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Abstract. Human-induced climate change is increasing the incidence of fire events and associated impacts on livelihood, 

biodiversity, and nature across the world. Understanding current and projected fire activity together with its impacts on 

ecosystems is crucial to evaluate future risks and take actions to prevent such devastating events. Here we focus on fire weather, 10 

as a key driver of fire activity. Fire weather products that have global homogenous distribution in time and space provide many 

advantages to advance fire science and evaluate future risks. Therefore, in this study we calculate and provide for the first time 

the Canadian Fire Weather Index (FWI) with all available simulations of the 6th phase of the Coupled Model Intercomparison 

Project (CMIP6). Furthermore, we expand its regional applicability by combining improvements on the original algorithm for 

the FWI from several packages. A sensitivity analysis of the default versus our improved version shows significant differences 15 

in final FWI. With the improved version, we calculate the FWI using average relative humidity in one case and minimum 

relative humidity in another case. We provide the data for both cases, while recommending the one with minimum relative 

humidity for studies focused on actual FWI values and the one with average relative humidity for studies requiring larger 

ensembles. The following four annual indicators: (i) maximum value of the FWI (fwixx), (ii) number of days with extreme fire 

weather (fwixd), (iii) length of the fire season (fwils), and (iv) seasonal average of the FWI (fwisa) are made available and 20 

illustrated here. We find that at a global warming level of 3°C, the mean fire weather would increase on average by at least 

66% in duration and frequency, while associated 1-in-10-year events would approximately triple in duration and increase by 

at least 31% in intensity. Ultimately, this new fire weather dataset provides a large ensemble of simulations to understand the 

potential impacts of climate change spanning a range of shared socioeconomic narratives with their radiative forcing 

trajectories over 1850-2100 at annual and 2.5° x 2.5° resolutions. The produced full global dataset is a freely available resource 25 

at https://doi.org/10.3929/ethz-b-000583391 for fire danger studies and beyond, which highlights the need to reduce 

greenhouse gas emissions for reducing fire impacts. 

 

Short Summary. We present a new database of four annual fire weather indicators over 1850-2100 and over all land area. 

Our first analysis shows that in a 3°C warmer world with respect to preindustrial times, the mean fire weather would on average 30 
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double in duration and intensity. The produced dataset is a freely available resource for fire danger studies and beyond, 

highlighting that the best course of action would require limiting global warming as low as possible. 

1. Introduction 

Anthropogenic climate change tends to make fires less predictable and exacerbate their impacts (Anon, 2019; Sanderson and 

Fisher, 2020). The IPCC AR6 report concluded that fire weather has become more widespread, longer-lasting, and more intense 35 

compared to preindustrial periods in some regions (e.g. Mediterranean) and that these changes are expected to increase with 

higher global warming levels (Seneviratne et al., 2021). This is generally associated with an increased occurrence of concurrent 

hot and dry conditions with increasing global warming (Seneviratne et al., 2021). Unfortunately, we have already suffered 

several damaging wildfires in recent years throughout the world (e.g., Australia, Turkey and Greece, Siberia, Sweden, Canada, 

USA, etc), with some of them formally attributed to human-induced climate change (Li et al., 2019; van Oldenborgh et al., 40 

2021). Fires are not only destructive but also release carbon stored in vegetation, and thereby increase atmospheric CO2 

concentration (Lasslop et al., 2020). For example, released CO2 emissions from 2019-2020 wildfires in Australia was at least 

higher than 35% of the country’s annual amount (Li et al., 2021; van der Velde et al., 2021). 

Fire weather is defined as those conditions conducive to the occurrence and sustaining of fires, and it is characterized by 

compound hot, dry and windy events. These conditions are increasing in frequency and intensity across many regions due to 45 

anthropogenic climate change (Abatzoglou et al., 2019; Ranasinghe et al., 2021; Seneviratne et al., 2021). Further increases in 

greenhouse gas forcing are likely to increase the occurrence of these compound conditions, favouring the occurrence of 

extreme events of fire emissions and burned area (Li et al., 2021; Jones et al., 2022; Ribeiro et al., 2022), more fire prone 

regions, and more complex fire dynamics. It can also induce preconditions that can exacerbate the impacts of fire, such as tree 

mortality (Stevens-Rumann et al., 2012) and fuel accumulation (Marlon et al., 2009).   50 

In addition to fire weather, human activities affect fires in multiple ways. On one hand, agricultural expansion and landscape 

fragmentation caused by humans makes the vegetation less flammable and creates a decreasing trend in satellite observations 

(Jolly et al., 2015; Andela et al., 2017). On the other hand, human influence increases the fire risk in some regions due to 

negligence or arson. For example, the use of fire as a land clearing tool for agriculture and deforestation may ignite 

uncontrollable wildfires and burn large forested areas, particularly during compound dry and hot events in regions such as the 55 

Amazon (e.g. (Libonati et al., 2022; Ribeiro et al., 2022)). At the same time, the most disastrous wildfires occur in wildland 

and urban transition areas where human effect is the largest (Bowman et al., 2017). Even though these dynamics are hard to 

investigate in a future climate, it is necessary and requires projected land-use transition and socioeconomic scenarios. 

Historical fire weather can be investigated with observations, remote sensing products or more spatially and temporally 

homogeneous reanalysis datasets (Vitolo et al., 2019). Some of these datasets cover decades and allow longer statistical 60 

analysis. For example, fire season duration is increasing according to recent long-term satellite observations (Jolly et al., 2015). 

Though, future fire activity is an enigma given the potential changes on ecosystems due to climate change and human activities. 

The interactions of human influence and climate change with fire dynamics are so complex that each ecosystem must be 
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studied in its own right. Therefore, improvements to fire indices and a better understanding of the interactions between mean 

climate, climate extremes, humans and fire are required to project future fire activity and to mitigate its consequences. 65 

Several indicators for fire weather have been proposed over the years (Table A.1). Although all of them have been developed 

to inform about fire risk, each one responded to different needs. Here, we focus on the  FWI from the Canadian Forest Fire 

Danger Rating System (Van Wagner, 1987) for several reasons. First, this index represents potential fire danger rather than 

actual fire occurrence, only seizing how fire activity is prone according to meteorological conditions. The four major drivers 

of fire weather at a global scale (temperature, precipitation, relative humidity, and wind speed) are accounted for, also through 70 

the impact of the moisture content of potential fuel on the fire intensity. The second reason is that clear relationships have been 

shown between the FWI and the burned area in Earth System Models (ESMs) (Bedia et al., 2015; Abatzoglou et al., 2018; 

Grillakis et al., 2022; Jones et al., 2022), making this index relevant for impact assessments. Finally, this index can be used at 

a global scale (Field et al., 2015) for fire danger predictability and warning systems (de Groot et al., 2015; Bedia et al., 2018) 

or fire activity under projected climate change (Abatzoglou et al., 2018; Jain et al., 2020; Ranasinghe et al., 2021). 75 

Here, we present a new dataset of FWI, based on climate data from the 6th phase of the Coupled Model Intercomparison 

Project (CMIP6) and using an improved algorithm. We build upon the work of (Abatzoglou et al., 2019) for the previous 

generation of CMIP models. The novelty of this work comes from (1) the expanded regional applicability thanks to 

improvements on the original algorithm, (2) using the latest CMIP data covering historical and shared socioeconomic pathways 

(SSPs), from 1850 to 2100, and (3) providing the whole database to the users, thus enabling a large range of usages. Several 80 

packages have proposed different adjustments to the initial algorithm of the FWI. By gathering these improvements, our new 

algorithm allows us to compare the sensitivity of the product to these modifications. We produce an updated FWI dataset 

which enables analyses over longer time scales while considering climate sensitivity and internal variability. We envision this 

open-access dataset of fire weather as a valuable resource for scientists in the fields of climate change and risk assessment, 

insurance companies, forestry agencies and more. 85 

2. Data and Methods 

2.1 Climate model data 

We use all available CMIP6 simulations (Eyring et al., 2016) of climate models to create FWI data over 1850-2100 using the 

experiment historical and all SSPs (O'Neill et al., 2016; Tebaldi et al., 2021), namely ssp119, ssp126, ssp434, ssp534-over, 

ssp245, ssp460, ssp370 and ssp585. Using all SSP experiments allows us to represent high/low mitigation and adaptation 90 

challenges resulting in different radiative forcings by the end of 2100. We retrieve daily maximum temperature (tasmax), 

precipitation (pr), wind (sfcWind) and minimum relative humidity (hursmin) data from all available ensemble members of all 

available ESM. More precisely, the FWI is calculated only if the four variables are provided for the experiment. For scenarios, 

there is an additional condition: it depends not only on the availability for the experiment, but also if the corresponding 
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historical could be run. The algorithm of the FWI requires the last values of the historical as initialization for the scenario for 95 

continuity reasons (more details are provided in Section 2.b). The full list of runs calculated is represented in Figure 1. 

The algorithm for the FWI requires daily temperature, relative humidity and wind speed at noon, and the daily accumulated 

precipitation (Van Wagner, 1987). Using variables at sub-daily resolution would significantly reduce the number of available 

runs. Instead of noon variables, daily maximum temperature and daily minimum relative humidity can be used, as done for 

CMIP5 for one ensemble member per model (Abatzoglou et al., 2019). 100 

Some applications may need to maximize the number of ensemble members per model, thus a second dataset is provided. The 

first dataset deduces the FWI from daily minimum relative humidity, while the second one use daily mean relative humidity 

(hurs) instead, because this variable is provided for more model runs. In Section 3.d, we provide a sensitivity analysis 

comparing the FWI based on daily average relative humidity against daily minimum relative humidity, while Figure A.1 

summarizes the available runs with daily average relative humidity. 105 

We highlight that using CMIP6 data comes with limitations. Although this is the result of a large community effort (Tebaldi 

et al., 2021), there may be some biases and discrepancies in these inputs (Wilcox and Donner, 2007; Rossow et al., 2013; Pfahl 

et al., 2017; McKitrick and Christy, 2020). Analysis of these biases have been performed for temperatures in (Fan et al., 2020), 

regional precipitations (Rivera and Arnould, 2020; Agel and Barlow, 2020; Ajibola et al., 2020), relative humidity (Douville 

et al., 2022) and wind (Shen et al., 2022). A bias-corrected version of CMIP6 data may be used as inputs, but existing datasets 110 

do not provide the necessary variables for the computation of the FWI (Carvalho et al., 2021; Xu et al., 2021), nor the full 

ensemble that we use here. 
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Figure 1. Runs used throughout the study. For each experiment, each ESM is selected if at least one ensemble member is 115 

available and valid for all the variables used as input for the calculation of the FWI. The outermost circle indicates the 

corresponding number of ensemble members of each ESM and scenario. Altogether, 1321 runs are used here. 
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2.2. Fire weather index and adjustments 

The FWI system consists of several indices calculated in three steps (Van Wagner, 1987; Lawson and Armitage, 2008) as 

illustrated in Figure 2. The moisture contents of organic materials are calculated first, through the Fine Fuel Moisture Code 120 

(FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC). The FFMC rates the moisture content of fine fuels and 

of the litter, hence the probability of ignition. The DMC rates the moisture content of slightly compacted organic layers at 

medium depth, giving a sense of the fuel consumption. The DC rates the moisture content of deep and compact organic layers, 

depicting the behaviour of slow burning materials and representing seasonal effects. These three indexes are actually book-

keeping systems, accounting for changes in moisture through precipitation and drying. It is crucial to note that they are unitless 125 

and that they are defined “with values rising as moisture content decreases for the best psychological effect” (Van Wagner, 

1987), as illustrated with equation (5) of (Lawson and Armitage, 2008). 

 

 

Figure 2. Conceptual structure for the calculation of the Fire Weather Index (inspired from the figure at 130 

(https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi)). The drying factor is an adjustment to the day length used for drying 

in DC, renamed here to avoid confusion with the effective day length. 

 

Afterwards, two indices are deduced from these moisture contents. The Initial Spread Index (ISI) is an indicator for the likely 

rate of fire spread, while the Buildup Index (BUI) encompasses the fuel available for combustion. Together, they are used to 135 
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deduce the FWI rating the fire intensity. It is important to note that the FWI is entirely based on atmospheric variables, only 

providing a sense of how likely or intense a fire would be in these conditions. Information regarding vegetation is essential to 

assess variables such as burned area or fire emissions. 

The first published algorithm for the FWI was provided by (Simard, 1970), then continuously updated for different 

programming languages (Wang et al., 2015). The latter source corresponds to the same equations and parameters, and it is 140 

hereafter referred to  as the original algorithm. It has been translated into several packages, although with several adjustments, 

expanding the initial focus on Canadian forests for an adaptability to other regions. These adjustments make use or extend 

further the suggestions from (Lawson and Armitage, 2008). In this current study, we implement in python the major options 

for three types of adjustment described below (day length, ‘drying factor’ and overwintering) and test their effect applied to 

all latitudes and to bins of latitude in Section 3.a to 3.c. To our knowledge, the effect of such adjustments have not been 145 

published, except for overwintering (McElhinny et al., 2020). The details of the considered packages are provided in Table 1. 

During the calculation of the DMC, the effective day length is used, and several packages proposed alternatives to day lengths 

adapted to Canada and the month of the year. A longer effective day length would reduce the moisture content of slightly 

compacted organic layers. 

During the calculation of the DC, a parameter called “day-length adjustment” is used to calculate the potential 150 

evapotranspiration, thus as a drying factor of the compact organic layers. Several packages propose to adapt this value 

depending on the hemisphere. To avoid confusion with the adjustment brought to effective day length, we call this parameter 

the drying factor. 

Besides adjusting for the drying factor, (Lawson and Armitage, 2008) give details on how to overwinter the DC component to 

account for the effects of abnormally dry winters. The effects of dry or wet winters would not carry over up to spring in the 155 

fine fuels (FFMC) or in the moderately compacted organic layers (DMC) but may for the compact organic layers (DC). In the 

original algorithm (Wang et al., 2015), the moisture content of deep organic layers is almost saturated in spring, even though 

this should not be the case in regions with dry winters. The adjustment for overwintering uses the value of DC at the end of 

the fire season and the precipitation up to the start of the fire season, as defined in (McElhinny et al., 2020). The onset of the 

fire season is defined here when the temperature is above 12ºC for the current day and the next two days, and up to when the 160 

temperature is below 5ºC for the current day and the two former days (Wotton and Flannigan, 1993). We note that two 

parameters are introduced by the overwintering adjustment, which are the carry-over fraction of last fall’s moisture and the 

effectiveness of winter precipitation in recharging moisture reserves in spring. The value of the carry-over fraction depends 

mostly on the local snow cover, a bare soil during winter has a fraction of 0.5, while a thick cover would increase it to 1. 

Because we do not have this information from the ESMs, we use 0.75 as a default value everywhere. The second parameter, 165 

the effectiveness of winter precipitation, depends mostly on the soil type: well-drained soils would favour percolation and 

runoff, thus with a low fraction of 0.5, while poorly drained soils would be more efficient with a fraction of 0.9. Similarly, 

without this information from the ESMs, we use 0.75 as a default value everywhere. This adjustment is initially developed for 

Northern latitudes (Van Wagner, 1987), hence the terms of fall, winter and spring, but it is applied here for all latitudes.  
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The three moistures codes keep track of the past climate, changing every day the values of DMC, DC and FFMC with the 170 

current weather and the values on the former day. It implies that the scenarios are initialized with their corresponding historical, 

same ESM and same ensemble members. The full time series are used for calculation of the FWI, without any interruption out 

of the fire season, to conserve the full continuity. For the historical period, the values are initialized using the proposed method 

in (Lawson and Armitage, 2008). 

 175 

Adjustment 

Method Package 

Name Description original pyfwi NCAR cffdrs 
current 

study 

Effective day 

length 

(DMC) 

original Values depending on the month X    X 

bins of lat. 

Bands of latitude (°N): 

[-90, -30]; [-30, 0]; [0, 30]; [30, 

90] 

 X   X 

 

Bands of latitude (°N): 

[-90, -30]; [-30, -10]; [-10,10]; 

[10, 30]; [30, 90] 

   X  

continuous 

lat. 

Function of latitude of grid cell 

and day of year 
  X  X 

Drying factor 

(DC) 

original Values depending on the month X  X  X 

two hemi. 

Depends as well on the 

hemisphere: Northern identical 

and Southern shifted by 6 

months 

 X   X 

two hemi. & 

tropics 

Bands of latitude (°N): identical 

for [20, 90], shift of 6 months for 

[-90, -20], average for [-20, 20] 

   X X 

Overwintering 

(DC) 

original No X    X 

overwintering Yes    X X 

Table 1. Details of the adjustments for each one of the codes considered. The codes for each package are available online 

(Wang et al., 2015; pyfwi; NCAR; cffdrs). The drying factor is an adjustment to the day length used for drying in DC, renamed 

here to avoid confusion with the effective day length. Options in bold are those used for the data provided by this study. 
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2.3. Database features 180 

After calculation of the FWI on the native grid of the ESM, we then use second order conservative remapping (Jones, 1999; 

Brunner et al., 2020) to regrid them onto a common 2.5° x 2.5° longitude-latitude grid to enable comparison across different 

models. 

Annual indicators are made available and presented in Section 3 to illustrate these data and ease its interpretation. We use the 

four following annual indicators, all of them defined in (Abatzoglou et al., 2019; Jolly et al., 2015) although with a reference 185 

period of 1850-1900 instead of 1861-1910: 

• Extreme value of the FWI (fwixx): local annual maximum value of the FWI 

• Number of days with extreme fire weather (fwixd): local annual number of days above the local threshold defined as 

the 95-th percentile of the FWI over the reference period. 

• Length of the fire season (fwils): local number of days above the local threshold defined as the mid-range of the 190 

extrema in FWI over the reference period. 

• Seasonal average of the FWI (fwisa): local annual maximum of the 90-day running average of the FWI. 

 Here, fwixd uses a definition of what is an “extreme” fire weather based on the 95-th percentile like in (Abatzoglou 

et al., 2019), and not an absolute set of classes. This approach generalizes the method for analysing the FWI which attributes 

fire danger classes (e.g., “very low”, “low”, “moderate”, “high”, etc) to intervals of values. These classes are rather used for 195 

local or regional cases, hence defined for the region, such as China (Tian et al., 2011), Europe (San-Miguel-Ayanz et al., 2022), 

Greece (Varela et al., 2018), Ontario (Martell, 2000) and Malaysia & Indonesia (Dymond et al., 2005; de Groot et al., 2007). 

The proposed procedure to define these classes is to assume how many extreme days should be allowed on average for each 

season and deduce the threshold for the “extreme” class from this assumption and a sample of the FWI over a reference period. 

In our case, we cover the whole Earth, and the “extreme” fire danger class needs a consistent definition. By assuming a local 200 

threshold based on the 95-th percentile, it is consistent with the assumption of about 18 days per year that are considered 

locally as extreme fire weather. No other fire danger classes are used by our other annual indicators. 

 As a remark, there are two definitions for the fire season, which are kept for consistency reasons. The adjustment for 

overwintering DC uses a definition of the fire season based on temperature thresholds as described in (Wotton and Flannigan, 

1993). However, accordingly to (Abatzoglou et al., 2019), the annual indicator fwils defines the fire season when the daily 205 

FWI is above a local threshold defined as the average of the minimum and the maximum of the FWI in the reference period. 

Given that the FWI is calculated only using atmospheric variables, regardless of the vegetation cover, we mask the results 

according to ESA CCI land cover of 2016 (ESA-CCI, 2017, 2019). Similarly to (Abatzoglou et al., 2019), when more than 

80% of the surface of the grid cell is flagged as bare areas, water, snow & ice or sparsely vegetated, it is considered as infrequent 

burning. 210 

No bias correction is applied here, as it is not within the scope of this paper, and because the method may depend on the 

intended application of the FWI. One may decide to correct the FWI through adjustments in the four inputs of the algorithm 
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via various possible ways to account for climate model biases (François et al., 2020), while others may prefer to correct the 

FWI itself through observations-based FWI (Field et al., 2015; Field, 2020). 

 215 

3. Results  

3.1. Sensitivity to the adjustments on the day length 

As indicated in Table 1, several adjustments are introduced to the effective day length used for the calculation of the DMC. 

We show the effect of these adjustments in Figure 3 with example maps for the  July 1 2014 and climatologies. Figure A.2 

replicates Figure 3, albeit for the January 1, 2014. The DC and FFMC are not represented, because they are not affected by 220 

this factor. The adjustments mostly change values in the Southern Hemisphere, where the effective day lengths were not 

prepared in the original calibration. For instance, in December-January, when the fire season is active in Southern land, a 

longer effective day length means a slightly drier organic layer. As moisture content decreases, the DMC values increase and 

so does the FWI. We note that using the NCAR day length function (NCAR) tends to extend the day length, thus increasing 

the FWI in Northern land as well. 225 

For the first adjusted version (pyfwi), the day is shorter below 30°N, and thus the drying is lower (Fig. 3 c-f). In the Southern 

land, this version increases the DMC by up to 62% in December-January and decreases the DMC by -38% in June-July (Fig. 

3k). In 2081-2100 of ssp585, these differences change respectively to 60% and -36%, then with just a slight reduction of the 

range (Fig. 3k). This reduction might be due to the stronger drying regime at the end of ssp585 compared to the historical 

period, causing this adjustment affecting drying not to matter as much. With a lower DMC, the BUI is reduced, thus decreasing 230 

the FWI (Fig. 3l). The FWI is then increased by up to 14% in December-January and decreased by up to -14% in June-July. 

The range of the change in FWI changes to 15% and -10% in 2081-2100 of ssp585. Tropical and Northern land are less affected 

because the magnitude of the adjustment to the effective day length is smaller (Fig. 3 g-j). 

For the second adjusted version (NCAR) in the Southern land, the FWI is increased by up to 19% in December-January and 

decreased by up to -6% in June-July (Fig. 3k-l). In 2081-2100 of ssp585, the range of these differences is changed to 21% to -235 

5%. However, the Northern land is also affected, with an increase of the FWI by up to 10% in December and only by 1% in 

April. 
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Figure 3. Sensitivity to the day length factor of ACCESS-CM2 in the experiments historical and ssp585 over the ensemble 

member r1i1p1f1. The first row of maps (a & b) shows the values of the DMC and the FWI, the first and final indices affected 

by this factor, in the original version of the algorithm (Wang et al., 2015). The following maps (c to f) show the differences 
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with the adjusted version of the algorithm (Table 1). The following rows show the daily climatologies over 1995-2014 (solid 245 

line) and 2081-2100 (dashed line), represented in terms of average and ±1 standard deviation range. The Northern land (g & 

h) is defined as grid cells over 20°N and not marked as infrequent burning. Similarly, Southern land (i & j) is below 20°S and 

Tropical land (k & l) is the intermediate latitude band. 

 

3.2. Sensitivity to the adjustments on the “drying factor” 250 

The drying factor has also received several adjustments in the considered packages (Table 1 and Fig. 4). We note that the 

original name of this factor is “Day-length adjustment in DC” (Wang et al., 2015), but it is renamed here to avoid confusion 

with the adjustments brought to the “Effective day length”. Figure 4 shows the effect of the adjustments brought to this drying 

factor through maps on July 1 2014 and climatologies, while Figure A.3 shows its equivalent on January 1, 2014. The DMC 

and FFMC are not represented here, because they are not affected by this factor. 255 

As described in Table 1, the original code proposes a single monthly value over the Earth, while the first adjustment (pyfwi) 

proposes one monthly value for each hemisphere, and the last one (NCAR) goes further by adding one constant value between 

20°S and 20°N. In Figure 4, this is why this adjustment has mostly an impact below 20°S and to a lesser degree between 20°S 

and 20°N. For this reason, and similarly to Figure 3, we mainly discuss here the effect in the Southern land, which is identical 

in the two adjusted versions. For the July 1 2014, DC is lower in the adjusted versions (Figure 4). According to the algorithm, 260 

the drying factor is lower in July at these latitudes, causing a lower potential evapotranspiration, consistent with a higher 

moisture content and a lower DC. 

The major differences for the DC in the Southern land, below 20°S, are an increase by up to 43% in February-March and a 

decrease by up to -38% in July-September. The adjustment to the drying factor in the Southern land is at its peak in July and 

at its minimum in January, one month before the observed maxima in the differences in DC. With a lower DC, the BUI is also 265 

decreased, causing the FWI to decrease. In the Southern land, the FWI increases by up to 4% in February-March and decreases 

by up to -4% in July-September. 

This adjustment has a smaller impact on FWI than on DC and is also relatively lower compared to the effect of the adjustment 

on the effective day length. However, sensitivities of FWI are by increasing order to FFMC, then DMC and finally DC (Dowdy 

et al., 2010), mostly because a fire starts with the least compact organic layers to move to the most compact ones. Even though 270 

this adjustment has a relatively low impact, for latitudes below 20°S, these adjustments help in adapting the climate effects on 

the most compact organic layers, which is of interest to reproduce seasonal cycles and long term effects of climate change 

(Van Wagner, 1987). 
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3.3. Sensitivity analysis to the overwintering 275 

Overwintering the DC was suggested in (Lawson and Armitage, 2008), to account for the effects of abnormally dry winters as 

explained in Section 2b. This adjustment affects mostly the DC above 20°N, because of the climatological conditions under 

these latitudes. The stronger impact can be seen during the Northern winter. Figure 5 illustrates the effect of this adjustment 

for the July 1 2014 and climatologies, while Figure A.4 does so for the January 1, 2014. As expected, this adjustment affects 

mostly the DC above 20°N, the winters below 20°N being not dry enough, except in the South of Argentina and Chile. 280 
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Figure 4. Sensitivity to the drying factor of ACCESS-CM2 in the experiments historical and ssp585 over the ensemble member 

r1i1p1f1. The first row of maps (a & b) shows the values of the DC and the FWI, the first and final indices affected by this 

factor, in the original version of the algorithm (Wang et al., 2015). The following maps (c to f) show the differences with the 285 
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adjusted version of the algorithm (Table 1). The following rows show the daily climatologies over 1995-2014 (solid line) and 

2081-2100 (dashed line), represented in terms of average and ±1 standard deviation range. The Northern land (g & h) is defined 

as grid cells over 20°N and not marked as infrequent burning. Similarly, Southern land (i & j) is below 20°S and Tropical land 

(k & l) is the intermediate latitude band. 

 290 

 

 

 

Figure 5. Sensitivity to the overwintering of ACCESS-CM2 in the experiments historical and ssp585 over the ensemble 

member r1i1p1f1. The first row of maps (a & b) shows the values of the DC and the FWI, the first and final indices affected 295 
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by this factor, in the original version of the algorithm (Wang et al., 2015). The following maps (c & d) show the differences 

with the adjusted version of the algorithm (Table 1). The following rows show the daily climatologies over 1995-2014 and 

2081-2100, represented in terms of average and ±1 standard deviation range. The Northern land (e & f) is defined as grid cells 

over 20°N and not marked as infrequent burning. Similarly, Southern land (g & h) is below 20°S and Tropical land (i & j) is 

the intermediate latitude band. 300 

 

We observe a reduction in DC by up to -55% in December-January in Northern land. The DC is decreased over the full year, 

the minimum of this reduction being -6% in July-September. By definition, lower DC means higher moisture content of 

compact organic layers. Normally, the moisture content after a dry winter should be lower than after an average winter. In the 

default algorithm, the calculation of the FWI stops during winter and resumes in spring. To initialize the calculation in spring, 305 

DC uses the default value of 15 as a saturated moisture content (Van Wagner 1987). This leads to an overestimation of the 

moisture content in spring, especially after dry winters. Similar to (Abatzoglou et al., 2019), in the version called “original”, 

we run the full time series, without interruption in winter, meaning no initiation of the DC with a saturated level. In Figure 5, 

we see that adding overwintering increases the moisture content in winter and spring. It implies that running the full time serie 

with the default code tends to overestimate the drying during winter. In this sense, this is consistent with (McElhinny et al., 310 

2020). The added value of overwintering is to balance the overestimation of spring moisture content if interrupting calculation 

of the FWI, or the underestimation of spring moisture content in uninterrupted calculation of the FWI. 

With too dry moisture content in the compact organic layers, the FWI in the Northern land tends to be higher in the original 

version (which runs the code throughout the year) relative to the overwintered version. Overwintering reduces the FWI by up 

to -18% during January-February and brings an important adjustment to DC. Calculating the full time series of FWI means 315 

not re-using the saturated starting value for spring DC, causing moisture content over the year to be too low, hence the DC too 

high. We consider that overwintering is necessary when adjusting this effect in full time series. 

 

3.4. Sensitivity to using daily mean relative humidity 

The default approach would be to use as inputs daily minimum relative humidity and daily maximum temperature. As 320 

explained in Section 2.a, here we use daily mean relative humidity as an alternative, because daily minimum relative humidity 

is not provided for many CMIP6 runs, reducing the total number of runs from 1486 to 1321. We show in Figure 6 the influence 

of this choice, with climatologies and maps for the July 1 2014. Figure A.5 extends this figure using the maps for the January 

1, 2014. 

The DC takes as climate inputs only temperature and precipitation, but not relative humidity. This component is therefore not 325 

affected by this choice. Using daily mean relative humidity instead of the daily minimum relative humidity increases the 

moisture content of the other two components, as evidenced by lower DMC and FFMC. For DMC, it is reduced above 20°N 

by -25% (January) to -21% (October-November). In the Tropical land, between 20°N and 20°S, this reduction changes to -
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15% (March-April) to -28% (June-July). Finally, below 20°S, the DMC is reduced by -34% (June-July) to -20% (November-

December). The reductions tend to be stronger for FFMC, ranging from to -45% in June below 20°N and -22.7% between 330 

20°S and 20°N. With a more humid climate as input, and consequent lower DMC and FFMC, the FWI itself is reduced. During 

the fire season, the FWI is reduced by about -33% (June) above 20°N, -35% between 20°S and 20°N (May) and -29% 

(December) below 20°S. Over 2081-2100 of ssp585, these reductions of the FWI are changed to -31% (June) above 20°N, -

30% (June) between 20°S and 20°N and -25% (November) below 20°S. 

We note that the reduction in FWI caused by using mean relative humidity instead of minimum relative humidity is roughly 335 

identical during the fire seasons across the planet, be it over 1994-2014 or 2081-2100. It implies that analysis based on relative 

changes in the FWI would not be strongly affected by this choice. As discussed in Section 2.a, the annual indicators are 

provided for both cases, i.e., using daily mean relative humidity and using daily minimum relative humidity. 

 

 340 

Figure 6. Sensitivity to the variable used for daily relative humidity of ACCESS-CM2 in the experiments historical and ssp585 

over the ensemble member r1i1p1f1. The first row of maps (a to c) shows the values of the DMC, the FFMC and the FWI, the 

first and final indices affected when run with daily average relative humidity. The following maps (d to f) show the differences 

when run with daily minimum relative humidity. The following rows show the daily climatologies over 1995-2014 and 2081-

2100, represented in terms of average and ±1 standard deviation range.  The Northern land (g to i) is defined as grid cells over 345 

20°N and not marked as infrequent burning. Similarly, Southern land (j to l) is below 20°S and Tropical land (m to o) is the 

intermediate latitude band. 
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3.5. Main results 

As illustrated in Figure 1, the FWI was calculated for a total of 1321 runs, deduced from 28 ESMs, run over the historical 350 

period (1850-2014) and over 8 scenarios (2015-2100), and with a total of 108 different ensemble members. To synthesize 

these gridded daily products, annual indicators are provided, as detailed in Section 2.c. To summarize these annual indicators, 

we choose to show their evolutions at different global warming levels (GWLs) in Figures 7 and 8, while representing the 

robustness of the signal. Figure 7 shows the average of the runs at each GWL, and Figure 8 shows the 90th percentile. A signal 

is defined as robust where at least 80% of the models agree on the sign of the change with reference to 1851-1900. More details 355 

on the method used to synthesize these data are provided in Text A.1 of the Appendix. 

In Figure 7, we observe that all robust signals in the annual indicators of FWI show an increase. In other words, there is 

nowhere on Earth where ESMs agree at 80% or more on a decrease in fire weather, in any of the four annual indicators 

represented here. For most regions of Earth and incremental warming levels, all the four annual indicators show an increase in 

their average, even if this signal is not robust in all regions. Still, there are non-robust decreasing trends in the average in 360 

Central Africa, India, and North of the Tibetan Plateau. It concerns the length of the fire season, the annual maxima, and the 

seasonal average of the FWI, but not the number of days with extreme fire weather that continue to show an increasing trend 

in these regions. The regions with robust signals are Central North America, Northern South America, Europe, Southern Africa, 

and Australia. We note that the higher the GWL and the larger is the spatial extent of the robustness of the signal across regions. 

 365 
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Figure 7. Averages of annual indicators at preindustrial and changes in averages at different Global Warming Levels (GWLs). 

The average maps in 1851-1900 are shown in (a), (f), (j) and (n) for the four annual indicators. Each column corresponds to 

the changes in averages at different GWL, each row corresponding to a different annual indicator. The agreement of models 370 

on the sign of the change is used to define the robustness of the signal. More details are provided in Text A.1. 

 

From Figure 7, we infer that the annual maximum of the FWI has increased by up to +37% with a GWL of 1.0°C. With a 

GWL of 3.0°C, this indicator is increased by up to +120%, its average being +9%. Western Australia exhibits the highest 

robust trend for this indicator. The number of days with extreme fire weather has increased by up to +128% with a GWL of 375 

1.0°C. With a GWL of 3.0°C, it increases by up to a factor of 5.0, while its average is +86%. South America would be the 

most affected with 48 days of extreme fire weather per year, while the world would have on average 26 days. The length of 

the fire season increases as well, even at a GWL of 1.0°C, up to a factor of 4.0. With a GWL of 3.0°C, it may increase by a 

factor of 15.0 and on average +66%. Such a high relative increase happens in Northern Siberia, where the statistical distribution 

of the daily FWI and the definition of this indicator lead to an extremely short fire season. Nevertheless, the average increase 380 

by +66% shows that the fire season is overall increasing, lasting about 45 days on average. At a GWL of 1.0°C, the seasonal 

average of the FWI is also increasing, by up to 56%. However, at a GWL of 3.0°C, it increases by up to +250% and on average 

by +17%. Indonesia would be the most affected region according to this criterion. 

Overall, these annual indicators emphasize that under climate change, atmospheric conditions tend to increase the number and 

intensity of fires. An approximate estimate is that we would expect at least an average +66% in both the frequency and the 385 

duration of fires at a GWL of 3.0°C relative to 1851-1900, although this is highly dependent on the metric and the region. 
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Figure 8. 90% percentiles of annual indicators at preindustrial and changes in averages at different Global Warming Levels 390 

(GWLs). The average maps in 1851-1900 are shown in (a), (f), (j) and (n) for the four annual indicators. Each column 

corresponds to the changes in 90% percentiles at different GWL, each row corresponding to a different annual indicator. The 

agreement of models on the sign of the change is used to define the robustness of the signal. More details are provided in Text 

A.1. 

 395 

In analogous fashion to Figure 7, we show the FWI indicators of the 90th percentile in Figure 8. The 20-year window centred 

at time of exceedance of the GWL is used here to deduce the 90th percentile instead of the average. It assumes that over the 20 

years at each GWL, the distributions of the annual statistics of the FWI are stationary enough such that the contribution of the 

local warming trend is lower than the local natural variability. Under this assumption, the percentiles of all runs exceeding the 

GWL provide the local 1-in-10-year event and the local model agreement. More details are provided in Text A.1 of the 400 

Appendix. In Figure 7, all robust signals are increasing trends, while decreasing trends are always non-robust signals. In Figure 

8, all signals, robust or not, are increasing trends. Regarding the robustness of the signal, we notice that the area extent of the 

robust signals is higher for the 90% percentile than for the average. In other words, even if ESMs may disagree in some regions 

on the sign of the average change in annual indicators of FWI, they agree much more that 1-in-10-years fires will be higher. 

As a summary for these trends, at a GWL of 3.0°C, we calculate average relative increase of the 1-in-10-years events of +31% 405 

for the annual maximum of the FWI, +192% for the number of days with extreme fire weather, +177% for the length of the 

fire season and +46% of the seasonal average. Overall, the 1-in-10-years events would thus almost triple in duration and 

increase by at least 31% in strength. These findings highlight how fire management, even more than nowadays, would 

increasingly become an absolutely crucial element of forest protection across the world. However, there would be some limits 

to the adaptation possible to these projected changes, highlighting that the best course of action would require limiting global 410 

warming as low as possible. 

 

4. Data availability 

The fire weather index data has been generated using data archived on the ETH Zurich CMIP6 repository. CMIP6 model 

outputs can also be accessed through different Earth System Grid Federation (ESGF) data nodes. The fire weather indices 415 

produced in this paper is made available in netCDF format and it is openly and anonymously accessible through 

https://doi.org/10.3929/ethz-b-000583391 (Quilcaille and Batibeniz, 2022). All files are stored as .zip in the archive. They are 

named as “[Long name of the fire weather indicator] for all available CMIP6 runs (computed using [Long name of the humidity 

used for calculation])”. Each .zip file contains the results for this indicator for different ESMs, scenarios and ensemble 

members. For storage reasons, some of them are stored in several parts. Within each of .zip files, the results for each fire 420 

weather indices, ESM, scenario and ensemble member are saved individually in separate files in a netCDF4 format under the 
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name “[indicator]_ann_[ESM]_[scenario]_[member]_g025.nc”. Here, “ann” designs the annual resolution while “g025” 

designs the name of the grid. 

5. Code availability 

The fire weather index results have been generated using the open-source model developed by YQ and improved by YQ and 425 

FB. The code to reproduce the results of this manuscript is available on a repository on GitHub 

(https://github.com/yquilcaille/FWI_CMIP6). 

 

6. Usage notes 

The provided data is produced by the Institute of Atmospheric and Climate Science Institute of ETH Zurich. It is an open 430 

source and entirely free dataset. To illustrate possible paths for data users, we indicate in the following list some of the many 

opportunities where this dataset could be used. Some may rather be considered as research questions while some other points 

may be of interest for societal issues regarding fires. 

As detailed in Section 2, we highlight that CMIP6 data may come with biases, while observations provide more realistic inputs 

and information for fire related studies. Though, observations have lower temporal and spatial availability and cover only the 435 

historical period. Thus model-based data facilitates large scale analysis. 

• Comparison of FWI results with observations to evaluate the biases in the models. Compared to observations, some 

models show biases in their outputs. How does that affect the calculation of a compound product like the FWI? The 

FWI can be calculated using data based either on models or on observations (e.g. (Vitolo et al., 2019)). One may use 

the dataset provided here to evaluate the discrepancies and eventually how it affects future projections in fire weather. 440 

A first work in this direction has been produced with 16 ESMs and 1 ensemble member over the historical period 

(Gallo et al., 2022). 

• Discrepancies in FWI across ESMs projections. The ESMs show different regional evolutions in some variables, 

though the effect of these discrepancies on the FWI remains unclear. One may investigate how much do projections 

in fire weather depend on the ESM by using the provided dataset and investigate reasons for the (dis)agreements. 445 

• Dependencies of the FWI to ensemble members. The former path could be extended to the ensemble members. An 

uncertainty in the projections of the FWI arises from the initial conditions as well. The provided dataset may be used 

to assess this uncertainty and eventually the natural variability in FWI. 

• Dependencies of the FWI to scenarios. Another dimension of projections in the FWI is the choice of the scenario. 

Under low warming scenarios, the Earth system gets more time to stabilize, allowing for different regimes, e.g. in the 450 

water cycle. It may help to investigate the response of the fire regimes across different scenarios. For example, the 

https://github.com/yquilcaille/FWI_CMIP6


22 

 

differences between low warming or high warming scenarios or even overshoot scenarios can be investigated using 

the provided dataset. 

• It can be used to understand the effects of humidity regimes on fire regimes: minimum relative humidity and average 

relative humidity have different dynamics, and it is still unclear how they may affect the dynamics of fire weather in 455 

current and future climate. The provided dataset may help in assessing these regimes and their differences. 

• Comparison of climatology of FWI in preindustrial, current, and future climate. Figure 8 of this manuscript gives a 

brief overview of this path. What should we expect from fire weather at different levels of climate change? Such a 

question would be of interest to inform society for the implications of climate change, and the provided dataset may 

help to answer it. 460 

• Relationship of fire weather to modelled burned area. There is literature showing the correlation between FWI and 

burned area(Jones et al., 2022), in spite of other relevant factors such as fire ignition. One may use the provided 

dataset to check in the CMIP6 ensemble whether these relationships could be improved, and how they could be used, 

e.g. in impact models. 

• Attribution studies of FWI to anthropogenic climate change under historical and future projections. Heatwaves, 465 

droughts and other extreme events have been attributed to climate change, but only limited studies have been able to 

attribute fires or mega-fires to climate change. The lack of relevant data explains this reduced number of attribution 

studies. Thanks to this provided dataset, attribution studies may use this data to assess changes in probabilities due to 

climate change. Though, the provided dataset does not provide runs under the scenario “hist-nat”, the historical run 

with only natural forcings but not anthropogenic forcings. It remains possible to use this dataset by considering pre-470 

industrial period and current period with their corresponding natural variability. 

• FWI under CMIP5 and CMIP6. The FWI has been calculated for CMIP5 runs in (Abatzoglou et al., 2019), while the 

provided dataset calculates the FWI for the latest CMIP6 exercise. A comparison of both datasets would allow us to 

identify changes in fire weather between the ESMs. Coupled to their respective burned areas, one may disentangle 

the causes for differences in fires under ESMs between fire modules and fire weather of the models. 475 

 

7. Appendix A 

Fire weather index Temp. Rainfall 
Relative 

humidity 

Wind 

speed 
Other Reference 

Munger     Days without rainfall (Munger, 1916) 

Nesterov X    Days without rainfall (Nesterov, 1949) 

Angström X  X   (Chandler et al., 1983) 

Zdhanko X X   Dewpoint temp. (Zhdanko, 1965) 
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GFDI X  X X Fuel, grass condition (McArthur, 1967) 

FFDI X  X X Fuel availability (McArthur, 1967) 

BI X   X  (Baumgartner, 1967) 

KBDI X X    (Keetch and Byram, 1968) 

M68 X X   Vegetation condition (Käse, 1969) 

Orieux X X  X  (Orieux, 1974) 

FFWI X X X  Drought index (Fosberg, 1978) 

NFDRS X X X X Lightning, clouds (Deeming, 1972) 

EMC X  X   (Bradshaw, 1984) 

LFDI X  X   (Meikle and Heine, 1987) 

FWI X X X X  (Van Wagner, 1987) 

I87 X  X X  (Carrega, 1991) 

Haines index X    Dewpoint temp. (Haines et al., 1983) 

Numerical risk X  X X Cloud cover (Sol, 1990) 

Portuguese index X X  X Dewpoint temp. 
(Goncalves and Lourenco, 

1990) 

F index X  X X  (Sharples et al., 2009a, b) 

FMI X  X   (Sharples et al., 2009a, b) 

Fire danger X X X   
(Setzer and Sismanoglu, 

2012) 

Table A1. list of fire weather indices in the literature, extracted from (WSL; de Groot et al., 2015). 

 

 480 
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Figure A1. Same as Figure 1, but with runs selected with daily average relative humidity (hurs) instead of daily minimum 

relative humidity (hursmin). Altogether, 1486 runs are presented here. 

 

 485 
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Figure A2. Similar to Figure 3 but on the January 1, 2014. 

 

 490 



26 

 

 

 

Figure A3. Similar to Figure 4 but on the January 1, 2014. 
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Figure A4. Similar to Figure 5 but on the January 1, 2014. 
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Figure A5. Similar to Figure 6 but on the January 1, 2014. 500 

 

 

 

Figure A6. Similar to Figure 7, but with no common subset for the selection of maps at different GWLs. 

 505 
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Text A1. Method for Global Warming Levels & Uncertainties 

Figures 7, 8 and A6 synthetize information on annual indicators of FWI by representing the maps at a specific Global 

Warming Level (GWL) and then showing their robustness. The first step is the identification of the maps of annual indicators 

at each GWL: 510 

1. With 1851-1900 as reference period, we deduce the change in global mean surface temperature (tas) from each run 

used in this manuscript 

2. For a given GWL, we identify for each run if the GWL is exceeded, and its first year. 

3. For each annual indicator, if a run has exceeded the GWL, we gather the maps of the indicator from the exceedance 

year - 10 to the exceedance year + 9. 515 

a) If the run is a scenario with an exceedance year inferior or equal to 2023, the historical period is used to 

extend the missing year backwards. 

b) If the run is a historical and with an exceedance year superior or equal to 2005, the ssp245 is chosen to 

extend the missing year forwards. For this reason, only runs for which a corresponding ssp245 has been run 

are selected. 520 

4. For each run, the maps over this 20 years period are averaged to obtain later Figures 7 and A6. For Figure 8, the 90% 

percentile is taken over this period. 

5. We compile the ensemble of averaged maps reaching this GWL and proceed to map the robustness and uncertainties 

at each GWL. 

We note that the higher the GWL, and the lower the number of runs reaching this GWL. It implies that the subset of runs used 525 

are different for each GWL. To avoid introducing a bias in the comparison, we choose to restrain the subset of runs to the runs 

that satisfy the higher represented GWL. It ensures the same subset of runs, although at the appropriate exceedance years. 

Because using this subset differs from the usual method, we have also added Figure A.6, where the full set of runs respecting 

the GWL are used. 

 530 

 The former step provides us with a subset of maps at each GWL, coming from different runs, defined by the ESM, 

the scenario and the ensemble member. This subset is averaged using the following method, to avoid that models with higher 

number of scenarios or ensemble members are over-represented. Model democracy is used here, without discarding or 

weighting any model. 

1. At each GWL, the subset of maps is first averaged over the ensemble members, not to give more weight to ESMs 535 

with large ensembles. 

2. Afterwards, the subset of maps is averaged over the experiments, not to give more weight to ESMs that run more 

scenarios than others. 

3. Finally, we average on the ESMs. 

 540 
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We calculate the robustness of these maps following the approach B of IPCC (Gutiérrez et al., 2021), although the problem 

of over-representation of models had to be accounted for. Model democracy is used as well here. 

1. At each GWL, for each ESM, the maps for available scenarios and ensemble members are pooled. 

2. If more than 80% of these runs have the same sign for the evolution from the reference period, this ESM is marked 

as having a robust signal. As a note, the ensemble members and scenarios dimensions are not differentiated here, so 545 

that enough runs are used to evaluate the robustness of the sign. 

3. If more than 80% of the ESMs at this GWL were marked as having a robust signal, then the signal is marked as 

overall robust. 

 

 550 
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