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Abstract. Young forest age mapping at a fine spatial resolution is important for increasing the accuracy of 

estimating land-atmosphere carbon fluxes and guiding forest management practices. In recent decades, China 

has actively conducted afforestation and forest protection projects, thereby, laying the foundation for the 

realization of carbon neutrality. However, very few studies have been conducted which map the ages of young 10 

forests for the whole of China at a fine spatial resolution. In this research, a continuous change detection and 

classification (CCDC)-based method suitable for large-scale forest age mapping is proposed, and used to 

estimate young forest ages across China in 2020 at a spatial resolution of 30 m. First, a 10 m spatial resolution 

land cover dataset (WorldCover2020) from the European Space Agency (ESA) was used to determine the forest 

cover areas in 2020. Then, the CCDC algorithm was used to identify stand-replacing disturbances to determine 15 

the stand age based on 436,967 Landsat tiles across China from 1990 to 2020. A validation sample set 

composed of multiple land use/land cover (LULC) products was used to calculate the overall accuracy (OA) of 

the 2020 young forest age (1–31 years) map of China, and the OA was 90.28%. The reliability and applicability of 

the proposed CCDC-based forest age mapping method was validated by comparing the forest age map with 

Hansen’s forest change dataset, Max Planck Institute for Biogeochemistry (MPI-BGC) 1 km global forest age 20 

datasets and field measurements. The CCDC-based method has strong application potential in real-time 

mapping of the age of young forests at the global scale. The produced forest age map provides a basic dataset 

for research on the forest carbon cycle and forest ecosystem services, and important guidance for government 

departments, such as the National Forestry and Grassland Administration and National Development and 

Reform Commission in China. 25 

1 Introduction 

The industrial revolution and the use of fossil fuels has led to a continuous increase in the concentration of 

greenhouse gases, particularly carbon dioxide, in the atmosphere, which has caused an increase in global 

temperatures. Forest growth plays a significant role in reducing atmospheric carbon dioxide levels, and stand 

age has been recognized as an important parameter in forest carbon cycle models (He et al., 2011; Vilen et al., 30 

2012; Zhang et al., 2014). In existing studies, differences in the carbon sequestration capacity of forest stands 

with different ages have not been considered, which has led to large uncertainties in estimates of carbon 

sources/sinks in forest ecosystems (Piao et al., 2022). Loboda and Chen (2017) pointed out that young boreal 

forests (forest age < 30 years) are stable carbon sources, while temperate forests transition from large carbon 

sources to significant carbon sinks in the first 10 years until they mature. Therefore, studies on the stand age of 35 

young restored forests can contribute to more accurate estimates of forest carbon fluxes. 

As a major industrial country, China’s carbon dioxide emissions have continued to increase in recent decades, 

and problems such as land degradation, air pollution and climate change have emerged. To address these 

problems, China has developed a series of plans to protect and expand its forests (Chen et al., 2019). For 

example, in recent decades, China has implemented afforestation and forest conservation projects to restore 40 
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natural forests and improve ecosystem services (Lu et al., 2017). Chen et al. (2019) showed that China ranks first 

in the world in the production of new green areas from 2000 to 2017 and accounted for 25% of the global net 

increase in leaf area, of which forests contributed the most (42% of China's total greenery). It was found that 

different land-use changes in southern China increased aboveground carbon stocks by 0.11 ± 0.05 PgC y
− 1

 

between 2002 and 2017, with 32% of the carbon sink contributed by young forests (Tong et al., 2020). Wang et 45 

al. (2020) found that the global contribution of China’s forest carbon uptake was underestimated. More 

precisely, land carbon sinks in southwestern China (Yunnan, Guizhou, and Guangxi provinces) were 

underestimated throughout the year and land carbon sinks in northeastern China (especially in Heilongjiang and 

Jilin provinces) were underestimated in the summer months. 

Although a large amount of literature has focused on forest cover and carbon sinks in China, few studies have 50 

investigated forest age and the spatial distribution of young forests in China. In particular, fine spatial resolution 

data on forest age are missing. Presently, forest age products in China are available mainly at 1 km spatial 

resolution. For example, forest age maps of forests and plantations at 1 km spatial resolution in China have been 

successively produced by Zhang et al. (2014), Zhang et al. (2017) and Yu et al. (2020). However, most forests in 

China are distributed in mountainous areas with strong spatial heterogeneity. Generally, the existing forest age 55 

data are of too coarse a spatial resolution to support stand calculations for these regions. 

The traditional method of forest age mapping is based mainly on field investigation, which is time-consuming 

and labor-intensive (i.e., it requires considerable human resource and material resources) (Racine et al., 2014), 

especially in steep mountain forests and areas with inconvenient access. This form of forest age surveying makes 

it very difficult to map large areas. In addition, there exist further problems such as poor timeliness and slow 60 

updating, which seriously affect the reliability of the collected forest age data (Pan et al., 2011). 

Remote sensing images represent a systematic tool for estimating large-scale biophysical variables owing to 

their wide spatial coverage and frequent data updates (Diao et al., 2020). Generally, the basic physical 

mechanism for estimating forest age using remote sensing images is that forests of different ages exhibit 

different physical characteristics, such as spectral reflectance, tree crown texture, light transmittance and 65 

biomass (Champion et al., 2014; Kuusinen et al., 2014; Thom and Keeton, 2019). In particular, regional forest age 

can be estimated by combining remote sensing data with field survey (such as forest inventory data). The main 

principle underlying such approaches is that forest age is correlated with the (i) spectral reflectance and/or 

vegetation index of optical remote sensing images, and (ii) backscattering coefficient and interference 

coherence of radar images (Diao et al., 2020). For example, Besnard et al. (2021) used forest inventories, 70 

biomass, and climate data to map global forest age around 2010. He et al. (2011) used forest inventory and 

analysis data to find a threshold for the normalized difference disturbance index to distinguish disturbances 

from regenerating forests. Combining SPOT 4 satellite sensor data, historical fire data and forest inventory data, 

Pan et al. (2011) generated a 1 km spatial resolution stand age map for the North American continent. Vilen et 

al. (2012) used remote-sensing-based European forest cover data and forest inventory maps to estimate the 75 

age of European forests between 1950 and 2010. The relationship between forest age and forest structure (such 

as tree height) in measured data has also been used to estimate forest age (Racine et al., 2014). 

In addition to optical images, Synthetic Aperture Radar (SAR) images play an important role in forest age 

mapping because of their advantages of all-weather, all-day monitoring. Pinto et al. (2013) found that the 

interferometric coherence of the L-band airborne sensor Uninhabited Aerial SAR (UAVSAR) was able to estimate 80 

forest age with great accuracy, overcoming the ‚saturation‛ problem that occurs in optical image-based forest 

age mapping. LiDAR data have also been used for forest age mapping. For example, Racine et al. (2014) used 

airborne LiDAR data and ground data to estimate forest age in Quebec, eastern Canada. 

In studies of Chinese forests, age has been widely estimated using the direct relationship between forest age 

and tree height. For example, Zhang et al. (2014) constructed the relationship between age and height retrieved 85 

from field observations to generate a 1 km spatial resolution map of forest age in China. Zhang et al. (2017) 

used climate data and forest height data, together with provincial statistical data from the national forest 
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inventory to produce a downscaling-based 1 km spatial resolution map of forest age distribution in China. Yu et 

al. (2020) used data such as field measurements, national forest inventory data and remote-sensing-based 

forest height maps to map the ages and types of planted forests in China at a spatial resolution of 1 km. 90 

Although the strategy of combining remote sensing data and field survey data has dominated forest age 

mapping, it still suffers from the following problems. First, the availability of field survey data is difficult to 

guarantee. The usability problem depends mainly on the positioning accuracy of the sample points, regional 

differences and the number of samples. The positioning accuracy is affected mainly by measurement errors, 

while regional differences are reflected mainly in the differences in data availability caused by various regional 95 

policies, laws and regulations. Second, the influence of the saturation phenomenon of spectral reflectance 

and/or the backscattering coefficient cannot be ignored. This saturation phenomenon means that at large 

values of forest variables, such as biomass and age, the spectral reflectance and/or backscattering coefficients of 

remote sensing images are no longer sensitive to changes in these variables (Zhao et al., 2016). For example, 

mature forests have a more stable canopy texture and canopy area than young forests. In addition, the 100 

saturation problem varies based on stand species and forest structure (Zhao et al., 2016; Lu et al., 2016), which 

further increases the difficulty in estimating forest age directly from spectral reflectance or backscattering 

coefficients. Although studies have shown that LiDAR data can solve the saturation problem (Lu et al., 2016), the 

limited spatial coverage and availability of the observed data hinder widespread application. Third, complex 

stand compositions and forest structures make it difficult for a single classification model to achieve reliable 105 

forest age mapping. Specifically, the accuracy varies greatly with spectral reflectance, backscattering coefficient, 

canopy texture and other characteristics of mixed forests. 

Methods of estimating forest age based on forest disturbance time can overcome the above problems 

effectively. This type of method uses time-series images (Powell et al., 2010; Zhu and Liu, 2015; Zhao et al., 2016) 

and/or disturbance historical data (such as burn scar maps) to infer the time of the last stand-replacing 110 

disturbance to estimate forest age through time. Common forest disturbance detection algorithms include 

disturbance and trend detection (Kennedy et al., 2010), vegetation change tracker (VCT) (Huang et al., 2010), 

continuous change detection and classification (CCDC) (Zhu and Woodcock, 2014), and breaks for additive 

season and trend (Verbesselt et al., 2012; DeVries et al., 2015). Chen et al. (2016) developed the stand-replacing 

fire mapping method using Landsat images from 2001 to 2012 to infer the forest age of Siberian larch. 115 

Kauffman and Prisley (2016) used the VCT algorithm to detect disturbance events based on Landsat time-series 

images. Diao et al. (2020) used the VCT algorithm, spatial analysis and random forest regression to map the 

ages of three typical plantations in southern China (1987–2017). Methods based on forest disturbance 

monitoring have shown strong potential for forest age estimation, but as yet there exist only a few related 

studies involving large-scale mapping. 120 

This research uses the Google Earth Engine (GEE) cloud platform with 30 m Landsat images and the CCDC 

algorithm to estimate forest age across the whole of China in 2020. The CCDC algorithm was selected because it 

can exploit the full temporal profile of long Landsat time-series data, and judge accurately the disturbance time 

point (Zhu and Woodcock, 2014), thereby, achieving reliable forest age mapping (Shen et al., 2018; DeVries et 

al., 2015). At present, there exist very few studies mapping forest age at a fine spatial resolution and across large 125 

areas. Therefore, this study fills such a research gap by mapping forest age at 30 m spatial resolution across the 

whole of China. In general, the main contributions of this paper are as follows: 1) a large-scale forest age 

mapping method is proposed based on the CCDC algorithm, which shows potential for mapping global forest 

ages at the fine spatial resolution of 30 m; and 2) a 30 m spatial resolution forest age map across China in 2020, 

as a preliminary result of annual forest age mapping, is produced. The dataset is available at 130 

https://doi.org/10.6084/m9.figshare.21627023.v7 for public use (Xiao, 2022). 
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2 Data 

2.1 Landsat images 135 

Landsat Collection 1 (C1) Tier 1 Surface Reflectance (SR) images were selected, including all available Landsat 

4-8 images from 1985 to 2020. These images were obtained directly from the GEE platform 

(https://developers.google.com/earth-engine/datasets/catalog/landsat), with a total of 436,967 Landsat tiles 

across China. Furthermore, these data were atmospherically corrected using the LaSRC algorithm (Vermote et al., 

2018). We pre-processed the image within China according to the Landsat SR Quality Assessment (QA) band, 140 

including removing shadows, clouds, cloud shadows and snow-covered areas. In addition, it was necessary to 

remove outliers in the image; thus, pixels with reflectance less than zero in each spectral band and pixels with 

significantly high reflectance were removed. It should be noted that the earliest available images for each region 

are not the same. For example, the earliest available images in western China were significantly later than those 

in the eastern coastal regions. Figure 1(a) and Figure 1(b) show the year of the earliest available Landsat 4-8 145 

images covering China before and after masking out non-forest land, respectively. The masks used were based 

on the 2020 ESA land cover product (WorldCover2020). It can be seen from Figure 1(b) that the available 

Landsat 4-8 data after 1990 cover most of the forest land in China. 

 

Figure 1. The earliest available year of the Landsat images used in this study. (a) Years for the whole of China. (b) Years for 150 

the non-forest areas masked out. 

https://developers.google.com/earth-engine/datasets/catalog/landsat


5 

 

2.2 Auxiliary data 

This research used several land cover products to produce reference data to calculate the stand age mapping 

accuracy, including the Global Forest/Non-Forest Map (FNF), Global Forest Change (GFC), Global Forest Cover 

Change Dataset (GFCC), Annual Global Land Cover between 2000 and 2015 (AGLC_2000_2015), Global Land 155 

Use/Land Cover Dataset (ESRIGlobal-LULC_10m) and WorldCover2020. A detailed description of these products 

is presented in Table 1.  

 

Table 1 Auxiliary data used for accuracy evaluation. 

  ID LULC products Data sources Resolution Selected 

Years 

References  

  1 FNF PALSAR-2/PALSAR 25 m 2010, 2015 Shimada et al. 

(2014) 

 

  2 GFC Landsat 30 m 2000–2020 Hansen et al. (2013)  

  3 GFCC Landsat, MODIS 

Vegetation 

Continuous Field 

(VCF) tree cover 

data 

30 m 2000, 2005, 

2010, 2015 

Sexton et al. (2013)  

  4 AGLC_2000_2015 Multiple sets of 

global land cover 

products, Landsat 

30 m 2000, 2005, 

2010, 2015 

Xu et al. (2021)  

  5 ESRI_Global_LULC_10m Sentinel-2 10 m 2020 Karra et al. (2021)  

  6 WorldCover2020 Sentinel-1, 

Sentinel-2 

10 m 2020 Zanaga et al. (2021)  

3 Methodology 160 

3.1 CCDC algorithm 

The CCDC algorithm is usually used to monitor land cover changes (Zhu and Woodcock, 2014; Li et al., 2021). It 

fits a model to spectral observations of Landsat pixels or vegetation indices (such as the normalized difference 

vegetation index (NDVI)), and can reflect three types of pixel changes: (1) seasonal changes (such as phenology), 

(2) slow changes (such as vegetation growth or degradation) and (3) rapid changes (such as deforestation, 165 

insect disasters, storms and fires) (Zhu and Woodcock, 2014). CCDC uses robust iteratively reweighted least 

squares (RIRLS) (Dumouchel and O’brien, 1992) to fit to the observed values, which can reflect the phenological 

characteristics and changing trends of ground features. The mathematical expression of the fitted line is as 

follows: 

0, 1, 1, 2, 2,
ˆ i

2 2 2 2
( , ) cos sin cos s nRIRLS i i i i ii x a a x b x a x b x

T T NT NT

   


       
          

     


 
       (1) 170 

where x represents Julian day, i represents the ith band of the image, T represents the number of days each year 

and N represents the number of years of Landsat data. The coefficient 0,ia  represents the overall values of the 
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ith band, 1,ia  and 1,ib  represent the intra-annual change of the ith band, and 2,ia and 
2,ib represent the 

inter-annual change of the ith band. Finally, )ˆ( , RIRLSi x  represents the predicted value for the ith band 

corresponding to the xth Julian day based on RIRLS fitting. 175 

3.2 Forest age mapping based on CCDC 

In this research, the CCDC-based method is proposed for large-scale forest age mapping (using Landsat 

images from the GEE cloud platform and the CCDC algorithm). Arévalo et al. (2020) provided the CCDC 

application programming interface on the GEE platform so that the algorithm could be employed conveniently. 

3.2.1 Dividing the country into small grid cells 180 

The CCDC algorithm performs time-series analysis per-pixel, and the large-scale calculations require significant 

computing power. Although GEE has powerful computing capacity, it is still difficult to analyze the time-series at 

a national scale. For this reason, the country was divided into 62 grid cells of 5°×5° (Figure 2), as this scale not 

only requires less GEE computing power, but also avoids increasing data management costs. 

 185 
Figure 2. The divided grids (62 5°×5° grids) for the national land area. 

3.2.2 Determining the 2020 forest distribution mask 

This research utilizes existing 2020 LULC classification products to map forest distribution. Given these data, it 

was necessary only to identify the woodland area in the year of mapping (i.e., 2020 in this paper) and the time of 

the last land-replacing change in that area to estimate forest age. For example, if a pixel in the image is 190 

forestland in 2020 and the last time the area changed to forestland was in 2015, then the forestland is five years 

old. 

Since 2020 is the target year of forest age mapping, we extracted the forest area from WorldCover2020 to 

generate the forest mask in 2020 (referred to as ‘Forest mask 2020’). The accuracy of the WorldCover2020 forest 

classification is sufficient for large-scale forest age mapping (producers’ accuracy and users’ accuracy are 89.9% 195 

and 80.8%, respectively). In addition, the spatial resolution of WorldCover2020 is 10 m, which makes it 

straightforward to match with the 30 m resolution of Landsat data (i.e., 10 m WorldCover2020 data can be 

degraded to 30 m conveniently). 
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3.2.3 Determining the breakpoints of the model 

CCDC performs time-series analyses for each pixel. The model contains two key parameters, Chi-square 200 

probability (chiSquareProbability) and the minimum number of consecutive observations (minObservations) that 

trigger breakpoint conditions. It should be noted that the chiSquareProbability value ranged from 0 to 1. The 

larger the parameter value, the fewer the breakpoints detected by the model. The value of minObservations is a 

positive integer, which affects the sensitivity of the algorithm to breakpoint detection. For example, if the 

sensitivity is too high, then slow forest degradation (owing to insect pests and selective logging, etc.) will also be 205 

detected as breakpoints. Because there is no land cover type change in this process, a high sensitivity will lead to 

an underestimation of forest age, and vice versa. Therefore, finding the most suitable parameter threshold is the 

key to reliable forest age mapping. 

3.2.4 Calculating the stand age 

First, we determined the endpoint of the final fitted curve corresponding to each forest pixel (extracted using 210 

the Forest mask 2020). It should be noted that the Forest mask 2020 can represent only the forest extent at a 

certain time in 2020 and thus, this paper assumes that the Forest mask 2020 represents the forest extent on 

September 1, 2020 (i.e., at the end of summer characterized by green vegetation). Figure 3 shows a schematic 

diagram illustrating forest age determination based on time-series analysis and the Forest mask 2020. The solid 

line represents the time-series fitting curve of the surface reflectance of a certain pixel, the red dotted line is the 215 

time point on September 1, 2020, and the purple curve intersecting the red dotted line indicates that the forest 

did not change during this period. Breakpoint B1 indicates that a severe disturbance has occurred at the 

corresponding time. Point C1 indicates that the location began to gradually recover to forest (afforestation or 

natural restoration) after a drastic change. Therefore, the forest age at target time point D can be estimated 

from the distance of CD. 220 

 
Figure 3. Schematic diagram of forest age estimation. A1 and C1 represent the starts of the first fitting curve and second 

fitting curve, respectively, and B1 represents breakpoint of first disturbance. A, B, and C represent the time points of A1, B1, 

and C1, respectively. D indicates September 1, 2020. 

Figure 4 shows the time-series curve of a pixel analyzed by CCDC. The first row of images is the true color 225 

Landsat image at each time point centered at the pixel (red dot), and the second row is the corresponding 

fitting curve. The CCDC model detected two breakpoints in this pixel from 2004 to 2021. Specifically, the forest 

degraded slowly since 2004, and the image shows that it still belongs to woodland on June 22, 2016. After that, 

the model detected a breakpoint, indicating that the woodland was disturbed rapidly and the land cover type 

changed. The image on August 9, 2016 shows that the location was covered by bare land at this time, and after 230 

a period of restoration, vegetation began to regrow. The images on August 7 and August 28, 2018 show that it 

was fully restored to woodland finally. 
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Figure 4. Time-series analysis of a pixel by CCDC (only shows blue band of Landsat images). 

3.3 Generation of validation samples using LULC products 235 

Accuracy assessment for large areas generally requires a large number of validation samples. The existing 

large-scale validation sample sets often contain data in a certain year only, but accuracy evaluation of forest age 

requires multi-period sample sets. Currently, many LULC products are available, and researchers have invested 

considerable work in ensuring product accuracy. Therefore, this research used comprehensively these LULC 

products to generate validation samples. To ensure the reliability of the samples, only land cover products after 240 

2000 were used because there were few existing land cover products before 2000.  

The 1–20 year stand age was grouped into four stand age classes: 16–20 years, 11–15 years, 6–10 years, and 1–

5 years. These were then converted into binary classification maps with two classes: regrowth and non-regrowth. 

For the reference data, we used the LULC products to generate regrowth and non-regrowth samples every five 

years after 2000. Regrowth samples from 2000–2005, 2006–2010, 2011–2015, and 2016–2020 were used to 245 

create four stand age classes; 16–20 years, 11–15 years, 6–10 years, and 1–5 years, respectively. If they are 

unified, then the predicted age of the pixel is considered correct; otherwise, it is considered as misclassified. 

Figure 5 is a flowchart showing how the LULC products were used to generate the validation samples. The 

following section introduces explicitly the accuracy evaluation process. 

(1) Extracting forest areas of selected years from LULC products. Because the available years for each product 250 

are not uniform, several years were selected from the available years, with multiple products at the same time in 

these years normally available. We identified five years: 2000, 2005, 2010, 2015, and 2020. The forest mask (FM) 

for these five years was first extracted from the LULC products. To ensure the reliability of the sample, the 

intersection of the FM of different LULC products each year (areas that were classified as forest by all LULC 

products) was determined, and the intersection area was considered as the consensus forest (CF), while areas 255 

that were classified as forest by only one product were designated as undefined forest (UF). 

(2) Differencing. Differencing of the FMs of the years before and after each period was performed to assess 

the consensus regrowth (CR) in the four periods, that is, 2000–2005, 2005–2010, 2010–2015 and 2015–2020. 

Since UF cannot determine whether it is forest, the UF of the years before and after each period does not 

participate in the differencing process. The union of these two areas was defined as undefined regrowth (UR). 260 

The area remaining in the image after removing the CR and UR was defined as consensus non-regrowth (CN). 

Specifically, UR, CR and CN are expressed as follows: 

2

1 2

1

t t

t t

UR UF UF

CR CF CF UR

CN I UR CR




  
   

                   (2) 

where CR, UR, CF, UF and CN represent the spatial sets of CR, UR, CF, UF and CN, respectively, I  represents the 
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spatial set of the entire image area, 1t  and 2t  represent the two years before and after each period, 265 

respectively, and  represents the union of the sets. 

 

Figure 5. Validation samples generated using LULC products. 
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Figure 6. Distribution map of validation samples. 270 

(3) Random sampling and confusion matrix calculation. Stratified random sampling was used to generate 

validation sample sets. First, we confirmed the area of consense regrowth (CR) and consense non-regrowth (CN) 

with four periods (i.e., 2000–2005, 2005–2010, 2010–2015, and 2015–2020). Second, about 1000 regrowth 

samples and 5000 non-regrowth samples were randomly generated from CR and CN of each period. 

Considering the possibility of regrowth events occurring in each period within the same pixel, only the regrowth 275 

samples in the most recent period were retained for the regrowth samples in the four periods. As a result, 2,618 

regrowth samples (red dots in Figure 6) and 21,007 non-regrowth samples (blue dots in Figure 6) were 

obtained. 

4 Results 

4.1 Validation of the produced forest age map 280 

4.1.1 National- and provincial-Level Performance 

The validation samples (reference data) in each period and the forest age predicted by the model (predicted 

data) were compared to form a confusion matrix. The overall accuracy (OA) of the national young forest age 

mapping was found to be 90.28% (Table 2). In addition, this research considered the cartographic performance 

of the proposed method in various provinces in China (Figure 7). To ensure consistency in the number of 285 

samples used, the number of regrowth and non-regrowth samples for each province was controlled at around 

400. In general, the OA of young forest age mapping in all provinces in China was larger than 54%, and the OAs 

of Ningxia, Macau, Tianjin, Fujian, Zhejiang, Anhui, and Guangdong were all larger than 80%. Except for Ningxia, 

the other six provinces (cities and autonomous regions) are located in eastern and southern China. The 

provinces with relatively weak classification performance were Gansu, Jiangxi, Shaanxi and Beijing (in order), and 290 

the OAs of these four provinces were lower than 60%. Except for the above provinces, the OAs of the remaining 

provinces were between 60% and 80%. In general, the classification performance of the southern provinces was 

more accurate than that of the northern provinces. 

 

Table 2. Confusion matrix of regrowth and non-regrowth. 295 

 

Predicted data 

Non-regrowth Regrowth Total Producers’ Accuracy (%) 

Reference data 

Non-regrowth 19,299 589 19,888 97.04 

Regrowth 1,708 2,029 3,737 54.29 

Total 21,007 2,618 23,625  

Users’ Accuracy (%) 91.87 77.50   

Overall Accuracy: 90.28 % 
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Figure 7. Overall accuracy of young forest age mapping across different provinces in China. 

4.1.2 Comparison with existing products 

We compared visually the forest age map produced by proposed method with the MPI-BGC forest age dataset 

(at 1 km spatial resolution) (Besnard et al., 2021). Figure 8 shows three cases for comparison. In case 1, MPI-BGC 300 

presents much less information on the forest age compared to proposed method. The reason may be that 

MPI-BGC is produced based on the relationship between forest age and forest biomass, which is influenced 

greatly by different forest types. However, this research estimates forest age based on the history of forest 

disturbance and, thus, is not affected by the forest type. Moreover, there are more age classes mixed within the 

area of each 1 km pixel, and the MPI-BGC forest age dataset cannot present the information explicitly. In case 2, 305 

MPI-BGC depicted only the forest age in the north part of the region. It is difficult for MPI-BGC to map the age 

of small-scale forests in the south part because of the coarse spatial resolution (i.e., the small-scale forests were 

incorrectly identified as non-forests in the 1 km data). In case 3, we selected an area dominated by small-scale 

forests. It is seen that MPI-BGC cannot depict the age of these forests. The forest age map produced by this 

research presents clear information at the 30 m spatial resolution, which is helpful for monitoring small-scale 310 

deforestation activities and estimating land-atmosphere carbon fluxes. 

To further examine the reliability of the forest age map produced by this research, Pearson’s product-moment 

correlation coefficient was calculated between the predicted years of regrowth and years of forest loss extracted 

from Hansen's product (FLH). FLH was chosen to compare with the forest age map produced by this research, as 

forest age products with the same time range and spatial resolution are not available. However, the FLH depicts 315 

the distribution of annual forest loss at the global scale with a spatial resolution of 30 m from 2000 to 2020. 

Generally, forest regrowth occurs during the recovery phase after forest loss. Therefore, the soundness of the 

proposed method can be reflected to some extent by this Pearson’s product-moment correlation analysis. 

Specifically, after 2000, 10,000 samples were selected randomly from the regrowth areas in the country. The 

results showed that there was a large correlation between the years of forest regrowth predicted by this 320 

research and the years of FLH, with a Pearson’s correlation coefficient of 0.62. As shown in Figure 9, a large 

number of sample points were distributed on the diagonal line (y = x) or near the right side because the forest 

at these observation points could be quickly restored to forest after being disturbed. At the same time, the point 

density in the lower-right part of the diagonal is significantly larger than that in the upper-left part, indicating 

that the forest age estimation for most of the sample points is reasonable. Observations in the upper left part of 325 

the diagonal line represent areas where forest age may be underestimated or misclassified as forest loss from 

the FLH. 
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Figure 8. Three scenarios for comparison between the 30 m spatial resolution product (based on CCDC) and the 1 km 

spatial resolution product (based on MPI-BGC). White pixels of the forest age maps in the second and third columns 330 

indicate non-forest or no data. 

 

Figure 9. Years of predicted regrowth versus years of FLH after 2000. The value of the color bar represents the number of 

samples that fall within each pixel. 

4.1.3 Evaluation based on field measurements 335 

The data of field measurements are composed of two parts. The first part was derived from 150 relevant papers 

published after 2020 from China National Knowledge Infrastructure (CNKI). We searched them using the 

following keywords: China and forest age. The second part was derived from Wu et al. (2023). It should be 

pointed out that three pre-processing steps were performed on this dataset. First, we updated the forest age in 

field measurements based on the investigation year of sampling plots. For example, if the sampling time was 340 

2010 and the corresponding recorded forest age was 7 years, then in 2020, the forest age should be 
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2020-2010+7=17 years. It should be noted that this calculation is based on the assumption that there has been 

no logging or land use conversion since the survey time of the sampling points. Second, we filtered out the 

observation points related to longitude or latitude recorded in decimal degree notation with only two or three 

decimal places retained, because no precise geographical coordinates are available for these sampling plots. 345 

Third, observation points with forest ages older than 31 were also filtered out because we only calculated 

1-31-year-old forest in our product.  

Then we used the coordinates of these observation points to find out the predicted forest age in our product. If 

the predicted age is less than the value of 2020 minus the year of investigation, we will delete this observation, 

as we cannot determine whether forest succession has occurred at the observation point after the year of 350 

investigation. Finally, we obtained 51 field measurements (Table 3) with accurate geographical locations. Figure 

10 shows the scatter plot between the field measurements and predicted forest age. Referring to the field 

measurements, the predicted forest age has a correlation coefficient of 0.77 and root mean square error (RMSE) 

of 5.15, suggesting an acceptable correlation with the field measurements. 

 355 

 
Figure 10. Comparison between the forest age derived from field measurements (observed forest age) and predicted forest 

age. 

Table 3. Information on the 51 field measurements. 

ID Longitude Latitude 
Observed 

forest age 

Predicted 

forest age 

Year of 

investigation 
Source 

1 109.328858  23.050233  3 3 2021 Li et al. (2021) 

2 109.332939  23.053525  8 8 2021 Li et al. (2021) 

3 109.242036  23.111756  18 16 2021 Li et al. (2021) 

4 109.160242  23.053275  21 25 2021 Li et al. (2021) 

5 109.159194  23.040914  29 34 2021 Li et al. (2021) 

6 122.491287  42.717326  20 9 2015 Han et al. (2022) 

7 122.571380  42.684847  30 35 2015 Han et al. (2022) 

8 113.421000  23.245000  6 6 2020 Chen et al. (2022) 

9 113.393000  23.226000  10 23 2020 Chen et al. (2022) 

10 113.419000  23.256000  15 18 2020 Chen et al. (2022) 

11 113.394000  23.212000  20 13 2020 Chen et al. (2022) 

12 113.381000  23.255000  30 27 2020 Chen et al. (2022) 
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13 106.740000  26.520000  11 12 2019 Yin et al. (2021) 

14 110.465833  22.048333  5 5 2020 Song et al. (2021) 

15 110.500833  21.919167  15 15 2020 Song et al. (2021) 

16 110.500278  22.022222  5 7 2020 Song et al. (2021) 

17 110.517500  21.908056  15 8 2020 Song et al. (2021) 

18 110.516111  21.908056  10 1 2020 Song et al. (2021) 

19 117.935278  26.881389  7 9 2017 Feng et al. (2021) 

20 118.451667  26.243333  2 7 2020 Hong et al. (2021) 

21 116.650833  25.172778  3 9 2020 Hong et al. (2021) 

22 118.351389  27.317500  7 12 2020 Hong et al. (2021) 

23 117.802222  27.275556  9 17 2020 Hong et al. (2021) 

24 104.5672222 28.60166667 17 15 2011 Wu et al. (2023) 

25 104.5769 28.6093 8 5 2015 Wu et al. (2023) 

26 106.8760472 22.06267778 13 11 2013 Wu et al. (2023) 

27 106.9072889 22.02632778 23 15 2013 Wu et al. (2023) 

28 106.910175 22.02430833 23 17 2013 Wu et al. (2023) 

29 106.9112 22.03783056 13 13 2013 Wu et al. (2023) 

30 106.9132222 22.02641667 23 23 2013 Wu et al. (2023) 

31 108.1666667 22.86666667 17 15 2012 Wu et al. (2023) 

32 109.1713889 36.07972222 30 19 2015 Wu et al. (2023) 

33 109.2833333 21.96666667 22 20 2012 Wu et al. (2023) 

34 109.3582222 19.51252778 13 16 2012 Wu et al. (2023) 

35 109.4833333 23.91666667 17 19 2009 Wu et al. (2023) 

36 109.6075556 26.69930556 13 15 2010 Wu et al. (2023) 

37 109.6076667 26.70025 13 13 2010 Wu et al. (2023) 

38 109.8933333 24.76333333 13 7 2012 Wu et al. (2023) 

39 110.1018333 21.26166667 6 13 2015 Wu et al. (2023) 

40 110.10185 21.26188333 7 13 2015 Wu et al. (2023) 

41 110.4028833 34.0909 17 13 2012 Wu et al. (2023) 

42 110.6969444 30.91891667 25 15 2015 Wu et al. (2023) 

43 112.8481306 27.29384722 11 12 2013 Wu et al. (2023) 

44 112.8485611 27.29428611 10 16 2013 Wu et al. (2023) 

45 113.3548833 27.35978889 11 12 2013 Wu et al. (2023) 

46 113.3865194 27.35451667 18 10 2013 Wu et al. (2023) 

47 116.4591167 25.63750278 17 15 2011 Wu et al. (2023) 

48 117.5247222 26.81388889 21 17 2014 Wu et al. (2023) 

49 117.5408333 26.80722222 16 14 2014 Wu et al. (2023) 

50 119.8430556 30.24833333 31 29 2014 Wu et al. (2023) 

51 122.5455556 52.97833333 26 29 2010 Wu et al. (2023) 

 360 

4.2 Analysis of key parameters in CCDC 

The sensitivity of the model to breakpoint detection affects directly the accuracy of stand age mapping, and the 

two parameters chiSquareProbability and minObservations play important roles in the model. To determine the 

optimal parameters, we selected eight regions in China (Figure 11) for testing. These eight regions are all sized 

0.5°×0.5° and distributed in the east (Area 1 and Area 5), southwest (Area 2), central (Area 3), northeast (Area 4), 365 

northwest (Area 6), north (Area 7), and south (Area 8) regions of China. In this research, the value of the 
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chiSquareProbability parameter was increased from 0.50 to 0.99, while minObservations was increased from 2 to 

20. 

 
Figure 11. Spatial distribution of the eight test areas for analyzing the influence of key parameters. 370 

4.2.1 Analysis of chiSquareProbability 

Figure 12(a) shows that the OA of stand age mapping in the eight areas varies with the choice of different 

chiSquareProbability values. The largest OAs of the other four areas except Area 3 and Area 8 occur when the 

chiSquareProbability value is around 0.98, whereas the largest OAs of Area 3 and Area 8 occur when the 

chiSquareProbability value is 0.82 and 0.80, respectively. The OAs of Area 3 and Area 8 reach the largest value 375 

earlier, as the forest land in this two areas are disturbed more frequently. In this case, the CCDC model requires 

a smaller chiSquareProbability value to detect more breakpoints. In addition, Figure 12(a) shows that the OA 

increase in Area 2 is the fastest, with the smallest OA (70.16%) observed when the chiSquareProbability value is 

0.50 and the largest (90.35%) observed when the chiSquareProbability value is 0.99. The largest and smallest OA 

presented a difference of 20.19%. The reason for this phenomenon may be that the disturbance year of the 380 

forest in Area 2 was relatively late and the forest experienced less disturbance. When the chiSquareProbability 

value is too small, more breakpoints will be detected incorrectly, which affects the OA of the forest age 

mapping. 

 
Figure 12. OA of forest age under different values of (a) chiSquareProbability and (b) minObservations in eight regions. 385 
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Figure 13 shows the model performance when different chiSquareProbability values were used. Specifically, 

columns 1, 2, and 3 show the stand age maps of the eight regions when the parameter chiSquareProbability 

values are 0.50, 0.74 and 0.99, respectively. As the value of the parameter chiSquareProbability increases, the 

area of regrowth detected by the CCDC algorithm decreases. When the value was 0.50, the stand age map for 

each region contains a large number of misclassified regrowth areas. These misclassified regrowth areas are due 390 

mainly to the small values of chiSquareProbability, which make the model extremely sensitive to breakpoint 

detection. 

Generally, there is a close relationship between forest restoration and forest loss. For this reason, FLH was added 

to the fourth column for convenient visual comparison. The color of the FLH indicates the year of forest loss. As 

the earliest available year for FLH is 2000, the fourth column of Figure 13 shows only the years of forest loss after 395 

2000. The fifth column of Figure 13 shows the corresponding fine spatial resolution Google Earth maps (GEMs). 

Clear traces of forest disturbance can be observed in the eight regions from the GEMs. These areas are more 

consistent with the dark red areas in the third column of the stand age maps. 
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 400 
Figure 13. Stand age maps of the eight regions (marked in Figure 11) under different values of chiSquareProbability (0.55, 

0.74, and 0.99). 

4.2.2 Analysis of minObservations 

Figure 12(b) shows that the OA of stand age in the eight regions varied with minObservations. The OAs of stand 

age in the eight areas show a trend of initially increasing and then decreasing. This means that when the 405 

minObservations value is smaller, the CCDC model can detect more breakpoints while producing more 

misclassified regrowth values. When the minObservations value exceeds the optimal threshold, the model 

presents incorrect detection results. When the parameter is less than six, the OAs of the eight regions increase 

rapidly. When the parameter is greater than 12, the OAs of each region enter a stage of rapid decay. The largest 

OAs for both Area 1 (94.98%) and Area 3 (85.78%) occur when the values of minObservations are equal to six. 410 

The OAs of Area 8, Area 5, and Area 6 reach the maximum value when minObservations is four, five, and seven, 
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respectively. While Area 4, Area 2, and Area 7 reach the maximum OA (94.75%, 93.37%, and 91.58%, respectively) 

when the values of minObservations are 10, 12, and 16, respectively.  

5 Discussion 

5.1 Spatial distribution of young forests in China 415 

This research produced a young forest stand age map in China in 2020, with a spatial resolution of 30 m (Figure 

14 (a)). To show the spatial distribution of young forest age more clearly, we divided the forest into four stand 

age classes, namely stand age class I (1–10 years), II (11–20 years), III (21–31 years) and IV (> 31 years). In the 

1-31-year-old forests, stand age class III accounted for the largest proportion (39.32%), followed by stand age 

class II (38.34%). Stand age class I (22.34%) accounted for the smallest proportion. We referred to the 5th, 6th, 7th, 420 

and 8th national forest inventory data and found that the area of net gain planted forest is 102,520, 65,924, 

84,311, and 76,416 km
2
 during 1994-1998, 1999-2003, 2004-2008, and 2009-2013, respectively (Liu et al., 2021). 

It means that there was less planted forest after 1999, which is consistent with our findings. Another reason may 

be that the country’s early policies (specifically, the Returning Farmland to Forest Program and the Afforestation 

Program) were implemented effectively, and by 2000 many areas suitable for afforestation had been occupied. 425 

Young forestland in China is distributed mainly in the southern provinces of China, such as Yunnan, Guangxi, 

Guangdong and Fujian. As these provinces are located in a subtropical climate zone, abundant rainfall and 

suitable climatic conditions make them suitable for tree growth. In addition, Figure 14 (c) shows that there is 

more young regrowth in the Daxing’anling region of northeastern Inner Mongolia, partly because of the large 

possibility of forest fires in the virgin forests in this area, and large areas of forest have recovered to young 430 

regrowth after fire disturbance (Zhang et al., 2017). In addition, we found that this area is characterized by long 

snow accumulation periods and large mountain slopes; therefore, many pixels in this area were misclassified as 

young regrowth. In general, the growth rate of young regrowth in China showed a decreasing trend during the 

study period (1990–2020), indicating a decrease in the area available for afforestation. 
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 435 

Figure 14. Stand age map in China at 30 m spatial resolution. (a) Chinese stand ages and stand age classes, (b) 1–10 years, (c) 

11–20 years, (d) 21–31 years, and (e) >31years. 

5.2 Average age of young forests in different provinces 

Figure 15 shows the average age distribution of young forests across the provinces of China. Interestingly, the 

age is larger in the north than the south, and larger in the west than the east. This phenomenon is driven mainly 440 

by natural and anthropogenic factors. Generally, tree growth in western China is restricted by the natural 

environment. The fragile ecological environment forces people to protect forests in this area, and the proportion 

of economically productive forests is small. Moreover, the Three-North Shelter Forest Program, which began in 

1978, has enabled the effective protection of forestland in the northern region (Wang et al., 2007; Qiu et al., 

2017). Therefore, the average forest age in the west is relatively large. On the other hand, a large number of 445 

eucalyptus plantations were distributed in southern China, leading to young forest regrowth in the south. 

Therefore, the average forest age is smaller. In addition, forests have experienced more disturbance due to rapid 

urban expansion in eastern and southern China (Meng et al., 2020). 
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The average age of young forests in each province was ranked in ascending order, with Tianjin, Guangxi, 

Shandong, and Guangdong ranking first (11.3 years), second (11.7 years), third (11.9 years) and fourth (12.2 450 

years), respectively. These provinces are located in southern and eastern China. Furthermore, the average age of 

young forests in the Ningxia Hui Autonomous Region is relatively young and ranks fifth (12.6 years) as the forest 

resources of the Ningxia Hui Autonomous Region have further increased in the past 30 years based on the 

Returning Farmland to Forest Program, the Afforestation Program and the Three-North Shelter Forest Program 

(Wang et al., 2007; Qiu et al., 2017)(Wang et al., 2007; Qiu et al., 2017). When the average age of young forests 455 

in each province was ranged in descending order, the top five provinces (cities and autonomous regions) are 

Xinjiang (25.7 years), Hong Kong (20.3 years), Tibet (19.5 years), Qinghai (18.9 years), Sichuan (18.6 years) and 

Shaanxi (18.3 years). Except for the Hong Kong Special Administrative Region, the other four provinces are all in 

the western region because the special natural conditions in western China make afforestation or natural 

restoration of forests difficult. The average age of young forests in Hong Kong is relatively large because of the 460 

limited afforestation in the area. Therefore, to further strengthen the role of China’s young forest lands in the 

‚carbon neutrality‛ initiative, it is particularly important to carry out afforestation suitability assessments in China 

(especially in the western and northwestern regions) (Zhang et al., 2022). 

 

 465 

Figure 15. The average age of young forests in various provinces in China. 

5.3 Effect of input features on the model 

Several studies have used the normalized degradation fraction index (NDFI) to increase the accuracy of forest 

disturbance detection (Souza et al., 2005; Bullock et al., 2020; Chen et al., 2021). The NDFI is calculated from the 

abundance of several endmembers, including soil, shadow, green vegetation (GV) and non-photosynthetic 470 

vegetation (NPV), through spectral unmixing. To explore the influence of different features on forest age 

mapping, this research first set the two parameters of chiSquareProbability and minObservations to 0.99 and 6, 

respectively, and then input the following different features to the CCDC model: spectral bands of Landsat 

images (spectral), abundance of four endmembers (GV, Shade, NPV and Soil) and index features (NDFI, NDVI, 

normalized burning index (NBR), normalized difference moisture index (NDMI) and enhanced vegetation index 475 

(EVI)). The steps of spectral unmixing were described by Chen et al. (2021). 
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Figure 16 shows the OAs of the eight regions with the input of different features. Using the original Landsat 

bands as the input to the model can achieve the greatest mapping accuracy. Except for the spectral feature, 

whose performance is relatively stable in the eight regions, the performance of the other features in the eight 

regions is quite different. For example, in Area 1, the mapping performance of the NDFI-based feature is the 480 

most satisfactory (the OA is 90.29%), and the performance of the GV-based feature is the weakest (76.00%); in 

Area 2, the performance of the GV-based feature is the most satisfactory (the OA = 82.28 %), and the 

performance of the soil-based feature is the weakest (the OA is 71.85%). Generally, EVI (71.83%), EVI/NDVI 

(82.43%) and EVI (60.07%) were the least predictive features in these three regions. 

 485 
Figure 16. OA of the CCDC-based method with different input features in eight regions. 

5.4 Whether to choose vegetation growing season images 

To eliminate the influence of winter ice and snow and improve model fitting, images of the peak vegetation 

growth season in a year are often selected as observation data, such as Landsat images from the 150
th
 to 300

th
 

day of each year (Chen et al. 2021). However, this method of selecting parts of images of the year reduces the 490 

available information, especially in warmer regions (where snow and ice are short-lived or largely unaffected by 

snow and ice). This research compared the mapping accuracy when all the images and some images (the 

images of the 150
th
 to 300

th
 day of each year) were selected from the annual images as the model input. The OA 

of young forest stand age mapping using partial data as model input was 88.53%. When using partial images, 

the OA of the national young forest age mapping was 1.75% smaller than that when using all the images 495 

(90.28%). 

To further explore the mapping differences between the two input strategies, the difference in the OA for each 

province was calculated, as shown in Figure 17. Except for Tianjin, the Ningxia Hui Autonomous Region, 

Heilongjiang, Jilin and Qinghai, the OAs of using partial data in the other 27 provinces (cities and autonomous 

regions) are smaller than that of using all data. Among the 27 provinces (cities and autonomous regions), Tibet, 500 

Yunnan and Guangdong show large differences, with differences in OA ranging from 14.93% to 19.69%, followed 

by Guangxi, Jiangsu, Shanghai, Henan, Fujian, Anhui, Hunan and Hong Kong (OA differences between 14.93% 

and 4.70%). Except for the abovementioned provinces (cities and autonomous regions), the OAs of the 

remaining provinces (cities and autonomous regions) are within a 4.70% difference. The above comparison 

shows that the use of partial image sets generally reduces the mapping accuracy in most areas. 505 
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Figure 17. Difference in OA (in units of province) between the use of partial and full data. 

5.5 Application potential of the proposed method 

This research used 436,967 Landsat tiles across China to map forest age at a spatial resolution of 30 m, which 

validated the feasibility of the proposed method for ‚big‛ data processing. In future, the model can be used to 510 

generate a global-scale young forest age dataset. This dataset will help build a global-scale forest carbon cycle 

model and potentially increase the estimation accuracy of carbon sources and sinks (Wang et al., 2020; Piao et 

al., 2022). In addition, studies have shown that multi-aged stands have stronger carbon sink recovery ability 

after disturbance than even-aged stands (Tang et al., 2017); therefore, fine spatial resolution stand age datasets 

can be used to study the carbon sink potential of two types of stands at the global scale after disturbance. 515 

This research not only provides basic scientific data for researchers, but also provides important references for 

policymakers and forest managers. Previous studies have shown that young forests have certain advantages in 

carbon sequestration, but are weak in ecosystem services (Jonsson et al., 2020). That is, old forests are still 

irreplaceable in terms of services such as maintaining species diversity (Betts et al., 2022). Therefore, it is also 

necessary to maintain ecosystem services while increasing the carbon sequestration capacity of forest 520 

ecosystems under a climate change environment. The proposed CCDC-based method can estimate young 

forest age in real time and, thus, has the potential to be applied for dynamic monitoring of stand age structure, 

such as timely detection of forest age structure and prevention of rapid forest rejuvenation. 

5.6 Uncertainty analysis 

This research uses WorldCover2020 to determine the forest distribution; however, the classification process 525 

used for its products has certain uncertainties. Specifically, the data represent the state of forest cover in 2020 

rather than the cover at a certain time of the year. Therefore, this paper assumed that WorldCover2020 

represents the state of forest cover on September 1, 2020, which may lead to uncertainty, mainly for areas 

where forest disturbances occurred in 2020. The accuracy analysis of different provinces shows that the 

proposed method exhibits obvious differences in performance between different provinces. The reason may be 530 

that the forests in different regions have different climatic conditions and geographical environments (such as 

topography, slope, altitude, etc.). This uncertainty also exists in the process of current studies that estimate stand 

age using the relationships between height-age and biomass-age (Zhang et al., 2014; Zhang et al., 2017). 
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Different disturbance frequencies also have a certain impact on the model. For example, forest succession is 

faster in southern China (high disturbance frequency), but relatively slow in western and northeastern China (low 535 

disturbance frequency). Therefore, the value of chiSquareProbability and minObservations should be controlled 

adaptively for different forest disturbance frequencies. 

This research predicted the annual forest age across China. However, it is difficult to validate the produced 

forest age at the temporal resolution of one year due to the lack of reference data. In this paper, coarse forest 

age classes (with 5 years intervals) were created to match the validation set by integrating multiple LULC 540 

products, which brings uncertainty in assessing the accuracy of the produced maps. In general, if forest age 

classes with finer temporal resolution are created, the accuracy is likely to be greater. However, a sufficient 

number of LULC products are needed to ensure the reliability of the reference data. Thus, it is necessary to 

maintain the balance between the temporal resolution of forest age classes and the number of LULC products. 

In future, it will be of great interest to evaluate the performance of the produced dataset using age classes with 545 

finer temporal resolution, if the appropriate validation sets become available. 

6 Data availability 

The produced 30 m map of young forest age across China in this research is openly available at 

https://doi.org/10.6084/m9.figshare.21627023.v7 (Xiao, 2022). The Landsat data and the auxiliary data are from 

public data archive and user team of GEE (https://code.earthengine.google.com/). 550 

7 Conclusion 

Mapping the age of young forest stands is of great significance for China’s strategic target of ‚carbon neutrality‛. 

Conventional stand age mapping methods rely heavily on forest inventory data, but the existing forest inventory 

data in China are difficult to obtain and updated slowly. Moreover, the existing stand age products in China 

derived from remote sensing images are of coarse spatial resolution, which cannot meet the needs of stand 555 

calculations at the regional scale. In this research, we analyzed Landsat time-series images based on the CCDC 

model to produce a map of young stand age across the whole of China at 30 m spatial resolution. The 

advantage of the mapping method is that it does not rely on forest inventory data and enables rapid mapping 

of young forests on a global scale using the GEE platform. The results showed that the OA of the generated map 

of young stand age across China was 90.28%. This dataset is significant for studying the ecosystem services and 560 

carbon cycles of young forests in China. The proposed CCDC-based method can be extended in future to 

global mapping of young forests. 
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