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Abstract. Generating spatial crop yield information is of great significance for academic research and 

guiding agricultural policy. Existing public yield datasets have a coarse spatial resolution, spanning from 

1 km to 43 km. Although these datasets are useful for analyzing large-scale temporal and spatial change 20 

in yield and they cannot deal with small-scale spatial heterogeneity, which happens to be the most 

significant characteristic of the Chinese farmers' economy. Hence, we generated a 30-m Chinese winter 

wheat yield dataset (ChinaWheatYield30m) for major winter wheat-producing provinces in China for 

the period 2016-2021 with a semi-mechanistic model (hierarchical linear model, HLM). The yield 

prediction model was built by considering the wheat growth status and climatic factors. It can estimate 25 

wheat yield with excellent accuracy and low cost using a combination of satellite observations and 

regional meteorological information (i.e., Landsat 8, Sentinel 2 and ERA5 data from the Google Earth 

Engine (GEE) platform). The results were validated by using in situ measurements and census statistics 

and indicated a stable performance of the HLM model based on calibration datasets across China, with r 

of 0.81 and rRMSE of 12.59%. With regards to validation, the ChinaWheatYield30m dataset was highly 30 

consistent with in situ measurement data and statistical data (p < 0.01), indicated by r (rRMSE) of 0.72** 

(15.34%) and 0.69** (19.16%). The ChinaWheatYield30m is a sophisticated dataset with both high 

spatial resolution and convictive accuracy, such a dataset will provide basic knowledge of exquisite 

wheat yield distribution, which can be applied for many purposes including crop production modelling 

or regional climate evaluation. 35 

1 Introduction 

Wheat is the most widely planted crop, supplying a fifth of global food calories and protein (Erenstein et 

al., 2022). However, wheat production is facing unprecedented challenges in the global context of climate 

change, such as frequent extreme weather events. Apart from natural factors, socioeconomic events such 
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as the COVID-19 pandemic, regional conflicts, and other global crises can also significantly perturb 40 

wheat production (IFPRI, 2022). In China, where needs to feed one-fifth of the world's population on its 

limited land (FAO, 2020) and food security is crucial, wheat production is an essential agricultural 

activity. Ensuring stable grain supplies and increasing production are important to the national economy 

and people's livelihoods (Feng et al., 2020). Therefore, monitoring of crop yields timely is of great 

significance for regulating import and export decision-making, grain market prices, crop insurance 45 

evaluations, smart agriculture applications, and rational allocations of agricultural resources. 

In the past decades, remote sensing data from ground-based, aerial-based and satellite-based platforms 

have received extensive attention for crop yield prediction (Battude et al., 2016; Jiang et al., 2019; Li et 

al., 2020; Wang et al., 2021). Ground- and aerial-based platforms have high spatial resolution and control, 

which are advantageous for farm-scale applications. However, their application to large-area yield 50 

estimations is too expensive. Satellite-based approaches have been widely used to monitor crop 

production over large areas in the past few decades, benefitting from capable of acquiring temporally and 

spatially continuous information (Battude et al., 2016; Huang et al., 2019). With the rapid launch of new 

satellites carrying various types of sensors, regional yield mapping is becoming more accurate and at 

higher spatial resolution. The mapping relies on vegetation indices (VIs) that can be derived from visible 55 

and near-infrared (NIR) reflectance bands in multispectral optical data, such as the Normalized 

Difference Vegetation Index (NDVI) (Rouse et al., 1974), the enhanced vegetation index (EVI) (Sims et 

al., 2008), or the optimized soil adjust vegetation index (OSAVI) (Rondeaux et al., 1996). These VIs 

have often been used to predict crop yield (Magney et al., 2016; Cao et al., 2021; Zhao et al., 2022b). 

There are many methods to incorporate VIs in yield estimation, such as parametric regressions, deep 60 

learning, and data assimilation (Battude et al., 2016; Huang et al., 2019; Li et al., 2020). 

Parametric regression models directly establish the relationship between VIs and crop yield, which may 

be linear or nonlinear (Magney et al., 2016; Li et al., 2020). These parametric regressions are limited to 

the specific research area and growing season for which they are developed, making it hard to extrapolate 

them either in the spatial or temporal domains. Non-parametric statistical approaches have been used in 65 

recent yield projections research. Notable studies have been done using machine learning (ML) (Cai et 

al., 2019; Li et al., 2021). An emerging new technique for crop yield estimations is deep learning (Tian 

et al., 2021) applied to various types of data acquired by satellites and drones (Jiang et al., 2020; Wang 

et al., 2020). Overall, ML methods heavily rely on large training datasets (Cao et al., 2021). Nonetheless, 

the application of machine learning in the realm of synthetic data generation has also exhibited 70 

encouraging outcomes (Arslan et al., 2019; Sivakumar et al., 2022; Ebrahimy et al., 2023). 

Unlike the above-mentioned statistical models, process-based mechanic models simulate crop yield from 

various inputs, including soil properties, meteorological data as well as crop characters. Examples of 

such models are the Decision Support System of Agrotechnology Transfer modeling system (DSSAT), 

the Agricultural Production Systems sIMulator (APSIM) and the Simple Algorithm For Yield (SAFY) 75 

and many other crop models (Jones et al., 2003; Keating et al., 2003; Duchemin et al., 2008). These 

mechanistic models can generate reliable yield estimates (Paudel et al., 2021). Data assimilation provides 

a way of integrating the monitoring properties of observed data into the predictive and explanatory 

abilities of crop growth models. Leaf area index (LAI) or biomass are often used as state variables of the 
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DA system to correct a crop growth model behavior and ensure accurate yield predictions (Battude et al., 80 

2016; Kang and Ozdogan, 2019). Yield is a complex trait that is related to numerous factors, including 

natural drivers (Li et al., 2021), crop variety (Wei et al., 2022; Bailey-Serres et al., 2019), and human 

factors, majorly consisting of fertilization and irrigation (Jones et al., 2003; Keating et al., 2003; 

Duchemin et al., 2008). Existing studies demonstrated that only updating one or two state variables is 

not sufficient to correct a crop growth model and thus cannot improve output predictions (Ines et al., 85 

2013; Huang et al., 2015; Hu et al., 2017; Huang et al., 2019). In addition, uncertainties in the remote 

sensing monitoring of state variables such as LAI and biomass are also inherited by the DA system (Kang 

et al., 2019). Although data assimilation techniques allow a formal and well-understood way to combine 

model predictions with observations, their computational intensity is a problem that tends to be ignored 

when estimating large-area crop production. Transfer learning techniques can be used to transfer the 90 

knowledge learned from a crop growth model to predict wheat yield to effectively improve calculation 

efficiency (Zhao et al., 2022b). A reliable labeled dataset is a prerequisite for the transfer learning method 

(Zhang et al., 2021). However, building an effective dataset for transfer learning over a large region is 

still challenging. 

In addition to traditional crop models and assimilation strategies, there are hybrid models that incorporate 95 

the simplicity of a statistical model and the rationality of a mechanistic model and are thus called semi-

mechanistic models (Ji et al., 2022). For example, Dong et al. (2020b) developed the EC-LUE-GPP 

model and successfully estimated the wheat yield in Kansas, USA. Li et al. (2020) used the HLM model 

to estimate interannual yield and showed good performance. Generally, a semi-mechanistic model has 

great potential in yield estimation, but its application is often limited to a relatively small area, e.g., farm 100 

scale, county or city scale, rather than a larger scale. National crop yield datasets, which are of great 

significance for large-scale agricultural resource allocation, agricultural system model construction, and 

climate change impact assessment, are produced at coarse spatial resolutions (Table 1), e.g., 0.5°, 10 km, 

4 km or 1 km resolution (Monfreda et al., 2008; You et al., 2014; Iizumi and Sakai., 2020; Grogan et al., 

2022; Luo et al., 2022; Cheng et al., 2022) and are mostly downscaled based on the statistical yield 105 

datasets and other datasets (Monfreda et al., 2008; You et al., 2014; Iizumi and Sakai., 2020; Grogan et 

al., 2022). This method of yield downscaling may lead to inaccurate yield estimates and incorrect 

assessments of the impact of climate change. In addition, yield predictions cannot rely on statistical data 

alone. Luo et al. (2022) and Cheng et al. (2022) developed yield datasets combining coarse-resolution 

real-time remote sensing data with agricultural statistics, but because 1 km × 1 km plots or 4 km × 4 km 110 

farmlands are rare in China, their field application is limited. Although these datasets are useful for 

analyzing larger-scale temporal and spatial changes in yield, they cannot deal with small-scale spatial 

heterogeneity, which happens to be the most significant characteristic of the Chinese farmers' economy. 

Therefore, there is an urgent need to construct a high-resolution yield dataset for investigating 

spatiotemporal patterns of crop production, assessing climate change impacts, and modeling crop growth 115 

processes over large spatial extents. 
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Table 1 Summary of studies on crop yield datasets  

Method Species Resolution Span 
Spatial 

coverage 
References 

Dataset 

summary 
175 crops 10 km 2000 Global 

Monfreda et 

al., 2008 

Global spatial 

production 

allocation 

model 

20 crops 10 km 
2000, 2005, 

2010 
Global 

You et al., 

2014 

Maize, Rice, 

Wheat and 

Soybean 

4 crops 43 km 1981-2016 Global 
Iizumi & 

Sakai, 2020 

Gata statistics 

based on 

Global Agro-

Ecological 

Zones Version 

4 model 

26 crops 10 km 2015 Global 
Grogan et al., 

2022 

LSTM Wheat 4km 1982 - 2020 Global 
Luo et al., 

2022 

Random Forest 
Maize, 

Wheat 
1 km 2001 - 2015 China 

Cheng et al., 

2022 

In this study, by integrating remote sensing and climate data, we aim to 1) propose a semi-mechanistic 120 

model with excellent accuracy and low cost by combining remote sensing observations and regional 

meteorological information, which can simultaneously overcome inter-annual and cross-regional 

problems; 2) evaluate model performance by using both validation dataset and the census yield data; 3) 

generate a high-resolution Chinese winter wheat yield dataset (ChinaWheatYield30m) for the period 

2016-2021. This dataset will be useful to further yield-related research and guide related food policies. 125 

2 Data and methods 

2.1 Study areas 

Our study area consists of the main winter wheat-growing region of China, which includes 12 provinces 

and municipalities (Figure. 1). The main winter wheat production areas are mainly distributed in the 

Huang-Huai-Hai region (HHH), Southwest China (SW), Gansu-Xinjiang region (GX), the middle and 130 

lower reaches of the Yangtze River (MLYR), and the Loess Plateau (LP). Most of the region is in the 

middle of China and includes temperate-continental monsoon, temperate monsoon, and subtropical 

monsoon climates. The sown area and production of winter wheat in China accounted for 20.02% and 

javascript:;
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21.77% of staple food crops in 2021 (National Bureau of Statistics of China, 2021), respectively. Three 

sample areas were selected for detailed analysis based on their different geographical and climatic 135 

conditions. The three selected regions in this study were chosen for comparison with other yield datasets 

based on different wheatland coverages. Region 1, 2, and 3 represent areas with winter wheat coverages 

below 25%, around 50%, and above 75%, respectively, serving as representative regions for these 

respective coverage levels. 

 140 

Figure 1. Distribution of winter wheat within the study area and three selected example areas. Region 1, 2, 

and 3 represent areas with winter wheat coverages below 25%, around 50%, and above 75%, respectively, 

serving as representative regions for these respective coverage levels. 

2.2 Data Collection 

2.2.1 The winter wheat land cover data 145 

We used a winter wheat map with a 30-m resolution across the main growing areas of China (Dong et 

al., 2020a). These data produce winter wheat maps from 2016 to 2020, which is the base map of 

ChinaWheatYield30m production. The yield distribution map of 2021 uses the winter wheat 

classification map of 2020, and the rest of the yield distribution maps are winter wheat classification 

maps of that year.  150 

2.2.2 Satellite Imagery Data Acquisition 

In this work, we extracted the atmospherically corrected reflectance from Landsat 8 and Sentinel 2 

images on the Google Earth Engine (GEE) platform during the period of 2016-2021. Subsequently, we 

calculated the Enhanced Vegetation Index 2 (EVI2) (Jiang et al., 2008) using the extracted reflectance 

values. These datasets were chosen to increase observation frequency and were used for yield estimation. 155 

Xu et al. (2020) have shown that Landsat 8 data and Sentinel 2 data have high consistency. The EVI2 is 

calculated from the reflectance in Red and NIR bands (Eq. (1)): 
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𝐸𝑉𝐼2 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 2.4 ∗ 𝑅𝑒𝑑 + 1
(1) 

where NIR and Red represent the Near-Infrared and Red reflectance, respectively, in Landsat 8 or 

Sentinel 2. The maximum EVI2 (EVI2max) of the winter wheat growing season was used in this paper. It 160 

is generally believed that the time of EVI2max corresponds to the heading period, which has been shown 

to be the best period for remote sensing yield estimation (Luo et al., 2020). 

2.2.3 Meteorological data 

Meteorological data were important input variable for yield prediction, mainly from March to May, 

because this period includes most key growth stages of winter wheat (i.e. stem elongation, booting, 165 

heading, flowering and filling stages). The meteorological data, including monthly average temperatures 

(Tem), monthly solar radiation (Rad), and monthly precipitation (Pre), were obtained from the ERA5 

dataset provided by the GEE platform (https://developers.google.com/earth-

engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY) with a resolution of 0.1° for the 

sampling site. All three types of meteorological datasets were resampled to a 30-m resolution to ensure 170 

data uniformity. 

2.2.4 In situ measurement yield data  

Georeferenced field-scale yields were obtained by field investigation from 2016 to 2021. During the 

harvest period, a five-point (1 m2 per point) sampling method was used to destructively sample each 

winter wheat plot to measure yield. To avoid edge effects, each sample point was at least 2 m away from 175 

the edge of the farmland. The harvested grain was threshed and air-dried for yield determination. Then, 

the final yield was standardized as grain with 14% moisture content. The detailed collection numbers of 

samples from different regions are shown in Table 2. In this paper, the data were randomly split into two 

dataset, two-thirds of the data were used for modelling, and the remaining data were used for validation. 

Table 2 Detailed statistics on the sample numbers in this study. 180 

Provi

nce 

An

hui 

Gan

su 

He

bei 

Hen

an 

Hu

bei 

Jian

gsu 

Shaa

nxi 

Shand

ong 

Sha

nxi 

Sich

uan 

Tia

njin 

Xinj

iang 

Total 

2016 12 8 26 45 - 33 - 10 3 11 1 - 149 

2017 53 4 35 72 16 46 25 59 11 9 1 2 333 

2018 85 3 63 126 18 47 21 56 14 13 1 3 450 

2019 85 3 48 130 13 53 17 62 14 10  2 437 

2020 82 10 26 121 11 60 19 52 14 0 - - 395 

2021 81 7 25 125 10 26 18 64 8 7 2 3 376 

Total 398 35 223 619 68 265 100 303 64 50 5 10 2140 

Note: "-" represents no collected data. 

2.2.5 The province-level and municipal-level statistical data 

The province-level and municipal-level yield data for the study area were collected from state statistical 

bureau between 2016 and 2021 (http://www.stats.gov.cn/tjsj/ndsj/). However, the data collected did not 

have direct records of the unit yield data. Therefore, to obtain the statistical yield data (kg·ha−1), the total 185 

http://www.stats.gov.cn/tjsj/ndsj/
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production was converted by dividing the planted area. These data were used to validate the model in the 

selected research provinces and municipalities. Table 3 shows the main information and sources of all 

data used in this study.  

Table 3 Details on the datasets used in this study  

Data type Content Resolution Span Data usage Data sources 

Winter 

wheat land 

cover data 

Classification 

of winter 

wheat 

30m 2016-2020 
Research 

area 
Dong et al., 2020a 

Satellite 

data 
EVI2max 30m 

Winter wheat 

growing season of 

each year from 

2016 to 2021 

Input 

variables 

Landsat 8 and 

Sentinel 2 dataset of 

GEE platform 

Meteorolo

gical data 

Tem 

Rad 

Pre 

0.1° 

March to May of 

each year from 

2016 to 2021 

Input 

variables 

ERA5 dataset of GEE 

platform 

In-situ 

measured 

yield data 

Field-level 

yield with 

coordinates 

Field-level 2016-2021 

Model 

establishmen

t and 

evaluation 

Field investigation 

Census 

yield data 
Statistical data 

Province-

level and 

municipal-

level 

2016-2021 
Model 

validation 
State statistical bureau 

Yield 

dataset 

GlobalWheatY

ield4km 
4km 2016-2020 

Dataset 

comparison 
Luo et al., 2022 

 190 
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2.3 Method 

2.3.1 Methodology  

The hierarchical linear model (HLM) is a simple and efficient method for dealing with nested structures. 

At present, HLM has been extensively applied to predicting yield, grain protein content, and agronomic 195 

traits for inter-annual and transregional (Li et al., 2020; Xu et al., 2020; Li et al., 2022; Zhao et al., 2022b). 

These papers have demonstrated that the HLM method is a stable, reliable and scalable way of solving 

yield estimation problems. They also demonstrated that, although a linear relationship between EVI2max 

and crop yield can be established in a particular field of a single year, differences in meteorological 

factors between regions and years will differentiate this relationship, which is the exact problem that the 200 

HLM model was implied to settle. In this study, normalization was performed on the data to reduce the 

impact of differences in variable scales. For each province, a set of parameters was generated by using 

the data collected from the sample fields. The specific yield-predicting models in different provinces 

using the HLM method in this study involved a two-levels hierarchy. Level 1 of the HLM model was 

constructed based on the yield and EVI2max: 205 

𝐿𝑒𝑣𝑒𝑙 1: 𝑌𝑖𝑒𝑙𝑑 = 𝛽0 + 𝛽1 ∗ 𝐸𝑉𝐼2𝑚𝑎𝑥  + 𝑟 (2) 

where β0 and r represent the intercept and random error, respectively, and β1 represents the slope of the 

linear model corresponding to EVI2max. 

In the HLM, the parameters of β0 and β1 at Level 1 become dependent variables at Level 2. The 

independent variables of Level 2 are the accumulated meteorological data (Tem, Rad, and Pre) of 210 

different growth stages, such that: 

𝐿𝑒𝑣𝑒𝑙 2: 𝛽𝑗  = 𝛾𝑚j + 𝛾𝑚j ∗ 𝑇𝑒𝑚𝑚𝑗  +  𝛾𝑚𝑗 ∗ 𝑅𝑎𝑑𝑚𝑗  +  𝛾𝑚j ∗ 𝑃𝑟𝑒𝑚𝑗 + 𝜇𝑚𝑗  (3) 

where βj represents the β0 and β1 from Level 1 of HLM, j represents 0 or 1. γm0 is the intercept, and γm1 - 

γm3 represent slopes of each accumulated meteorological data of different months (m=3, 4, and 5) and 

μmj is the random error of Level 2 of HLM. The parameters of the HLM model in this article are estimated 215 

using maximum likelihood estimation. Figure 2 shows a schematic of the workflow. 
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Figure 2 Schematic diagram outlining the inputs, major processing steps used, and generated outputs. 

2.3.2 Comparison with the Random Forest method and the other yield datasets 220 

Random Forest (RF) is a model with predictive performance commonly used in the current yield 

estimation literature (Li et al., 2020; Cheng et al., 2022; Luo et al., 2022). RF regression is a classic 

ensemble machine learning model that establishes multiple unrelated decision trees by randomly 

extracting samples and features and obtains the prediction results in parallel. Each decision tree can 

obtain a prediction result through the samples and features extracted, and the regression prediction result 225 

of the whole forest can be obtained by averaging the results of all trees (Breiman, 2001). This study 

generated multiple RF models for each province just like the way we build HLM models, using same 

calibration and validation datasets, so it makes two models for each province and definitely comparable. 

Given the wide range of RF applications in generating crop yield data, we built a RF prediction model in 

Matlab and compared its performance with the HLM model. The number of decision trees was set to 200, 230 

and the maximum depth of the tree and the number of features were optimized the models’ 

hyperparameters through pretuned procedure (Li et al., 2021; Cheng et al., 2022). 

We compared our yield production (ChinaWheatYield30m) with an existing 4-km dataset of global 

wheat yield (GlobalWheatYield4km) (Luo et al., 2022) using in situ data to validate the reliability of our 

dataset. More specifically, we calculated the r and rRMSE between the in situ measurement yields and 235 

the estimates of GlobalWheatYield4km or ChinaWheatYield30m from 2016 to 2021. This study 

compared and analysed national statistical data at different scales, focusing mainly on the provincial and 

municipal levels, to validate the accuracy of the ChinaWheatYield30m dataset. This study compared the 

difference between statistical yield per unit area from 2016 to and the average yield using 

ChinaWheatYield30m extracted from both province and municipal vector data. The provincial and 240 

municipal average yields based on the ChinaWheatYield30m dataset were calculated by dividing the 

total yield of all winter wheat pixels by the number of winter wheat pixels in that area. 
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2.3.3 Model evaluation 

The commonly used correlation coefficient (r) and relative root mean square error (rRMSE) were used 

to compare the performance of generated models. To estimate the contribution of each input variable of 245 

the HLM, we applied an extended Fourier amplitude sensitivity test (Saltelli et al., 1999). The EFAST 

(Extended Fourier amplitude sensitivity test) was used to determine a sensitivity index (SI) which 

combined the advantages from both Fourier amplitude sensitivity test and Sobol algorithm. The derived 

SI quantified how output results were impacted by input variables. The SI of each independent input 

variable to the yield in different provinces was computed with Simlab (version 2.2.1) software. To verify 250 

the stability of the yield model in this study, in addition to using independent samples for validation, we 

also selected cross-validation of the model deviation in different agricultural regions and years (Fushiki., 

2011). In this study, regional and temporal cross-validation was performed by training the models on 

specific years or regions and then independently validating them on the remaining years or study regions 

as separate samples. 255 

3 Results 

3.1 Exploring the appropriate method and accuracy assessment 

The performance of RF and HLM models in situ yield predictions during 2016 – 2021 for each province 

are shown in Fig. 3. The calibration sets for RF and HLM models have similar performance, with r 

(rRMSE) ranges of 0.79 - 0.92 (5.78% - 23.37%) and 0.67 - 0.87 (4.87% - 22.06%), respectively. 260 

However, in the validation set, the HLM model outperformed RF with the r (rRMSE) range of 0.50 - 

0.93 (1.93%-23.00%) and 0.27 - 0.76 (13.44% - 30.86%), respectively. The superior performance of 

HLM was attributed to its ability to capture the interaction effects among various factors. This interaction 

explained most of the variation among the provinces, with a sensitive index range of 9.85% - 69.92% 

(Fig. 4). The sensitive index of input variables to the HLM model is shown in Fig. 4, indicating the 265 

contributions of each variable to the HLM model. Overall, in most of the analyzed provinces, EVI2 was 

the most important variable in the HLM model, with a contribution range of 11.70 % - 63.18% for 

different provinces. As for the meteorological factors, in general, temperature was the most important 

factor, whereas radiation and precipitation were less significant. The variables related to accumulated 

temperature, Tem04 and Tem05, had a high contribution (8.50% - 21.90%) to the HLM model. The 270 

results show the importance of weather in April and May, which in our research areas are the key months 

for the flowering and filling of winter wheat, the critical periods in grain formation when most organic 

matter is accumulated (Cabas et al., 2010).  
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Figure 3. Comparison between the predicted and measured yield in the calibrated datasets (a, c) and the 275 

validation datasets (b, d).  

 

Figure 4 Sensitive index in the trained HLM model for different input variables. 

The HLM model and RF model was implemented to predict in situ wheat yield using the calibration 

dataset. By comparing the predicted results from 2016 to 2021 with the in situ records, it was found that 280 

there is a high consistency between the measured and predicted yield of winter wheat. The r (p<0.01) 

and rRMSE for the HLM model were 0.81** and 12.59%, respectively, while for the RF model, the r 

(p<0.01) and rRMSE were 0.83** and 12.66%, respectively. When validating with independent samples, 

the HLM model performed better than the RF model, with an r (p<0.01) of 0.72** and an RMSE of 

15.34% for the HLM model, while the RF model had an r of 0.69** and an RMSE of 15.71%. Due to 285 

the fact that the majority of the pixels to be predicted are located in areas not covered by the calibrated 
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dataset, the HLM model with stable performance in independent sample validation was chosen for 

subsequent analysis and dataset construction. 

 

Figure 5. Comparison of measured yield with predicted yield based on HLM model (a) and RF model (b) in 290 

the calibrated datasets. ** represents model significant at the 0.01 level of probability. 

 

Figure 6. Comparison of measured yield with predicted yield based on HLM model (a) and RF model (b) in 

the validated datasets. ** represents model significant at the 0.01 level of probability. 

3.2 Cross-validation of the HLM model across years and regions 295 

Apart from validating the model using independent samples, this study also cross-validated based on 

different years and different agricultural regions to further assess the stability of the HLM model (Fig. 7 

and Fig.8). Interannual cross-validation results show that the predicted yield using the HLM model has 

high consistency with the measured yield, with r (p < 0.01) and rRMSE values range of 0.55** – 0.69** 

and 15.44% – 28.61%, respectively. In the regional cross-validation, the cross-validation results in GX 300 

regions performed poorly, and the measured data and verification data in other regions have high 

consistency, with r (p < 0.01) and rRMSE values range of 0.30** – 0.51** and 17.31% – 23.16%, 

respectively. The yield estimation results for the GX region and the Southwest region are poor. These 

two regions have a large area, and there are significant differences in climate and planting management 

conditions. The existing data is not sufficient to reflect these differences. However, the main 305 

recommended winter wheat varieties at the provincial level have similar characteristics, and the planting 

patterns are similar due to policy reasons. By utilizing meteorological conditions, it is possible to reflect 
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the differences in winter wheat production within provinces as much as possible. Therefore, this article 

constructed a 30m winter wheat yield dataset for China at the provincial scale. 

 310 

Figure 7. Interannual cross-validation of the correlation between measured data and predicted data, where 

(a), (b), (c), (d), (e) and (f) indicate that the HLM models of 2016, 2017, 2018, 2019, 2020 or 2021 are directly 

used in other years. ** represents model significant at the 0.01 level of probability. 

 

 315 

Figure 8. Reginal cross-validation of the correlation between measured data and predicted data, where (a), 

(b), (c), (d) and (e) indicate that the HLM models of HHH, LP, MYLR, SW or GX are directly used in other 

years. ** represents model significant at the 0.01 level of probability. 

3.3 Comparing ChinaWheatYield30m with GlobalWheatYield4km 

Figure 9 shows the spatial patterns of ChinaWheatYield30m from 2016 to 2021. Generally, the spatial 320 

patterns of predicted yields were consistent with in situ measured yields, with large variability from 
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2273.82 – 10518.82 kg ha-1. We further summarized the province-level statistic yield. The yield averages 

were highest in Shandong Province (6567.48 kg ha-1), followed by Henan Province (6498.42 kg ha-1) 

and Hebei Province (6039.39 kg ha-1). By contrast, Jiangsu Province achieved the lowest average yield 

(4337.05 kg ha-1) (Fig. 10). Overall, these data are consistent with the census data. In contrast, model 325 

performance showed overestimates of wheat crop yield compared with statistical yield (r = 0.69** (p < 

0.01), rRMSE = 19.16%) (Fig. 10). Therefore, the field-scale yield prediction dataset has not only high 

precision at a fine scale, but also performs well on a large scale.  

 

Figure 9. Spatial patterns of annual winter wheat yield during 2016 - 2021. 330 
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Figure.10. Comparison of predicted yield and municipal statistical yield. ** represents model significant at 

the 0.01 level of probability. 

We compared the datasets at the field level using single pixels and through a zonal analysis of three 

selected research areas. Field-level yield estimates were aggregated to match the ChinaWheatYield30m 335 

and GlobalWheatYield4km from 2016 to 2020 and then compared with in situ measurement yields 

(Fig.11). The yield estimates of ChinaWheatYield30m showed higher consistencies with in situ 

measurement yields as the scatter points were closer to the 1:1 line than in the case of 

GlobalWheatYield4km. The results showed that, in different years, ChinaWheatYield30m has a lower 

rRMSE range (12.40% – 13.84%) compared to GlobalWheatYield4km (20.43% – 33.06%) (Fig. 9).  340 

 

Figure 11. Comparisons between in situ measurement yields and predicted yields of GlobalWheatYield4km 

or ChinaWheatYield30m for 2016 (a), 2017 (b), 2018 (c), 2019 (d), and 2020 (e). 
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As for the zonal analysis, winter wheat yield derived from ChinaWheatYield30m also have a close spatial 

pattern to GlobalWheatYield4km production (Fig. 10 and Table 4). Besides, ChinaWheatYield30m, with 345 

a standard deviation of 290.27 – 880.91 kg ha-1, depicts the difference in yield with greater spatial detail 

compared to the GlobalWheatYield4km standard deviation of 195.46 – 1516.09 kg ha-1. In the selected 

sample areas, the yield ranges of ChinaWheatYield30m and GlobalWheatYield4km are 2115.95 kg ha-1 

– 7668.69 kg ha-1 and 2653.62 kg ha-1 – 10504.50 kg ha-1, respectively. This wide range and minor 

deviation reveal the advantages of fine-resolution data. Compared with the actual yield records, 350 

GlobalWheatYield4km significantly underestimates them, whereas ChinaWheatYield30m is closer to 

the 1:1 line. In the selected sample areas, the mean yield of ChinaWheatYield30m is generally higher 

than that of GlobalWheatYield4km because the wheat classification at 30-m resolution is dominated by 

pure wheat pixels. In contrast, the wheat classification with 4-km resolution has more mixed pixels. For 

example, buildings and roads cannot be identified in the 4-km classification but result in an 355 

underestimation of yield prediction (Fig. 10). 

 

 

Figure 10 Comparison of spatial patterns between GlobalWheatYield4km (a, b, c) and 

ChinaWheatYield30m (d, e, f) from 2016 to 2020. The detailed location of the selected example areas 360 
(Region 1 and d; Region 2 and e; Region 3) is shown in Figure 1. 
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Table 4 Statistical analysis of GlobalWheatYield4km and ChinaWheatYield30m 

Reg. Year GlobalWheatYield4km (kg ha-1) ChinaWheatYield30m (kg ha-1) 

Min Max Mean Std Min Max Mean Std 

1 2016 2215.59 4499.56 3085.45 394.45 3787.87 10504.50 5797.42 711.83 

2017 2115.95 5543.09 3034.08 660.67 3555.29 7470.59 4849.84 374.35 

2018 2461.41 5192.57 3499.66 632.27 3015.54 6231.35 3746.34 422.38 

2019 2802.90 4987.77 3511.21 346.15 2653.62 9978.73 5351.96 1516.09 

2020 2336.31 4584.65 3347.63 505.31 2705.24 7874.20 4238.19 977.18 

2 2016 2751.27 6626.20 4807.49 880.91 4257.01 9078.25 6002.05 438.40 

2017 3504.07 7102.54 5349.48 847.29 4997.04 10504.47 6564.42 968.29 

2018 4524.76 6755.62 5880.72 402.58 3818.12 10291.08 6472.96 721.93 

2019 3988.76 6555.61 5551.69 528.77 3198.47 9902.78 6704.211 989.46 

2020 3766.66 6301.66 5069.00 526.35 4352.21 8439.71 6100.75 745.51 

3 2016 4388.15 7127.87 6103.27 491.77 3788.11 7554.13 7047.07 321.38 

2017 5000.56 7387.55 6261.93 433.99 5917.13 8266.23 7199.44 214.30 

2018 5637.92 7668.69 6931.35 356.61 4927.40 8384.25 6357.63 378.09 

2019 5589.33 7540.64 6535.69 290.27 5394.00 9980.07 7576.74 652.95 

2020 3861.44 7003.86 5590.34 521.12 5557.38 8186.71 6802.47 195.46 

Note: Reg represents Region. 

4 Discussion 

4.1 Advancements of the 30-m resolution yield dataset 365 

Information on the spatial extent of winter wheat yield is essential for drafting economic and food subsidy 

policies and rationally allocating resources (FAOSTAT, 2018). To our knowledge, to date there is no 

fine resolution (30 m) winter wheat yield distribution map. Previous research has generated the winter 

wheat yield distribution map of some major production areas in China at moderate resolution, e.g., 10-

km, 5-arcmin grid, 5-minute grid, 4-km, and 1 km (Monfreda et al., 2008; Fischer et al., 2012; You et al., 370 

2022; Grogan et al., 2022; Luo et al., 2022; Cheng et al., 2022). Moderate-resolution yield maps have a 

mixed-pixel problem, which may lead to great uncertainties, as mentioned in comparison with the 4-km 

yield dataset. Existing wheat yield maps are usually available at the end of the season or based on yield 

statistics, which limits their application in early field management and government macro-control 

(Battude et al., 2016; Kang and Ozdogan., 2019). For example, crop growth models strongly depend on 375 

daily meteorological data as input; this increases the difficulty in early yield prediction because 

meteorological data during the season is lacking and long-term meteorological forecasts are unreliable. 

ChinaWheatYield30m had the following advantages:  

1) This study generated ChinaWheatYield30m dataset with 30-m resolution (Fig.10), the primary reason 

is we adopted winter wheat classification map from (Yuan et al., ESSD 2020), providing highest 380 

resolution of 30-m wheat pixels. Such a resolution will provide not only higher result credibility, but also 
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balance the computational efficiency problems. High-resolution yield datasets can provide more accurate 

spatial information about crop production, improving agricultural productivity and enabling rapid 

monitoring and analysis of large agricultural areas. This allows for timely detection and resolution of 

issues that arise during crop growth, ultimately enhancing both the efficiency and effectiveness of 385 

agricultural production. 

2) A stable accuracy at field scale and large regional scale will highly contributing to field management, 

modelling agricultural systems, drafting agricultural policies. This study combined remote sensing and 

meteorological data to construct a spatiotemporally expandable HLM method for predicting winter wheat 

yield in the main producing areas. The relationship between vegetation index and crop yield varies across 390 

different years and regions (Li et al., 2020). Meteorological data has an important impact on crop yield 

(Moschini and Hennessy, 2001; Lee et al., 2013). Li et al. (2021) showed that environmental data for 

wheat in China explained more than 60% of the variation in wheat yield. In this study, we generated 

ChinaWheatYield30m with stable results, which fully exploited the advantages of HLM to solve the 

nested problem of yield prediction impacted by remote sensing and meteorological data. 395 

3) The product has a high real-time performance and can be used to forecast the output in the early period 

of the year. EVI2max and meteorological data used in this paper can be obtained before May, while wheat 

in China's main winter wheat production areas is generally harvested in June. Therefore, the proposed 

method can accurately predict winter wheat yield in real time. The strengths of the HLM model are 

overcoming inter-annual and regional variations (Li et al., 2020; Xu et al., 2021; Zhao et al., 2022b). The 400 

results based on field investigation and statistical data show that the method can accurately predict winter 

wheat yield in the main production areas. The ChinaWheatYield30m is presumed to be most commonly 

concerned in metropolis level or county level, in this sense, the resolution will be feasible to these scales. 

4.2 Uncertainties and limitations 

Despite the advantages of ChinaWheatYield30m, the dataset also presents some data and model 405 

uncertainties.  

1) Remote sensing and meteorological data used in this study still have uncertainties. This study 

generated ChinaWheatYield30m dataset with 30-m resolution, the primary reason is we adopted winter 

wheat classification map from (Yuan et al., ESSD 2020), providing highest resolution of 30-m wheat 

pixels. The ChinaWheatYield30m input data consist of meteorological variables and remote sensing data, 410 

all datasets were resampled to a 30-m resolution to ensure data uniformity. In terms of remote sensing 

data, resampling Sentinel 2 data to 30 meters may result in loss of some surface information, and the 

differences between pixels in the image may not be accurately captured. The increase in the number of 

mixed pixels can lead to uncertainties in yield estimation results. Besides, maximum EVI2 is obtained at 

the heading or flowering period (Luo et al., 2020), but due to the irregular availability of usable Sentinel 415 

2 and Landsat 8 observations, the maximum EVI2 nationwide may correspond to different phenological 

periods.In addition, meteorological data is another important component of the yield dataset. To obtain 

spatially and temporally continuous meteorological driving data, this study utilizes a dataset generated 

by ECMWF, its meteorological data was timely updated to meet our spatio-temporal demand. However, 

meteorological data such as precipitation, temperature, and radiation exhibit highly nonlinear and chaotic 420 
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characteristics (Lorenz, 1996), leading to ongoing debates about the reliability of interpolation methods. 

The coarse resolution of meteorological data, combined with its high spatial homogeneity over larger 

areas, weakens its ability to effectively capture the relationship between remote sensing data and yield 

variations as the second-level correction in the HLM model. 

2)Uncertainties in winter wheat classifications are transferred to the yield predictions. The wheat 425 

classification is based on optical remote sensing data and may be affected by meteorological factors such 

as clouds and rain (Dong et al., 2020a). In addition, the winter wheat classification data are mainly based 

on time series, and a similar time series may lead to a wrong classification, which results in uncertainties 

in regional yield statistics. 

3) The accessibility of in situ measurement data is also one of the uncertainties in ChinaWheatYield30m. 430 

The performance of HLM depends on the quantity and quality of samples. It is more precise when 

sampling in the quadrat and is often higher than the statistical yield data. It was particularly difficult to 

collect finer-scale census data with longer time coverage in some areas, such as Xinjiang Province, 

leading to data gaps in ChinaWheatYield30m. We combined in situ measurements and statistical data to 

calibrate and validate the ChinaWheatYield30m. However, where sparse observation where available, 435 

we could only calibrate the parameters of the mathematical optimization. 

4) The uncertainties of HLM application scenarios need further analysis. There is a nested issue between 

vegetation indices and yield relationships, as well as between meteorological data and yield relationships 

(Li et al., 2020; Xu et al., 2020). HLM has advantages in addressing this problem. Under similar 

meteorological conditions, the yield estimation of the model mainly depends on the differences in 440 

vegetation indices. In the major wheat production area, variations in crop types, soil types, climate factors, 

and other factors have an impact on the model's estimation results (Li et al., 2021). The current model 

only considers the effect of meteorological data on remote sensing yield estimation, and future analyses 

will incorporate additional factors such as soil to generate more accurate yield datasets. The current 

model is primarily constructed based on normal production conditions, and estimating winter wheat yield 445 

under abnormal climatic conditions introduces significant uncertainties. Therefore, it is necessary to 

consider stress factors and further improve the framework of remote sensing estimation models for winter 

wheat in the future. 

5 Data availability 

The derived yield dataset for ChinaWheatYield30m during 2016 – 2021 is available at 450 

https://doi.org/10.5281/zenodo.7360753 (Zhao et al., 2022a). Please be so kind to contact the authors for 

more detailed information. 

6 Conclusions 

In the present study, we generated a 30m Chinese winter wheat yield from 2016 to 2021 based on the 

HLM model, called ChinaWheatYield30m. First, we construct a semi-mechanical model with excellent 455 

accuracy and low cost in a combination of RS observations and regional meteorological information for 

major winter wheat-producing areas in China. The HLM model has stable performance in calibration 
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sets across China, with r of 0.81** (p < 0.01) and rRMSE of 12.59%, respectively. Next, we validated 

the predictive performance of in-situ measurement data and statistical data. The ChinaWheatYield30m 

dataset was highly consistent with in-situ measurement data and statistical data (p < 0.01), indicated by 460 

r (rRMSE) of 0.72** (15.34%) and 0.69** (19.16%), respectively. Finally, we established a high-

resolution yield product for winter wheat in China during 2016 – 2021. Our ChinaWheatYield30m can 

be applied for many purposes, including further academic research, making economic, food subsidy 

policies and rationally allocating imperative resources. 
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