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Abstract. Holdover fires are usually associated with lightning-ignited wildfires (LIWs), which can experience a smouldering 

phase or go undetected for several hours to days and weeks before being reported. Since the existence and duration of the 20 

smouldering combustion in LIWs is usually unknown, holdover time is conventionally defined as the time between the 

lightning event that ignited the fire and the time the fire is detected. Therefore, all LIWs have an associated holdover time, 

which may range from a few minutes to several days. However, we lack a comprehensive understanding of holdover times. 

Here, we introduce a global database on holdover times of LIWs. We have collected holdover time data from 29 different 

studies across the world through a literature review and datasets assembled by authors of the original studies. The database is 25 

composed of three data files (censored data, non-censored data, ancillary data) and three metadata files (description of 

database variables, list of references, reproducible examples). Censored data are the core of the database and consist of 

different frequency distributions reporting the number or relative frequency of LIWs per interval of holdover time. In 

addition, ancillary data provide further information to understand the methods and contexts in which the data were generated 

in the original studies. The first version of the database contains 42 frequency distributions of holdover time built with data 30 

on more than 152,375 LIWs from 13 countries in five continents covering a time span from 1921 to 2020. This database is 

the first freely available, harmonized, and ready-to-use global source of holdover time data, which may be used in different 

ways to investigate LIWs and model the holdover phenomenon. The complete database can be downloaded at 

https://doi.org/10.5281/zenodo.7352172 (Moris et al., 2022). 
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1 Introduction 35 

Lightning-ignited wildfires (LIWs) are a major component of fire regimes in remote and mountainous regions (e.g., Hanes et 

al., 2019; Moris et al., 2020). Climate change is expected to increase the frequency and burned area of LIWs in certain 

regions (Hessilt et al., 2022), which in turn may affect the carbon cycle (Chen et al., 2021). There are still important 

knowledge gaps about LIWs. Whereas LIWs are often studied in boreal and temperate ecosystems of North America (e.g., 

Abatzoglou et al., 2016; Veraverbeke et al., 2017), in other regions such as Europe and Australia, LIWs receive less attention 40 

because of their lower occurrence or burned area in comparison with human-caused fires (Conedera et al., 2006; Ganteaume 

et al., 2013; Ganteaume and Syphard, 2018; Dorph et al., 2022). Similarly, LIWs are less studied in South America, Asia and 

Africa (e.g., Manry and Knight, 1986; Kharyutkina et al., 2022; Menezes et al., 2022). 

 

The physical process involved in LIWs is commonly divided into three phases: ignition, survival and arrival (Anderson, 45 

2002; Pineda and Rigo, 2017). The ignition is caused by a cloud-to-ground (CG) lightning strike. We know little about 

which fuels are more frequently first ignited by lightning, although the organic soil layers surrounding the base of trees hit 

by lightning are reported to be a common ignition point (Plummer, 1912; Taylor, 1969; Ogilvie, 1989). The survival phase, 

which refers to smouldering combustion, does not occur in every LIW (Cesti et al., 2005). Depending on environmental 

conditions (e.g., fuel dryness and weather), the ignition may spread almost immediately as a surface fire or, alternatively, 50 

survive as a smouldering fire in the organic soils (Anderson et al., 2000; Martell and Sun, 2008). Therefore, the survival 

phase, also known as smouldering or holdover phase, is characterized by the smouldering combustion (i.e., slow, low 

temperature, flameless burning) of the soil organic layers (Rein, 2016). It is assumed that the rain and weather conditions 

associated with thunderstorms are usually unfavorable to sustain flaming combustion (Pérez-Invernón et al., 2021; Soler et 

al., 2021). This may result in a smouldering phase within the litter, duff or humus layers until LIWs extinguish themselves or 55 

conditions become more favorable (e.g., drying out of surface fine fuels or strong winds) for a transition to flaming 

combustion (Show and Kotok, 1923; Taylor, 1969; Anderson et al., 2000; Pineda and Rigo, 2017). When a LIW reaches the 

final arrival phase, or flaming combustion, the faster spread and higher energy and smoke released by a surface fire facilitate 

its detection. Survival and arrival phases may also alternate during a LIW because flaming combustion lapses back into the 

survival phase driven by irregular and changing conditions of fuels and weather, e.g., overnight (Anderson et al., 2000; 60 

Anderson, 2002; Cesti et al., 2005). Furthermore, it is assumed that changes in environmental conditions can extinguish 

some LIWs during the survival phase before being detected and reported (Anderson et al., 2000; Wotton and Martell, 2005; 

Dowdy and Mills, 2009). 

 

Since LIWs occur often in remote areas, the processes and behavior of smouldering wildfires are difficult to study. As a 65 

result, these LIWs, which are commonly referred to as “holdover fires” in the scientific literature, remain poorly studied 

(Rein and Huang, 2021). A holdover fire may refer to any wildfire, human- or lightning-caused, with a smouldering phase 
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that remains undetected for a considerable time, including overwintering fires (Scholten et al., 2021). However, holdover 

fires are usually associated with LIWs that experience the survival phase (Flannigan and Wotton, 1991; Schultz et al., 2019), 

or simply LIWs that go undetected for an arbitrary duration, such as several hours or days (Show and Kotok, 1923; Taylor, 70 

1969; Anderson, 2002). Given that the existence and duration of the survival phase is usually unknown, “holdover time” is 

conventionally defined, for practical reasons, as the time between lightning-induced fire ignition and fire detection (Wotton 

and Martell, 2005; Dowdy and Mills, 2009; Braun and Stafford, 2016). According to this definition, all detected LIWs have 

an associated holdover time, and holdover times may range from a few minutes (e.g., Pineda and Rigo, 2017) to several 

days, and occasionally some weeks and even months (Frost et al., 2018). On the contrary, those LIWs that extinguish before 75 

being detected or reaching the arrival phase are not considered to have a holdover time according to the definition presented 

above. A typical example of LIWs with a survival phase are evening and night ignitions that smoulder overnight and are 

detected the day after in the afternoon when a higher temperature and lower relative humidity favor fire spread (Pineda et al., 

2014; Pineda and Rigo, 2017). While it is commonly accepted that the majority of LIWs have short holdover times (e.g., < 

24 hours; Dowdy and Mills, 2009; Schultz et al., 2019; Moris et al., 2020; Pineda et al., 2022), relative frequencies of LIWs 80 

with longer holdover durations are less generalizable, partially due to limited understanding on how often and how long 

LIWs can smoulder (Scholten et al., 2021). However, most studies show that holdover time follows a right-skewed 

distribution, with an exponential-like decay with increasing time (e.g., Nash and Johnson, 1996; Wotton and Martell, 2005; 

Schultz et al., 2019; Moris et al., 2020). 

 85 

Most data on holdover time during the 20th century come from individual fire reports collected by forest authorities (e.g., 

Kourtz, 1967; Barrows, 1951; Barrows, 1978). In forests of the western United States, observers stationed at fire lookouts 

not only reported wildfires, but also information on storm characteristics (Gisbone, 1926; Gisbone, 1931). For each visible 

LIW, holdover time was calculated as the time elapsed between the discovery of the wildfire and the most recent lightning 

storm reported over the concerned area (Gisbone, 1926; Morris, 1947). With the development of modern ground-based 90 

Lightning Location Systems (LLS; Cummins and Murphy, 2009), holdover times began to be estimated by matching wildfire 

and lightning data from LLS (Nash and Johnson, 1996; Wotton and Martell, 2005). Unfortunately, due to data inaccuracies 

in combination with holdover times, usually we cannot unambiguously distinguish the lightning strike that ignited a wildfire. 

Therefore, several lightning events, close enough in time and space to the reported wildfire, may be indicated as possible 

candidates for the ignition source (Dowdy and Mills, 2009; Braun and Stafford, 2016; Moris et al., 2020). Accordingly, 95 

methods developed to match wildfires and lightning rather search for the most likely individual lightning event that ignited 

the wildfire. Current methods apply a buffer area centered at the LIW ignition point to account for location errors of both 

lightning and wildfires, and a temporal window backward from the LIW discovery time to account for holdover time (Moris 

et al., 2020). For example, the method based on the minimum holdover time selects the lightning event providing the shortest 

holdover duration (Wotton and Martell, 2005; Moris et al., 2020), while the method based on the proximity index developed 100 

by Larjavaara et al. (2005) selects the lightning event with the highest value of spatio-temporal proximity (Pineda et al., 
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2014). Holdover time is then calculated as the time between the strike of the most probable lightning (i.e., the time of 

ignition recorded by the LLS) and the LIW discovery time (e.g., reported by a fire database). 

 

Despite the importance of the holdover phenomenon to understand the initial behavior of LIWs and identify lightning events 105 

causing wildfires, we lack a synthesis on the variability of holdover times, as well as any type of data source on holdover 

time that can be used for practical applications (e.g., data modeling). In this paper, we present the construction and structure 

of a global database of LIW holdover times with the aim of making these broad, harmonized and ready-to-use data on 

holdover time freely available to the community. The core of the database consists of frequency distributions of holdover 

times collected from numerous studies carried out during the last century in different regions, as well as metadata useful to 110 

understand the context of each dataset. 

2 Methodology 

2.1 Literature search and data sources 

We conducted literature searches to identify potential sources of holdover time data using academic databases and search 

engines: Scopus, Web of Science, JSTOR, ScienceDirect, SpringerLink, Scilit, Google Scholar, AGRIS, Canadian Forest 115 

Service Publications, and Treesearch. We used the search terms “lightning fire” and “holdover fire”, with emphasis on the 

title, abstract and keywords. The initial screening for relevant documents focused on figures, tables, and the presence of 

specific key words in the texts (i.e., holdover, latent, smoulder, survival, phase, elapse, time, detection, discovery, and 

lightning). Once an initial set of relevant publications were identified, we read them carefully to find holdover time data and 

additional information regarding how these data were obtained. During this phase, we found other potential data sources 120 

within the references of these publications. 

 

We identified 35 studies with potential data on holdover time. A few studies were discarded because the data were repeated 

or could not be extracted. For studies not showing details on holdover times, we contacted the corresponding authors to 

request for data. We also contacted corresponding authors of studies carried out from 2020 onwards to request for the 125 

original holdover time data. We ended up collecting data on holdover durations from 29 different studies across the world. 

2.2 Data collection 

According to the available information, three kinds of data were acquired: censored data on holdover time, non-censored 

data on holdover time, and ancillary data. Censored data are the core of the database and consist of frequency distributions. 

Frequency distributions report the number or relative frequency of LIWs for which we do not know the exact holdover times 130 

but the lower and upper limits of the time interval surrounding the holdover times (i.e., interval-censored data). Right-

censored data (i.e., only the lower limit is known) were included rarely. Some censored datasets were provided by authors of 
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the original studies, and the rest were collected from figures, tables, texts, appendices, and unpublished records from the 

sources identified in Sect. 2.1. We used the WebPlotDigitizer tool to extract data values from figures (Rohatgi, 2021). We 

did not set a minimum number of LIWs, but all frequency distributions included two or more time intervals. We compiled 135 

more than one frequency distribution from some studies in which different study areas were analyzed separately. 

 

Non-censored data refer to estimated values of continuous holdover time without any censoring (i.e., the exact estimated 

value of holdover time for each single LIW). Datasets of non-censored data were compiled by authors of the original studies 

and were also used to build some of the frequency distributions included in the censored data. 140 

 

Finally, we collected data describing and summarizing the studies from which the holdover times were estimated. These 

ancillary data contain information related to spatial, temporal, methodological, fire, and lightning aspects extracted from the 

original studies, which are important to understand the methods and contexts in which the data were generated. Additional 

external data sources were used to obtain information on the main biomes (Olson et al., 2001) and climate classes (Beck et 145 

al., 2018) of the study areas. 

2.3 Data harmonization and quality control 

The original data were not presented consistently across the various data sources. Consequently, some data variables were 

harmonized to facilitate the comparison of frequency distributions and studies. Most of the harmonization process consisted 

of assigning classes to ancillary data, and reporting the same units for all values of a variable. For instance, we standardized 150 

the time interval bounds of frequency data by reporting all times in days and starting at day zero. Few datasets reported 

negative values of holdover time (i.e., fire detections were reported before estimated ignition times) because of temporal 

uncertainties in the ignition data. Those particular fires were included within the first time interval of the frequency 

distributions (i.e., we assumed short holdover times for those LIWs) to solve this inconsistency. 

 155 

We double-checked for errors and inconsistencies within the database. The data were first checked automatically in R (R 

core team, 2021). We manually inspected all records (rows) for all variables (columns) of censored, non-censored, and 

ancillary data. The data provided by authors of original studies were also verified by the same authors. In the database, null 

values are not strictly reserved for variables where the required information is not applicable. Occasionally, we were unable 

to obtain some data. For example, in some frequency distributions of holdover time we collected data on relative frequencies 160 

but not on number of fires. 

 

The database may include some duplicate data. For instance, certain LIWs may be used in more than one dataset (i.e., 

frequency distribution). This is likely in studies with overlapping study areas and years, especially when the same fire data 

sources were used by the same authors. However, we did not attempt to correct this for two reasons. First, it was not possible 165 
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to identify “duplicate data” because of the data aggregation in the original studies. Generally, censored data were collected at 

study area level, and consequently the coordinates and times of ignition and discovery of single LIWs could not be retrieved. 

Second, we believe that overlaps do not imply the presence of redundant data given that each dataset included in the 

database is unique over a particular study area and time period. 

2.4 Data description 170 

The database on holdover time of LIWs is composed of three Comma-Separated Values (CSV) data files (censored data, 

non-censored data, ancillary data), and three complementary HyperText Markup Language (HTML) metadata files that 

support the data files (description of database variables, list of references, reproducible examples). For each data record 

(row) of a frequency distribution (dataset) in the censored data file, we provided twelve variables (columns), which are 

described in Table 1. The rows of censored data correspond to the time intervals in which the frequency distribution of 175 

holdover time are divided (Fig. 1). The duration of these time intervals can vary substantially between datasets (Fig. 1), and 

also within the same frequency distribution. When data on number of LIWs per time interval were not available, only 

relative frequencies were provided instead. Regarding non-censored data, all values of holdover time are reported in hours. 

 

Table 1. Overview of the variables of censored data from the database on holdover time of LIWs. 180 

Variable Description 

Study_id ID code referring to the original study and dataset. 

Reference In-text citation of the original study. 

Time_interval Duration of the time interval. 

Time_interval_d Duration of the time interval in days. 

Lower_limit_d Lower bound of the time interval in days. 

Upper_limit_d Upper bound of the time interval in days. 

N_fires Number of LIWs with an estimated holdover time within the time interval. 

RF Relative frequency of LIWs in the time interval. 

CRF Cumulative relative frequency of LIWs. 

Original_data How the frequency distribution was reported in the original study (N = number of fires; P = relative 

frequency). 

Data_location Where the data were reported within the original study. 

Collection_method Method used to collect the data (Copied from original; WebPlotDigitizer; Personal communication). 
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Figure 1. Examples of frequency distributions (i.e., censored datasets) of LIW holdover time from the database. (a) Daily 

frequency distribution obtained from 303 LIWs occurred in Austria between 2013 and 2020 (Müller and Vacik, 2017). (b) 

Hourly frequency distribution obtained from 6301 LIWs occurred in Arizona and New Mexico between 2009 and 2013 185 

(Pérez-Invernón et al., 2022). 
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Ancillary data were organized into 33 variables (columns). These variables were grouped into seven major groups to 

facilitate the description of the information (Table 2): data identification, spatial, temporal, fire, lightning, methodology, and 

data entry variables. Each row of the ancillary data represents a frequency distribution from the censored data and is 190 

identified with a unique code. A complete description of all the variables of the database is included in a separate file. 

Moreover, another file includes a list of references with the full citation of all the original data sources used to build the 

database, while the last file includes some reproducible examples for using the data within the R statistical environment. 

 

Table 2. Overview of the variables of ancillary data from the database on holdover time of LIWs. 195 

Variable Description 

 Variables on data identification: 

Study_id ID code referring to the original study and dataset. 

Reference In-text citation of the original study. 

Type_publication Type of original study (Paper; Proceeding; Report; Thesis; Unpublished). 

 Variables on spatial data: 

Study_area Territory in which the LIWs were studied. 

Country Country of the study area. 

ISO_code Country code or region code of the study area according to ISO 3166. 

Spatial_scale Spatial extent of the study area (Local; Regional; Continental; Global). 

Biome Most common biome of the study area according to Olson et al. (2001). 

Ecozone Biogeographic realm of the study area according to Olson et al. (2001). 

Climate_class Most common climate class of the study area according to the Köppen-Geiger climate classification 

by Beck et al. (2018). 

 Variables on temporal data: 

Start_year Starting year of the study period. 

End_year Ending year of the study period. 

Length_year Length of the study period in years. 

Min_time_h Minimum time interval in hours of the censored data. 

Max_time_h Maximum time interval in hours of the censored data. 

 Variables on fire data: 

Number_fires Total number of LIWs for which the holdover times were estimated. 

Number_records Total number of time intervals in which the frequency distribution of holdover time data was 

divided. 

Fire_detection Source of wildfire discovery data (Fire database; Remote sensing). 
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Fire_data_source Dataset used to extract LIW data. 

 Variables on lightning data: 

LLS Lightning Location System (LLS) used to obtain lightning data. 

Lightning_level Level at which lightning data were matched with wildfire data (Stroke; Flash). 

DE_pct Detection Efficiency (DE) refers of the expected percentage of lightning discharges reported by the 

LLS. 

LA_km Location Accuracy (LA) in km usually refers to the expected median error between the reported CG 

stroke locations by the LLS and the real ground strike points. 

 Variables on methodology: 

Method Methodological approach used to estimate holdover times of LIWs (Storm time; Lightning match). 

Buffer_distance_km Maximum buffer radius in km around the wildfire ignition point used to select potential igniting 

lightning. 

Temporal_window_d Maximum temporal window backward in days from the wildfire detection time used to select 

potential igniting lightning. 

Max_holdover_d Maximum estimated holdover time in days. 

Selection_criteria Criteria used to select the most likely igniting lightning (Minimum holdover time; Daily minimum 

distance; Maximum proximity index; Decision tree). 

 Variables on data entry: 

Dataset Reference number used to distinguish the holdover time distribution in case different methods were 

applied to the same dataset. 

Data_collector Person who filled the data records. 

Date_entry Date on which the data records were filled. 

Data_check Whether or not the data records were double-checked by a different person from the one who filled 

the data records (Yes; No). 

Comments Additional notes about the data or original study. 

3 Overview of contents 

The database contains 42 frequency distributions of censored holdover time data (Table 3) and nine non-censored datasets of 

single fire-level holdover time (Table 4). Individual time intervals of censored data go from one minute to 87 days, although 

hourly and daily intervals are the most frequent durations (Fig. 1). Censored data come from 29 different studies, mostly 

published in peer-reviewed journals, representing five major vegetated biomes (Fig. 2), and distributed across 13 countries in 200 

five continents (Fig. 3): North America (United States and Canada), South America (Brazil), Europe (Spain, Italy, 
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Switzerland, Austria, France, Portugal, Greece and Finland), Asia (Russia) and Oceania (Australia). The studies cover a time 

span of a century (from 1921 to 2020), with diverse study periods lasting from one to 24 years (Fig. 3). In total, the database 

includes 2,311 records of censored data obtained from more than 152,375 LIWs (Table 3). Frequency distributions were 

built with a variable number of LIWs (between 25 and 28,377), and 59.5% of the distributions exceed 500 LIWs (Table 3). 205 

Regarding the methodology to derive holdover times, 28.6% of the frequency distributions (all from the 20th century) used 

the elapsed time between discovery of the LIW and the most recent lightning storm over the area of ignition. The rest of 

frequency distributions (71.4%), from the late 20th and early 21th century, used lightning data from LLS. The maximum 

proximity index (in 17 frequency distributions) and the minimum holdover time (in 10 frequency distributions) are the most 

recurrent criteria applied to select igniting lightning. 210 

 

Table 3. Summary of the censored data from the database on holdover time of LIWs. 

Study id Study area Biome Study 

period 

Number 

fires 

Number 

records 

Median 

HOT 

(h) 

Maximum 

HOT (d) 

CRF 

d 1 

(%) 

SHO1923US01 California (US) Temperate 

coniferous 

forests 

1921–

1921 

 6 15.3  67.0 

SHO1930US01 California (US) Temperate 

coniferous 

forests 

1921–

1922 

443 6 12.8  68.0 

GIS1926US01 Northern Rocky 

Mountains (US) 

Temperate 

coniferous 

forests 

1924–

1925 

1933 11 4.8  85.0 

GIS1931US01 Northern Rocky 

Mountains (US) 

Temperate 

coniferous 

forests 

1924–

1928 

4149 11 4.0  86.0 

BAR1951US01 Northern Rocky 

Mountains (US) 

Temperate 

coniferous 

forests 

1931–

1945 

16368 13 4.2  79.0 

MOR1948US01 Oregon and 

Washington 

(US) 

Temperate 

coniferous 

forests 

1940–

1944 

5357 28 6.4  78.5 

TAY1969US01 Northern Rocky Temperate 1950– 14489 4 10.2  77.0 
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Mountains (US) coniferous 

forests 

1965 

KOU1967CA01 Canada Boreal forests 1960–

1963 

3615 16 18.4  59.6 

BAR1978US01 Arizona and 

New Mexico 

(US) 

Temperate 

coniferous 

forests 

1960–

1974 

28377 8 3.0  90.2 

CON2006CH01 Ticino (CH) Temperate 

coniferous 

forests 

1981–

2004 

154 7 15.8 7.0 76.0 

DUN2010US01 Florida (US) Temperate 

coniferous 

forests 

1986–

2003 

230 2 23.4 23.0 51.3 

NAS1996CA01 Alberta and 

Saskatchewan 

(CA) 

Boreal forests 1988–

1993 

2551 15 27.3 15.0 47.8 

WOT2005CA01 Ontario (CA) Boreal forests 1992–

2001 

5169 28 44.5 28.0 33.5 

LAR2005FI01 Finland Boreal forests 1996–

2002 

106 5 34.7  42.5 

DOW2009AU01 Victoria (AU) Temperate 

broadleaf and 

mixed forests 

2000–

2009 

1797 4 18.5 90.0 64.7 

WOT2022CA01 Boreal British 

Columbia (CA) 

Boreal forests 2000–

2020 

1393 22 21.2 22.0 56.6 

WOT2022CA04 Saskatchewan 

(CA) 

Boreal forests 2000–

2020 

2983 22 24.9 22.0 49.3 

WOT2022CA03 Alberta (CA) Boreal forests 2000–

2020 

10544 22 18.1 22.0 66.5 

WOT2022CA02 Southern and 

Central British 

Columbia (CA) 

Temperate 

coniferous 

forests 

2000–

2020 

16940 22 19.0 22.0 63.2 

HES2022US01 Alaska (US) Boreal forests 2001– 402 5 38.6 5.0 25.9 
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2012 

MOR2020CH01 Switzerland Temperate 

coniferous 

forests 

2001–

2018 

263 238 13.1 9.9 63.1 

HES2022CA01 Northwest 

Territories (CA) 

Boreal forests 2001–

2018 

550 5 47.7 5.0 23.1 

WOT2022CA06 Ontario (CA) Boreal forests 2001–

2019 

8005 22 53.6 22.0 25.5 

CON2006IT01 Aosta Valley 

(IT) 

Temperate 

coniferous 

forests 

2003–

2003 

25 6 20.0 6.0 60.0 

PIN2022ES01 Catalonia (ES) Mediterranean 

forests 

2003–

2020 

1013 233 1.8 9.7 84.4 

PIN2014ES01 Catalonia (ES) Mediterranean 

forests 

2004–

2009 

464 24 1.4 3.0  

DOR2022AU01 Victoria (AU) Temperate 

broadleaf and 

mixed forests 

2004–

2019 

6777 120 1.5 5.0 87.4 

WOT2022CA05 Manitoba (CA) Boreal forests 2004–

2020 

2542 22 39.8 22.0 38.8 

PER2022US02 Florida (US) Temperate 

coniferous 

forests 

2009–

2013 

2693 167 13.1 7.0 74.3 

PER2022US01 Arizona and 

New Mexico 

(US) 

Temperate 

coniferous 

forests 

2009–

2013 

6301 168 12.1 7.0 75.9 

PIN2017ES01 Catalonia (ES) Mediterranean 

forests 

2009–

2014 

357 19 1.6  87.1 

PER2021PT01 Portugal Mediterranean 

forests 

2009–

2015 

309 93 15.9 3.9 64.1 

PER2021ES01 Spain Mediterranean 

forests 

2009–

2015 

2702 336 5.7 14.0 72.8 

PER2021FR01 Mediterranean Mediterranean 2012– 36 242 3.0 10.1 75.0 
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France forests 2015 

SCH2019US01 United States Temperate 

coniferous 

forests 

2012–

2015 

797 15 17.6 15.0 68.0 

MEN2022BR01 Pantanal (BR) Flooded 

grasslands and 

savannas 

2012–

2017 

265 65 21.6 2.7 61.5 

MOR2020IT01 Aosta Valley 

(IT) 

Temperate 

coniferous 

forests 

2012–

2018 

32 150 6.0 6.3 71.9 

HES2022US02 Alaska (US) Boreal forests 2012–

2018 

287 5 37.0 5.0 28.2 

XUW2022RU01 Yakutia (RU) Boreal forests 2012–

2020 

645 8 38.7 8.0 30.5 

MUL2021AT01 Austria Temperate 

coniferous 

forests 

2013–

2020 

303 10 17.9 10.0 67.0 

MAC2019US01 Western United 

States 

Temperate 

coniferous 

forests 

2017–

2017 

95 11 45.4 11.0 27.4 

PER2021GR01 Greece Mediterranean 

forests 

2017–

2019 

914 95 29.2 4.0 43.4 

HOT = holdover time; CRF 1 d = cumulative relative frequency of LIWs with holdover time ≤ 24 hours; AU = Australia; 

BR = Brazil; CA = Canada; CH= Switzerland; ES = Spain; IT = Italy; RU = Russia; US = United States. 

 215 
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Table 4. Summary of the non-censored data from the database on holdover time of LIWs. 

Study id Study area Biome Study 

period 

Number 

fires 

Median 

HOT 

(h) 

Minimum 

HOT 

(min) 

Maximum 

HOT (d) 

CRF 

d 1 

(%) 

MOR2020CH01 Switzerland Temperate 

coniferous 

forests 

2001–

2018 

263 13.0 1.1 9.9 63.1 

PIN2022ES01 Catalonia (ES) Mediterranean 

forests 

2003–

2020 

1013 1.7 0.6 9.7 84.4 

PER2022US02 Florida (US) Temperate 

coniferous 

forests 

2009–

2013 

2693 13.1 0.0 7.0 74.3 

PER2022US01 Arizona and 

New Mexico 

(US) 

Temperate 

coniferous 

forests 

2009–

2013 

6301 12.1 0.0 7.0 75.9 

PER2021PT01 Portugal Mediterranean 

forests 

2009–

2015 

309 15.6 1.0 3.8 64.1 

PER2021ES01 Spain Mediterranean 

forests 

2009–

2015 

2702 5.7 0.0 14.0 72.8 

PER2021FR01 Mediterranean 

France 

Mediterranean 

forests 

2012–

2015 

36 3.7 8.0 10.1 75.0 

MEN2022BR01 Pantanal (BR) Flooded 

grasslands and 

savannas 

2012–

2017 

265 21.7 1.0 2.7 61.5 

MOR2020IT01 Aosta Valley 

(IT) 

Temperate 

coniferous 

forests 

2012–

2018 

32 6.3 37.7 6.2 71.9 

HOT = holdover time; CRF 1 d = cumulative relative frequency of LIWs with holdover time ≤ 24 hours; BR = Brazil; ES = 

Spain; IT = Italy; US = United States. 

 220 
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Figure 2. Boxplots of median values of holdover time by biome calculated from the 42 frequency distributions of censored 

data (Table 3). 
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 225 

Figure 3. Study areas and periods included in the database on holdover time of LIWs. Red dots represent the starting years 

of the study periods in each study area, blue dots the ending years, and solid black lines the duration of the study periods. AU 

= Australia; BR = Brazil; CA = Canada; CH= Switzerland; ES = Spain; IT = Italy; RU = Russia; US = United States. 

 

Censored and non-censored data show that the datasets of holdover time present right-skewed distributions (Fig. 1), with 230 

median holdover durations ranging from 1.4 to 53.6 hours (Table 3). Median values calculated from frequency data are 

influenced by the duration of the time intervals, and as a result median values calculated from non-censored data and hourly 

frequency distributions (i.e., regular 1-hour interval-censored frequencies) are more accurate than, for instance, values 

calculated from daily distributions (i.e., regular 1-day interval-censored frequencies). Daily frequency distributions indicate 

that the first 24 hours are the most frequent interval of holdover time (e.g., Fig. 1a), with the exception of four distributions 235 

using fire remote sensing data from boreal regions (“HES2022CA01”, “HES2022US01”, “HES2022US02”, 

“XUW2022RU01”), in which the second day (i.e., 24-48 hours) is the most frequent interval. In fact, hourly frequency 

distributions also illustrate that the first hour is the most frequent interval of holdover time (e.g., Fig. 1b), except for two 

distributions (“MOR2020IT01”, which is based on a low number of LIWs, and “MEN2022BR01”, which uses fire remote 

sensing data). Censored data show that in 30 out of 42 distributions, the majority of LIWs (i.e., > 50% of LIWs) display 240 

holdover times of less than 24 hours, although the percentages of LIWs with holdover time below 24 hours vary between 
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datasets (Table 3). Finally, the maximum holdover times reported in the database are strongly influenced by the temporal 

thresholds applied in each original study, and may therefore not be good indicators of the maximum holdover times that 

occur in the study areas (Table 3). 

4 Discussion 245 

The construction of the database faced several challenges that could be partially solved. Consequently, users of the present 

database should be aware of existing limitations. First and despite the long time span beginning in the 1920s (Show and 

Kotok, 1923; Gisbone, 1926; Show and Kotok, 1930; Gisbone, 1931), data on holdover times of LIWs are often hard to find 

and relatively scarce in the scientific literature. Second, holdover time data are fragmented across different types of 

publications, and highly focused on forest ecosystems of North America and Europe. Third, some researchers did not include 250 

holdover time data in the original studies and the data remained unpublished. In other cases, holdover time data appear 

embedded in figures and may not be extracted accurately. Fourth, the database does not include coordinates and dates of 

wildfires and lightning. Consequently, the database cannot be used to study holdover times of individual LIWs in full detail 

(e.g., Pineda et al., 2022). In that case, users of the database may contact the authors of the original studies, although often 

original data on wildfires and lightning may be difficult to share due to data privacy policies. Lastly, we did not search for 255 

scientific literature in other languages than English. In addition, we are aware that the database is not fully comprehensive 

and some holdover time datasets are not included in the current version of the database (e.g., Chen et al., 2015; Nampak et 

al., 2021). We therefore welcome any suggestion on other existing datasets that could be added to the database later on. 

 

Frequency data show that the number of LIWs tends to decrease with increasing holdover time (Fig. 1a). Yet, hourly 260 

frequency distributions of holdover time that contain nearly 1,000 or more LIWs suggest the presence of daily cycles of 

holdover time (i.e., peaks or local maxima in the frequency of LIWs separate by approximately 24 hours; Fig. 1b). Morris 

(1947) already noticed the existence of local maxima 24 hours apart from each other. Pineda et al. (2022) illustrated how 

these peaks are most likely associated with the diurnal heating and cooling cycle. The frequency distributions of both LIW 

detections and ignitions seem to follow bell-shaped distributions, with maximum values occurring between the late afternoon 265 

and early evening (i.e., 4-7 p.m.; Barrows, 1951; Pineda et al. 2022). Therefore, LIWs that smoulder for one or more nights 

may be more likely to be reported in the afternoon hours, when the environmental conditions become progressively warmer 

and drier, favoring a transition to flaming combustion. 

 

Empirical holdover time distributions may also mask some unsolved methodological issues. For instance, we generally lack 270 

field observations of the ignition, survival and arrival phases of LIWs (Fuquay et al., 1967; Ogilvie, 1989; Rein, 2016; 

Santoso et al., 2019). Consequently, modern methods applied to identify igniting lightning, including the maximum 

proximity index (Larjavaara et al., 2005; Pineda et al., 2014), rely on two probability-based assumptions related to holdover 
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time, which are both supported by the general shape of frequency distributions (Fig. 1): LIWs with short holdover times 

occur more frequently, while long holdover times are relatively rare in LIWs. Thus, the shorter the holdover time, the higher 275 

the degree of confidence in the ignition time. In fact, the minimum holdover time criteria is based almost exclusively on this 

assumption (Wotton and Martell, 2005; Moris et al., 2020). Moreover, a maximum holdover duration must be applied to 

limit the possibility that a lightning event may occur near a wildfire simply by pure chance (i.e., wildfires with long holdover 

times might actually be human-caused; Nash and Johnson, 1996; Dowdy and Mills, 2009; Hessilt et al., 2022). 

 280 

Further, we noticed that studies using remote sensing data (satellite images) as a source of fire ignition data present slightly 

different frequency distributions of holdover time. In contrast to what is typically reported, in daily and hourly frequency 

distributions the first time interval (i.e., the first day and hour respectively) is not the most frequent one. This may be due to 

limitations of satellite data, such as temporal resolution (i.e., revisit period), spatial resolution (i.e., pixel size), and omission 

errors caused by clouds and smoke that affect the spatial and temporal accuracy of fire data products (Veraverbeke et al., 285 

2014). For instance, active fires are only detectable if they are large or intense enough in relation to the pixel extent during 

the time of the satellite overpass, and not hindered by atmospheric conditions such as cloud cover or heavy smoke. These 

limitations could delay the discovery time of LIWs retrieved from satellite data (Hessilt et al., 2022; Menezes et al., 2022; 

Xu et al., 2022). This may explain the underestimation of the frequency of short holdover times, displacing the mode of 

frequency distributions towards longer holdover times in comparison with studies that use fire records reported by more 290 

traditional methods. As a result, non-ecological factors, such as the lower wildfire detection capacity characteristic of remote 

areas (Wotton and Martell, 2005) and satellite-based active fire products (Johnston et al., 2018), may affect the estimation of 

holdover times, confounding the association with other drivers such as climate, weather, vegetation and soil, which are 

typically used to explain the longer holdover times found in boreal regions (Fig. 2). 

 295 

Similarly, recent holdover time data derived with the help of LLS are known to be affected by several data and 

methodological issues (Müller et al., 2013; Schultz et al., 2019; Moris et al., 2020; Pineda et al., 2022). Problems with 

wildfire data (e.g., misclassifications, low detection effort), lightning data (e.g., low detection efficiency and location 

accuracy of LLS), and the methodology to match wildfires and lightning (e.g., criteria and parameters applied to select the 

most probable lightning igniting LIWs) can influence the estimations of holdover time. Nevertheless, we expect that these 300 

uncertainties derived from non-ecological factors will decrease with the improvement of data quality and methodological 

approaches. Furthermore, current and future instruments to detect lightning from satellites, such as the Geostationary 

Lightning Mapper (GLM) of the Geostationary Operational Environmental Satellite (GOES) R series (Goodman et al., 2013) 

and the Lightning Imager (LI) of the Meteosat Third Generation (MTG) satellite series (Dobber and Grandell, 2014), can be 

used as a complementary and alternative source of lightning data to ground-based LSS. On the other hand, holdover time 305 

data derived during the 20th century, before the application of LLS, are consistent with the most recent datasets. In 

summary, the broad differences in data and methodological aspects between studies may complicate direct comparisons of 
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holdover time datasets (Table 3). Since users of the database may only be interested in certain datasets, ancillary data should 

facilitate filtering censored and non-censored datasets. 

 310 

The potential applications of the database on holdover times are diverse. (1) The data can be utilized to obtain descriptive 

statistics and plots on holdover time in different regions across the world. (2) Future studies may use the database to 

corroborate and compare their own holdover time estimates. (3) The database and the original studies listed in it may offer a 

guide to obtain holdover time data and illustrate their main issues according to the scientific literature. (4) Theoretical 

probability distributions can be fitted using our frequency data to add a temporal dimension to the calculation of probabilities 315 

of lightning striking the reported LIW ignition areas (Hunt et al., 2017). (5) Similarly, the frequency distributions can help 

researchers select a probability distribution for their holdover time parametric models to identify fine-scale drivers of 

holdover duration or predict future durations under diverse scenarios. (6) Exploration and inferential models on holdover 

time at broad scales could be tested using this database in combination with other datasets (e.g., from remote sensing). 

5 Data availability 320 

The current version of the database on holdover times of LIWs is freely available from Zenodo at 

https://doi.org/10.5281/zenodo.7352172 (Moris et al., 2022) under a CC-BY-4.0 license. Feedback on the data and files by 

users are welcome. The database includes code for data loading, plotting and basic manipulation within the R statistical 

environment. The data may be expanded and updated in the future. 

6 Conclusions 325 

The main significance of this database is to become the first publicly available, harmonized, and ready-to-use global source 

of holdover time data. The current version of the database allows users to download and explore 42 frequency distributions 

of holdover time built with data on more than 150,000 LIWs from 13 countries and different periods extending from 1921 to 

2020. By facilitating the access and analysis of different datasets of holdover time data, this database may become a 

significant data source for those interested in studying LIWs. Future research on LIWs will likely generate new holdover 330 

time data. Potential contributors to the database are thus encouraged to contact the corresponding author to discuss 

arrangements for sharing data. We expect that the database will be utilized in different ways, helping to improve our limited 

understanding of the holdover phenomenon and its implications for the study and modeling of LIWs. 
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