	high	level	of	agreement	suggests	that	the	Penman	method	is	a	reliable	approach	for	
calculating	reservoir	evaporation	rates	in	China.	Fig.	S12	shows	the	long-term	mean	meteorological	variables	
that	were	used	to	calculate	the	evaporation	rates.	



	

Figure	S11.	Observed	and	modeled	average	annual	evaporation	for	47	reservoirs	(Tian	et	al.,	2021).	

	
Figure	8.	Validation	of	reconstructed	monthly	reservoir	evaporation	values.	(a)	Long-term	mean	evaporation	rates	and	
(b)	water	surface	areas	during	1984-2020.	
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Zhao, G., and Gao, H.: Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling 
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Zhao, G., Li, Y., Zhou, L., and Gao, H.: Evaporative water loss of 1.42 million global lakes. Nat. Commun., 13, 3686, 
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L425: Please confirm that the time period is 1984-2020. 



Reply: The correct date range should be 1984-2021 instead of what was previously 
stated. We apologize for any confusion this may have caused. We have corrected the 
mistake in this Line. 

L437: When the author first introduced the MERIT-river database, please add citations. 

Reply: We	used	the	MERIT-Hydro	database	(Yamazaki	et	al.,	2019)	to	calculate	stream	density	and	length	
within	a	catchment.	

References: 

Yamazaki, D, Ikeshima, D, Sosa, J, Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A high-resolution global 
hydrography map based on latest topography dataset, Water Resour. Res., 55, 5053-5073, 
https://doi.org/10.1029/2019WR024873, 2019. 

L463~L464: Why the time period is different between here (1990~2018) and L456 
(1980~2020)? 

Reply: We updated the metrics based on all available data, and revised it:  

We	calculated	nine	attributes	for	NSCD	based	on	meteorological	data	between	1	October	1990	and	30	
September	2020	to	reflect	aspects	of	climatic	characteristics.	

L524: Why the color of Fig.11i is red? 

Reply: We have thoroughly examined the figure in question, as well as all the other 
figures in the manuscript, and have confirmed that it is accurate. We apologize for any 
confusion or misunderstanding that may have arisen, and we hope that this 
clarification has helped to address any concerns. 


