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Highlights 

• Machine learning can be used to relate soil data and environmental covariates  

• The first Australian digital soil map of lithium content is presented 

• The prediction map can be used to delineate potential areas for anomalous Li 10 

• Elevated soil Li observed and modelled in a number of States/NT 

 

Abstract. With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is 

important to delineate potential anomalous areas. This study uses a digital soil mapping framework to combine data from 

recent geochemical surveys and environmental covariates to predict and map Li content across the 7.6 million km2 area of 15 

Australia. Soil samples were collected by the National Geochemical Survey of Australia at a total of 1315 sites, with both 

top (0–10 cm depth) and bottom (on average 60–80 cm depth) catchment outlet sediments sampled. We developed 50 

bootstrap models using a Cubist regression tree algorithm for both depths. The spatial prediction models were validated on 

an independent Northern Australia Geochemical Survey dataset, showing a good prediction with a root mean square error of 

3.82 mg kg-1 (which is 50.9 % of the inter-quartile range) for the top depth. The model for the bottom depth has yet to be 20 

validated. The variables of importance for the models indicated that the first three Landsat 30+ Barest Earth bands (blue, 

green, red) and gamma radiometric dose have a strong impact on Li prediction. The bootstrapped models were then used to 

generate digital soil Li prediction maps for both depths, which could select and delineate areas with anomalously high Li 

concentrations in the regolith. The map shows high Li concentration around existing mines and other potentially anomalous 

Li areas. The same mapping principles can potentially be applied to other elements. The Li geochemical data for calibration 25 

and validation are available at: (De Caritat and Cooper, 2011a; http://dx.doi.org/10.11636/Record.2011.020)  and (Main et 

al., 2019; http://dx.doi.org/10.11636/Record.2019.002) respectively. The covariates data used for this study was sourced 

from Terrestrial Ecosystem Research Network (TERN) infrastructure, which is enabled by the Australian Government’s 

National Collaborative Research Infrastructure Strategy (NCRIS) 

https://esoil.io/TERNLandscapes/Public/Products/TERN/Covariates/Mosaics/90m/ (TERN, 2019). 30 
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1 Introduction 

Minerals have become essential commodities in modern human society. Many minerals are fundamental to technological and 

industrial advancement, particularly those utilised in renewable energy systems, electric vehicles, consumer electronics and 35 

telecommunications (Kabata-Pendias, 2010). These minerals can be considered critical, in the sense that they are of high 

importance and have a high risk of supply disruption. Methods for quantifying mineral criticality are discussed in detail in 

Graedel et al. (2012).  

Lithium (Li) is an important chemical element as the world transitions towards a lower-carbon economy. It has been listed as 

one of the critical elements by various countries, including Australia, Canada, the European Union, Japan, the Republic of 40 

Korea and the United States (Mudd et al., 2018; D. Huston, Geoscience Australia, pers. comm. March 2022). Australia is 

endowed with significant resources of many of the critical elements and the critical minerals hosting them, including Li. 

Currently, Australia’s ranking for economic resource of Lithium was the second, but it ranked the first for its production 

(Senior, 2022), with potential of additional discoveries. According to recent survey (Senior, 2022), Australia produced 40 

kilotons (kt) of Li (in terms of spodumene, Li2O.Al2O3.4SiO2, concentrates; assuming 6% of Li2O in spodumene 45 

concentrates) in 2020, or 49% of the global production; a significant increase from 21.3 kt of Li in 2017 (Champion, 2019). 

The two primary sources for Li are brine stores and mineral deposits, where Li is hosted mainly spodumene (LiAlSi2O6). A 

2013 investigation by Geoscience Australia found that the potential of Li-rich salt lakes in Australia was relatively low in 

comparison to those, for instance, in the Americas (Jaireth et al., 2013; Mernagh et al., 2015; Mernagh et al., 2016). Most of 

the Li in Australia exists as mineral deposits (Champion, 2019). Despite Australia’s current position as the world’s leading 50 

supplier of Li, it has limited prospects for immediate expansion as the potential for spodumene similar deposits in Australia 

has not yet been fully investigated (Mudd et al., 2018). This study aims to contribute to filling this knowledge gap by 

providing the first digital map of Li content of Australian soils. 

Lithium values ranges from <1 – 15 mg kg-1 in ultramafic rocks, 5.5 – 17 mg kg-1 in mafic rocks, while felsic rocks (granite, 

rhyolite and phonolite) contain higher Li concentrations, between 30 – 70 mg kg-1 (Foregs, 2006). Lithium concentration in 55 

clay minerals ranges between 7 – 6000 mg kg-1  (Starkey, 1982). With developments in technology, a process of extracting Li 

as Li-carbonate from certain minerals, other than spodumene, such as lepidolite (KLi2Al(Si4O10)(F,OH)2) and petalite 

(LiAlSi4O10), has been identified (Sitando and Crouse, 2012; Vieceli et al., 2018). Lower Li concentration is found in salt 

lake brines (0.17 – 1.5 mg kg-1) (Grosjean et al., 2012). Extraction of Li from salt lake brine is in the form of Li-chloride, 

which needs to undergo an energy-intensive process to be converted to Li-carbonate for use in batteries.  60 

Lithium is found in trace amounts in all soil types, primarily in the clay fraction, with slightly smaller concentrations in the 

organic soil fraction (Kabata-Pendias, 2010). Possible means by which Li is bound to clay was explained elsewhere (Starkey, 

1982). A typical background concentration of Li in the soil ranges from 7 – 200 mg kg-1 (Schrauzer, 2002). In New Zealand, 

a study of Li concentration in soil reported a range between 0.08 – 92 mg kg-1 (Robinson et al., 2018). While in southwestern 

Siberia, Gopp et al. (2018) reported soil-available Li content derived from ammonium acetate-buffered solutions ranged 65 
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from 0.24 – 0.68 mg kg-1. The amount of soil-available Li is usually relatively low, about 3 – 5% of the total Li content in 

the surface layers (Gopp et al., 2018; Anderson et al., 1988). De Caritat and Reimann (2012) reported median Li 

concentrations (after aqua regia digestion) of 12 and 5.7 mg kg-1 in European agricultural topsoils and Australian surface 

sediments, respectively, both in the coarse (< 2 mm) fraction. Subsequently, Reimann and De Caritat (2017, Fig.2SM) 

published the first continental map of Li in Australian soils, based on National Geochemical Survey of Australia (NGSA) 70 

data, showing that regions of high and low concentrations are found across all states.  

Higher concentrations of Li are often found in the deeper layers of soil profiles (Merian and Clarkson, 1991) because, 

typically, Li enters the soil column through the weathering of sedimentary minerals in the underlying saprolite and bedrock 

(Aral and Vecchio-Sadus, 2008). Because clay minerals predominantly drive the mineralisation and dissolution of Li, the 

clay mineral fraction will play a significant role in determining the Li concentration. The Li content of soil is controlled 75 

more by the soil formation conditions than by the composition of the parent materials (Kabata-Pendias, 2010). 

Mineral exploration aims to find ore deposits for mining purposes. Therefore, delineating target areas for mineral exploration 

through a series of mapping activities is a crucial initial stage leading to discovery (Carranza, 2011). Mineral prospectivity 

mapping is a method to quantify the probability of mineralisation in a selected area for mineral exploration purposes. This 

prioritisation allows for the exploration of smaller, higher-potential areas for detailed prospecting to minimise exploration 80 

costs, e.g., the number of drillholes. 

Two common paradigms for creating mineral prospectivity maps are knowledge-driven and data-driven models (Carranza, 

2011). Knowledge-driven models do not require any data on mineral deposits, but rely on expert knowledge of spatial 

associations between mineral deposits and geological features, field experience and conceptual models to develop evidential 

maps that enables the discovery of mineral deposit (Carranza, 2008). Meanwhile, data-driven models utilise existing 85 

knowledge on the location of mineral occurrences, various survey data and spatial statistical methods to represent the 

likelihood of mineral occurrence within prospective areas (Carranza, 2008). With the development of machine learning and 

technology (computer hardware, software and geographic information system (GIS) technology), there have been growing 

applications of mineral prospectivity mapping in the recent decades (Carranza, 2011; Zuo, 2020).  

Several studies have demonstrated the use of remote sensing to explore various deposit types, such as gold deposits (Cŕosta 90 

et al., 2003), copper deposits (Pour and Hashim, 2015) and iron ores (Ducart et al., 2016). Recently, the application of 

remote sensing for Li deposits has also emerged. Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) images were used to map Li content in the Vale do Jequitinhonha region of Brazil (Perrotta et al., 2005). Gopp et 

al. (2018) explored the use of Normalised Difference Vegetation Index (NDVI) to develop a predicted map of the plant 

available content of Li in southwestern Siberia soil. Cardoso-Fernandes et al. (2018) evaluated the potential use of Sentinel-2 95 

in Li mapping in the Fregeneda-Almendra region across the Spain-Portugal border. Similarly, Köhler et al. (2021) further 

explored the use of combined geological data and remote sensing data for Li potential mapping. 

In soil science, digital soil mapping (DSM) has been widely used to produce quantitative maps of soil attributes based on the 

known distributions of environmental covariates (i.e. rainfall, parent material, vegetation and landforms), that affect soil 
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formation. The DSM framework is derived from the conceptual model developed by Mcbratney et al. (2003) in which a 100 

certain soil attribute results from the interaction of soil-forming factors. These factors are modified from Jenny (1941) and 

include soil (s), climate (c), organisms (o), relief (r), parent material (p), age/time (a) and spatial position (n), or scorpan. 

The factors are measured or approximated from various data types, including point observations, maps (polygons), existing 

data, and remote sensing data and derivatives thereof (e.g., gradients, buffer distances, etc.); these can be numerical or 

categorical data types. 105 

In this study, we attempt to model Li distribution in the surface and subsurface soils of Australia by invoking the NGSA soil 

geochemistry dataset and various environmental covariates commonly used in DSM related to soil formation in Australia. In 

detail, the objectives of this study are thus to: 

(i) evaluate the use of digital soil mapping framework to predict Li concentration in Australian soils, and 

(ii) delineate anomalous areas potentially attractive for Li exploration and discuss their interpretations. 110 

2 Materials and methods 

2.1 Li measurement 

This study used two soil datasets, referred to as the calibration and validation datasets. The calibration dataset was used to 

build the spatial prediction model and the validation dataset was used to test the prediction quality of the calibrated model.  

The calibration dataset data were generated as part of the NGSA project (www.ga.gov.au/ngsa), a collaborative project 115 

between Geoscience Australia and the States/NT between 2007 – 2011, which aimed to document the soil geochemical 

concentration levels and patterns across Australia. Details on the project, analysis, sampling methods and the measurement 

of other parameters can be found in De Caritat and Cooper (2011a) and De Caritat and Cooper (2016). 

The NGSA collected samples at 1315 sites (including field duplicates) at or near the outlet of large catchments with a total 

area coverage of 6.17 million km2 and an average sampling density of 1 site for every 5200 km2 (De Caritat and Cooper, 120 

2011a). The target sampling medium was floodplain sediments away from river channels, though in various places in 

Australia, an aeolian input can be important; thus, the medium was called ‘catchment outlet sediment’ rather than floodplain 

sediment. These geomorphological entities are typically vegetated and biologically active (plants, worms, ants, etc.), thereby 

making the collected materials true soils (e.g., Sssa, 2022), albeit soils developed on transported alluvium. Due to limitations 

in access, samples from some parts of South Australia and Western Australia could not be obtained.  125 

Samples were collected from two depths, namely ‘top outlet sediment’ (TOS) from 0 – 10 cm depth, and ‘bottom outlet 

sediment’ (BOS) from, on average, 60–80 cm depth. All of the soil samples were air-dried, homogenised and dry sieved to 

<2 mm and <75 µm prior to various analyses for 60+ elements (see De Caritat et al. (2009) and De Caritat et al. (2010), for a 

full description of the NGSA sample preparation and analytical methods, respectively). A detailed quality assessment of the 

NGSA data is given in De Caritat and Cooper (2011b); for Li after aqua regia digestion, analytical precision (repeat analysis 130 

of certified reference material Till-1) of 12% and overall precision (based on field duplicates) of 39% were reported, whilst 
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accuracy could not be determined for lack of certified aqua regia Li data for Till-1. In this contribution, we use Li 

concentration after aqua regia digestion data for the NGSA <2 mm TOS and BOS samples analysed by inductively coupled 

plasma mass-spectrometry (ICP-MS) in a commercial laboratory. Any Li measurements that fell below the detection limit 

(0.1 mg kg-1) were replaced with half the detection limit (0.05 mg kg-1). The distribution of sampling sites and the 135 

concentration levels of Li are shown in Figure 1.  

As an independent validation dataset, we used the geochemical dataset from the Northern Australia Geochemical Survey 

(NAGS) project (Main et al., 2019). This dataset contains 773 observations located in the Tennant Creek – Mt Isa region in 

the Northern Territory and Queensland, with an approximate sampling density of one sample every 500 km2 and collected in 

2017. The distribution of these samples is also shown in Figure 1. These samples were collected, prepared and analysed 140 

following the NGSA protocols (De Caritat and Cooper, 2011a), albeit at a higher sampling density. However, only TOS 

samples were collected in NAGS. Furthermore, these samples were collected at different times and /or laboratories. To 

address the analytical variation that could potentially arise, levelling method were utilized using the standards Certified 

Reference Materials (Main and Champion, 2022). In short, a correction factor based on the CRM measurements from the 

two datasets is calculated and applied as multiplier to relevel the data. 145 

[Figure 1] 

2.2 Environmental covariates 

A total of 19 environmental covariates (Table 1) characterising factors of climate, parent material, soil, and topography, that 

contributes to soil formation were considered in this study.  

The first factor is climate. Water and temperature affect the rate of mineral weathering and thus soil formation. Hence, we 150 

included precipitation, evaporation and temperature data (Harwood, 2019), along with the topographic wetness index (TWI) 

data (Gallant and Austin, 2012a), informing the relative wetness within a landscape. In short, the TWI was derived from 

contributing area product, which was computed from Hydrologically enforced Digital Elevation Model, and from the percent 

slope product, which was computed from the Smoothed Digital Elevation Model (Gallant and Austin, 2012a). 

The second factor is parent material (i.e. degree of weathering and mineralogical composition), including gamma-ray 155 

radiometric and total magnetic intensity. Gamma-ray radiometric surveys provide estimates for the concentrations of 

gamma-ray-emitting radioelements K, U and Th at/near the soil surface. The gamma-ray radiometric data was measured 

from airborne surveys throughout most of Australia (Poudjom Djomani et al. (2019). In this study we used a complete 

gamma-ray survey grid where gaps in the airborne coverage were filled in using covariate machine learning (Wilford and 

Kroll, 2020). Gamma-ray radiometric data have been found to be a useful covariate in identifying surface processes such as 160 

sediment transport and weathering (Wilford, 2012; Wilford et al., 1997) and detecting radioactive minerals deposits and 

occurrences (Alhumimidi et al., 2021; Wilford et al., 2009; Dickson et al., 1996; Dickson and Scott, 1997). Total magnetic 

intensity (TMI), which measures variations in the Earth’s magnetic field intensity caused by the contrasting content of 
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various rock-forming minerals in the crust (Poudjom Djomani et al., 2019), could also potentially identify geological 

features and processes. 165 
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Figure 1. Distribution of sampling sites from the National Geochemical Survey of Australia (NGSA, black circles) for both depths: 
top outlet sediment (TOS) 0–10 cm, top; and bottom outlet sediment (BOS) ~60–80 cm, bottom. Distribution of sampling sites from 170 
the Northern Australia Geochemical Survey (NAGS, blue plus signs) for TOS only, top. All data refer to the coarse fractions 
(<2mm). Aqua regia-soluble Li concentrations (mg kg-1) are categorised in five quantile classes. Regions discussed in the text are 
highlighted in various shades of green. Projection: Australian Albers Equal Area (EPSG:3577). Data sources: De Caritat and 
Cooper (2011a), Hughes (2020). 

The third factor is the soil itself, particularly, the relevant physical soil properties. Previous studies, e.g. by Kabata-Pendias 175 

(1995) and Robinson et al. (2018), highlighted the high correlation between Li and clay content of soil, soil texture was used 

as a covariate. The soil texture spatial information (sand and clay contents) was derived from Malone and Searle (2021), 

which contained updated information on soil texture map across Australia derived using a digital soil mapping approach. The 

sand and clay fractions were developed by integrating field morphological (n = 180,498) and laboratory measurements soil 

fractions (n = 17,367) from the Soil and Landscape Grid of Australia (SLGA). The SLGA is based on a comprehensive 180 

dataset of soil attributes across Australia including the NGSA dataset. These sand and clay content of Malone and Searle 

(2021) were for specific depth intervals of 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm. They were 

converted to the depths corresponding to the NGSA Li measurement (0–10 cm and 60–80 cm) using the mass-preserving 

spline function, described in Bishop et al. (1999) and modified by Malone et al. (2009). Soil reflectance in the visible, near-

infrared (NIR), and short-wave-infrared (SWIR) spectra captured by remote sensing images provides information on soil 185 

composition. However, the unprocessed images consist of a mixture of soil, bedrock, vegetation and clouds. By removing 

the influence of vegetation, Roberts et al. (2019) were able to document the ‘barest’ state of soil, so critical in mapping the 

characteristics of soil and rock. This was done by combining Landsat 5, 7, and 8 observations of the past 30 years to remove 

the contamination by vegetation, cloud cover, shadows, detector saturation and pixel saturation. The model used to develop 

Barest Earth was validated using the NGSA spectral archive (Lau et al., 2016). 190 

Finally, topography is represented by elevation and slope. These factors also play an important role, as they affect how water 

is added to and/or lost from soil. The elevation was derived from the smoothed Digital Elevation Model (DEM-S) which was 

obtained from the 1 arc-second resolution Shuttle Radar Topography Mission (SRTM) data acquired by NASA in February 

2000 (Gallant, 2011). The slope covariate was also calculated from DEM-S using the finite difference method (Wilson and 

Gallant, 2000). The different spacing in the E-W and N-S directions due to the geographic projection of the data was 195 

accounted for by using the actual spacing in metres of the grid points calculated from the latitude. 

All covariates were reprojected to EPSG:3577 (GDA94 datum; Australian Albers equal area projection) and resampled to a 

common spatial resolution of 3 km prior to any analysis. All the environmental covariates used are shown in Table 1. 

[Table 1]  

  200 

https://doi.org/10.5194/essd-2022-418
Preprint. Discussion started: 13 January 2023
c© Author(s) 2023. CC BY 4.0 License.

R1
Texto digitado
used?

R1
Riscado

R1
Riscado



8 
 

Table 1. Environmental covariates used for digital soil mapping of Li. 

Covariate Description Source Original 

resolution 

PTA Annual precipitation (mm) Harwood (2019) 90 m 

EPA Annual potential evaporation (mm) Harwood (2019) 90 m 

TRA Annual temperature range (°C) Harwood (2019) 90 m 

Dose Radiometrics: filtered dose (nGy/h) Wilford and Kroll (2020) 0.001 degree 

K Radiometrics: filtered K element 

concentrations (%) 

Wilford and Kroll (2020) 0.001 degree 

Th Radiometrics: filtered Th element 

concentrations (ppm) 

Wilford and Kroll (2020) 0.001 degree 

Th/K Radiometrics: derived Th to K ratio 

(ppm/%) 

Wilford and Kroll (2020) 0.001 degree 

TMI Total magnetic intensity (nT/m) Poudjom Djomani et al. (2019) 90m 

Sand Sand content (%) Malone and Searle (2021) 90 m 

Clay Clay content (%) Malone and Searle (2021) 90 m 

Landsat band 1* Blue (450–510 nm) Wilford and Roberts (2019) 25 m 

Landsat band 2* Green (530–590 nm) Wilford and Roberts (2019) 25 m 

Landsat band 3* Red (640–670 nm) Wilford and Roberts (2019) 25 m 

Landsat band 4* Near infrared NIR (850–880 nm) Wilford and Roberts (2019) 25 m 

Landsat band 5* Shortwave infrared SWIR1 (1570–1650 

nm) 

Wilford and Roberts (2019) 25 m 

Landsat band 6* Shortwave infrared SWIR2 (2110–2290 

nm) 

Wilford and Roberts (2019) 25 m 

Elevation 3 Second DEM - Shuttle Radar 

Topography Mission (m asl) 

Gallant (2011) 1 arc-second 

Slope Elevation gradient (%) Gallant and Austin (2012b) 90 m 

TWI Topographic wetness index 

(dimensionless) 

Gallant and Austin (2012a) 30 m 

*All Landsat bands referred here are from the Landsat 30 + Barest Earth products 
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2.3 Modelling  

Here we used a machine learning model Cubist to relate soil observations to the environmental covariates. Cubist is a tree-205 

based regression algorithm based on the M5 theory (Quinlan, 1993). This algorithm creates partitions of data with similar 

spectral characteristics and creates one or more rules for each partition. If the partition rules are satisfied, then the linear 

regression of that partition is used to create the prediction (Eq. 1). Each rule can be defined as:  

If [condition is true], then [regression], else [apply next rule] (Eq. 1) 

The Cubist model has two tuning parameters: committees (number of sequential models included in the ensemble) and 

neighbours (number of training instances that are used to adjust the model-based prediction). A full combination of 210 

committees (5,10, 20, 30, 40, 50) and neighbours (0, 1, 5, 9) were tested to tune the Cubist model. To obtain the best 

estimates of optimum parameters, a 10-fold cross-validation approach was utilised. Based on the optimum parameters, 50 

bootstrap models (‘sampling with replacement’) were trained.  

The performances of the prediction models were then evaluated on both internal evaluation and on the independent 

validation dataset. An internal evaluation of the model was conducted using “out of bag” samples, which were not used 215 

during the development of the bootstrap models. The NAGS dataset was used to evaluate the performance on the 

independent dataset (top depth only). The following metrics were used: adjusted coefficient of determination (R2
adj), Lin’s 

concordance correlation coefficient (LCCC), root mean square error (RMSE), bias, and ratio of performance to interquartile 

distance (RPIQ). R2
adj is a measure of the linear association between observed and predicted values; LCCC measures the 

agreement between the observed and predicted values in relation to the 1:1 line; RMSE is a measure of the differences 220 

between the observed and predicted values; bias is the measure of the difference between the mean of the observed and the 

mean of the predicted values; and RPIQ is a measure of performance that takes into account the distribution of the values, 

and can be calculated as a fraction of the interquartile range of the observed values (Q3–Q1) and the RMSE (RPIQ = (Q3–Q-

1)/RMSE) (Bellon-Maurel et al., 2010).  

Variable importance analysis was also conducted to evaluate the contributions of each covariate in the Li prediction. The 225 

relative variable importance is measured as the percentage of times the environmental covariate is either used as a condition 

or a rule within the Cubist model. These bootstrap models were then used to generate output maps with the same extent and 

resolution. The final map output was derived based on the mean prediction of the bootstrap models; similarly, the standard 

deviation was obtained based on the standard deviation of the prediction from the bootstrap models.  

2.4 Data processing and statistical computing 230 

All the data analytics, modelling, and mapping procedures in this study were conducted in R statistical open-source software 

(R Core Team, 2021). Besides the base R functionality, the R packages used in this study included “Cubist” (Kuhn and 

Quinlan, 2021) for fitting cubist models; “caret” (Kuhn, 2021) for tuning the hyperparameter of the Cubist model; and 
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“raster” (Hijmans, 2021) for handling raster layers and generating soil map predictions. All soil maps were produced in 

ArcGIS version 10.8 (ESRI 2019) using the Albers equal area projection (EPSG:3577).  235 

3 Results and discussion 

3.1 Descriptive analysis 

The distribution of Li concentrations (NGSA dataset, De Caritat and Cooper, 2011a) was positively skewed (Figure 2) with 

concentrations ranging from 0.1 – 67.4 and 0.1 – 56 mg kg-1, for TOS and BOS respectively. Only limited observations 

above 20 mg kg-1 of Li concentrations were found in this study for both TOS (n = 76) and BOS (n = 95). The median 240 

concentration of TOS (5.7 mg kg-1) was slightly lower than that of BOS (7.0 mg kg-1). These concentrations were lower than 

those observed in Négrel et al. (2019) for mean Li concentration in European soil at 11.3 mg kg-1, and across the background 

concentrations of Li in the world (7 – 200 mg kg-1), according to Schrauzer (2002). The Li concentration at TOS was 

strongly correlated with BOS (r = 0.75, p <0.0001).  

[Figure 2] 245 

 

 
Figure 2. Histograms of Li concentrations for both NGSA depths: top outlet sediment (TOS) 0–10 cm, left; and bottom outlet 
sediment (BOS) ~60–80 cm, right. Data source: De Caritat and Cooper (2011a). 

Based on the data collected by the NGSA project, the highest concentration of Li for both TOS and BOS was found in 250 

northernmost Queensland (Cape York Peninsula), as shown in Figure 1. Other regions that have significant quantities of Li 

were located in the Goldfields-Esperance region in Western Australia, which has been recognised as one of the most 

resource-rich areas on the planet (Champion, 2019), and the region around the Victoria-New South Wales border (Figure 1). 

Some of the findings correlate well with the existing mine sites in Australia (red triangles in Figure 1). The largest deposit of 

Li found in Australia is the Greenbushes deposit, south of Perth. Other regions include Mount Marion and Earl Grey in the 255 
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Yilgarn Craton, and Pilgangoora in the Pilbara Craton (Champion, 2019). In July 2019, Strategic Metals Australia (SMA) 

found a new Li exploration target near Cairns, in the Georgetown province of north Queensland (Gluyas, 2019). However, 

this discovery has not been updated in the data collected by Geoscience Australia because considerable work such as 

drilling, modelling, resource calculation and feasibility studies are needed to bring the discovery to the feasibility stage. 

3.1.1 Correlation between Li with other measured soil properties  260 

Despite other studies (Robinson et al., 2018; Kashin, 2019) reporting strong correlations between Li and Mg, and other 

elements elsewhere, including Al, B, Fe, K, Mn and Zn, the NGSA data only show strong correlations between Li and Al 

(Pearson’s correlation coefficient r = 0.74), Ga (r = 0.69), Cs (r = 0.68), and Rb (r = 0.66) for TOS, and slightly lower 

correlation for BOS: Al ( r= 0.69), Ga (r = 0.64), Cs (r = 0.62), Rb (r = 0.61). Correlations between Li with K and Mg were 

only moderate for both TOS (r = 0.48 and 0.43) and BOS (r = 0.46 and 0.33). Similarly, Foregs (2006) also observed good 265 

correlations (r > 0.4) of Li with Al, Ga and Rb within the floodplain sediment samples. 

The Li concentration in soil was negatively correlated with measured sand content from the NGSA dataset (r = -0.55), and 

positively correlated with clay content (r = 0.44). This is consistent with the findings of Kabata-Pendias (2010) and Robinson 

et al. (2018), who noted the tendency of clay minerals to concentrate Li. It has been suggested that Li may be located 

internally within clay minerals, mainly kaolinite, illites, smectites including hectorite, palygorskite and sepiolites, in 270 

ditrigonal cavities via isomorphous substitution, rather than on exchange sites (Anderson et al., 1988; Starkey, 1982). 

3.1.2 Correlation with environmental covariates 

Overall, the correlation of Li concentration with the environmental covariates was relatively low (Figure 3). The correlation 

with sand and clay content derived from digital soil maps was lower in comparison to the measured (NGSA) values 

discussed above, with r = -0.28 and 0.25, respectively, for TOS; and r = -0.23 and 0.22, respectively, for BOS.  275 

For TOS, the Landsat bands 3 (Red), 5 (SWIR1) and 6 (SWIR2) had similar correlations with Li content (r = -0.15 to -0.17). 

For gamma-ray radiometric data, total dose and K content had correlations with Li of r = 0.10 to 0.14. These positive 

correlations are expected as the associations of Li deposits and felsic rocks (high in both total dose and K) due to the 

observed incompatibility in mineral structures (Benson et al., 2017). Precipitation has positive correlation (r = 0.12), while 

both temperature and elevation had negative correlations (r = -0.12) with Li content. Topographic variables such as slope had 280 

negligible correlation with Li content (r = 0.05). 

For BOS, similar observations on the correlations between Li content and environmental covariates were found, except for 

the following differences. Landsat bands 3, 5 and 6 had stronger negative correlations (r = -0.14 to -0.16) compared to other 

bands. Potassium (r = 0.10) and dose (r = 0.09) had higher correlation with Li compared to the Th/K ratio (r = -0.02). Both 

temperature (r = -0.11) and elevation (r = -0.08) had negative correlations with Li content, while slope (r = 0.05) and 285 

precipitation (r = 0.08) had low positive correlations. 

[Figure 3] 
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3.2 Model evaluation  

The final Cubist model is tuned with committees of 20 and neighbours of 9, which resulted in the lowest value of RMSE 290 

compared to the other combinations of hyperparameters, indicating an optimised Cubist model. 

 

 
Figure 3. Pearson’s correlation coefficient (r) between Li content and the environmental covariates (scorpan) for both NGSA 
depths: top outlet sediment (TOS) 0–10 cm, left; and bottom outlet sediment (BOS) ~60–80 cm, right. Data sources: de Caritat and 295 
Cooper, 2011b; Gallant, 2012a; Harwood, 2019; Wilford, 2019; Wilford and Kroll, 2020; Malone and Searle, 2021. See Table 1 for 
abbreviations. 

 

3.2.1 Internal evaluation  

Validation statistics based on internal evaluation using the out-of-bag data for the Li predictions are presented in Table 2. 300 

Higher accuracy was observed in TOS (R2
adj = 0.20; LCCC = 0.36) compared to BOS (R2

adj = 0.12; LCCC = 0.29). There 

was a slightly lower RMSE on the prediction for TOS (RMSE = 6.29 mg kg-1) compared to BOS (RMSE = 7.28 mg kg-1). 
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This is expected as most of the environmental covariates reflected soil surface conditions. To the best of our knowledge, the 

machine learning models developed in most mineral exploration studies were assessed based on classification accuracy, (i.e. 

presence or absence of specific minerals in sample) instead of regression accuracy (Jooshaki et al., 2021). In addition, remote 305 

sensing studies on mapping Li minerals are rarely validated (e.g. Cardoso-Fernandes et al. (2019)). Hence, no comparison 

can be made with other studies. 

[Table 2] 

 
Table 2. Model evaluation and validation results for the prediction of Li concentrations using Cubist model for both NGSA 310 
depths: top outlet sediment (TOS) 0–10 cm; and bottom outlet sediment (BOS) ~60–80 cm. The independent validation is based on 
comparing predictions to the NAGS dataset Li concentrations. 

Depth R2
adj LCCC RMSE bias RPIQ 

TOS (0–10 cm) 0.20 0.36 6.29 -0.80 1.20 

BOS (~60–80 cm) 0.12 0.29 7.28 -0.76 1.14 

Independent Validation: TOS (0-10cm) 0.32 0.44 3.67 2.27 1.08 

3.2.2 Independent validation dataset 

The predictive model performance was also evaluated using an independent dataset (NAGS, TOS only) that was not part of 

the calibration dataset. Upon relevelling, the median Li concentration of this validation dataset (3.46 mg kg-1) was lower than 315 

that observed in the calibration dataset (5.7 mg kg-1), with a range of values between 0.1 to 22.5 mg kg-1. A comparison of 

the subset of NGSA within the extent of the NAGS dataset also showed similar result, with slightly higher concentrations 

observed within the local NGSA dataset, which ranges between 0.1 and 28.7 mg kg-1 and has a median of 4.1 mg kg-1.  

However, the samples from the two datasets were deemed to have similar distribution with the two-sample Kolmogorov-

Smirnov test (D = 0.18, p-value = 0.012). 320 

We reported the performance of model validation the same way the model evaluation was conducted (Table 2; Figure 4). 

The model validation resulted in higher accuracy (R2 = 0.44; LCCC = 0.59). The RMSE was also slightly lower than those 

observed in the TOS model evaluation, most likely due to lower observation values within the NAGS validation dataset. The 

model overestimated the concentration with a mean error of 1.46 mg kg-1. 

[Figure 4] 325 
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Figure 4. Goodness‐of‐fit plot showing observed vs predicted Li concentrations based on the independent validation dataset 
(NAGS, TOS only). Red dashed line is the 1:1 line. 

3.3 Variable importance analysis  

From the Cubist model, we can infer the relative importance of the covariates by calculating the percentage of times a 330 

covariate is being used in the model. The variables used by Cubist model can be further split in terms of “importance in the 

conditions” and “frequency of predictor usage in models”. 

For Li prediction in TOS, the variables TWI and Landsat bands 2, 3 and 4 are of higher importance in the conditions than 

other variables (Figure 5). This implies that the model separates out prediction values based on its spectral response of 

vegetation and Fe-bearing minerals related to Landsat bands 2 to 4 and the wetness index. However, within the regression 335 

models, the top five variables most frequently used in the regression were the Landsat band 2, band 6, band 1, band 3 and 

gamma-ray radiometric total dose. The first three Landsat bands (red, green, and blue) and band 6 (SWIR2) have been 

commonly used to predict soil properties and delineate geological boundaries, as well as discriminate and differentiate 

vegetation zones (Khorram et al., 2012). While the gamma radiometric dose discriminated the various soil types and their 

mineral makeup. The next set of covariates was annual precipitation and clay and sand content which bound the Li in the 340 

soil, indicating they have lower importance as predictors. As indicated in the correlation analysis, slope was not significant.  

For the BOS model, Th/K had the highest importance in the conditions of the model (Figure 5), separating high and low 

values, but it does not affect the regression. Landsat bands 2 and 6, and temperature range also affect model conditions. 

Overall, parameters that influenced the BOS regression model were similar to those for TOS, i.e. the top-five are Landsat 
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bands 2, 1, 6, and 3, and gamma radiometric dose. In the BOS model, however, there was a higher importance of the clay 345 

content compared to the TOS model. Again, temperature and slope were of low importance. 

[Figure 5] 

 

  
Figure 5. Variable importance of covariates in terms of importance as conditions (red dotted lines) and frequency of predictor 350 
usage (grey lines) by the Cubist algorithm for both NGSA depths: top outlet sediment (TOS) 0–10 cm, left; and bottom outlet 
sediment (BOS) ~60–80 cm, right. Covariates are sorted in order of decreasing frequency of usage.  

3.4 Li prediction maps 

The Cubist model led to the generation of spatial predictions of Li concentration in fluvial sediment-derived soils across 

Australia at two depths (Figure 6). So far, there are only five known Li mines in Australia (mostly in Western Australia), all 355 

of which are located within areas that were predicted by the model developed here to have a higher concentration of soil Li, 

especially for the BOS model (>~8 mg kg-1) (Figure 7).  

[Figure 6] [Figure 7] 
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 360 

 
Figure 6. Spatial distributions of predicted aqua regia-soluble Li concentrations (mg kg-1) in coarse fraction (<2 mm) alluvial soils 
across Australia, left, and standard deviations (mg kg-1), right, for both National Geochemical Survey of Australia (NGSA) depths: 
top outlet sediment (TOS) 0–10 cm, top; and bottom outlet sediment (BOS) ~60–80 cm, bottom.  
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 365 
Figure 7. Distribution of Li mines in the digital soil map of Li in Australia for bottom outlet sediment (BOS) ~60–80 cm depth.  

In Australia, the largest producer of spodumene is the Greenbushes Li operation, approximately 250 km south-southeast of 

Perth. In the most recent public report, the company reported combined measured and indicated resources of 118.4 million 

tons (Mt) of 2.4% Li2O containing proved and probable reserves of 61.5 Mt grading 2.8% Li2O (Champion, 2019). Other 

locations explored for Li include Mount Cattlin and Mount Marion in the Goldfields-Esperance region, and Pilgangoora of 370 
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East Pilbara. In a recent review (Champion, 2019), these projects’ report estimated Li resources ranging from 11.8 to 71.3 

Mt at 1.01 to 1.37% Li2O. 

The predicted soil Li concentrations at the known Li mine sites range from 4.5 to 7.3 mg kg-1 for TOS and from 7.1 to 12.6 

mg kg-1 for BOS. The highest TOS and BOS concentrations of Li proximal to a known mine site are for the Mount Marion 

deposit in Western Australia. 375 

Although most Li exploration to date has been conducted in Western Australia, our map indicates that other regions in 

Australia are anomalous in Li (Figure 6). These areas are located for instance within the central west region of Queensland 

and visually correspond to areas of widespread black cracking (smectite-rich) soils, or vertosols (Isbell and Ncst, 2021). 

Elevated concentration of Li was also observed over parts of Eucla Basin, which has a widespread distribution of iron-oxide 

rich regolith with carbonate accumulations (Johnson, 2015). The sources of carbonate include weathered Proterozoic and 380 

Palaeozoic carbonate bedrock, vast marine sediments that extend across the low-lying and offshore areas associated with 

Cenozoic sedimentary basins and abundant widespread pedogenic carbonates (Johnson, 2015). This is in line with Foregs 

(2006) observations, where higher Li concentration of up to 56 mg kg-1 were identified in calcareous soil (high carbonates 

accumulation) in comparison to those of organic soil (1.3 mg kg-1). The Fe in iron oxides and oxyhydroxides that help 

retaining Li may be released from oxidation of primary minerals during weathering (Kabata-Pendias, 2010). The ultimate 385 

origin of Li within these clay-, iron- and carbonate-rich soils remains to be established in the case of Australia. Other regions 

of potential interest occurring on different soil types are located in southern New South Wales and parts of Victoria. 

We further explored the correlation of Li concentration against soil orders (Searle, 2021). Figure 8 shows the range of Li 

concentration across various soil types identified within the sampling locations. The Li concentration tended to be slightly 

higher on Vertosols, Calcarasols, as well as Dermosols. These observations indicate Li accumulated in a more uniform soil 390 

profiles with less differentiation between top and subsoils. In addition, clay soils (Vertosols) and soils with high CaCO3 

(calcarosols) appeared to have larger Li concentrations. These observations supported the anomalous map prediction on 

various parts of Australia mentioned earlier. 

[Figure 8] 
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 395 
Figure 8. Boxplots of lithium concentration across various soil orders based on the Australian Soil Classification (ASC) system. 
Red dashed line represented the median values of Lithium across both TOS and BOS depth. 

The highest predicted values on the Li digital soil maps are 28 mg kg-1 and 22 mg kg-1 in TOS and BOS, respectively. 

Although higher Li concentration was expected to be observed in the deeper layer, the model used in this study was not able 

to support such predictions yet. This is most likely because the covariates used within the model represent observations from 400 

TOS instead of BOS. The variance of covariates within BOS was not obtained, and hence yielding lower accuracy 

predictions. 

3.5 Study limitations  

While we have successfully modelled soil Li distribution in Australia and validated it using an independent sample dataset, 

we recognise that there are limitations to this study’s approach. (1) The NGSA data used apply to catchment outlet sediment 405 

representing the local accumulation of mainly detrital minerals. Therefore, strictly speaking, the predictions developed 

herein apply only to similar alluvial soils. (2) Despite the large amount and spread of data, the NGSA does not cover the 

whole of Australia. Notably, there is a data gap in parts of Western Australia and South Australia. (3) The environmental 

covariates used in the study were selected based on our understanding of relevant soil-forming processes. (4) There is also 

limited information on how the covariates vary with depth, except for the soil texture (sand and clay content) data. The 410 

inclusion of more environmental covariates related to depth and geological information may improve the predictive 

capability of these machine learning models. The final product was only validated in one area within Australia (Tennant 

Creek – Mt Isa region in the Northern Territory and Queensland). Despite our predictions of elevated soil Li in parts of 

Queensland, New South Wales and Victoria, ground-truthing is required to confirm them and further work is necessary to 

determine the origin of the contained Li.  415 
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4 Conclusions 

Spatial prediction models have been increasingly utilised to help minimise risk and thus cost of mineral exploration. In this 

study, digital soil mapping for Li concentrations at two different depths (TOS: 0–10 cm, BOS: ~60–80 cm) based on the 

Cubist model was carried out across Australia using the National Geochemical Survey of Australia data and publicly 

available environmental covariates. Geology and mineralogy are of high importance in predicting soil Li anomalies, as 420 

demonstrated by the reliance of the model on the Landsat and gamma-ray radiometric covariates. Despite most mineral 

exploration for Li being conducted in Western Australia, other regions (such as Queensland, New South Wales and Victoria) 

have elevated predicted Li concentration and could become potential areas of interest with anomalous Li concentration. The 

model accuracy tested on the independent Northern Australia Geochemical Survey (TOS only) was reasonable compared to 

the calibration model performance. Overall, the model performance was on the low side and inclusion of the results into a 425 

prospectivity framework needs to consider the model uncertainties. This approach provides an estimate of the environmental 

background concentration of Li which is reflecting a range of processes including source rock geochemistry from which the 

sediments were derived, weathering (including pedogenic) and geomorphic processes.   The work provides a framework to 

better understand the process (as revealed through the covariate relationships) controlling Li concentration at the surface and 

the modelling effectively delineates regions with locally higher Li source potential. Future work should include other 430 

relevant environmental covariates, which could further improve model performance, ground-truthing of anomalous regions, 

and investigation of ultimate Li sources. As more survey data are collected, the use of more complex models can also be 

explored including the use of Li concentrations in bedrock materials. 
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