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Abstract. Irrigation water use represents the primary source of freshwater consumption by humans. The amount of water 

withdrawals for agricultural purposes is expected to further increase in the upcoming years to face the rising world 15 

population and higher living standards. Hence, effective plans for enacting a rational management of agricultural water use 

are urgent, but they are limited by knowledge gaps about irrigation. Detailed information on irrigation dynamics (i.e., 

extents, timing, and amounts) is generally lacking worldwide, but satellite observations can be used to fill this gap.  

This paper describes the first regional-scale and high-resolution (1 and 6 km) irrigation water data sets obtained from 

satellite observations. The products are developed over three major river basins characterized by varying irrigation extents 20 

and methodologies, as well as by different climatic conditions. The data sets are an outcome of the European Space Agency 

(ESA) Irrigation+ project. The irrigation amounts have been estimated through the SM-based (Soil-Moisture-based) 

inversion approach over the Ebro river basin (North-eastern Spain), the Po valley (Northern Italy), and the Murray-Darling 

basin (South-eastern Australia). The satellite-derived irrigation products referring to the case studies in Europe have a spatial 

resolution of 1 km, and they are retrieved by exploiting Sentinel-1 soil moisture data obtained through the RT1 (first-order 25 

Radiative Transfer) model. A spatial sampling of 6 km is instead used for the Australian pilot area, since in this case the soil 

moisture information comes from CYGNSS (Cyclone Global Navigation Satellite System) observations. All the irrigation 

products are delivered with a weekly temporal aggregation. The 1 km data sets over the two European regions cover a period 

ranging from January 2016 to July 2020, while the irrigation estimates over the Murray-Darling basin are available for the 

time span April 2017 – July 2020. The retrieved irrigation amounts have been compared with benchmark rates collected over 30 

selected agricultural districts. Results highlight satisfactory performances over the major part of the pilot sites falling within 

the two regions characterized by a semi-arid climate, namely the Ebro and the Murray-Darling basins, quantified by median 

values of 𝑅𝑀𝑆𝐸, Pearson correlation, 𝑟, and 𝐵𝐼𝐴𝑆 equal to 12.4 mm/14-day, 0.66, and -4.62 mm/14-day, respectively, for 
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the Ebro basin and to 10.54 mm/month, 0.77, and -3.07 mm/month, respectively, for the Murray-Darling basin. The 

assessment of the performances over the Po valley is affected by the limited availability of in situ reference data for 35 

irrigation. 

1 Introduction 

Human activities are deeply modifying the natural hydrological cycle, as they affect water storage and relocation dynamics. 

Among the anthropogenic water uses, the agricultural one (mainly constituted of water applied for irrigation) prevails. More 

than 70% of surface and sub-surface water withdrawals worldwide are destined to irrigation practices (Foley et al., 2011; 40 

Dorigo et al., 2021). In the near future, the pressure exerted on water resources to foster irrigation is expected to be further 

exacerbated to face the global challenge represented by the increasing food demand due to the population growth under 

climate warming scenarios (Hunter et al., 2017; Ferguson et al., 2018). Hence, strategies aimed at a rational management of 

agricultural water are essential for several environmental, economic, and social reasons, as well as to comprehensively 

characterize the hydrological cycle over anthropized basins. Nevertheless, irrigation practices are scarcely monitored 45 

worldwide, thus creating the paradoxical situation for which the largest human intervention on the water cycle is mostly 

unknown. Remote sensing technology offers unprecedented opportunities for answering the following research question: 

how much water is used for irrigation? More in details, remotely sensed observations of soil moisture and evapotranspiration 

are particularly suitable for the development of irrigation quantification techniques, as demonstrated by a number of recent 

studies implementing evapotranspiration-based (see, e.g., Romaguera et al., 2014; Van Eekelen et al., 2015; Peña-Arancibia 50 

et al., 2016; Brombacher et al., 2022) and soil-moisture-based (see, e.g., Brocca et al., 2018; Jalilvand et al., 2019; 

Zaussinger et al., 2019; Dari et al., 2020, 2022b; Zappa et al., 2021; Zhang et al., 2022) approaches. Brocca et al. (2018) first 

proposed an irrigation quantification methodology relying on the inversion of the satellite soil moisture signal, currently 

known as the SM-based (Soil-Moisture-based) inversion approach. The feasibility of estimating irrigation rates through 

coarse resolution soil moisture data from AMSR2 (Advanced Microwave Scanning Radiometer 2), ASCAT (Advanced 55 

SCATterometer), SMAP (Soil Moisture Active Passive), and SMOS (Soil Moisture and Ocean Salinity) was demonstrated, 

even though limitations due to the low spatial resolution of the input data sets were pointed out. Later on, the methodology 

was implemented by Jalilvand et al. (2019) over a semi-arid region of Iran by exploiting AMSR2, ASCAT, and SMOS soil 

moisture data. In this study, the not-negligible contribution of evapotranspiration in properly reproducing irrigation amounts 

was highlighted. This result was corroborated by Dari et al. (2020), who further developed the method by implementing the 60 

guidelines provided by the FAO (Food and Agriculture Organization) paper n.56 (Allen et al., 1998) within the SM-based 

inversion algorithm to develop a finer modeling of crop evapotranspiration. The approach was successfully applied over 

heavily irrigated areas located in North-eastern Spain. In that case, input soil moisture data from the 1 km resolution 

DISPATCH (DISaggregation based on Physical And Theoretical scale CHange; Merlin et al., 2013) downscaled SMOS and 

SMAP products were used. Dari et al. (2022b) further studied the role of the evapotranspiration component within the SM-65 
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based inversion algorithm and introduced the interesting perspective of a configuration forced with remotely sensed data 

only. The SM-based inversion approach is not the unique method relying on soil moisture data to estimate irrigation existing 

in literature. Another example is represented by the SM-delta (Soil-Moisture-delta) algorithm, first proposed by Zaussinger 

et al. (2019). The approach is based on the discrepancies between satellite and modeled soil moisture, which, over 

agricultural areas, can be attributed to irrigation signals. The method was later updated by Zappa et al. (2021), who added 70 

terms accounting for evapotranspiration and drainage fluxes to the algorithm. This new configuration was applied over 

agricultural fields in Northern Germany; high-resolution (500 m) soil moisture observations from Sentinel-1 were used and 

an agreement between estimated irrigation amounts and benchmark rates quantified by an average Pearson correlation equal 

to 0.64 was found. The SM-delta was recently applied in synthetic and real-world experiments to highlight the mutual effects 

of varying satellite soil moisture temporal and spatial resolutions on the accuracy of the retrieved irrigation amounts (Zappa 75 

et al., 2022). Finally, data assimilation (DA) techniques exploiting remote sensing soil moisture can also be used in irrigation 

quantification studies to balance modeling deficiencies and correct unrealistic assumptions. Indeed, models have recently 

seen improvements in irrigation parameterization (Ozdogan etal., 2010; Lawston et al., 2015; Nie et al., 2018). However, 

some studies (e.g., Modanesi et al., 2021b) have highlighted that the performance of LSM (Land Surface Model) irrigation 

simulations are negatively affected by simplified assumptions in model parameterizations, and by unrealistic/out of date 80 

input information (e.g., lack of dynamic crop maps). DA can reduce models’ uncertainties by merging model systems with 

satellite observations, which can track human-induced processes. In particular, Lawston et al. (2017) suggested the use of 

SMAP surface soil moisture retrievals to incorporate the irrigation signal into models via DA and more recently Jalivand et 

al. (2021) exploited the potential of SMAP/Sentinel-1 retrieval (Das et al., 2019) for the same purpose. In this context, 

Abolafia-Rosenzweig et al. (2019) designed a DA system for remote-sensing-based soil moisture assimilation into the VIC 85 

(Variable Infiltration Capacity) model (Liang et al., 1994) to improve irrigation estimates through a particle batch smoother. 

An alternative way to assimilate satellite observations is to directly ingest level-1 observations (i.e., brightness temperature 

or radar backscatter), instead of retrievals (De Lannoy and Reichle, 2016a, 2016b; Lievens et al., 2017a, 2017b; Modanesi et 

al. 2022). In particular, Modanesi et al. (2022) assimilated 1 km Sentinel-1 backscatter (γ0) observations into the Noah MP 

LSM, equipped with a sprinkler irrigation scheme into the National Aeronautics and Space Administration (NASA) Land 90 

Information System (LIS) framework, for the update of both surface soil moisture and vegetation states. The authors found 

that DA improves the bias of irrigation simulation although limitations mainly due to irrigation model parameterization still 

need further improvement. 

The high-resolution retrievals of the latest satellite capabilities open unprecedented perspectives in the irrigation 

quantification activity. As pointed out in Peng et al. (2021), the optimal spatial resolution for monitoring agricultural 95 

practices is less than or equal to 1 km. This is particularly true in the Mediterranean area, where the nominal size of the 

agricultural fields makes the adoption of high-resolution data necessary (Dari et al., 2022a). 

This study is aimed at presenting three regional-scale, high-resolution irrigation data sets developed through the SM-based 

inversion approach within the European Space Agency (ESA) Irrigation+ project (https://esairrigationplus.org/). The 
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irrigation products have been developed for two European regions, namely the Ebro basin (Spain) and the Po valley (Italy), 100 

and for the Murray-Darling basin (Australia). Both data sets referring to the Mediterranean area rely on input soil moisture 

from the RT1 (first-order Radiative Transfer) Sentinel-1 data set (Quast et al., 2019), are delivered over a 1 km regular grid, 

and cover the period ranging from January 2016 to the end of July 2020. For the Australian sites, Spire’s soil moisture 

product retrieved from NASA’s CYGNSS (Cyclone Global Navigation Satellite System) satellites data (Freeman et al., 

2020) has been used instead; irrigation estimates are sampled over a 6 km regular grid and the temporal coverage is from 105 

April 2017 to July 2020. All the products are delivered with a weekly temporal aggregation. Even though an assessment of 

the product’s performances is provided by exploiting benchmark irrigation amounts over selected sites, the authors’ main 

goal is to make the data sets publicly available as they can be used and further validated by the scientific community. The 

proposed irrigation estimates represent an important step towards the implementation of an operational system for high-

resolution irrigation water monitoring from satellite observations. 110 

2 Pilot areas 

The irrigation products have been developed over three regions highly influenced by irrigation practices. They are the Ebro 

river basin (~86000 km2) in Spain, the Po valley (~78000 km2) in Italy, which includes the Po river basin and part of the 

Emilia-Romagna region, and the Murray-Darling basin (~1000000 km2) in Australia. According to the Köppen-Geiger 

climate classification (Beck et al., 2018) provided in Figure 1, the Ebro basin is mainly characterized by a cold semi-arid 115 

climate (BSk), with oceanic climate areas (Cfb) interesting the upper part. The Po river valley mainly falls within the humid 

subtropical climatic zone (Cfa), while the Murray-Darling basin is mainly subject to hot and cold semi-arid climatic areas 

(BSh and BSk, respectively); desert climate (BWh) is also present for a minor extent. 

The Ebro basin is the largest Mediterranean basin of Spain and a major Mediterranean basin in Europe. Precipitation is 

unevenly distributed, being higher in the mountainous regions, where it can reach 1800 mm/year, and lower in the central 120 

valley, with values below 500 mm/year. Therefore, to irrigate agricultural areas, mainly located in the central valley, there is 

an extensive network of dams and canals to transport water from the mountains to these regions. For instance, the total dam 

capacity is approximately 8000 hm3 (PHE 2015-20211). Focusing on agriculture, the most representative herbaceous crops 

are alfalfa, corn, barley, wheat, and rice, while the most representative tree crops are peach and pear trees, vineyards, and 

olive groves. There are almost 9660 km2 conceded for irrigated surface over the basin, being the average agricultural annual 125 

demand under objective conditions of 7623 hm3/year.  

The Po valley is part of the Po river basin, the longest river in Italy. The key importance in terms of agricultural production 

together with the high sensitivity to recent severe drought events (Strosser et al., 2012; Ceppi et al., 2014; Formetta et al., 

2022) have turned the Po valley into a critical hotspot for studying the water assessment and impact of human activities on 

                                                           
1 Ministerio de Agricultura, Alimentación y Medio Ambiente, Confederación Hidrográfica del Ebro: Plan Hidrológico de la 

parte española de la demarcación hidrográfica del Ebro 2015-2021. v2.6 Memoria, 2015 
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the water cycle. The Northern side of the valley has a higher water availability compared to the South, thanks to the presence 130 

of several Alpine reservoirs (Musolino et al., 2017). In the South, the Emilia Romagna region is poorer in storage capacity 

but it is served by one of the most important Italian hydraulic systems for irrigation applications, the Canale Emiliano 

Romagnolo (CER, https://consorziocer.it/it/). The size and spatial extent of the irrigated fields and districts in the Po valley 

are often not homogeneous and agricultural plots are characterized by small extents due to complex historical processes 

(Massari et al., 2021). The main cultivated crops include general summer and winter crops, orchards, olive groves, and 135 

vineyards (https://sites.google.com/arpae.it/servizio-climatico-icolt/home?authuser=0, last access: 4 November 2022). 

The Murray-Darling basin is often considered the food bowl of Australia, covering over 1000000 km2 or approximately 14% 

of Australia and accounts for over two thirds of all of Australia’s irrigation water use. There has been a cap on diversions 

since 1995 to help manage over allocation and extraction in the basin. The basin is often subject to extreme droughts such as 

the Millennium drought (2001-2009) (van Dijk et al., 2013) and more recently the 2017-2019 drought. There is typically 140 

more irrigation in the Southern side of the basin which is facilitated by major storages in the region. Irrigated properties are 

often fragmented in nature and contain a wide range of crops that are suited to the vastly different conditions that are 

observed across such a large basin. Both surface water and groundwater are used across the basin with groundwater use 

mainly associated with major alluvial systems.  

 145 
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Figure 1: Location of the pilot areas and their climatic characteristics according to the Köppen-Geiger classification. The Ebro 

basin and the Po valley are indicated by the number 1 and 2, respectively. The Murray-Darling basin is identified by the number 

3. 

3 Materials and methods 150 

3.1 The SM-based inversion approach 

Regional-scale irrigation products have been developed through the SM-based inversion approach (Brocca et al., 2018; Dari 

et al., 2020; 2022b). The method relies on the inversion of the soil moisture signal for backward estimating the total amount 
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of water entering into the soil, which, over agricultural areas, is determined by rainfall plus irrigation. The approach is based 

on the soil water balance, expressed by: 155 

𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
=  𝑖(𝑡) +  𝑟(𝑡) −  𝑔(𝑡) −  𝑠𝑟(𝑡) −  𝑒(𝑡)                         (1) 

where 𝑍∗ [mm] indicates the water capacity of the soil layer, calculated as the product between the depth of the soil layer and 

the porosity, 𝑆(𝑡) [-] is the relative soil moisture (i.e., ranging between 0 and 1), 𝑡 [days] indicates the time, 𝑖(𝑡) is the 

irrigation rate [mm/day], 𝑟(𝑡) [mm/day] is the rainfall rate, 𝑔(𝑡) [mm/day] indicates the drainage term, 𝑠𝑟(𝑡) [mm/day] is 

the surface runoff, and 𝑒(𝑡) [mm/day] represents the evapotranspiration rate. The Eq. (1) is equivalent to the following:  160 

𝑊𝑖𝑛(𝑡) = 𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
+  𝑔(𝑡) +  𝑠𝑟(𝑡) +  𝑒(𝑡)                          (2) 

with 𝑊𝑖𝑛(𝑡) indicating the algorithm output, i.e. the total amount of water entering into the soil. The drainage term can be 

linked to soil moisture according to the power law equation 𝑔(𝑡) =  𝑎𝑆(𝑡)𝑏 , in which 𝑎 and 𝑏  are drainage parameters 

(Famiglietti and Woods, 1994; Brocca et al., 2014). As demonstrated in previous studies, the 𝑠𝑟(𝑡) term can be neglected 

(Brocca et al., 2015; Jalilvand et al., 2019), since irrigation water either infiltrates or evaporates. The actual 165 

evapotranspiration contribution is computed as the potential rate, 𝑃𝐸𝑇(𝑡), limited by the available water content: 𝑒(𝑡) = 𝐹 ·

𝑆(𝑡) · 𝑃𝐸𝑇(𝑡); an adjustment factor, 𝐹, ranging between 0.6 and 1.4 and aimed at accounting for uncertainties linked to the 

coarse resolution of the input PET rates is adopted (Modanesi et al., 2021a). Hence, Eq. (2) can be simplified as:  

𝑊𝑖𝑛 (𝑡) = 𝑍∗ 𝑑𝑆(𝑡)

𝑑𝑡
+  𝑎𝑆(𝑡)𝑏 +  𝐹 · 𝑆(𝑡) · 𝑃𝐸𝑇(𝑡)                         (3) 

Before running the algorithm, the noise in the soil moisture signal is reduced by computing the Soil Water Index (SWI) 170 

according to the exponential filter proposed by Albergel et al. (2008). Once the total amount of water entering into the soil is 

quantified, it is possible to obtain the irrigation rate by removing the rainfall from the output of Eq. (3), 𝑖(𝑡) = 𝑊𝑖𝑛 (𝑡) − 

𝑟(𝑡); negative irrigation rates (if any) are set equal to zero. In order to remove negligible irrigation amounts attributable to 

random errors, the results are discarded if the ratio between weekly estimated irrigation and weekly rainfall is lower than 0.2. 

Weekly irrigation estimates covering the time span from January 2016 to July 2020 have been produced for the Ebro basin 175 

and the Po river valley. Over the Murray-Darling basin, weekly irrigation amounts have been retrieved by considering the 

period from April 2017 to July 2020. A regular 1 km grid has been adopted for the Spanish and the Italian case study, while 

a 6 km sampling has been used for the Australian pilot basin. For each region, the irrigation amounts have been estimated 

over agricultural areas only. For the Ebro and Po regions, such an information has been derived by the 25 m resolution 

Corine Land Cover data set referring to the year 2018 (CLC2018), while for the Murray-Darling basin the 300 m spatial 180 

resolution ESA CCI (Climate Change Initiative) land cover map for the year 2018 has been exploited.  

The parameters 𝑎, 𝑏, 𝑍∗, and 𝐹 of Eq. (3) are calibrated by implementing the iterative procedure summarised in Figure 2. 

First, the algorithm is run by masking out days with no rainfall rate during the irrigation seasons (hence, potential irrigation 

days). This first step involves the 𝑎, 𝑏 , and 𝑍∗  parameters which are optimized by minimizing the Root Mean Square 

Difference (𝑅𝑀𝑆𝐷) against reference rainfall rates; during this phase, implemented for each pixel, the evapotranspiration 185 
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adjustment factor, 𝐹, is assumed equal to 1. Then, 𝐹 is calibrated against the sum of rainfall plus irrigation over selected pilot 

sites where irrigation rates are known. At this point, the calibrated 𝐹 value is compared with the first guess (𝐹 =  1) and, in 

case of disagreement, the values of 𝑎, 𝑏, and 𝑍∗ and are re-calibrated by repeating the first step and adopting the updated 𝐹 

value. It is important to highlight that the calibration of 𝑎, 𝑏, and 𝑍∗ is spatially distributed, hence, such values differ pixel 

by pixel. Conversely, the calibration of 𝐹 can be only implemented over selected sites where irrigation rates are known and 190 

for this reason spatially aggregated time series must be used. The period 2016-2017 has been considered for the calibration 

procedure over the Ebro basin and the Po valley, while for the Murray-Darling catchment the time span ranging from April 

2017 to the end of 2018 has been adopted. The 𝐹 parameter has been calibrated over three districts in the Ebro basin, two 

small districts in the Po river valley and three districts in the Murray-Darling basin. For each region, the areal-weighted 

average of the 𝐹 values has been adopted (as a fixed parameter for all the pixels). For more details on the outputs of the 195 

calibration procedure, as well as on the irrigation data used to calibrate the 𝐹 parameter, the reader is referred to Appendix A 

and Sub-section 3.3, respectively.  

 

 

Figure 2: Iterative procedure adopted to calibrate the SM-based inversion algorithm parameters 𝒂, 𝒃, 𝒁∗, and 𝑭. 200 

3.2 Input data sets 

Input time series of soil moisture, potential evapotranspiration (PET), and rainfall are needed to run the SM-based inversion 

approach. For the Ebro and the Po regions, the irrigation products rely on 1 km soil moisture data derived by Sentinel-1 

observations. More in detail, Soil moisture is obtained from incidence angle dependent Sentinel-1 backscatter measurements 

at 500m spatial sampling (~1 km spatial resolution) (Bauer-Marschallinger et al., 2019) by using a time series based first-205 

order radiative transfer modelling approach (RT1) (Quast et al., 2019; 2023). The scattering characteristics of soil- and 

vegetation are hereby modelled via parametric distribution functions. The retrieval is then performed via a non-linear least-

squares regression procedure that minimises the difference between the measured and modelled backscatter time series for 
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each pixel individually (Quast, 2021). To account for spatial variations in the soil-scattering characteristics, a temporally 

constant soil-scattering directionality parameter is optimised. To correct for effects induced by seasonal dynamics of 210 

vegetation, auxiliary Leaf Area Index (LAI) time series provided by ECMWF (European Centre for Medium-Range Weather 

Forecasts) ERA5-Land (European ReAnalysis v5-Land) reanalysis data set (Muñoz-Sabater et al., 2021) are used as proxy 

for the seasonal dynamics of the vegetation optical depth. In addition, the single-scattering albedo of the vegetation layer is 

optimised for each Sentinel-1 orbit individually to account for differences in the observation geometry between consecutive 

timestamps. The soil moisture time series is finally obtained by implying a linear relationship to the normalisation factor of 215 

the bare-soil scattering distribution function. The resulting soil moisture data set therefore represents a percentage measure 

of the relative moisture saturation of the soil surface.  

The irrigation product developed over the Murray-Darlig basin relies on CYGNSS observations. The GNSS-R remote 

sensing is a relatively new technique based on a bistatic radar system that is used to perform Earth surface scatterometry. 

The applications of GNSS-R technique have been demonstrated in several studies using the data from recent space-borne 220 

missions, such as TechDemoSat-1, CYGNSS, and Spire’s GNSS-R satellites2. The CYGNSS satellites constellation consists 

of eight GNSS-Reflectometry (GNSS-R) satellites launched in December 2016 into a 35-degree inclination low Earth. Each 

satellite carries a 4-channel GNSS-R bistatic radar receiver tuned to receive the L1 signals transmitted by GPS (Global 

Positioning System) satellites (Ruf et al. 2017). The Spire soil moisture retrieval algorithm is based on a change detection 

method (Freeman et al. 2020). GNSS-R reflectivity measurements over land vary depending on soil water content, surface 225 

roughness, and vegetation. The vegetation and roughness changes occur on timescales longer than soil moisture changes 

which makes it possible to monitor soil moisture in the presence of vegetation and surface roughness contributions. For a 

given geographic location, the surface roughness can be viewed as almost constant. Seasonal changes in vegetation can still 

affect reflection, but on a much longer time scale than changes in soil moisture. Short-term fluctuations in reflectivity (dB 

scale) are roughly linearly related to changes in soil moisture. A relative measure of reflectivity that corresponds to 230 

variations in soil moisture levels can be calculated by scaling the normalised reflectivity between the lowest and highest 

reflectivity measurements (dry and wet references in each location) that correspond in each case on the vegetation wilting 

point and the degree of soil saturation. The obtained relative soil moisture measurements were calibrated using the 

concurrent SM measurements from NASA’s SMAP mission. In this study, Spire’s CYGNSS-based SM product retrieved 

from GNSS-R observations on a 6 km equidistant grid in the Murray-Darling basin has been used.  235 

Finally, PET rates from the GLEAM (Global Land Evaporation Amsterdam Model) v3.5b product at 0.25° spatial resolution 

(Miralles et al., 2011; Martens et al., 2017) have been used to force the algorithm, while rainfall rates have been derived by 

the ERA5-Land data set at 9 km spatial resolution. 

                                                           
2 The Spire GNSS-R data are available through the NASA CSDAP and ESA Earthnet programs. 

https://earth.esa.int/eogateway/missions/spire 

https://www.earthdata.nasa.gov/esds/csda/commercial-datasets 
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All the data sets used have been resampled to the adopted regular grids (1 km for Ebro and Po bsins, 6 km for Murray-

Darling basin) as a pre-processing step. 240 

3.3 Benchmark irrigation amounts 

Benchmark irrigation rates over selected sites have been collected for calibration and validation purposes. Within the Ebro 

basin, four districts have been considered: Urgell (887.6 km2), Algerri Balaguer (70.8 km2), North Catalan and Aragonese 

(657.0 km2) and South Catalan and Aragonese (504.5 km2). The districts differ from each other in terms of irrigation 

techniques and management (Dari et al., 2021). The dense network of irrigation canals feeding the districts is monitored by 245 

the SAIH (Sistema Automático de Información Hidrológica, http://www.saihebro.com/saihebro/index.php) system of the 

Ebro river basin, which provides data about water volumes flowing through the canals. Hence, this information has been 

collected at a daily temporal scale for the period 2016-2019. For each district, the irrigation doses in millimetres have been 

calculated by dividing the volumes by the areas of interest. Losses due to irrigation efficiency have been considered as 

described in Dari et al. (2020).  250 

Two small districts have been considered for the Po valley: San Silvestro (2.9 km2) and Formellino (7.6 km2). They are 

located around the city of Faenza, in the Emilia Romagna region. For each pilot district, daily irrigation amounts (in mm) 

have been provided by the CER consortium for the period 2016–2017. The crops growing on the Faenza small-districts are 

mainly pear and kiwi trees. 

Data from five irrigation districts located in New South Wales, Australia have been collected for the Murray-Darling basin: 255 

Coleambally (977.0 km2), Murrumbidgee (2789.3 km2), Western Murray (49.1 km2), Murray Mulwala (3092.6 km2), and 

Murray Wakool (1455.2 km2). Each district is managed by an Irrigation Infrastructure Operator (IIO), which is responsible 

for the production of annual reports on the irrigation water withdrawals (Bretreger et al., 2020). It is noteworthy that the 

Murray Mulwala and Murray Wakool districts belong to the same IIO. Monthly irrigation amounts referring to the period 

ranging from April 2017 to April 2019 have been considered. As in the case of the Ebro basin, the irrigation amounts in 260 

millimetres have been obtained by dividing the volumes provided in the IIO reports by the area of interest. It is noteworthy 

that minor portions of the Western Murray and of the Murrumbidgee districts fall outside the agricultural domain derived 

from the ESA CCI (Climate Change Initiative) land cover. Hence, for the abovementioned districts, the irrigation rates have 

been computed by considering the portion of area overlapped with the mask of agricultural pixels. 

Figure 3 provides an overview on the location of all pilot irrigation districts with respect to the agricultural portions (white 265 

areas) over which the irrigation estimates have been produced. The ground-truth information on the collected irrigation rates 

is summarised in Table 1. 

A part of the collected irrigation amounts has been used to calibrate the 𝐹 parameter (see Sub-section 3.1). More in detail, 

irrigation data referring to the Algerri Balaguer and to the North and South Catalan Aragonese districts for the 2-year period 

2016-2017 have been used to calibrate 𝐹 over the Ebro basin. For the Po valley, given the limited information available, all 270 

the collected data have been used (i.e., irrigation applications over the San Silvestro and Formellino districts during the time 
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span 2016-2017). Finally, irrigation volumes for the period ranging from April 2017 to December 2018 and referring to the 

three districts, i.e., Coleambally, Murray Mulwala, and Murray Wakool, have been used for the Murray-Darling basin.  

 

 275 

Figure 3: Pilot irrigation districts whose irrigation data have been used for calibration and validation purposes: (1) the Ebro basin, 

(2) the Po valley, and (3) the Murray-Darling basin. For each region, the agricultural areas over which the irrigation estimates 

have been carried out are indicated in white. 

 

Table 1: Summary of the collected ground-truth irrigation rates.  280 

District Area [km2] Time span of collected irrigation rates Source 

Ebro basin 

Urgell 887.6 

2016-2019 SAIH Ebro 
Algerri Balaguer 70.8 

North Catalan Aragonese 657.0 

South Catalan Aragonese 504.5 

Po valley 

San Silvestro 2.9 
2016-2017 CER 

Formellino 7.6 
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Murray-Darling basin 

Coleambally 977.0 

2017 (April)-2019 (April) IIOs 

Murrumbidgee 2789.3 

Western Murray 49.1 

Murray Mulwala 3092.6 

Murray Wakool 1455.2 

4 Results and discussion 

In this Section, the retrieved irrigation amounts over each pilot area are presented and discussed. Comparisons with reference 

irrigation rates are provided as well. Sub-section 4.1 describes the irrigation product developed over the Ebro basin, Sub-

section 4.2 is dedicated to the Po valley and Sub-section 4.3 refers to the Murray-Darling basin. The retrieved irrigation 

estimates are compared against the benchmark amounts in terms of 𝑅𝑀𝑆𝐸 (Root Mean Square Error), Pearson correlation, 𝑟, 285 

and 𝐵𝐼𝐴𝑆. Limitations of the proposed data sets and future plans are discussed in Sub-section 4.4 and 4.5, respectively. 

4.1 Ebro basin, Spain 

The data set of irrigation amounts retrieved through the SM-based inversion approach over the Ebro basin is developed over 

a 1 km regular grid and covers the period ranging from January 2016 to the end of July 2020. Figure 4 provides the maps of 

the cumulated irrigation estimates during the highest-intensity (May-September) irrigation seasons of 2016, 2017, 2018 and 290 

2019. Some patterns of high irrigation rates recurring over areas known to be irrigated can be observed, as the pilot districts 

considered in this study (see Figure 3), the narrow portion unfolding from West to East along the main reach of the Ebro in 

the middle of the basin and the area close to the river delta.  
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 295 

Figure 4: Cumulated irrigation amounts over the Ebro basin (Spain) during the highest-intensity irrigation season (May-

September) of 2016, 2017, 2018, and 2019. 

Figure 5 (panels a-d) shows the 14-day aggregated time series of irrigation estimates (the black lines) over the pilot districts 

against the benchmark rates (the light grey shaded areas) for the period period 2016-2019; a yearly comparison in which data 

referring to different districts and years is indicated by different markers and colours, respectively, is provided as well (panel 300 

e). It is noteworthy that 2016 is not considered for the Urgell district, as there is a lack of irrigation benchmarks for half of 

the year. The time series in panels a)-d) highlight that the best performances in terms of 𝑅𝑀𝑆𝐸 are obtained over the North 

Catalan and Aragonese district (𝑅𝑀𝑆𝐸 = 10.08 mm/14-day), while the best results in terms of 𝑟 and 𝐵𝐼𝐴𝑆 are found for the 

Algerri Balaguer district ( 𝑟  = 0.78 and 𝐵𝐼𝐴𝑆  = -2.23 mm/14-day). Even though a general tendency in slightly 

underestimating the benchmark amounts can be observed, the performances in terms of 𝑅𝑀𝑆𝐸 and 𝐵𝐼𝐴𝑆 are satisfactory, as 305 

the maximum deviation from previously mentioned minimum values is +4.58 mm/14-day for the 𝑅𝑀𝑆𝐸 and -6.59 mm/14-

day for the 𝐵𝐼𝐴𝑆; in both cases, the highest values of these two metrics refer to the Urgell district. Along with the irrigation 
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amounts, timing is also satisfactorily reproduced over the Algerri Balaguer (𝑟 = 0.78) and the South Catalan and Aragonese 

(𝑟 = 0.74) districts, while worst performances are observed over the remaining two districts. The results agree with previous 

experiments carried out over a portion of the Ebro basin enclosing the same pilot districts of this study and in which 310 

irrigation estimates were retrieved by using a combination of DISPATCH SMOS and SMAP soil moisture with 

evapotranspiration rates calculated through the FAO56 approach (Dari et al., 2020). Moreover, the current implementation of 

a soil-moisture-limited approach to compute the actual evapotranspiration brings benefits in reproducing actual irrigation 

amounts with respect to previous attempts in this regard (Dari et al., 2022b). 

Panel e) of Figure 5 provides a long-term comparison, in which the results are yearly cumulated; each point indicates the 315 

performance of a district in a certain year. A confidence interval of ± 30% of the benchmark is shown as well; according to 

Massari et al. (2021), such a value matches with the upper limit of the accuracy of satellite-derived irrigation products 

desired by farmers. In nine out of the fifteen total cases, the relative error is lower than ± 30%. Seasonal values referring to 

the Algerri Balaguer and the North Catalan and Aragonese districts are outside the interval only for one out of the four 

considered years; underestimates lower than 30% of the total are found over the Urgell and the South Catalan and Aragonese 320 

districts for the years 2017 and 2019. 
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Figure 5: Panel a)-d): 14-day aggregated time series of irrigation estimates (the black lines) over the four considered pilot districts 

within the Ebro basin against the benchmark rates (the light grey shaded areas). Panel e): yearly comparison with data referring 325 
to different districts and years indicated through different markers and colours, respectively. The interval indicating a relative 

error of ± 30% is shown as well. 

4.2 Po valley, Italy 

Similarly to the Ebro case study, the satellite-derived irrigation data set over the Po valley is developed over a 1 km regular 

grid for the period ranging from January 2016 to the end of July 2020. The spatial distribution of the cumulated irrigation 330 

amounts during the highest-intensity irrigation seasons of 2016, 2017, 2018 and 2019 are provided in Figure 6. As a 

difference with the Ebro case study, strong contrasts between areas with very low and very high irrigation rates are not 

detected here. The only exception is a portion with low irrigation amounts in the South-eastern side that recurs in 2016, 2017 

and 2019. This is an expected result, since while in the Ebro basin permanent rainfed and irrigated lands coexist, the Po 

valley landscape consists of almost evenly distributed agricultural fields. Nevertheless, crop rotation creates a complex 335 

mosaic of irrigated and non-irrigated fields at a spatial scale that can be lower than 1 km. 
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Figure 6: Cumulated irrigation amounts over the Po valley (Italy) during the highest-intensity irrigation season (May-September) 

of 2016, 2017, 2018, and 2019. 340 

The comparison between the proposed irrigation estimates and the benchmark rates collected over the San Silvestro and 

Formellino districts are provided in Figure 7. Panels a) and b) show the 14-day aggregated time series, while the yearly 

comparison is proposed in panel c). It is noteworthy that, as a difference with the Ebro case study, here the results during the 

non-irrigated season have been masked out. In fact, as shown by the time series of benchmark volumes of Figure 5, in the 

Ebro basin irrigation can occur in winter as well, even though the volumes are much lower with respect to summer. It is the 345 

case, for instance, of irrigated fruit trees and greenhouses. For the pilot districts in the Po valley, the information on the 

irrigation season is available and it has been exploited. Hence, the metrics are computed during irrigation periods only. A 

slight tendency in overestimating the benchmark can be observed, the performances over Formellino (𝑅𝑀𝑆𝐸  = 10.90 

mm/14-day and 𝐵𝐼𝐴𝑆 = 3.54 mm/14-day) are more satisfactory with respect to San Silvestro (𝑅𝑀𝑆𝐸 = 17.77 mm/14-day 

and 𝐵𝐼𝐴𝑆 = 11.38 mm/14-day). In both cases, poor performances in reproducing irrigation timing are found (𝑟 = 0.36 and 𝑟 350 

= 0.32 for San Silvestro and Formellino, respectively). Panel c) of Figure 7 shows that, even though for both districts the 

benchmark yearly amounts are overestimated, the relative error for the representative points of Formellino is below + 30%. It 

is important to highlight that the validation over the Po valley is limited by the number and the size of the pilot districts. In 
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fact, it has been possible to collect benchmark irrigation rates over just two sites, each one enclosing a very limited number 

of 1 km pixels of the satellite-derived irrigation data set. As a result, contamination with adjacent areas that can be non-355 

irrigated or irrigated but with mixed techniques can affect the results. Moreover, the 1 km resolution represents the upper 

limit of the nominal size of agricultural fields over the Po valley; hence, the comparisons could suffer from a variability of 

the irrigation dynamics occurring at the sub-pixel scale as well.   

 

360 
Figure 7: Panel a)-b): 14-day aggregated time series of irrigation estimates (the black lines) over the two considered pilot districts 

within the Po valley against the benchmark rates (the light grey shaded areas). Panel c): yearly comparison with data referring to 

different districts and years indicated through different markers and colours, respectively. The interval indicating a relative error 

of ± 30% is shown as well. 

4.3 Murray-Darling basin, Australia 365 

The irrigation data set over the Murray-Darling basin has been produced over a 6 km regular grid for the period ranging from 

April 2017 to July 2020. The spatial distribution of the retrieved irrigation amounts cumulated during the highest-intensity 

irrigation seasons (September-March) of 2017/18, 2018/19, and 2019/20 are shown in Figure 8. Recurring patterns of high 

irrigation rates on the East and the South sides of the domain can be observed. 

 370 
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Figure 8: Cumulated irrigation amounts over the Murray-Darling basin (Australia) during the highest-intensity irrigation season 

(September-March) of 2017/18, 2018/19, 2019/20. 

Figure 9 shows the comparisons between the benchmark irrigation rates and the proposed estimates over the five pilot 

districts. Panels a)-e) show the monthly time series, while a seasonal comparison is provided in panel f). As in the case of the 375 

Po valley, the results referring to the non-irrigated season have been masked out and the metrics have been computed by 

considering irrigation periods only. Very good performances are obtained over three districts, i.e., Coleambally, Murray 

Mulwala, and Murrumbidgee, across which the 𝑅𝑀𝑆𝐸 varies between 8.65 mm/month and 10.54 mm/month, 𝑟 ranges from 

0.66 to 0.84, and the 𝐵𝐼𝐴𝑆 is between -7.26 mm/month and 3.18 mm/month. Even though the timing is properly reproduced, 
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the SM-based inversion approach overestimates benchmark irrigation over the Murray Wakool site. Finally, unsatisfactory 380 

performances are found over the Western Murray district, where not-negligible underestimates can be observed. Over this 

district the SM-based inversion algorithm returns lower estimates with respect to the other test sites and, concurrently, 

benchmark rates are higher. The unsatisfactory performances over the Western Murray district could be explained by the 

mismatch between the site extent (which is from twenty to sixty times smaller than the areas of the other pilot districts) and 

by the adopted spatial resolution, which is a crucial aspect for properly detecting the irrigation signal from space (Dari et al., 385 

2022a; Massari et al., 2021). The scatter plot provided in panel f) of Figure 9 summarises the long-term comparison. It is 

noteworthy that, in this case, the data have been aggregated at the yearly time step by considering April as a starting month, 

thus including the irrigation season, which crosses two calendar years. Three representative points are very close to the 1:1 

line and the relative error results less than or equal to ± 30% in five cases out of ten. 

 390 

 

Figure 9: Panel a)-e): 14-day aggregated time series of irrigation estimates (the black lines) over the five considered pilot districts 

within the Murray-Darling basin against the benchmark rates (the light grey shaded areas). Panel f): yearly comparison with data 

referring to different districts and years indicated through different markers and colours, respectively. The interval indicating a 

relative error of ± 30% is shown as well. 395 
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4.4 Limitations  

Two main issues may affect the developed data sets, namely irrigation amounts wrongly retrieved over non-irrigated areas 

and false irrigation rates reproduced during the non-irrigated season. In principle, the detailed knowledge of the actual extent 

of irrigated areas could allow to estimate how much water is wrongly retrieved where irrigation is not practiced and such an 

information could be exploited to correct the algorithm output (Jalilvand et al., 2019). Unfortunately, irrigation dynamics are 400 

highly uncertain and the actual extent of irrigated areas is not an exception, as demonstrated by the large number of studies 

aimed at developing remote-sensing-based techniques to map irrigation (see, e.g., Bazzi et al., 2019; Deines et al., 2019; Dari 

et al., 2021; Elwan et al., 2022). Moreover, the information on the irrigation extent is dynamic in time, as within the areas 

equipped for irrigation the actually irrigated fields may vary from year to year on the basis of economic factors, climatic 

conditions and farming strategies (e.g., crop rotation). In summary, the developed data sets could benefit of integration with 405 

the spatial information of the actual extent of irrigated areas (when available) or, at least, with global maps of areas equipped 

for irrigation (e.g., Salmon et al., 2015; Siebert et al., 2015; Nagaraj et al., 2021). 

False irrigation rates during non-irrigated seasons represent an additional issue that could affect the proposed data sets. 

Unlike the irrigation extent, the information on the crop watering period is generally available and more reliable. Moreover, 

since the irrigation schedule depends on the crop type, cropping calendars can be useful (see e.g., Portmann et al, 2008). 410 

Information on the irrigation seasons can be used to postprocess the developed products, as shown here for the Po and 

Murray-Darling case studies. However, an assessment of retrieved irrigation amounts through the SM-based inversion 

approach per each month of the year has been carried out. Figure 10 provides the mean of the cumulated irrigation amounts 

for each month of the years covered by the developed data sets calculated over the pilot districts, i.e., where irrigation surely 

occurs. The highest-intensity irrigation seasons are highlighted in light green. For the selected sites within the Ebro and the 415 

Murray-Darlin basins, the highest rates are retrieved when expected. The same happens for the Po valley, for which the 

highest peak occurs in June, but a second-not negligible peak can be observed in October as well. Such a circumstance can 

be attributed to false irrigation rates, as it is not corroborated by significant benchmark irrigation rates in the same period. 

However, over the portion of the Po valley where the considered pilot districts are located, fruit trees are used to be irrigated 

even in October and November; hence, a contamination with the signal coming from surrounding pixels where this kind of 420 

crop is cultivated could explain the irrigation peak in the autumn season over the Formellino and San Silvestro districts. 

Nevertheless, the monthly irrigation rates are never equal to zero during the winter period; this is a common issue to all the 

three case studies and, except for the Ebro basin, it can be considered as a false irrigation, with magnitude over the Po valley 

higher than over the Murray-Darling basin. These potential errors can be attributed to overestimates of rainfall rates through 

the proposed approach under humid climate conditions, resulting in water amounts wrongly attributed to irrigation practices. 425 

 

https://doi.org/10.5194/essd-2022-403
Preprint. Discussion started: 9 December 2022
c© Author(s) 2022. CC BY 4.0 License.



21 

 

 

Figure 10: Mean irrigation amounts retrieved per each month of the year over the pilot irrigation districts of the Ebro basin, the 

Po valley, and the Murray-Darling basin. Note the different y-axis range for the plot referring to the Murray-Darling case study. 

4.5 Future plans 430 

The room for enhancing the retrieved irrigation products largely relies on users’ feedback, which are essential to address 

future developments. In the following, some of the main improvements that could be implemented in the next future are 

listed: 

- Temporal extension of the retrieved irrigation data sets. Currently, the time span for which the data sets have been 

produced is constrained by the availability of the input data at the time of products development. For instance, the 435 

ending date common to all the data sets is due to the temporal coverage of GLEAM v3.5b. 

- Spatial extension of the retrieved irrigation data sets. Undoubtedly, the main challenge is going through a global 

irrigation product. Nevertheless, the high-resolution (1 km or less) required for the input data sets (at least soil 

moisture) and the high variability of irrigation practices worldwide makes it necessary for a gradual progression. 

Hence, the very imminent challenge is the extension to the country and the continental scales. For instance, the 440 

development of irrigation estimates through the SM-based inversion approach over the whole Mediterranean area is 

a task foreseen within the ESA 4DMED-Hydrology project.  

- Exploitation of high-resolution evapotranspiration input data. Along with soil moisture, the evapotranspiration term 

plays a fundamental role in determining the output of the SM-based inversion approach (Dari et al., 2020). Hence, 

the exploitation of higher resolution input PET rates for computing the evapotranspiration term of Eq. (3) (e.g., 445 

from a 1 km resolution version of the GLEAM data set over the Mediterranean, which will be developed within the 

abovementioned 4DMED-Hydrology project) is among the future perspectives of this study. 

- Integration with crop calendars and spatial information on actually irrigated areas. As already mentioned in Sub-

section 4.4, the postprocessing of the developed data sets with ancillary site-specific information on irrigation extent 

and duration is recommended. Hence, users are encouraged to exploit such information, when available, to refine 450 

the data. In future, such procedures could be even automatized and implemented into the algorithm. This is already 
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partly done in the calibration step, in whose first step the potential irrigation days are masked out (see Sub-section 

3.1). 

5 Data availability 

The three irrigation data sets presented in this study are freely available at https://doi.org/10.5281/zenodo.7341284. 455 

6 Conclusions 

This study presents high-resolution irrigation products derived from satellite observations and developed over three highly 

human-influenced regions. The data sets, developed through the SM-based inversion approach, are one of the main outcomes 

of the ESA Irrigation+ project. The retrieved irrigation amounts have been validated through a comparison with benchmark 

rates over selected districts. For the Ebro and the Murray-Darling basins, the amount of the collected information on 460 

irrigation dynamics allows a reliable validation, which provides satisfactory results. For the Ebro basin, median values of 

𝑅𝑀𝑆𝐸, 𝑟, and 𝐵𝐼𝐴𝑆 equal to 12.4 mm/14-day, 0.66, and -4.62 mm/14-day, respectively, are found. Referring to the Murray-

Darling basin, the analogous values are 10.54 mm/month, 0.77, and -3.07 mm/month. The validation over the Po valley is 

affected by higher uncertainties due to the limited period of in situ irrigation data used as reference, and referring to two very 

small districts. However, the authors encourage the scientific community to perform deeper validation studies, as the main 465 

aim of this work is the use of the developed products. Under this perspective, limitations and suggested postprocessing 

strategies are highlighted in Sub-section 4.4. The presented irrigation products are the first regional-scale gridded data sets 

retrieved from satellite observation at a spatial resolution suitable for the water resource management in agriculture. Hence, 

this kind of applications are fostered, as for instance the ingestion of the developed datasets in systems providing irrigation 

advice or performing irrigation water accounting. Of course, the ingestion of the proposed irrigation data sets into 470 

hydrological and land surface modeling is possible as well. Users’ feedback will be essential to address future 

implementations, with the final aim of building an operational system for high-resolution irrigation water monitoring from 

space.  
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Appendix A. Calibrated parameters 

In this section, the outcomes of the calibration procedure described in Sub-section 3.1 and summarised in Figure 2 are 

provided. For the parameters 𝑎, 𝑏, and  𝑍∗, a spatially distributed calibration has been performed. The calibrated values of 

such parameters for the Ebro basin are shown in the maps of Figure A.1 and in the boxplots of Figure A.2. Across the whole 

study area, the median values of  𝑎, 𝑏, and  𝑍∗ are equal to 18.84 mm, 3.98, and 79.82 mm, respectively. The calibrated 495 

value of the 𝐹 parameter (adopted over the whole domain) is equal to 1.37. 
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Figure A.1: Spatial distribution of the calibrated values of the parameters  𝒂, 𝒃, and  𝒁∗ over the Ebro basin. 

 500 

 

Figure A.2: Boxplot showing the calibrated values of the parameters  𝒂, 𝒃, and  𝒁∗ over the Ebro basin.  
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The calibrated values of the parameters 𝑎, 𝑏, and  𝑍∗ obtained over the Po valley are shown in the maps of Figure A.3 and in 

the boxplots of Figure A.4. The median values of  𝑎, 𝑏, and  𝑍∗ resulting from the calibration step are equal to 7.02 mm, 

1.40, and 97.63 mm, respectively. The calibrated value of the 𝐹 parameter (adopted over the whole domain) is equal to 0.60. 505 

 

 

Figure A.3: Spatial distribution of the calibrated values of the parameters  𝒂, 𝒃, and  𝒁∗ over the Po valley. 

 

 510 

Figure A.4: Boxplot showing the calibrated values of the parameters  𝒂, 𝒃, and  𝒁∗ over the Po valley. 
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Finally, the calibrated values of the parameters 𝑎, 𝑏, and  𝑍∗ obtained over the Murray-Darling basin are provided in the 

maps of Figure A.5 and in the boxplots of Figure A.6. The median values of  𝑎, 𝑏, and  𝑍∗ result equal to 2.32 mm, 8.27, and 

50.21 mm, respectively. The calibrated value of the 𝐹 parameter (adopted over the whole domain) is equal to 0.60. 

 515 

 

Figure A.5: Spatial distribution of the calibrated values of the parameters  𝒂, 𝒃, and  𝒁∗ over the Murray-Darling basin. 
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Figure A.6: Boxplot showing the calibrated values of the parameters  𝒂, 𝒃, and  𝒁∗ over the Murray-Darling basin. 520 
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