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Abstract.1

The methods used to identify coherent ocean eddies are either Eulerian or Lagrangian in nature, and nearly all existing eddy2

datasets are based on the Eulerian method. In this study, millions of Lagrangian particles are advected by satellite-derived3

surface geostrophic velocities over the period of 1993–2019. Using the method of Lagrangian-averaged vorticity deviation4

(LAVD), we present a global Lagrangian eddy dataset (GLED v1.0, Liu and Abernathey, 2022, https://doi.org/10.5281/zenodo.73497535

). This open-source dataset contains not only the general features (eddy center position, equivalent radius, rotation property,6

etc.) of eddies with lifetimes of 30, 90, and 180 days, but also the trajectories of particles trapped by coherent eddies over the7

lifetime. We present the statistical features of Lagrangian eddies and compare them with those of the most widely used sea8

surface height (SSH) eddies, focusing on generation sites, size, and propagation speed. A remarkable feature is that Lagrangian9

eddies is generally smaller than SSH eddies, with a radius ratio of about 0.5. Also, the validation using Argo floats indicates10

that coherent eddies from GLED v1.0 exist in the real ocean and have the ability to transport water parcels. Our eddy dataset11

provides an additional option for oceanographers to understand the interaction between coherent eddies and other physical or12

biochemical processes in the Earth system.13

1 Introduction14

Mesoscale eddies, defined as rotating structures ranging typically from tens to hundreds of kilometers and lasting for several15

weeks to months, are ubiquitous in the global ocean (Fu et al., 2010; Chelton et al., 2011b, hereinafter CS11). And these eddies16

can trap, transport, and stir tracers such as heat, salt, and biochemical components in the ocean, thereby playing significant17

roles in nutrient distribution (Chelton et al., 2011a; Frenger et al., 2015), altering large-scale ocean circulation patterns (Aber-18

nathey and Marshall, 2013; Liu et al., 2022b), affecting marine ecosystems (Mahadevan, 2016; McGillicuddy Jr, 2016), and19

modulating climate variability (Busecke and Abernathey, 2019; Li et al., 2022b). Isolated mesoscale eddies in the ocean are20

generally considered as coherent structures with a material barrier that can trap the fluid within the eddy interior (Haller, 2015).21

Therefore, understanding the eddy structure and the degree of material transport by eddies are key issues for more accurate22

parameterization of mesoscale eddies in coarse-resolution marine ecosystem or climate models. To achieve this goal, herein23

we seek to produce a global coherent eddy dataset based on satellite observations.24
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Many methods have been proposed to identify mesoscale eddies from numerous oceanic databases such as satellite maps,25

numerical simulation products, and Argo floats. These existing methods generally fall into two categories: Eulerian and La-26

grangian (Haller, 2015; Abernathey and Haller, 2018). The core idea of Eulerian methods is to detect the eddy boundary based27

on certain physical or geometrical contours from the instantaneous flow field, and then track these boundaries at neighbor-28

ing times. Frequently used Eulerian eddy boundaries includes contours of Okubo-Weiss parameter, sea surface height (SSH;29

CS11), potential vorticity (Zhang et al., 2014), velocity streamlines (Nencioli et al., 2010), etc. By contrast, rather than depend-30

ing on instantaneous images, Lagrangian methods examine trajectories of water parcels over a finite time interval to identify31

the skeletons of coherent structures. Different techniques such as finite-time Lyapunov exponents (Shadden et al., 2005), finite-32

scale Lyapunov exponents (d’Ovidio et al., 2009), and Lagrangian-averaged vorticity deviation (LAVD; Haller et al., 2016)33

have been proposed for eddy detection. Both Eulerian and Lagrangian methods have advantages and disadvantages.34

The most significant advantage of Eulerian methods is their operational simplicity: if continuous images of flow fields are35

available, then searching for eddy centers and boundaries becomes relatively straightforward once the dynamical criterion is36

determined. This feature means that Eulerian methods are used extensively, especially for SSH eddies (following geostrophic37

equilibrium) derived from the sea level anomaly (SLA). And the development of satellite observations facilitates eddy identifi-38

cation on a global scale. Using 16 years of altimetry maps with weekly intervals, the first mesoscale eddy dataset was produced39

(CS11) and the general features of mesoscale eddies were analyzed statistically. Later, Faghmous et al. (2015) presented a40

global SSH eddy dataset over the period of 1993–2014 using the daily altimetry product and a SLA-based method similar to41

that used in CS11. Until 2016, the eddy census of CS11 was updated routinely by a research team at Oregon State University,42

then in 2017 its operation was transferred to CLS/CNES, and it is now distributed by AVISO as the Mesoscale Eddy Trajectory43

Atlas (META). Several versions of this dataset–from META1.0exp to META3.1exp–are available to users, and Pegliasco et al.44

(2022) described the improvements from one release to the next. In addition, Dong et al. (2022) constructed a multi-parameter45

eddy dataset based on the velocity vector field from satellite observations. These Eulerian eddy datasets have been used widely46

to study the interaction between mesoscale eddies and other processes of the Earth system.47

Mesoscale eddies are generally believed to be able to trap and transport the interior fluid when the nonlinearity parameter48

U/c is greater than 1, where U is the azimuthal eddy speed and c is the eddy propagation speed. Statistics suggest that more49

than 90% of observed SSH eddies satisfy this criterion (CS11). By assuming no effective water exchange between the eddy50

interior and background flows, many studies have conducted estimates of heat, salt, and mass transports by Eulerian eddies51

on regional and global scales (Dong et al., 2014; Zhang et al., 2014; Frenger et al., 2015; He et al., 2018). Among them,52

the most appealing result shows that the westward zonal eddy mass transport in the subtropical gyre can reach 30–40 Sv,53

which is surprisingly comparable to the wind-driven gyre transport (Zhang et al., 2014). However, many recent works provide54

clear evidence that Eulerian methods strongly overestimate the degree of material transport by mesoscale eddies. Horizontally,55

observations and numerical simulations both suggest that Eulerian eddies are far from coherent structures because there is56

strong and persistent water exchange across the Eulerian eddy boundary (such as the SSH contour) during the eddy lifespan57

(Beron-Vera et al., 2013; Wang et al., 2016; Liu et al., 2019, 2022a). The contribution of coherent structures to the total eddy58

transport is very limited, and most eddy transport is induced by incoherent motions such as swirling and filamentation outside59
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the eddy cores (Wang et al., 2015; Abernathey and Haller, 2018; Zhang et al., 2019; Xia et al., 2022). In addition, U/c has60

been shown to be an ineffective indicator of eddy coherent transport because the leakage magnitude of initially trapped water is61

generally significant and does not depend on this parameter (Liu et al., 2022a). The overestimation of coherent eddy transport62

might be attributed to the common shortcomings of Eulerian methods (see discussion in Haller, 2015; Abernathey and Haller,63

2018). The essential issue is that Eulerian eddy boundaries detected at neighboring times do not necessarily trap the same fluid,64

and this can be rectified under the Lagrangian framework.65

Lagrangian coherent structures have been identified successfully using different techniques. And these eddies can truly trap66

and transport materials for a certain distance without obvious leakage. However, few studies employ Lagrangian eddies to67

estimate eddy material transport for the following potential reasons. First, compared with the contour searching of Eulerian68

methods, Lagrangian algorithms are much more complicated for calculating some physical parameters (e.g., LAVD; details69

in Section 2) over a time interval. Second, flow fields with high spatial and temporal resolutions are needed to drive millions70

of Lagrangian particles, which brings huge calculation and storage pressures. Third, the definition method determines that71

Lagrangian eddies have a preset duration, rather than a free duration like Eulerian eddies, and identifying Lagrangian eddies72

with different lifetimes is also computationally expensive.73

Recently, Abernathey and Haller (2018) used satellite-derived geostrophic velocities in the eastern Pacific to advect La-74

grangian particles, and they used the LAVD method to identify rotationally coherent Lagrangian vortices (RCLVs, also called75

Lagrangian eddies) over a period of 25 years, which is the first large-scale application of objective Lagrangian eddy detec-76

tion. Based on numerical model outputs, Xia et al. (2022) used the three-dimensional LAVD method to detect global coherent77

eddies, and they estimated the coherent transport across each latitude or longitude to be only about 1 Sv. Tian et al. (2022)78

also applied the LAVD method to global eddy detection and presented a 90-day RCLVs dataset, but they adopted a very tight79

threshold to define the eddy boundary (Tarshish et al., 2018), which would greatly underestimate the size of Lagrangian eddies80

(see Figure 4).81

Nearly all public global eddy datasets are based on the Eulerian framework, and identifying coherent eddies is not an easy82

task. Therefore, it is necessary to develop a global Lagrangian eddy dataset based on observational data. So far, we have83

conducted a series of works towards this goal, including regional eddy identification (Abernathey and Haller, 2018; Liu et al.,84

2022a), parameter sensitivity tests (Tarshish et al., 2018), and numerical experiments (Sinha et al., 2019; Liu et al., 2019; Zhang85

et al., 2019). In this study, we extend the work of Abernathey and Haller (2018) to the global ocean to identify coherent eddies86

using the LAVD method, and we generate a Lagragnian eddy dataset based on altimetry observations. This dataset provides not87

only general features (eddy center position, equivalent radius, rotation property, etc.) of eddies with lifespans of 30, 90, and 18088

days but also the trajectory of particles trapped by coherent eddy boundaries over the lifetime, and to the best of our knowledge89

this is the first attempt at a public eddy dataset. Also, we compare this dataset to the latest SSH eddy dataset (META3.1exp)90

to understand the statistical differences between the two types of eddies. Our eddy dataset provides an additional option for91

oceanographers in studying the interactions between coherent eddies and other physical or biochemical processes.92

Although some studies have revealed several vertical features of mesoscale eddies, such as regional variability (Zhang93

et al., 2013), surface and subsurface-intensified types (Dilmahamod et al., 2018), and eddy vertical tilt (Li et al., 2022a), our94
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understanding of the three-dimensional structure of mesoscale eddies is still limited due to the lack of subsurface observations.95

The prevailing assumption is that mesoscale eddies are approximately in geostrophic balance, so this study mainly concentrates96

on two-dimensional coherent eddies based on geostrophic currents. We will discuss how unsolved motions affect coherent97

eddies later. We encourage users of our product to be mindful of the limitations of the underlying satellite-derived geostrophic98

velocity fields used to derive our coherent eddies.99

This paper is organized as follows. Section 2 presents the complete process of generating the global Lagrangian eddy dataset.100

Section 3 illustrates the basic information of the dataset, the statistical features of coherent eddies, the comparison with SSH101

eddies, and the dataset validation. Section 4 introduces the availability of the eddy dataset and related algorithms. Finally,102

Section 5 provides the discussion and conclusions.103

2 Generation of eddy dataset104

2.1 Satellite altimetry105

Because observational data for the subsurface flow field are quite rare, we consider only two-dimensional coherent eddies from106

the near-surface geostrophic velocity field vg = (u,v) that can be derived according to the geostrophic relation107

k̂×vg =− g

f
∇η, (1)108

where g is the acceleration due to gravity, f is the Coriolis parameter, k̂ is the unit vertical vector pointing upward, and η is109

the SSH. In this study, we use the satellite altimetry product (SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047)110

distributed by the Copernicus Marine Environment Monitoring Service. This dataset merges along-track measurements from111

several altimeter missions and interpolates them to a 1/4◦ latitude-longitude grid. It provides daily variables including the112

SLA, the absolute dynamic topography (ADT, equivalent to SSH), and the precomputed geostrophic velocities based on (1).113

Note that velocities in the equatorial region (within ±5◦) are estimated based on a higher-order vorticity balance (Lagerloef114

et al., 1999) since the geostrophy is not satisfied. We choose the time period of 27 years, from 1 January 1993 to 30 December115

2019. In addition, following the procedure described by Abernathey and Marshall (2013), a small correction to the geostrophic116

velocities is applied to eliminate the divergence due to the meridional change of f and to perform no-normal-flow boundary117

conditions at the coastlines. Compared with noncorrected flow fields, this correction has an insignificant effect on the coher-118

ent eddy identification in the open ocean (Abernathey and Haller, 2018). Although the geostrophic current is an incomplete119

representation of the full flow in the real ocean, it is by far the leading-order component at the scales of interest in this study.120

2.2 Particle advection121

The first step in generating the global Lagrangian eddy dataset is to advect particles using surface geostrophic velocities (Figure122

1). The satellite altimetry product with a 1/4◦ grid resolution can well resolve ∼ 200 km length structures in the equatorial123

region, ∼ 50 km length structures at the mid-latitudes, and ∼ 25 km length structures at high latitudes (Ballarotta et al., 2019).124

4



Figure 1. Flowchart of eddy dataset generation based on satellite observations.

To reflect properly the fine structure of material transport barriers and Lagrangian eddies, it is necessary to employ an extremely125

dense mesh of Lagrangian particles with higher resolution than the forcing velocity field (Haller et al., 2016; Abernathey and126

Haller, 2018). However, we should not pursue high resolution particle excessively because of the consequent computational127

and storage burdens. Sensitivity tests by Abernathey and Haller (2018) suggest that a particle spacing of 1/32◦ is necessary to128

identify RCLVs accurately, and in the present study we use the same resolution and release Lagrangian particles over the global129

ocean (between 0◦ and 360◦ longitude and 80◦S and 80◦N latitude; Figure 2a), a total of 39 848 999 points. To our knowledge,130

this is the highest resolution to date for a Lagrangian particle mesh applied at global scale. Note that the points on land are131

masked because they never move. It is important to note that using ultrahigh-resolution particles does not necessarily improve132

the resolution of the flow field as geostrophic currents are inherently unable to resolve small-scale/high-frequency processes,133

such as submesoscale flows, tides, and inertia-gravity waves. The real benefit is to avoid the discontinuous areas in the LAVD134

fields induced by coarse particle seeding, which allows us to obtain the clear structure of mesoscale coherent eddies.135

The MITgcm (Adcroft et al., 2018), an open-source ocean general circulation model, is used to solve the kinematic equation136

for Lagrangian particles dX/dt= u, where X = (X,Y ) is the position vector and u is a two-dimensional velocity field.137

The model can typically operate in either online or offline mode. Here, we employ the offline mode in which the internal138

dynamical kernel is turned off and velocity fields are read from preset files with a frequency of 1 day. The FLT package is139

enabled to track Lagrangian particles via implementing fourth-order Runge-Kutta integration. Compared with other tools for140
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Figure 2. (a) Initial latitudes of released Lagrangian particles. (b) Zonal and (c) meridional displacements of particles (in degree) after 180

days.

particle tracking, MITgcm provides a convenient configuration for parallel computing on a high-performance cluster, making141

the global calculation more efficient.142

From January 1993 to June 2019, the Lagrangian particle mesh is initialized on the first day of every month, and these par-143

ticles are advected forward for 180 days, amounting to 318 180-day runs in total. In the zonal direction, the periodic boundary144

condition is used to allow particles crossing zero longitude. Figures 2b and 2c show zonal and meridional displacements of145

particles in a random time interval, which clearly display some main currents (e.g. western boundary currents, zonal tropical146

currents, and Antarctic Circumpolar Current) and eddy-like structures. In each model run, the relative vorticity is calculated147

on the Eulerian grid and interpolated to Lagrangian particle positions. To reduce the storage pressure, the relative vorticity and148

the particle trajectory are output every 10 days, with the total volume still exceeding 20 TB.149
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2.3 Lagrangian eddy identification150

Consider a two-dimensional coherent eddy, all fluid parcels along its material boundary should have the same average angular151

speed when rotating around the eddy core, which is analogous to solid body rotation. Based on this physical intuition, Haller152

et al. (2016) proposed an objective vorticity-based method to identify the material boundary of a coherent eddy by searching153

for the outermost closed contour of the LAVD. In a two-dimensional flow, given a finite time interval (t0, t1), the LAVD is154

defined as the average of the vorticity deviation along the Lagrangian particle trajectory, that is,155

LAV Dt1
t0 (x0,y0) =

1

t1 − t0

t1∫
t0

|ζ ′[X(x0,y0, t),Y (x0,y0, t), t]|dt, (2)156

where (X,Y ) is the position for the particle released initially at point (x0,y0) and ζ ′ is the instantaneous relative vorticity157

deviation from the spatial average over the whole domain. The LAVD (always positive) examines the average magnitude of158

local rotation for each Lagrangian particle over the time interval. A larger (smaller) LAVD value implies that the particle rotates159

faster (slower), with the local maximum representing the eddy center and the eddy boundary being the outermost closed LAVD160

curve encircling the center. This definition determines that all particles inside the boundary must rotate around the eddy core161

during the time interval, which is essentially different from Eulerian methods based on instantaneous fields.162

The algorithm employed for detecting RCLVs has been described in previous studies (Abernathey and Haller, 2018; Tarshish163

et al., 2018; Liu et al., 2019; Zhang et al., 2019; Liu et al., 2022a). Once a local LAVD maximum is determined, we search164

outward for closed LAVD curves. There might be multiple closed contours around a center, which are all objective options for165

the Lagrangian eddy boundary that is expected to be a convex but allowing small deviations. To confine the boundary choice,166

two parameters are introduced here: the convexity deficiency (CD, Haller et al., 2016) and the coherency index (CI, Tarshish167

et al., 2018). The CD is defined as the ratio of the area difference between the contour and its convex hull to the total contour’s168

area (see Figure 7 in Tarshish et al., 2018), which means that the closer CD is to zero, the closer the eddy boundary is to being169

a convex curve. The CI examines the change in spatial compactness of particles inside the contour over a time interval, which170

is expressed as171

CI =
σ2(t0)−σ2(t1)

σ2(t0)
, (3)172

where σ2(t) =< |X(t)−<X(t)> |2 >, <> indicates an average over all particles and || is the standard Euclidean distance.173

Theoretically, the CI is less than 1 in value, and with decreasing CI, the eddy particle tends to rapidly disperse and develop174

filaments. The RCLV boundary is determined when the outermost contour satisfies both the CD and CI thresholds.175

In this study, the combination of CD < 0.1 and CI >−1 is adopted according to the sensitivity analysis by Tarshish et al.176

(2018). Their results indicate that CD values of 0.01, 0.1, and 0.25 are three representative thresholds for strictly coherent,177

moderately coherent, and leaky vortices, respectively, as is shown in Figure 3a and 3b. Although a small amount of filaments178

exists, the RCLV defined by CD < 0.1 can basically trap the initial water parcels and maintain the coherent structure over179

the lifetime. It is clear that, the thresholds of 0.25 and 0.01 (adopted by Tian et al., 2022) will greatly overestimate and180
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Figure 3. (a) A random example of the 30-day LAVD field (color map) and three identified RCLV boundaries using three different CD

values. The green dashed thick line is the eddy boundary defined by the SLA contour. (b) Initial and final particle positions trapped by three

boundaries. The dashed black line is the eddy center trajectory and the black dot is the initial eddy center.

underestimate, respectively, the size of the coherent eddy. This parameter combination is a moderate threshold for identifying181

coherent eddies and has been employed successfully in our previous studies (Liu et al., 2019, 2022a). In addition, we repeatedly182

conduct the test of RCLV identification in the random regions and time periods, and as shown in Figure 4, the determined183

parameters perform well in identifying RCLVs with lifetimes of 30 and 90 days.184

Except for the ability to trap and transport tracers, one of the most significant differences between Eulerian and Lagrangian185

eddies is the fact that the LAVD is defined over a specific, fixed finite time interval. Eulerian eddy tracking, in contrast, can186

detect eddies of arbitrary lifetimes (of course, without any guarantee of material coherence). Computational pressure dictates187

that it is impossible to release Lagrangian particles at any time and identify Lagrangian eddies with an open lifespan, and188

to date there is no clear solution to reconcile this difference between the Eulerian and Lagrangian frameworks. In this study,189

we choose three typical lifetimes to identify Lagrangian eddies, i.e., 30, 90, and 180 days. Coherent eddies with lifetimes190

longer than 180 days are not considered because their number is quite limited based on our results (Figure 6) and those of191

Abernathey and Haller (2018). (While eddies of different lifetimes in a specific location may overlap, we cannot say that they192

are the “same” eddy because they will, in general, have different material boundaries.) After identifying boundaries for all193

eddies over 27 years from 954 LAVD fields, the related eddy parameters (such as radius and movement speed) are calculated,194

then we conduct quality control to discard eddies with a radius smaller than 25 km and to check that all the eddy parameters195

fall within reasonable ranges. At this point, the Global Lagrangian Eddy Dataset (GLED v1.0, Liu and Abernathey, 2022,196

https://doi.org/10.5281/zenodo.7349753 ) has been generated based on satellite observations.197
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Figure 4. (a) 30-day LAVD (in s−1) field in the northern hemisphere and 90-day LAVD field in the southern hemisphere calculating from 1

October 2016. (b) Identified boundaries (red contours) of 90-day RCLVs in the west of Australia. (c) Initial (red dots) and final (blue dots)

positions of 90-day RCLVs, with black lines representing the eddy center trajectories. (d) Identified boundaries (red contours) of 30-day

RCLVs in the Gulf Stream region. (e) Initial (red dots) and final (blue dots) positions of 30-day RCLVs, with black lines representing the

eddy center trajectories.

3 Results198

3.1 Description of eddy dataset199

GLED v1.0 contains two components. First, the general features of coherent eddies are provided in the directory named200

eddyinfo. The information about 30-day, 90-day, and 180-day eddies is stored separately in three JSON files, which contain the201

following attributes:202

• id: an eddy’s unique ID composed by identification date, lifetime, and eddy number in the corresponding detection203

interval;204

• date_start: generation date of the eddy;205

• duration: eddy lifespan (in days);206

• radius: equivalent radius (in kilometers) that is derived from the area enclosed by the eddy boundary;207
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• cyc: eddy rotation type (1 for anticyclonic, -1 for cyclonic);208

• center_lon, center_lat: the longitude (in degrees North) and latitude (in degrees East) of the eddy center with a frequency209

of 10 days;210

• dx, dy: zonal and meridional displacements (in kilometers) of the eddy over the eddy duration;211

• speed_x, speed_y: averaged zonal and meridional propagation speeds (in meter per second) of the eddy, which equal the212

displacements divided by the eddy duration;213

• vort: domain-averaged relative vorticity within the eddy boundary (in per second);214

• lavd: domain-averaged LAVD value within the eddy boundary (in per second);215

Researchers can filter the eddy data based on their studying regions, time periods, or other conditions. For example, if investi-216

gating the statistical behaviours of coherent eddies generated around the Kuroshio extension region (25−35◦N, 140−150◦E),217

then 2445 30-day, 210 90-day, and 17 180-day eddies over 27 years will be selected for conducting the related analysis.218

Second, the trajectories of all Lagrangian particles inside the eddy boundary are provided in the directory named eddytraj,219

which to the best of our knowledge is the first attempt at an open-source eddy dataset. We use an NC file with a three-220

dimensional array to store the particle positions every 10 days for each eddy, with the array dimensions being particle initial221

longitude, particle initial latitude, and time. Each NC file is named by its unique eddy ID, and the grid number of the two222

position dimensions is adjusted according to the eddy size. We randomly load six data records to show the particle positions223

during the eddy lifetime (Figure 5), and we find that these eddies all perform well in maintaining the coherent structure. An224

interesting phenomenon is that the eddy in Figure 5a is not initially located around a closed SLA contour, but a coherent225

structure does exist. This type of coherent eddies are all neglected when using the Eulerian method (Liu et al., 2019). Another226

typical feature is that the coherent eddy is much smaller than the outermost closed SLA contour (Figure 5b), indicating that this227

SSH eddy is highly leaky and far from a coherent structure. The second component of GLED v1.0 clearly displays the detailed228

process of material transport by coherent eddies, which is significant for understanding further the influence of coherent eddies229

in the distribution of oceanic tracers, especially some biogeochemical tracers such as chlorophyll (Gaube and McGillicuddy Jr,230

2017) and nutrients (Hughes and Miller, 2017).231

3.2 General features of global coherent eddies232

To assess GLED v1.0, in this subsection we calculate some statistics of global Lagrangian eddies and compare them with233

those of a new SSH eddy product (META3.1exp, publicly available at https://www.aviso.altimetry.fr/en/data/products/value-234

added-products/global-mesoscale-eddy-trajectory-product.html). This dataset updates the detection algorithm and the tracking235

scheme, and changes the input sea level field from SLA to ADT (Pegliasco et al., 2022), but it is essentially the same as the236

eddy product proposed by CS11, falling into the Eulerian category.237

From January 1993 to December 2019, META3.1exp provides 619 510, 166 426, and 44 329 SSH eddies with radii larger238

than 25 km and lifetimes longer than 30 days, 90 days, and 180 days, respectively. Our dataset contains many more short-lived239
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Figure 5. Positions of particles (colored dots) inside the eddy boundary every 10 days for randomly selected (a, d) 30-day, (b, e) 90-day,

and (c, f) 180-day RCLVs. The unique eddy ID is marked in the title of each panel. Different colors denote the different times, and the blue

dots represent the initial positions. The SLA fields are overlaid using black contours with solid lines for positive values and dashed lines for

negative values.

but fewer long-lived coherent eddies, with the numbers of 30-, 90-, and 180-day RCLVs in GLED v1.0 being 1 095 356, 116240

656, and 13 643, respectively. Census statistics of the numbers for RCLVs and SSH eddies originating in 2◦×2◦ grids over 27241

years are shown in Figure 6. For RCLVs with the three lifetimes, the peak values of eddy number are generally located close to242

the eastern boundaries of ocean basins, much higher than that in the western-boundary current regions (Figures 6a, 6c, and 6e).243

This spatial feature is not in agreement with the previous analysis by CS11 and the pattern based on META3.1exp, which both244

show SSH eddies to be distributed broadly in the mid-latitude regions between 10◦N/S and 60◦N/S with no obvious east-west245

asymmetry (Figures 6b, 6d, and 6f). Compared with SSH eddies with lifetimes longer than 180 days that can be observed nearly246

everywhere in the global ocean except for the tropics, the number of 180-day RCLVs is quite limited and they are concentrated247

in the southwest of Australia and the interior ocean of the Atlantic.248

To understand intuitively the differences between RCLVs and SSH eddies, we choose two regions–one in the northeast249

Pacific and the other in the Antarctic Circumpolar Current (ACC)–to display the location and size features of eddies on a250

random date (Figure 7). These two regions are selected because they represent weak and strong eddy kinetic energy (EKE)251

scenarios. The global EKE map exhibits that the northeast Pacific is less energetic (Whalen et al., 2018) and is typically252

considered as a "desert" of long-lived eddies (CS11), but numerous short-lived SSH eddies and RCLVs are distributed widely253

(Figure 7a). The most noteworthy feature is that RCLVs are generally smaller in size than SSH eddies and not necessarily254

enclosed by the SSH contour. Based on their relative positions to SSH eddies, RCLVs can be classified into two categories (Liu255

et al., 2019): overlapping and non-overlapping. The latter are quite different from traditional geostrophic eddies and appears256
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Figure 6. The geographic distribution of eddy generation number in 2◦×2◦ grids for (a, c, e) RCLVs and (b, d, f) SSH eddies over 27 years.

Three time intervals (30, 90, and 180 days) are considered and the grid without eddies is masked.

frequently, deserving further investigation of their structure and evolution. Another feature is that many RCLVs propagate257

eastward over the lifespan in this region, which has not been noticed before. As one of the most energetic regions, the ACC258

region is rich in SSH eddies with large radii and amplitudes (Figure 7b), but few of them have a coherent core, indicating that259

these SSH eddies cannot maintain a coherent structure for as little as 30 days. We identify only 39 30-day RCLVs in region 2,260

much fewer than the number (124) in region 1 with the same size. The reduced number of coherent eddies along the main path261

of the jet-like current can also be seen clearly in the Gulf Stream and the Kuroshio Extension regions.262

We now examine the statistics of eddy radius, zonal propagation speed, and meridional propagation speed for all RCLVs263

and SSH eddies in 10◦ latitude bins, which are shown using the box plot in Figure 8. Outside of the tropical region, both types264

of eddies basically decrease in size with latitude, reflecting the dependence of the Rossby deformation radius on the Coriolis265

parameter (Chelton et al., 1998), but the averaged RCLV radius is only half of the SSH eddy radius, which is consistent with266

the regional examples shown in Figure 7 and our previous analysis in the eastern Pacific (Abernathey and Haller, 2018). In267

the tropics, the RCLV radius is only about 40 km because there are numerous non-overlapping RCLVs with small size (not268

shown). In addition, it is observed that RCLVs and SSH eddies have similar westward propagation speeds, consistent with the269
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Figure 7. Locations of 30-day RCLVs (blue dots) and SSH eddies(>30 days, black contours) in (a) region 1 (blue box in Figure 6a) and (b)

region 2 (red box in Figure 6a) on 1 January 2009. The red lines are the center trajectories of the RCLVs, and the color map represents the

SLA field.

phase speed of long Rossby wave (Killworth et al., 1997), except for the tropical region where some RCLVs move eastward270

with the background tropical flows. For the meridional propagation speed, its magnitude is usually lower an order than that of271

the zonal speed, and both types of eddies have similar patterns, with the difference emerging in 30◦S–0◦ where there are many272

RCLVs along the eastern boundary (see Figure 6a).273

3.3 Dataset validation274

In this subsection, Argo floats are used to verify the existence of identified coherent eddies and their ability to trap water parcels.275

Since its initial deployment in the early 2000s, the Argo profiling float array has expanded to encompass all the world’s oceans276

with more than 3000 active floats. The standard Argo float is designed to conduct a 10-day cycle, during which it measures277

conductivity, temperature, and pressure at various depths. At the start of one cycle, the float sinks to a parking depth of 1000278

m and drifts along with ocean currents for about 9 days. Then, it descends to a depth of 2000 m and rises to the surface279

while continuously measuring the ocean’s properties. Upon reaching the surface, the float transmits its data to satellites before280

starting another cycle. The Argo data is available from the global data centers (ftp://ftp.ifremer.fr/ifremer/argo) and the position281

information of floats from 2000 to 2019 is considered here.282

Due to the horizontal structure of mesoscale eddies being basically independent of the depth (Zhang et al., 2013), despite283

the eddy intensity having the vertical variability (Dilmahamod et al., 2018), it is believed that coherent eddies defined from284
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Figure 8. Statistics of (a) radius, (b) zonal propagation speed, and (c) meridional propagation speed for RCLVs and SSH eddies. The box plot

shows statistics of all eddies in 10◦ bins. The box and the black whisker span the 25th to 75th and 10th to 90th percentiles of the distribution,

respectively. The black line in the box indicates the median. The means of all eddies in a bin are shown using dashed lines, blue for RCLVs

and red for SSH eddies.

surface geostrophic currents can maintain the coherent structure above a certain depth. Numerical simulations show that the285

averaged depth of coherent eddies does not exceed 500 m (Xia et al., 2022). However, the composite analysis based on Argo286

floats suggests that the density anomaly of mesoscale eddies in the west of Australia can penetrate deeper than 1000 m (see287

Figure 2 in He et al., 2021), which surpasses the parking depth of Argo floats. And there are many long-lived RCLVs near this288

area (Figure 6). Therefore, we search for Argo floats that are initially trapped by 90-day and 180-day RCLVs from GLED v1.0289

in the southern Indian Ocean (20− 60◦S, 45− 145◦E, black box in Figure 6c) and examine if these floats can be carried for a290

long range. A larger region than that in He et al. (2021) is used here in order to expand the sample size.291

Figures 9a-9c show a case in which an Argo float is trapped by a 180-day RCLV for its entire lifespan. At the initial292

time, the float is located close to the eddy center and moves westward along with the eddy for more than 400 km. We then293

perform statistical analysis for 1001 90-day RCLVs and 270 180-day RCLVs. The calculation of the time-based distance294
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Figure 9. (a, b, c) A case showing that an Argo float is trapped by a 180-day RCLV (red dots), with the SLA field overlaid in black contours.

The blue line tracks the eddy center’s trajectory, while the yellow line tracks the Argo float’s trajectory. (d, e) The distance between eddy

centers and Argo floats that are initially trapped during the eddy lifetime for 90-day and 180-day RCLVs. Thin gray lines indicate the

ensemble and the thick blue (red) line is the mean of 90-day (180-day) RCLVs. The green dashed line is the average radius of RCLVs. (f)

The distribution probability of Argo floats with respect to the normalized eddy radius at the final time for 90-day (blue line) and 180-day (red

line) RCLVs.

between the eddy centers and trapped Argo floats is carried out. Figures 9d and 9e show that the majority of the floats can be295

continuously carried by RCLVs, with only a small portion escaping rapidly. The final distribution probability of Argo floats296

within a specified distance normalized by eddy radius is calculated (Figure 9f). It is observed that for both 90-day and 180-day297

RCLVs, approximately 70% of the floats are still located within 3 times the eddy radius. Given the vertical tilt of mesoscale298

eddies (Li et al., 2022a), it is reasonable to conclude that these floats have been moving with coherent eddies since their initial299

trapping. The reason that some Argo floats escape from RCLVs might be because these eddies do not reach the parking depth300

of Argo floats. It is speculated that there would have been a stronger correlation if Argo floats were deployed at shallower301

depths. In general, these findings suggest that coherent eddies from GLED v1.0 exist in the real ocean and have the ability to302

transport water parcels.303
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4 Code and datasets availablility304

Our dataset GLED v1.0 is available at https://doi.org/10.5281/zenodo.7349753 (Liu and Abernathey, 2022). It is convenient305

to load the data using Python, Matlab, or other programming languages. Detailed examples for reading and analyzing the data306

using Python can be found in a GitHub repository (https://github.com/liutongya/GLED), in which we also provide the related307

algorithms to reproduce the generation of GLED v1.0. Users can apply these algorithms to regional or global identification of308

coherent eddies with different lifespans based on velocity fields from observations or numerical simulations.309

5 Conclusions and discussion310

Methods employed to identify oceanic mesoscale eddies can be classified into Eulerian and Lagrangian frameworks, and nearly311

all public global eddy dataset are based on the Eulerian framework (e.g., CS11) because of its operational simplicity. Eulerian312

eddies are generally treated as coherent structures that can transport tracers such as heat, salt, and nutrients, and they have313

been used widely to evaluate the material transport by eddies (e.g., Zhang et al., 2014), but recent studies under the Lagrangian314

framework have provided clear evidence that (i) Eulerian eddies are far from being coherent studies and (ii) using Eulerian315

methods will greatly overestimate the degree of real coherent transport (e.g., Abernathey and Haller, 2018; Liu et al., 2019). To316

provide an additional option for oceanographers in studying mesoscale eddies, in this study, we proposed a global Lagrangian317

eddy dataset (GLED v1.0) based on satellite observations.318

Millions of Lagrangian particles with a resolution of 1/32◦ were advected by satellite-derived surface geostrophic velocities319

for 180 days from the first day of every month over the period from January 1993 to June 2019. Using the LAVD method320

proposed by Haller et al. (2016), we identified coherent eddies (RCLVs) with lifetimes of 30, 90, and 180 days to generate321

GLED v1.0. This open-source dataset contains not only general features of coherent eddies (center position, equivalent radius,322

rotation property, etc.), but also the trajectories of particles trapped by coherent eddy boundaries over the lifetime. To the best323

of our knowledge, this is the first attempt to date to provide the position of Lagrangian particles advected by geostrophic flows324

in an eddy dataset.325

We compared the statistical features of RCLVs in GLED v1.0 with those of SSH eddies in META3.1exp. Unlike SSH eddies326

that are broadly distributed in the global ocean basins, RCLVs tend to be generated close to the eastern boundaries, and the327

RCLV numbers along the main paths of western-boundary currents and the ACC are very limited. The zonal and meridional328

propagation speeds of RCLVs are found to be qualitatively similar to those of SSH eddies in most regions, but RCLVs are329

much smaller than SSH eddies with a radius ratio of about 0.5. In addition, we conducted the dataset validation based on Argo330

floats and found that about 70% of Argo floats that are initially trapped can always be carried by 90-day and 180-day RCLVs331

during the lifetime.332

Although the size of coherent eddies is limited, it does not necessarily mean that the role of mesoscale eddies in the material333

transport is insignificant. It is speculated that the contribution of coherent structures to the overall eddy transport is small, and334

the incoherent motions such as stirring and filamentation on the periphery of mesoscale eddies might make a leading-order335

contribution (Hausmann and Czaja, 2012; Abernathey and Haller, 2018). Therefore, more attention is required to understand336
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material transport by the filamentary structures, and the global particle trajectories produced by this study might be useful for337

studying the motion behaviour outside coherent cores. In addition, given the huge difference in estimating the global eddy338

mass transport between Zhang et al. (2014) and Xia et al. (2022), it is worth conducting a more accurate estimate of the eddy339

coherent contribution based on our dataset and other observations.340

Because of the computation and storage pressures, GLED v1.0 only provides RCLVs identified over three time intervals.341

And it is still unclear how to reconcile the difference between the free Eulerian lifetime and the fixed Lagrangian lifetime. In342

order to better satisfy the users’ needs, as well as the eddy information in the dataset, we provide the related algorithms to343

reproduce our results completely, from driving Lagrangian particles to RCLV identification. Users should feel free to modify344

the configuration (e.g., the date of releasing particles and the identification time interval) according to their own research.345

Although we have produced a useful eddy dataset under the Lagrangian framework, one should note that not all studies346

must use Lagrangian eddies. Eulerian eddies are still convenient and meaningful when the coherent structure is not the main347

concern. Researchers should select the suitable method and dataset based on their objectives. This present study offers relief348

from the dilemma that the Eulerian eddy dataset is nearly the only option for studying mesoscale eddies.349

One limitation of the present dataset is that RCLVs are based on surface geostrophic velocities, which might introduce350

potential errors due to limited spatial and temporal sampling of satellite data. Lacorata et al. (2019) evaluated the Lagrangian351

simulations based on satellite-derived currents with respect to real drifter trajectories. They found that surface currents from352

satellite observations have overall good Lagrangian skills for large-scale transport and dispersion numerical simulations, but353

the finite-resolution flow field tends to underestimate relative dispersion at scales smaller than 100 km. The differences between354

simulated and real drifter trajectories might come from the fact that geostrophic currents fail to capture small-scale processes355

and vertical motions, such as submesoscale currents and inertia-gravity waves. Since the present study also used satellite data356

to drive particles, we did not expect to see better performance in the direct comparison between simulated particles and real357

near-surface drifters. This is the reason why we verify the accuracy of the dataset using Argo floats, whose motions are mainly358

determined by geostrophic flows. In addition, Sinha et al. (2019) investigated particle evolution driven by hourly-, daily-,359

and weekly-averaged velocities from a 1/48◦ numerical simulation, and several cases showed that small-scale/high-frequency360

motions from hourly and daily velocities can make the coherent structure identified from weekly velocities leaky and cause361

strong vertical motions of particles. Recent works highlighted the role of small motions in material transport, but the extent to362

which these motions affect coherent structures is still an open question.363

Here, we propose several potential application scenarios of GLED v1.0. First, it can be used to understand the structure and364

physical dynamics around mesoscale coherent eddies, including their interactions with multi-scale oceanic and atmospheric365

processes. Second, it can be used to estimate the coherent eddy transport of heat, salt, and nutrients, which can provide more366

accurate parameterization in climate and ecosystem models. Third, it can be used to explore the behavior and distribution of367

marine organisms and how they are influenced by coherent eddies. In addition, we need to remind users to be careful when368

using the particle trajectory in regions where submesoscale processes are active.369

Although limitations exist, the satellite-derived geostrophic flow field is still the only large-scale velocity observation that370

resolves mesoscale structures, and our dataset has been verified to be reasonable at the geostrophic scale. We see this study as371
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an important step toward fully understanding the features of mesoscale coherent structures, and we expect to update this dataset372

to version 2.0 once the observational data from the Surface Water and Ocean Topography mission become available. It would373

be quite meaningful to explore differences between the two versions, which will lead to new insights regarding multi-scale374

interactions and more accurate parameterization of eddy transport in numerical models.375
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Author contributions. RA proposed the idea and launched this project. TL and RA developed the related algorithm. TL conducted the offline377

particle advection and data analysis. TL organized the eddy dataset. TL and RA wrote the manuscript.378

Competing interests. The authors declare that they have no conflict of interest.379

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional380

affiliations.381

Acknowledgements. This project has been supported by the National Natural Science Foundation of China (42106008, 42227901). We thank382

Nathaniel Tarshish, Anirban Sinha, Wenda Zhang, and Ci Zhang for their early involvement to push this project forward. We thank two383

anonymous reviewers for their helpful and constructive comments.384

18



References385

Abernathey, R. and Haller, G.: Transport by lagrangian vortices in the eastern pacific, Journal of Physical Oceanography, 48, 667–685, 2018.386

Abernathey, R. P. and Marshall, J.: Global surface eddy diffusivities derived from satellite altimetry, Journal of Geophysical Research:387

Oceans, 118, 901–916, 2013.388

Adcroft, A., Campin, J.-M., Doddridge, S. D., Evangelinos, C., Ferreira, D., Follows, M., Forget, G., Hill, H., Jahn, O., Klymak, J., et al.:389

MITgcm documentation, Release checkpoint67a-12-gbf23121, 19, 2018.390

Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G.,391

et al.: On the resolutions of ocean altimetry maps, Ocean Science, 15, 1091–1109, 2019.392

Beron-Vera, F. J., Wang, Y., Olascoaga, M. J., Goni, G. J., and Haller, G.: Objective detection of oceanic eddies and the Agulhas leakage,393

Journal of Physical Oceanography, 43, 1426–1438, 2013.394

Busecke, J. J. and Abernathey, R. P.: Ocean mesoscale mixing linked to climate variability, Science Advances, 5, eaav5014, 2019.395

Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius396

of deformation, Journal of Physical Oceanography, 28, 433–460, 1998.397

Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The influence of nonlinear mesoscale eddies on near-surface398

oceanic chlorophyll, Science, 334, 328–332, 2011a.399

Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Progress in oceanography, 91,400

167–216, 2011b.401

Dilmahamod, A. F., Aguiar-González, B., Penven, P., Reason, C., De Ruijter, W., Malan, N., and Hermes, J.: SIDDIES corridor: a major east-402

west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean, Journal of Geophysical Research:403

Oceans, 123, 5406–5425, 2018.404

Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nature communications, 5, 1–6,405

2014.406

Dong, C., Liu, L., Nencioli, F., Bethel, B. J., Liu, Y., Xu, G., Ma, J., Ji, J., Sun, W., Shan, H., et al.: The near-global ocean mesoscale eddy407

atmospheric-oceanic-biological interaction observational dataset, Scientific Data, 9, 1–13, 2022.408

d’Ovidio, F., Isern-Fontanet, J., López, C., Hernández-García, E., and García-Ladona, E.: Comparison between Eulerian diagnostics and409

finite-size Lyapunov exponents computed from altimetry in the Algerian basin, Deep Sea Research Part I: Oceanographic Research410

Papers, 56, 15–31, 2009.411

Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.: A daily global mesoscale ocean eddy dataset from satellite412

altimetry, Scientific data, 2, 1–16, 2015.413

Frenger, I., Münnich, M., Gruber, N., and Knutti, R.: Southern Ocean eddy phenomenology, Journal of Geophysical Research: Oceans, 120,414

7413–7449, 2015.415

Fu, L.-L., Chelton, D. B., Le Traon, P.-Y., and Morrow, R.: Eddy dynamics from satellite altimetry, Oceanography, 23, 14–25, 2010.416

Gaube, P. and McGillicuddy Jr, D. J.: The influence of Gulf Stream eddies and meanders on near-surface chlorophyll, Deep Sea Research417

Part I: Oceanographic Research Papers, 122, 1–16, 2017.418

Haller, G.: Lagrangian coherent structures, Annual Review of Fluid Mechanics, 47, 137–162, 2015.419

Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F.: Defining coherent vortices objectively from the vorticity, Journal of Fluid420

Mechanics, 795, 136–173, 2016.421

19



Hausmann, U. and Czaja, A.: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport, Deep422

Sea Research Part I: Oceanographic Research Papers, 70, 60–72, 2012.423

He, Q., Zhan, H., Cai, S., He, Y., Huang, G., and Zhan, W.: A new assessment of mesoscale eddies in the South China Sea: Surface features,424

three-dimensional structures, and thermohaline transports, Journal of Geophysical Research: Oceans, 123, 4906–4929, 2018.425

He, Y., Feng, M., Xie, J., He, Q., Liu, J., Xu, J., Chen, Z., Zhang, Y., and Cai, S.: Revisit the vertical structure of the eddies and eddy-induced426

transport in the Leeuwin Current system, Journal of Geophysical Research: Oceans, 126, e2020JC016 556, 2021.427

Hughes, C. W. and Miller, P. I.: Rapid water transport by long-lasting modon eddy pairs in the southern midlatitude oceans, Geophysical428

Research Letters, 44, 12–375, 2017.429

Killworth, P. D., Chelton, D. B., and de Szoeke, R. A.: The speed of observed and theoretical long extratropical planetary waves, Journal of430

Physical Oceanography, 27, 1946–1966, 1997.431

Lacorata, G., Corrado, R., Falcini, F., and Santoleri, R.: FSLE analysis and validation of Lagrangian simulations based on satellite-derived432

GlobCurrent velocity data, Remote sensing of environment, 221, 136–143, 2019.433

Lagerloef, G. S., Mitchum, G. T., Lukas, R. B., and Niiler, P. P.: Tropical Pacific near-surface currents estimated from altimeter, wind, and434

drifter data, Journal of Geophysical Research: Oceans, 104, 23 313–23 326, 1999.435

Li, H., Xu, F., and Wang, G.: Global mapping of mesoscale eddy vertical tilt, Journal of Geophysical Research: Oceans, p. e2022JC019131,436

2022a.437

Li, J., Roughan, M., and Kerry, C.: Drivers of ocean warming in the western boundary currents of the Southern Hemisphere, Nature Climate438

Change, 12, 901–909, 2022b.439

Liu, T. and Abernathey, R.: A global Lagrangian eddy dataset based on satellite altimetry (GLED v1.0),440

https://doi.org/10.5281/zenodo.7349753, 2022.441

Liu, T., Abernathey, R., Sinha, A., and Chen, D.: Quantifying Eulerian eddy leakiness in an idealized model, Journal of Geophysical Research:442

Oceans, 124, 8869–8886, 2019.443

Liu, T., He, Y., Zhai, X., and Liu, X.: Diagnostics of coherent eddy transport in the South China Sea based on satellite observations, Remote444

Sensing, 2022a.445

Liu, T., Ou, H.-W., Liu, X., and Chen, D.: On the role of eddy mixing in the subtropical ocean circulation, Frontiers in Marine Science, 9,446

832 992, 2022b.447

Mahadevan, A.: The impact of submesoscale physics on primary productivity of plankton, Annual review of marine science, 8, 161–184,448

2016.449

McGillicuddy Jr, D. J.: Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale, Annual Review of Marine450

Science, 8, 125–159, 2016.451

Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A vector geometry–based eddy detection algorithm and its appli-452

cation to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight, Journal453

of atmospheric and oceanic technology, 27, 564–579, 2010.454

Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., and Dibarboure, G.: META3. 1exp: a new global mesoscale eddy trajectory455

atlas derived from altimetry, Earth System Science Data, 14, 1087–1107, 2022.456

Shadden, S. C., Lekien, F., and Marsden, J. E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov457

exponents in two-dimensional aperiodic flows, Physica D: Nonlinear Phenomena, 212, 271–304, 2005.458

20

https://doi.org/10.5281/zenodo.7349753


Sinha, A., Balwada, D., Tarshish, N., and Abernathey, R.: Modulation of lateral transport by submesoscale flows and inertia-gravity waves,459

Journal of Advances in Modeling Earth Systems, 11, 1039–1065, 2019.460

Tarshish, N., Abernathey, R., Zhang, C., Dufour, C. O., Frenger, I., and Griffies, S. M.: Identifying Lagrangian coherent vortices in a461

mesoscale ocean model, Ocean Modelling, 130, 15–28, 2018.462

Tian, F., Wang, M., Liu, X., He, Q., and Chen, G.: SLA-based orthogonal parallel detection of global rotationally coherent Lagrangian463

vortices, Journal of Atmospheric and Oceanic Technology, 2022.464

Wang, Y., Olascoaga, M. J., and Beron-Vera, F. J.: Coherent water transport across the South Atlantic, Geophysical Research Letters, 42,465

4072–4079, 2015.466

Wang, Y., Beron-Vera, F. J., and Olascoaga, M. J.: The life cycle of a coherent Lagrangian Agulhas ring, Journal of Geophysical Research:467

Oceans, 121, 3944–3954, 2016.468

Whalen, C. B., MacKinnon, J. A., and Talley, L. D.: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal469

waves, Nature Geoscience, 11, 842–847, 2018.470

Xia, Q., Li, G., and Dong, C.: Global oceanic mass transport by coherent eddies, Journal of Physical Oceanography, 2022.471

Zhang, W., Wolfe, C. L., and Abernathey, R.: Role of Coherent Eddies in Potential Vorticity Transport in Two-layer Quasigeostrophic472

Turbulence, arXiv preprint arXiv:1911.01520, 2019.473

Zhang, Z., Zhang, Y., Wang, W., and Huang, R. X.: Universal structure of mesoscale eddies in the ocean, Geophysical Research Letters, 40,474

3677–3681, 2013.475

Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale eddies, Science, 345, 322–324, 2014.476

21


