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Highlights 

• Machine learning can be used to relate soil data and environmental covariates  

• The first Australian digital soil map of lithium concentration is presented 

• The prediction map can be used to delineate potential areas of anomalous Li 

• Elevated soil Li observed and modelled in a number of States 10 

 

Abstract  

With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to 

delineate potential anomalous areas. This study uses a digital soil mapping framework to combine data from recent 

geochemical surveys and environmental covariates that affect soil formation to predict and map aqua regia-extractable Li 15 

content across the 7.6 million km2 area of Australia. Catchment outlet sediment samples (i.e. soils formed on alluvial parent 

material) were collected by the National Geochemical Survey of Australia at 1315 sites, with both top (0 – 10 cm depth) and 

bottom (on average ~60 – 80 cm depth) catchment outlet sediments sampled. We developed 50 bootstrap models using a Cubist 

regression tree algorithm for each depth. The spatial prediction models were validated on an independent Northern Australia 

Geochemical Survey dataset, showing a good prediction with a root mean square error of 3.32 mg kg-1 (which is 44.2 % of the 20 

inter-quartile range) for the top depth. The model for the bottom depth has yet to be validated. The variables of importance for 

the models indicated that the first three Landsat 30+ Barest Earth bands (red, green, blue) and gamma radiometric dose have 

a strong impact on the development of regression-based Li prediction. The bootstrapped models were then used to generate 

digital soil Li prediction maps for both depths, which could identify and delineate areas with anomalously high Li 

concentrations in the regolith. The predicted maps show high Li concentration around existing mines and other potentially 25 

anomalous Li areas that have yet to be verified. The same mapping principles can potentially be applied to other elements. The 

Li geochemical data for calibration and validation are available at: (de Caritat and Cooper, 2011b; 

http://dx.doi.org/10.11636/Record.2011.020) and (Main et al., 2019; http://dx.doi.org/10.11636/Record.2019.002) 

respectively. The covariates data used for this study were sourced from the Terrestrial Ecosystem Research Network (TERN) 

infrastructure, which is enabled by the Australian Government’s National Collaborative Research Infrastructure Strategy 30 
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(NCRIS) https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/ (TERN, 2019). The final 

predictive map is available at: https://doi.org/10.5281/zenodo.7895482. 
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1 Introduction 35 

Minerals have become essential commodities in modern human society. Many minerals are fundamental to technological and 

industrial advancement, particularly those utilised in renewable energy systems, electric vehicles, consumer electronics and 

telecommunications (Kabata-Pendias, 2010). These minerals can be considered critical, in the sense that they are of high 

importance and have a high risk of supply disruption. Methods for quantifying mineral criticality are discussed in detail in 

Graedel et al. (2012).  40 

Lithium (Li) is an important chemical element as the world transitions towards a lower-carbon economy. It has been listed as 

a critical element by various countries, including Australia, Canada, the European Union, Japan, the Republic of Korea and 

the United States of America (Mudd et al., 2018; David Huston, Geoscience Australia, pers. comm. March 2022). Australia is 

endowed with significant resources of many of the critical elements and the critical minerals hosting them, including Li. 

Currently, Australia’s ranking for economic resources of Li is second, but it ranks first for its production (Senior, 2022), with 45 

potential for additional discoveries. According to a recent survey (Senior, 2022), Australia produced 40 kilotons (kt) of Li (in 

terms of spodumene, LiAlSi2O6, concentrates; assuming 6% of Li2O in spodumene concentrates) in 2020, or 49% of the global 

production; a significant increase from 21.3 kt of Li in 2017 (Champion, 2019). 

The two primary sources for Li are brine stores and mineral deposits, where Li is hosted mainly in spodumene. A 2013 

investigation by Geoscience Australia found that the potential of Li-rich salt lakes in Australia was relatively low in comparison 50 

to those, for instance, in the Americas (Jaireth et al., 2013; Mernagh et al., 2013; Mernagh et al., 2016). Most of the Li in 

Australia exists as mineral deposits (Champion, 2019). Despite Australia’s current position as the world’s leading supplier of 

Li, it has limited prospects for immediate expansion as the potential for similar deposits in Australia has not yet been fully 

investigated (Mudd et al., 2018). This study aims to contribute to filling this knowledge gap by providing the first digital map 

of Li concentration in Australian soils. 55 

Lithium values ranges from <1 – 15 mg kg-1 in ultramafic rocks, 5.5 – 17 mg kg-1 in mafic rocks, whereas felsic rocks (granite, 

rhyolite and phonolite) contain higher Li concentrations, between 30 – 70 mg kg-1 (de Vos et al., 2006). Lithium concentration 

in clay minerals ranges between 7 – 6000 mg kg-1  (Starkey, 1982). With developments in technology, a process of extracting 

Li as Li-carbonate from certain minerals, other than spodumene, such as lepidolite (KLi2Al(Si4O10)(F,OH)2) and petalite 

(LiAlSi4O10), has been identified (Sitando and Crouse, 2012; Vieceli et al., 2018). Lower Li concentration is found in salt lake 60 

brines (0.17 – 1.5 mg kg-1) (Grosjean et al., 2012). Extraction of Li from salt lake brine is in the form of Li-chloride, which 

needs to undergo an energy-intensive process to be converted to Li-carbonate from the Li-metal forms for use in batteries.  

https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/
https://doi.org/10.5281/zenodo.7895482
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Lithium is found in trace amounts in all soil types, primarily in the clay fraction, with slightly lower concentrations in the 

organic soil fraction (Kabata-Pendias, 2010). Possible means by which Li is bound to clay have been reviewed elsewhere 

(Starkey, 1982). Across Europe, values of Li ranging from 0.28 – 271 mg kg-1 have been reported (Salminen et al., 2006), with 65 

smaller concentration ranges in agricultural soil (0.161 – 136 mg kg-1) and grazing soil (0.1 – 153 mg kg-1) (Reimann et al., 

2014).  Négrel et al. (2019) reported aqua regia soluble Li concentration of 11.3 mg kg-1 in European agricultural soil. In New 

Zealand, a study of Li concentration in soil reported a range between 0.08 – 92 mg kg-1 (Robinson et al., 2018). de Caritat and 

Reimann (2012) reported median Li concentrations (after aqua regia digestion) of 12 and 5.7 mg kg-1 in European agricultural 

topsoils and Australian surface sediments, respectively, both in the coarse (< 2 mm) fraction. Subsequently, Reimann and de 70 

Caritat (2017) published the first continental map (Supplementary Material; Fig.2SM) of Li in Australian soils, based on 

National Geochemical Survey of Australia (NGSA) data, showing that regions of high and low concentrations are found across 

all States. The amount of soil-available Li in has been found to be relatively low, about 3 – 5% of the total Li content in the 

surface layers both in south-eastern of USA (Anderson et al., 1988) and Siberia (Gopp et al., 2018), ranging from 0.24 – 0.68 

mg kg-1. A total  Li concentration within a range of 5.27 – 400 mg kg-1 had been reported for catchment sediment samples in 75 

China (Liu et al., 2020)  and within a range of <1 – 300 mg kg-1 in the USA topsoils (Smith et al., 2019).  

Higher concentrations of Li are often found in the deeper layers of soil profiles (Merian and Clarkson, 1991). Typically, Li 

enters the soil column through the weathering of sedimentary minerals in the underlying saprolite and bedrock (Aral and 

Vecchio-Sadus, 2008). Because clay minerals predominantly drive the mineralisation and dissolution of Li, the clay mineral 

fraction will play a significant role in determining the Li concentration. The Li content of soil is controlled more by the soil 80 

formation conditions than by the composition of the parent materials (Kabata-Pendias, 2010). Similar observations are found 

in Négrel et al. (2019), where the aqua regia-extractable Li concentrations can be linked with known mineralisation process 

observed within Europe. This was also shown in the study by Luecke (1984) who explored the use of the enriched elements 

(Rb, Ba, Sr, Cu and Zn among others) information to aid predicting the distribution of Li pegmatites. 

Mineral exploration aims to find ore deposits for mining purposes. Therefore, delineating target areas for mineral exploration 85 

through a series of mapping activities is a crucial initial stage leading to discovery (Carranza, 2011). Mineral prospectivity 

mapping (or modelling; MPM) is a method to quantify the probability of mineralisation in a selected area for mineral 

exploration purposes (Zuo, 2020). This prioritisation allows for the selection of smaller, higher-potential areas for detailed 

prospecting investment to minimise exploration costs, e.g. the number of drillholes. 

Two common paradigms for creating MPM are knowledge-driven and data-driven models (Carranza, 2011). Knowledge-90 

driven models do not require any data on mineral deposits, but rely on expert knowledge of spatial associations between 

mineral deposits and geological features, field experience and conceptual models to develop evidential maps that enables the 

discovery of mineral deposit (Carranza, 2008). Conversely, data-driven models utilise existing knowledge on the location of 

mineral occurrences, various survey datasets and spatial statistical methods to represent the likelihood of mineral occurrence 

within prospective areas (Carranza, 2008). Numerous data-driven models have been  derived for the detection of anomalous 95 

mineral occurrences. Benedikt (2018) utilised Tellus regional stream sediment geochemistry to screen for anomalous metal 
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abundances within minerals in Southeast Ireland. Roshanravan et al. (2023) and Harris et al. (2023) also implemented data-

driven machine learning model to develop predictive maps of gold prospects.  

With the development of machine learning and technology (computer hardware, software and geographic information system 

(GIS) technology), there have been growing applications of MPM in the decades (Carranza, 2011; Porwal et al., 2015; Zuo, 100 

2020). Several studies have demonstrated the use of remote sensing to explore various deposit types, such as gold (Au) deposits 

(Crósta et al., 2010), copper (Cu) deposits (Pour and Hashim, 2015) and iron (Fe) ores (Ducart et al., 2016). The application 

of remote sensing for Li deposits has also emerged. Gopp et al. (2018) explored the use of Normalised Difference Vegetation 

Index (NDVI) to develop a predicted map of the plant available content of Li in southwestern Siberia soil. Cardoso-Fernandes 

et al. (2018) and Cardoso-Fernandes et al. (2020) evaluated the potential use of Sentinel-2 in Li mapping in the Fregeneda-105 

Almendra region across the Spain-Portugal border. Similarly, Köhler et al. (2021) further explored the use of combined 

geological data and Sentinel-2 data for Li potential mapping in Portugal. Antezana Lopez et al. (2023) used Sentinel-2, ASTER, 

JILIN GP, and PROBA CHRIS satellite data to study surface reflectance, as well as soil physicochemical properties to predict 

Li concentration in Bolivian salt flats. 

In soil science, digital soil mapping (DSM) has been widely used to produce quantitative maps of soil attributes based on the 110 

known distributions of environmental covariates (i.e. rainfall, parent material, vegetation and landforms), that affect soil 

formation. The DSM framework is derived from the conceptual model developed by McBratney et al. (2003) in which a certain 

soil attribute results from the interaction of soil-forming factors. These factors are modified from Jenny (1941) and include 

soil (s), climate (c), organisms (o), relief (r), parent material (p), age/time (a) and spatial position (n), or scorpan. The factors 

are measured or approximated from various data types, including point observations, maps (polygons), survey data, and remote 115 

sensing data and derivatives thereof (e.g. gradients, buffer distances, etc.); these can be numerical or categorical data types. 

In this study, we attempt to model Li distribution in the surface and subsurface soils of Australia by invoking the NGSA soil 

geochemistry dataset and various environmental covariates commonly used in DSM related to soil formation in Australia. In 

detail, the objectives of this study are thus to: 

(i) evaluate the use of DSM framework to predict Li concentration in Australian soils, and 120 

(ii) delineate anomalous areas potentially attractive for Li exploration and discuss their interpretations. 

2 Materials and methods 

2.1 Li measurement 

This study used two soil datasets, referred to as the calibration and validation datasets. The calibration dataset was used to 

build the spatial prediction model and the validation dataset was used to test the prediction quality of the calibrated model.  125 

The calibration dataset data were generated as part of the NGSA project (www.ga.gov.au/ngsa), a collaborative project between 

Geoscience Australia and the States/NT between 2007 – 2011, which aimed to document the soil geochemical concentration 

http://www.ga.gov.au/ngsa
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levels and patterns across Australia. Details on the project, analysis, sampling methods and the measurement of other 

parameters can be found in de Caritat and Cooper (2011b), de Caritat and Cooper (2015) and (de Caritat, 2022). 

The NGSA collected samples at 1315 sites (including field duplicates) at or near the outlet of large catchments with a total 130 

area coverage of 6.17 million km2 and an average sampling density of 1 site for every 5200 km2 (de Caritat and Cooper, 

2011b). The target sampling medium was floodplain sediments away from river channels, though in various places in Australia, 

aeolian modification of floodplain sediments can be important; thus, the medium was called ‘catchment outlet sediment’ rather 

than floodplain sediment. These geomorphological entities are typically vegetated and biologically active (plants, worms, ants, 

etc.), thereby making the collected materials true soils (e.g., SSSA, 2022), albeit soils all developed on transported alluvium 135 

parent material. Due to limitations in access, samples from some parts of South Australia and Western Australia could not be 

obtained.  

Samples were collected from two depths, namely ‘top outlet sediment’ (TOS) from 0 – 10 cm depth, and ‘bottom outlet 

sediment’ (BOS) from, on average, ~60 – 80 cm depth. All of the samples were air-dried, homogenised and dry sieved to <2 

mm and <75 µm prior to various analyses for 60+ elements (see de Caritat et al. (2009) and de Caritat et al. (2010), for a full 140 

description of the NGSA sample preparation and analytical methods, respectively).  

In this contribution, we use Li concentration after aqua regia digestion, as the NGSA did not report total Li. A 0.50 ± 0.02 g 

aliquot of sample (<2 mm) was digested in aqua regia (1.8 mL of HCl + 0.6 mL of HNO3) at 90 ± 3°C for 2 hours to leach 

acid-soluble components. Once the sample had cooled to room temperature, 17.5 mL of diluent was added, and the sample 

was inverted 10 times to homogenise the content. The sample was further diluted 50 times prior to analysis, using inductively 145 

coupled plasma mass-spectrometry (ICP-MS) in a commercial laboratory (de Caritat et al., 2010). For the remainder of the 

paper, any reference to Li concentrations is understood to mean aqua regia-extractable Li unless otherwise noted. Any Li 

measurements that fell below the detection limit (0.1 mg kg-1) were replaced with half the detection limit (0.05 mg kg-1). A 

detailed quality assessment of the NGSA data is given in de Caritat and Cooper (2011a), where a relative analytical precision 

(repeat analysis of  TILL-1 Certified Reference Materials (CRM)) of 12% and a relative overall precision (based on field 150 

duplicates) of 39% were reported. The distribution of sampling sites and Li concentration levels for both TOS and BOS are 

shown in Figure 1. 

As an independent validation dataset, we used the geochemical dataset from the Northern Australia Geochemical Survey 

(NAGS) project (Main et al., 2019). This dataset contains 773 observations located in the Tennant Creek – Mt Isa region in 

the Northern Territory and Queensland, with an approximate sampling density of one sample every 500 km2 and collected in 155 

2017. The distribution of these samples is also shown in Figure 1. These samples were collected, prepared and analysed 

following the NGSA protocols (de Caritat and Cooper, 2011b), albeit at a higher sampling density. However, only TOS 

samples were collected in NAGS. Furthermore, these NAGS samples were collected at a different time and analysed in a 

different laboratory compared to the NGSA dataset. To address the analytical variation that could potentially arise, a levelling 

method was applied using the TILL-1 CRM standards (Main and Champion, 2022). First, the subset of the NGSA dataset that 160 

covers the spatial area of the NAGS dataset was extracted. Then a Kolmogorov-Smirnov test was used to verify if the samples 
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from the two datasets (subset of the NGSA and NAGS) were similar. A correction factor to relate the two datasets based on 

the TILL-1 CRM standards was then calculated and applied as a multiplier to the NAGS dataset to level its data to the NGSA 

dataset.  

[Figure 1] 165 

2.2 Environmental covariates 

A total of 19 environmental covariates (Table 1) characterising the factors of climate, parent material, soil, and topography, 

which contribute to soil formation, were considered in this study.  

The first factor is climate. Water (humidity) and temperature affect the rate of mineral weathering and thus soil formation. 

Hence, we included precipitation, evaporation and temperature data (Harwood, 2019), along with the topographic wetness 170 

index (TWI) data (Gallant and Austin, 2012b), informing on the relative wetness within a landscape. In short, the TWI was 

derived from the partial contributing area product, which was computed from a Hydrologically enforced Digital Elevation 

Model, and from the percent slope product, which was computed from the Smoothed Digital Elevation Model (DEM-S; Gallant 

and Austin, 2012b). 

The second factor is parent material (i.e. degree of weathering and mineralogical composition), including gamma-ray 175 

radiometric and total magnetic intensity. Gamma-ray radiometric surveys provide estimates for the concentrations of gamma-

ray-emitting radioelements potassium (K), uranium (U) and thorium (Th) at/near the soil surface. The gamma-ray radiometric 

data were measured from airborne surveys throughout most of Australia (Poudjom Djomani et al. (2019). In this study, we 

used a complete gamma-ray survey grid where gaps in the airborne coverage were filled in using covariate machine learning 

(Wilford and Kroll, 2020). Gamma-ray radiometric data have been found to be a useful covariate in identifying surface 180 

processes such as sediment transport and weathering (Wilford, 2012; Wilford et al., 1997) and detecting radioactive mineral 

deposits and occurrences (Alhumimidi et al., 2021; Dickson et al., 1996; Dickson and Scott, 1997; Wilford et al., 2009). Total 

magnetic intensity (TMI), which measures variations in the Earth’s magnetic field intensity caused by the contrasting content 

of various rock-forming minerals in the crust (Poudjom Djomani et al., 2019), could also potentially identify geological 

features and processes. 185 
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Figure 1. Distribution of sampling sites from the National Geochemical Survey of Australia (NGSA, black circles) for both depths: 
top outlet sediment (TOS) 0 – 10 cm, top; and bottom outlet sediment (BOS) ~60 – 80 cm, bottom. Distribution of sampling sites 
from the Northern Australia Geochemical Survey (NAGS, blue plus signs) for TOS only, top. All data refer to the coarse fractions 190 
(< 2mm). Aqua regia-soluble Li concentrations (mg kg-1) are categorised in five quantile classes. Regions discussed in the text are 
highlighted in various shades of green. Projection: Australian Albers Equal Area (EPSG:3577). Data sources: de Caritat and Cooper 
(2011b), Hughes (2020), and Main et al. (2019). 
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The third factor is the soil itself, particularly the relevant physical soil properties. As previous studies, e.g. by Kabata-Pendias 

(1995) and Robinson et al. (2018), highlighted the high correlation between Li and clay content of soil, soil texture was used 195 

as a covariate. The soil texture spatial information (sand and clay contents) was derived from Malone and Searle (2021), which 

contained updated information on soil texture across Australia derived using a digital soil mapping approach. The sand and 

clay fractions were developed by integrating field morphological (n = 180,498) and laboratory measurements of soil texture 

fractions (n = 17,367) from the Soil and Landscape Grid of Australia (SLGA). The SLGA is based on a comprehensive 

compilation of soil attributes across Australia, including the NGSA dataset. These sand and clay content maps (Malone and 200 

Searle, 2021) used were for specific depth intervals (0 – 5 cm, 5 – 15 cm, 15 – 30 cm, 30 – 60 cm, 60 – 100 cm, and 100 – 200 

cm). They were converted to the depths corresponding to the NGSA Li measurement (0 – 10 cm and ~60 – 80 cm) using the 

mass-preserving spline function, described in Bishop et al. (1999) and modified by Malone et al. (2009). Soil reflectance in 

the visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectra captured by remote sensing images provides 

information on soil composition. However, the unprocessed images consist of a mixture of soil, bedrock, vegetation and clouds. 205 

By removing the influence of seasonal vegetation, Roberts et al. (2019) were able to document the ‘barest’ state of soil, so 

critical in mapping the physical characteristics of soil and rock. This was done by combining Landsat 5, 7, and 8 observations 

of the past 30 years to remove the contamination by seasonal vegetation, cloud cover, shadows, detector saturation and pixel 

saturation. The model used to develop the Barest Earth product was validated using the NGSA spectral archive (Lau et al., 

2016). 210 

Finally, topography is represented by elevation and slope. These factors also play an important role, as they affect how water 

is added to and/or lost from soil. The elevation was derived from the DEM-S which was obtained from the 1 arc-second 

resolution Shuttle Radar Topography Mission (SRTM) data acquired by NASA in February 2000 (Gallant, 2011). The slope 

covariate was also calculated from DEM-S using the finite difference method (Wilson and Gallant, 2000). The different spacing 

in the E-W and N-S directions due to the geographic projection of the data was accounted for by using the actual spacing in 215 

metres of the grid points calculated from the latitude. 

All covariates were reprojected to EPSG: 3577 (GDA94 datum; Australian Albers equal area projection) and resampled to a 

common spatial resolution of 3 km prior to any analysis. All the environmental covariates used are shown in Table 1. 

[Table 1] 

The correlation matrix of the Li concentrations to all the other element concentrations and environmental covariates was 220 

generated using Pearson’s correlation method. Strong correlation was defined as >0.5, moderate was defined as 0.35 to 0.5, 

and weak correlation was defined as <0.35. Note that this classification was generated to facilitate interpretation of this dataset 

only and is not implied to be a general rule. 

 
 225 
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Table 1. Environmental covariates used for digital soil mapping of Li. 

Covariate Description Source Original resolution 

PTA Annual precipitation (mm) Harwood (2019) 90 m 

EPA Annual potential evaporation (mm) Harwood (2019) 90 m 

TRA Annual temperature range (°C) Harwood (2019) 90 m 

Dose Radiometrics: filtered dose (nGy/h) Wilford and Kroll (2020) 0.001 degree 

K 
Radiometrics: filtered K element 

concentrations (%) 
Wilford and Kroll (2020) 0.001 degree 

Th 
Radiometrics: filtered Th element 

concentrations (ppm) 
Wilford and Kroll (2020) 0.001 degree 

Th/K 
Radiometrics: derived Th to K ratio 

(ppm/%) 
Wilford and Kroll (2020) 0.001 degree 

TMI Total magnetic intensity (nT/m) Poudjom Djomani et al. (2019) 90m 

Sand Sand content (%) Malone and Searle (2021) 90 m 

Clay Clay content (%) Malone and Searle (2021) 90 m 

Landsat band 1* Blue (450 – 510 nm) Wilford and Roberts (2019) 25 m 

Landsat band 2* Green (530 – 590 nm) Wilford and Roberts (2019) 25 m 

Landsat band 3* Red (640 – 670 nm) Wilford and Roberts (2019) 25 m 

Landsat band 4* Near infrared NIR (850 – 880 nm) Wilford and Roberts (2019) 25 m 

Landsat band 5* 
Shortwave infrared SWIR1 (1570 –

1650 nm) 
Wilford and Roberts (2019) 25 m 

Landsat band 6* 
Shortwave infrared SWIR2 (2110 –

2290 nm) 
Wilford and Roberts (2019) 25 m 

Elevation 
3 Second DEM - Shuttle Radar 

Topography Mission (m asl) 
Gallant (2011) 1 arc-second 

Slope Elevation gradient (%) Gallant and Austin (2012a) 90 m 

TWI 
Topographic wetness index 

(dimensionless) 
Gallant and Austin (2012b) 30 m 

*All Landsat bands referred here are from the Landsat 30 + Barest Earth products 
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 230 

2.3 Modelling  

Here, we used the machine learning model Cubist to relate soil observations to the environmental covariates. Cubist is a tree-

based regression algorithm based on the M5 theory (Quinlan, 1993). This algorithm creates partitions of data with similar 

spectral characteristics and creates one or more rules for each partition. If the partition rules are satisfied, then the linear 

regression of that partition is used to create the prediction (Eq. 1). Each rule can be defined as:  235 

If [condition is true], then [regression], else [apply next rule] (Eq. 1) 

The Cubist model has two tuning parameters: committees (number of sequential models included in the ensemble) and 

neighbours (number of training instances that are used to adjust the model-based prediction). A comprehensive combination 

of committees (5, 10, 20, 30, 40, 50) and neighbours (0, 1, 5, 9) was tested to tune the Cubist model. To obtain the best estimates 

of optimum parameters, a 10-fold cross-validation approach was utilised. Based on the optimum parameters, 50 bootstrap 

models (‘sampling with replacement’) were trained. The flowchart of the process is shown in Figure 2. 240 

[Figure 2] 

 

 
Figure 2. Flowchart of Cubist model training to generate Li prediction map along with model validation. 
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The performance of the prediction models was then evaluated using both an internal evaluation and the external, independent 255 

validation dataset. An internal evaluation of the model was conducted using “out of bag” samples, which were not used during 

the development of the bootstrap models. The NAGS dataset was used to evaluate the performance on the independent dataset 

(top depth only). The following metrics, briefly explained below, were used: adjusted coefficient of determination (R2
adj), Lin’s 

concordance correlation coefficient (LCCC) (Lin, 1989), root mean square error (RMSE), bias, and ratio of performance to 

interquartile distance (RPIQ). R2
adj is a measure of the linear association between observed and predicted values; LCCC 260 

measures the agreement between the observed and predicted values in relation to the 1:1 line while accounting for the 

magnitude of the differences; RMSE is a measure of the differences between the observed and predicted values; bias is the 

measure of the difference between the mean of the observed and the mean of the predicted values; and RPIQ is a measure of 

performance that takes into account the distribution of the values, and can be calculated as a fraction of the interquartile range 

of the observed values (Q3–Q1) and the RMSE (RPIQ = (Q3–Q1)/RMSE) (Bellon-Maurel et al., 2010).  265 

Variable importance analysis was also conducted to evaluate the contributions of each covariate to the Li prediction. The 

relative variable importance is measured as the percentage of times the environmental covariate is either used as conditions 

for a rule or as predictors (usages) within the linear regression model when certain conditions are met. These bootstrap models 

were then used to generate output maps with the same extent and resolution. The final map output was derived based on the 

mean prediction of the bootstrap models; similarly, the standard deviation map was obtained based on the standard deviation 270 

of the prediction from the bootstrap models.  

2.4 Data processing and statistical computing 

All the data analytics, modelling, and mapping procedures in this study were conducted in the R statistical open-source 

software (R Core Team, 2021). Besides the base R functionality, the R packages used in this study included “Cubist” (Kuhn 

and Quinlan, 2021) for fitting cubist models; “caret” (Kuhn, 2022) for tuning the hyperparameter of the Cubist model; and 275 

“raster” (Hijmans, 2021) for handling raster layers and generating soil map predictions. All soil maps were produced in 

ArcMap version 10.8 (ESRI 2019) using the Albers equal area projection (EPSG:3577).  

3 Results and discussion 

3.1 Descriptive analysis 

The distribution of 1315 aqua regia-soluble Li concentration values (NGSA dataset, de Caritat and Cooper, 2011b) was 280 

positively skewed (Figure 3) with concentrations ranging from 0.05 – 67.4 and 0.05 – 56 mg kg-1, for TOS and BOS 

respectively. Only limited observations above 20 mg kg-1 of Li concentrations were found in this study for both TOS (n = 76) 

and BOS (n = 95). The mean concentration of TOS (7.6 mg kg-1) was slightly lower than that of BOS (8.8 mg kg-1). These 

concentrations were lower than those observed for the mean aqua regia-soluble Li concentrations in European soil at 11.3 mg 

kg-1 (Négrel et al. 2019), and those found in upper continental crust (both in loess and shales) at 35 mg kg-1 total Li (Teng et 285 
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al., 2004). A soil geochemical survey in the USA shows soil total Li concentration with a range of <1-300 mg kg-1 (median 20 

mg kg-1) for soils from 0-5 cm and a range of <1-280 mg kg-1 (median 24 mg kg-1) for soil samples from the C horizon (Smith 

et al., 2019). Similarly, total Li concentration of up to 400 mg kg-1 has been reported in China (Liu et al., 2020). These latter 

Li concentrations, measured using four acid extraction, were considerably higher than the aqua regia extraction data from the 

NGSA dataset. 290 

[Figure 3] 

 

 
 
Figure 3. Histograms of Li concentrations for both NGSA depths: top outlet sediment (TOS) 0 – 10 cm, left; and bottom outlet 295 
sediment (BOS) ~60 – 80 cm, middle, and NAGS. Data source: de Caritat and Cooper (2011b) and Main et al. (2019). 

Based on the data collected by the NGSA project, the highest concentrations of Li for both TOS and BOS were found in 

northernmost Queensland (Cape York Peninsula), as shown in Figure 1 and Table 2. Other regions that have elevated 

concentrations of Li were located in the Goldfields-Esperance region (Table 2) in Western Australia, which has been 

recognised as one of the most resource-rich areas on the planet (Champion, 2019), and the region around the Victoria-New 300 

South Wales border (Figure 1). Some of the findings correlate well with the existing Li mine sites in Australia (red triangles 

in Figure 1). The largest deposit of Li found in Australia is the Greenbushes deposit, south of Perth. Other regions include 

Mount Marion and Earl Grey in the Yilgarn Craton, and Pilgangoora in the Pilbara Craton (Champion, 2019; see Table 1). In 

July 2019, Strategic Metals Australia (SMA) found a new Li exploration target near Cairns, in the Georgetown province of 

north Queensland (Gluyas, 2019). However, this discovery has not been updated in the data collected by Geoscience Australia 305 

because considerable work such as drilling, modelling, resource calculation and feasibility studies are needed to bring the 

discovery to the feasibility stage. 

[Table 2]  
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Table 2. Aqua regia-extractable lithium concentrations across various regions of Australia. 

Region (n = number of samples) Range (mg kg-1) Median (mg kg-1) 

Pilbara Craton (n = 12) 1.2 – 15.7 6.80 

Yilgarn Craton (n = 101) 0.05 – 32.7 3.50 

Eucla Basin (n = 29) 1.6 – 22.6 12.40 

Cape York (n = 20) 0.3 – 67.4 3.95 

Goldfields (n = 78) 0.1 – 32.7 5.80 

3.1.1 Correlation between Li with other measured properties  310 

Despite other studies reporting strong correlations between Li and Mg (Kashin, 2019; Robinson et al., 2018), and between Li 

and other elements elsewhere, including Al, B, Fe, K, Mn and Zn, the NGSA data only show strong correlations (as defined 

above) between Li and Al (Pearson’s correlation coefficient r = 0.74), Ga (r = 0.69), Cs (r = 0.68), and Rb (r = 0.66) for TOS, 

and slightly lower correlations for BOS: Al ( r= 0.69), Ga (r = 0.64), Cs (r = 0.62), Rb (r = 0.61). Correlations between Li and 

K and Mg were only moderate for both TOS (r = 0.48 and 0.43) and BOS (r = 0.46 and 0.33). de Vos et al. (2006) also observed 315 

good correlations (r > 0.4) between total Li and Al, Ga and Rb within the floodplain sediment samples. Similarly, Cardoso-

Fernandes et al. (2022) found strong correlation between total Li and Sn, B, Rb, Cs and F in stream sediment samples using 

geochemical pathfinder analysis. 

The Li concentration in soil was (strongly) negatively correlated with measured sand content from the NGSA dataset (r = -

0.55), and (moderately) positively correlated with clay content (r = 0.44). This is consistent with the findings of Kabata-Pendias 320 

(2010) and Robinson et al. (2018), who noted the tendency of clay minerals to concentrate Li. It has been suggested that Li 

may be located internally within clay minerals, mainly kaolinite, illite, smectites including hectorite, palygorskite and 

sepiolites, in ditrigonal cavities via isomorphous substitution, rather than on exchange sites (Anderson et al., 1988; Starkey, 

1982) as a result of subsolidus cation exchange reactions with residual pegmatitic fluids (London and Burt, 1982). 

3.1.2 Correlation with environmental covariates 325 

Overall, the correlation between Li concentration and the environmental covariates was weak (Figure 4). The correlation with 

sand and clay content derived from digital soil maps was lower in comparison to the measured (NGSA) values discussed 

above, with r = -0.28 and 0.25, respectively, for TOS; and r = -0.23 and 0.22, respectively, for BOS.  

For TOS, the Landsat bands 3 (Red), 5 (SWIR1) and 6 (SWIR2) had similar (weak) negative correlations with Li content (r = 

-0.15 to -0.17). For gamma-ray radiometric data, both total dose and K content had weak correlations with Li (r = 0.10 to 0.14). 330 

These positive correlations are expected as the associations of Li deposits and felsic rocks (high in both total dose and K) due 

to the observed incompatibility in mineral structures (Benson et al., 2017). Precipitation had a weak positive correlation (r = 
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0.12), while both temperature and elevation had weak negative correlations (r = -0.12) with Li content. TWI and slope had 

negligible correlation with Li content (r = -0.02 to 0.05). 

For BOS, similar observations on the correlations between Li content and environmental covariates were found where 335 

temperature and Landsat bands 3, 5 and 6 had (weak) negative correlations (r = -0.11 to -0.16) with Li, while radiometric K (r 

= 0.10) and dose (r = 0.09) had (weak) positive correlation with Li. Similarly, TWI and slope showed negligible correlation 

with Li (r = -0.01 to 0.05).  

[Figure 4] 

 340 

 
 
Figure 4. Pearson’s correlation coefficient (r) between Li content and the environmental covariates (scorpan) for both NGSA depths: 
top outlet sediment (TOS) 0 – 10 cm, left; and bottom outlet sediment (BOS) ~60 – 80 cm, right. Data sources: de Caritat and Cooper, 
2011b; Gallant, 2012a; Harwood, 2019; Wilford, 2019; Wilford and Kroll, 2020; Malone and Searle, 2021. See Table 1 for 345 
abbreviations. *** Correlation is significant at the 0.001 level; ** Correlation is significant at the 0.05 level; * Correlation is 
significant at the 0.01 level.   
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3.2 Model evaluation  

The final Cubist model was tuned with 20 committees and 9 neighbours, which resulted in the lowest RMSE compared to the 

other combinations of hyperparameters, indicating an optimised Cubist model. 350 

3.2.1 Internal evaluation  

Validation statistics based on internal evaluation using the out-of-bag data for the Li predictions are presented in Table 3. 

There was a slightly lower accuracy on the prediction for BOS (R2
adj = 0.12; LCCC = 0.29; RMSE = 7.28 mg kg-1) compared 

to TOS (R2
adj = 0.20; LCCC = 0.36; RMSE = 6.29 mg kg-1). This is expected as most of the environmental covariates reflected 

soil surface conditions. To the best of our knowledge, the machine learning models developed in most mineral exploration 355 

studies were assessed based on classification accuracy (i.e. presence or absence of specific minerals in sample), instead of 

regression accuracy (Jooshaki et al., 2021). In addition, remote sensing studies on mapping Li minerals are rarely validated 

(e.g. Cardoso-Fernandes et al. (2019)). Hence, no comparison can be made with other studies. 

[Table 3] 

 360 
Table 3. Internal model evaluation and validation results for the prediction of Li concentrations using Cubist model for both NGSA 
depths: top outlet sediment (TOS) 0 – 10 cm; and bottom outlet sediment (BOS) ~60 – 80 cm. External independent validation is 
based on comparing predictions to the NAGS dataset Li concentrations.  

Depth R2
adj LCCC RMSE bias RPIQ 

NGSA - TOS (0 – 10 cm) 0.20 0.36 6.29 -0.80 1.20 

NGSA - BOS (~60 – 80 cm) 0.12 0.29 7.28 -0.76 1.14 

Independent Validation: NAGS - TOS (0 – 10 cm) 0.36 0.45 3.32 2.18 1.03 

3.2.2 Independent validation dataset 

The predictive model performance was also externally evaluated using an independent dataset (NAGS, TOS only) that was 365 

not part of the calibration dataset. To address the analytical variation that could potentially arise from the use of predictive 

model from the NGSA dataset for the NAGS dataset, a levelling method was implemented. A subset of NGSA dataset within 

the extent of the NAGS dataset was extracted (range = 0.05 – 28.7 mg kg-1; median = 4.15 mg kg-1) and compared to the NAGS 

dataset (range = 0.1 – 19.5 mg kg-1; median = 3 mg kg-1) using a two-sample Kolmogorov-Smirnov test (D = 0.24, p < 0.01). 

Because the samples were not deemed to have similar distribution at a 1% significance, a correction factor was calculated to 370 

level the NAGS dataset to the NGSA dataset using TILL-1 CRM standards. Upon levelling, the two datasets were deemed to 

have similar distribution with the two-sample Kolmogorov-Smirnov test (D = 0.18, p = 0.012). 

We reported the performance of model validation the same way the model evaluation was conducted (Table 3; Figure 5). The 

model validation resulted in higher accuracy (R2 = 0.36; LCCC = 0.45). The RMSE was also slightly lower (RMSE = 3.32 mg 
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kg-1) than those observed in the TOS model evaluation (RMSE = 6.29 mg kg-1), most likely due to lower observation values 375 

within the NAGS validation dataset.  

[Figure 5] 

 
Figure 5. Goodness‐of‐fit plot showing observed vs predicted Li concentrations based on the independent validation dataset (NAGS, 
TOS only). Red dashed line is the 1:1 line. 380 

3.3 Variable importance analysis  

From the Cubist model, we can infer the relative importance of the covariates by calculating the percentage of times a covariate 

is being used in the model. The variables used by Cubist model can be further split in terms of “importance as conditions 

within rule” and “frequency of usage as predictors in models”.  

For Li prediction in TOS, the variables clay, PTA, TRA, and EPA are of higher importance in the conditions than other 385 

variables (Figure 6). This implies that the model separates out prediction values based on climate covariates along with clay 

content. However, within the regression models, the top five variables most frequently used in the regression were the Landsat 

band 2, band 6, band 1, band 3 and gamma radiometric total dose. The first three Landsat bands (red, green, and blue) and 

band 6 (SWIR2) have been commonly used to predict soil properties and delineate geological boundaries, and differentiate 

vegetation zones (Khorram et al., 2012), while the gamma radiometric dose discriminated the various soil types and their 390 

mineral makeup. The next set of covariates were annual precipitation and clay and sand contents, indicating they have lower 

importance as predictors. As indicated in the correlation analysis, slope was not significant.  

For the BOS model, TRA variable had the highest importance in the conditions of the model (Figure 6) for Li predictions, 

separating high and low values. EPA, clay content and PTA also affect model conditions. Overall, parameters that were more 

frequently used as predictors in the BOS model were similar to those for TOS, i.e. the top-five are gamma radiometric dose, 395 

and Landsat bands 2, 1, 6, and 3. In the BOS model, however, there was a higher importance of the clay content (sixth most 
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used) compared to the TOS model (ninth). The usage of slope covariate as predictor is similarly low (last) for both TOS and 

BOS. 

[Figure 6] 

 400 
Figure 6. Variable importance of covariates in terms of importance as conditions (red dotted lines) and frequency of usage as 
predictors (grey lines) by the Cubist algorithm for both NGSA depths: top outlet sediment (TOS) 0 – 10 cm, left; and bottom outlet 
sediment (BOS) ~60 – 80 cm, right. Covariates are sorted in order of decreasing frequency of usage.  

3.4 Li prediction maps 

The Cubist model led to the generation of spatial predictions of aqua regia-soluble Li concentration in alluvium-derived soils 405 

across Australia at two depths (Figure 7). So far, there are only five known Li mines in Australia (mostly in Western Australia), 

all of which are located within areas that were predicted to have a higher background concentrations of soil Li, especially for 

the BOS model (>~8 mg kg-1) (Figure 8).  

[Figure 7] [Figure 8]  
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 410 

 
Figure 7. Spatial distributions of predicted aqua regia-soluble Li concentrations (mg kg-1) in coarse fraction (<2 mm) alluvial soils 
across Australia, left, and standard deviations (mg kg-1), right, for both National Geochemical Survey of Australia (NGSA) depths: 
top outlet sediment (TOS) 0 – 10 cm, top; and bottom outlet sediment (BOS) ~60 – 80 cm, bottom.  
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 415 
Figure 8. Distribution of Li mines on the digital soil map of Li in Australia for bottom outlet sediment (BOS) ~60 – 80 cm depth.  

In Australia, the largest producer of spodumene is the Greenbushes Li operation, located approximately 250 km south-

southeast of Perth. In the most recent public report, the company reported combined measured and indicated resources of 118.4 

million tons (Mt) of ore at 2.4% Li2O containing proved and probable reserves of 61.5 Mt grading 2.8% Li2O (Champion, 

2019). Other locations explored for Li include Mount Cattlin and Mount Marion in the Goldfields-Esperance region, and 420 
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Pilgangoora of East Pilbara. In a recent review (Champion, 2019), these projects’ reports estimated Li resources ranging from 

11.8 to 71.3 Mt at 1.01 to 1.37% Li2O. The predicted soil Li concentrations at the known Li mine sites range from 4.5 to 7.3 

mg kg-1 for TOS and from 7.1 to 12.6 mg kg-1 for BOS. The highest TOS and BOS concentrations of Li proximal to a known 

mine site are for the Mount Marion deposit in Western Australia. 

Although most Li exploration to date has been conducted in Western Australia, our map indicates that other regions in Australia 425 

are potentially anomalous in Li (Figure 7). These areas are located for instance within the central west region of Queensland 

and visually correspond to areas of widespread black cracking (smectite-rich) soils, or vertosols (Isbell, 2021). Elevated 

concentration of Li was also observed over parts of the Eucla Basin, which has a widespread distribution of Fe-oxide rich 

regolith with carbonate accumulations (Johnson, 2015; Wilford et al., 2015). The sources of carbonate include weathered 

Proterozoic and Palaeozoic carbonate bedrock, vast marine sediments that extend across the low-lying and offshore areas 430 

associated with Cenozoic sedimentary basins and abundant widespread pedogenic carbonates (Johnson, 2015). This is in line 

with de Vos et al. (2006) observations, where higher Li concentrations of up to 56 mg kg-1 were identified in calcareous soil 

(high carbonate accumulation) in comparison to those of organic soil (1.3 mg kg-1). The Fe in the Fe-oxides and oxyhydroxides 

that help retaining Li may be released from oxidation of primary minerals during weathering (Kabata-Pendias, 2010). The 

ultimate origin of Li within these clay-, iron- and carbonate-rich soils remains to be established in the case of Australia. Other 435 

regions of potential interest occurring on different soil types are located in southern New South Wales and parts of Victoria. 

We further explored the correlation of Li concentration against soil orders (Searle, 2021). Figure 9 shows the range of Li 

concentration across various soil types identified at the sampling locations. The Li concentration tended to be slightly higher 

on Vertosols, Calcarasols, as well as Dermosols. These observations indicate Li accumulated in a more uniform soil profile 

with less differentiation between top and subsoils. In addition, clay soils (Vertosols) and soils with high CaCO3 (Calcarosols) 440 

appeared to have larger Li concentrations. These observations supported the anomalous Li predictions in various parts of 

Australia mentioned earlier. 

[Figure 9] 

The highest predicted values on the Li digital soil maps are 28 mg kg-1 and 22 mg kg-1 in TOS and BOS, respectively. Although 

higher Li concentration was expected to be observed in the deeper layer, the model used in this study was not able to support 445 

such predictions yet. This is most likely because the covariates used within the model represent observations from TOS instead 

of BOS. The variance of covariates within BOS was not obtained, and hence yielding lower accuracy predictions. 
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Figure 9. Boxplots of Li concentration in both TOS and BOS across various soil orders based on the Australian Soil Classification 
(ASC) system. The boxes indicate the interquartile interval, the bold black lines in the middle of the boxes represent the median, 450 
while the values outside 1.5-times the interquartile interval are indicated by circles. Red dashed line represented the median values 
of Li across both TOS and BOS depths.  

3.5 Study limitations  

While we have successfully modelled soil Li distribution in Australia and validated it using an independent sample dataset, 

we recognise that there are limitations to this study’s approach. (1) The NGSA data used apply to catchment outlet sediment 455 

representing the local accumulation of mainly detrital minerals. Therefore, strictly speaking, the predictions developed herein 

apply only to similar alluvial soils. (2) The NGSA data were measured using an aqua regia digestion that only extracts a portion 

of the total Li found in soil. The results could potentially be improved if total Li was measured. Most of the observations 

collected had relatively low concentration; having more representative samples at higher concentrations might improve the 

prediction accuracy. (3) Despite the large amount and spread of data, the NGSA does not cover the whole of Australia. Notably, 460 

there is a data gap in parts of Western Australia and South Australia. However, no more extensive geochemical dataset than 

the NGSA exists in Australia. (4) The environmental covariates used in the study were selected based on our understanding of 

relevant soil-forming processes. (5) There is also limited information on how the covariates vary with depth, except for the 

soil texture (sand and clay content) data. The inclusion of more environmental covariates related to depth and soil mineralogical 

information may improve the predictive capability of these machine learning models. Note that quantitative mineralogical data 465 

are currently being acquired on the NGSA samples, both as X-ray diffraction data on whole sediment samples and clay 

fractions (de Caritat and Troitzsch, 2021) and as automated mineralogy using energy dispersive spectrometry on heavy mineral 

fractions (de Caritat et al., 2022a; de Caritat et al., 2022b; de Caritat et al., 2022c). 
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The final product was only validated in one area within Australia (Tennant Creek – Mt Isa region in the Northern Territory 

and Queensland). Despite our predictions of elevated soil Li in parts of Queensland, New South Wales and Victoria, ground-470 

truthing is required to confirm them and further work is necessary to determine the origin of the contained Li.  

4 Conclusions 

Spatial prediction models have been increasingly utilised to help minimise risk and thus cost of mineral exploration. In this 

study, digital soil mapping of Li concentrations at two different depths (TOS: 0 – 10 cm, BOS: ~60 – 80 cm) based on the 

Cubist model was carried out across Australia using the National Geochemical Survey of Australia dataset and publicly 475 

available environmental covariates. Geology and mineralogy are of high importance in predicting soil Li anomalies, as 

demonstrated by the reliance of the model on the Landsat and gamma-ray radiometric covariates. Despite most mineral 

exploration for Li being conducted in Western Australia, other regions (such as Queensland, New South Wales and Victoria) 

have elevated predicted Li concentrations and could become potential areas of interest. The model accuracy tested on the 

independent Northern Australia Geochemical Survey (TOS only) was reasonable compared to the calibration model 480 

performance. Overall, the model performance was on the low side and inclusion of the results into a prospectivity framework 

needs to consider the model uncertainties. This approach provides an estimate of the environmental background concentration 

of Li, which is reflecting a range of processes including source rock geochemistry from which the sediments were derived, 

weathering (including pedogenesis), and geomorphic processes. The work provides a framework to better understand the 

processes controlling Li concentration at the surface (as revealed through the covariate relationships) and the modelling 485 

effectively delineates regions with locally higher Li background. Despite the low prediction accuracy, this paper demonstrates 

a step forward in the development of machine learning in generating predictive geochemical maps. It also highlights the 

importance of establishment of national geochemical survey databases enabling the exploration of various elements and 

minerals nationally and globally, and not limited to Li. Future work should include obtaining other relevant environmental 

covariates and new mineralogy data, which could further improve model performance, ground-truthing of anomalous regions, 490 

and investigation of ultimate Li sources. As more survey data are collected, the use of more complex models can also be 

explored, including the use of Li concentrations in bedrock materials. 
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