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Abstract. The information of global spatially explicit urban extents under scenarios is important to mitigate future 

environmental risks caused by global urbanization and climate change. Although future dynamics of urban extent were 20 

commonly modelled with conversion from non-urban to urban using cellular automata (CA) based models, gradual changes 

of impervious surface area (ISA) at the pixel level were limitedly explored in previous studies. In this paper, we developed a 

global dataset of urban fractional changes at a 1km resolution from 2020 to 2100 (5-year interval), under eight scenarios of 

socioeconomic pathways and climate change. First, to quantify the gradual change of ISA within the pixel, we characterized 

ISA growth patterns over past decades (i.e., 1985-2015) using a sigmoid growth model and annual global artificial impervious 25 

area (GAIA) data. Then, by incorporating the ISA-based growth mechanism with the CA model, we calibrated the state-

specific urban CA model with quantitative evaluation at the global scale. Finally, we projected future urban fractional changes 

at 1km resolution under eight development pathways based on the harmonized urban growth demand from Land Use 

Harmonization2 (LUH2). The evaluation results show that the ISA-based urban CA model performs well globally, with an 

overall R2 of 0.9 and the Root Mean Square Error (RMSE) of 0.08 between modeled and observed ISAs in 2015. With the 30 

inclusion of temporal contexts of urban sprawl gained from GAIA, the dataset of global urban fractional change shows good 
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agreement with 30-year historical observations from satellites. The dataset can capture spatially explicit variations of ISA and 

gradual ISA change within pixels. The dataset of global urban fractional change is of great use in supporting quantitative 

analysis of urbanization-induced ecological and environmental change at a fine scale, such as urban heat islands, energy 

consumption, and human-nature interactions in the urban system. The developed dataset of global urban fractional change is 

available at https://doi.org/10.6084/m9.figshare.20391117.v2 (He et al., 2022). 5 

1 Introduction 

Spatially explicit global urban extents and dynamics play essential roles in assessing future urbanization-induced 

environmental and climate impacts (Acuto et al., 2018; Castán Broto and Bulkeley, 2013). The latest World Urbanization 

Prospects (Nations et al., 2019) reveal that the global urban population has grown rapidly from 750 million in 1950 to 4.5 

billion in 2021, and it is anticipated to reach around 7 billion by 2050, with more than 2 billion people migrating from rural to 10 

urban areas. Consequently, the urban expansion growth rates have been higher over past decades in rapidly developing regions 

(e.g., China and India), leading to a notable urban sprawl with rising concerns in the urban environment (Güneralp et al., 2017; 

Alberti et al., 2017), energy consumption (Li et al., 2019c), and human-environmental interactions. As such, the realization of 

sustainable development goals (SDGs) is challengeable due to potential urbanization-induced threats from various 

environmental issues, such as agriculture land loss (Seto and Ramankutty, 2016), deforestation (Foley et al., 2005; Defries et 15 

al., 2010), and air pollution (Gong et al., 2012). Long-term urban extent dynamics are attributable to revealing different 

urbanization stages, which can notably reduce uncertainties of future urban sprawl pathways and are of great potential to 

support further decision-making on global urban and environmental changes (Klein Goldewijk et al., 2010).  

Temporal contexts of urban sprawl have not been comprehensively used in cellular automata (CA)-based models, although 

various urban CA models have been developed to model urban sprawl in a spatially explicit manner (Li and Gong, 2016). 20 

Presently, there are different CA-based models have been developed for various applications, such as the Logistic-CA model 

(B. Wu, Huang, & Fung, 2009), the Fuzzy-CA model (Liu, 2012; Liu and Phinn, 2003), the Agent-based CA model (Li and 

Liu, 2007; Liu et al., 2008), and the Patch-based CA model (Chen et al., 2014). Given that the neighborhood is a crucial 
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component in the urban CA model, many relevant studies have been conducted for improvement by configuring the shape and 

size of the neighborhood in a spatially explicit manner (Santé et al., 2010; Chen et al., 2014; Li et al., 2014; Kocabas and 

Dragicevic, 2006; Wu et al., 2012). For instance, the impact of neighborhood configuration (e.g., distances and land use/cover 

compositions) has been widely explored in many studies for model development (Wu et al., 2012; Wu et al., 2019; Liao et al., 

2016; Dahal and Chow, 2015). Unfortunately, most of them mainly focused on the spatial configuration of the neighborhood, 5 

whereas the temporal contexts of urban sprawl revealed from long-term and continuous urban extent time series data were 

hardly been investigated, especially at the global scale, although several studies have confirmed that those newly developed 

urban pixels have a greater impact on the model performance than those developed in early years (Li et al., 2020; Liu et al., 

2017).  

Although several global datasets of urban extent dynamic with conversions from non-urban to urban have been proposed, there 10 

is still limited effort to characterize the gradual urban fractional change (i.e., ISA) within each grid when projecting future 

global urban sprawl (Potere et al., 2009; Huang et al., 2021; Herold et al., 2003; Seto et al., 2012; Li et al., 2017). The temporal 

contexts of urban sprawl have been limitedly considered in these studies, with noticeable uncertainties regarding the projected 

global urban extent dynamics in the future when regarding historical urban sprawl with a long temporal span. Probably due to 

the absence of long-term and fine resolution annual global urban extent time series data (Li et al., 2015; Shi et al., 2017; Song 15 

et al., 2016), characterizing the temporal pattern of urban sprawl dynamics has not been comprehensively explored, in 

particularly coupling with the urban CA models. For instance, the dynamics of historical urban extents derived from satellite 

observations can be employed to reveal the allometric growth of urban lands under diverse urbanization levels, which is helpful 

in estimating future urban demand (Li et al., 2019a). Also, the temporal contexts of urban sprawl can be used as a proxy in the 

neighborhood configuration, thereby improving the model performance in spaces (Li et al., 2020). It is worth noting that most 20 

developed urban CA models for global application commonly adopted the abrupt conversion (i.e., from non-urban to urban) 

to represent the urban sprawl process during the modeling, which ignores the difference of urban growth rates across grids 

(e.g., ≥1km) with diverse urbanization stages (Liu et al., 2018; Santé et al., 2010; Li et al., 2014; Chen et al., 2002; Verburg 
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et al., 2006). Despite the abrupt conversion in urban CA models has limited impacts when implementing them at a fine 

resolution (e.g., 30m) and at the local scale, it is inevitable to weaken the model performance in fringe areas of cities at the 

regional and global scale, in which the spatial resolution of grids is relatively coarse (e.g., ≥1km) (Li et al., 2020; Gao and 

O'neill, 2019).  

To fill this research gap, we developed a global dataset of urban fractional changes (1km) through 2100 (with a 5-year interval) 5 

under eight scenarios, using a ISA-based urban CA models. We first characterized state-specific ISA growth patterns over past 

decades using historical urban extent data and a sigmoid growth model to capture the gradual change of ISA within each grid. 

After that, we incorporated the ISA-based growth mechanism with the urban CA model and calibrated the  ISA-based urban 

CA model quantitatively with evaluations at the global scale. Finally, we projected gradual urban fractional changes within 

1km grid under eight scenarios using the developed ISA-based urban CA model. The remainder of this paper describes the 10 

adopted data (Section 2), the proposed simulation approach (Section 3), the results and discussion (Section 4), the data 

availability (Section 5), and concluding remarks (Section 6).  

2 Data 

We used the global artificial impervious area (GAIA) as our primary dataset to capture temporal contexts of urban development 

(Gong et al., 2019; Gong et al., 2020a). The GAIA data record annual global urban extent (i.e., non-urban and urban) at a 30m 15 

resolution, spanning from 1985 to 2018, with overall mean accuracies above 90%. Besides, the derived historical urban extents 

from GAIA are temporally consistent (i.e., non-urban to urban) over past decades. To characterize the urban fractional changes 

at the pixel scale (i.e., 1km), we aggregated 30m binary (i.e., urban and non-urban) results from GAIA into the 1km urban 

fractional maps (i.e., ISA).   

We used the Land Use Harmonization 2 (LUH2) data to derive future urban growth pathways under eight scenarios determined 20 

by Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). In the LUH2 dataset, the 

gridded-based scenarios (2015-2100) of multiple land-use types (e.g., urban) were developed by Integrated Assessment Models 

(IAMs), by jointly considering the socioeconomic development and climate change in the future (Mu et al., 2022; Hurtt et al., 
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2020). The LUH2 dataset provides detailed fractional information of different land use types within the relatively coarse grid 

(0.25°×0.25°) globally through 2100 with eight SSP-RCP scenarios. Consequently, the LUH dataset has been widely used in 

various studies, such as land use cover change and carbon emission (Hong et al., 2021; Friedlingstein et al., 2020; Borrelli et 

al., 2020; Chen et al., 2020a; Li et al., 2016).  

In addition, we collected a variety of spatial proxies to estimate the suitability of potential grids for urban development when 5 

modeling future global urban fractional change (Li et al., 2020). These spatial proxies reflect different spatial aspects related 

to urban sprawl, such as locations (e.g., major worldwide cities), traffic networks (e.g., major worldwide roads), terrain (e.g., 

digital elevation model; DEM), and land constraints (e.g., protected areas) (Table 1). These spatial proxies can be found in Fig. 

S1. These spatial proxies were used to reflect the synthesized effect on the suitability (also called transition rule) of urban 

sprawl within each pixel, according to its biophysical and socioeconomic conditions (Li et al., 2014). Besides, these spatial 10 

proxies were normalized at a spatial resolution of 1km before the modeling (Li et al., 2014; Li et al., 2020). 

3 Method 

We developed the dataset of global urban fractional change at a 1km resolution under eight SSP-RCP scenarios, using the 

developed Logistic-Trend-ISA-CA model (He et al., 2023) (Fig.1). First, we characterized the ISA growth patterns within each 

pixel using long-term urban extent data. The state-specific ISA growth patterns over the past decades were quantified using 15 

the sigmoid growth model, given that cities show allometric growth rates during diverse urbanization stages (Fig.1a). Then, 

we incorporated the ISA-based growth mechanism with the urban CA model and calibrated the developed urban CA model 

with evaluations at the global scale quantitatively (Fig.1b). Finally, we projected future urban fractional changes at 1km 

resolution under eight development pathways at the global scale (Fig.1c). The country-specific future urban area growth (or 

called urban demands) trends between LUH2 and GAIA were harmonized before the modeling. Details of each component in 20 

the proposed framework can be referred to in the following subsections.   

3.1 Characterization of urban fractional change with urban CA model 
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We characterized urban fractional change across different states in each country, using the long-term (1985-2015) urban extent 

data (i.e., GAIA) and the sigmoid growth model. Given that the growth rates of urban area are notably varying during different 

urbanization stages (i.e., indicated by ISA), we used the sigmoid function to characterize the allometric growth of urban areas 

(Eq. 1 and Fig. S2.). That is, within each state, the growth of ISA in 1km grid in the next iteration can be determined from its 

current ISA level and the calibrated sigmoid growth model. During each iteration, grids with different urbanization levels have 5 

diverse ISA increments, resulting in spatially explicit differences in urban sprawl in the form of urban fractions. 

  𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏
1+𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐∗(𝑡𝑡−𝑑𝑑)                                                                               (1) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 is the mean ISA value in built-up areas in a given region (e.g., state in our study) in year 𝑡𝑡; 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are four 

parameters that determine the sigmoid growth curve. Specifically, 𝑎𝑎 and 𝑏𝑏 represent the ISA level at the base level and the 

increment of ISA (e.g., amplitude) during the entire cycle of urban evolution, respectively; 𝑐𝑐 and 𝑑𝑑 are two parameters that 10 

jointly determine the shape of the sigmoid growth curve.  

We incorporated the ISA-based growth mechanism with the Logistic-Trend-CA model (He et al., 2023), which incorporates 

temporal contexts of urban sprawl into the neighborhood configuration. The Logistic-Trend-CA model was developed from 

the traditional Logistic-CA model (Hu and Lo, 2007; Wu, 2002), including the suitability surface (also known as transition 

rules), the neighborhood configuration, the stochastic perturbation, and the land constraint (see Supplementary texts). 15 

Compared to the Logistic-CA model, the adopted Logistic-Trend-CA model improved the neighborhood by using a trend-

adjusted scheme (Eq. 2-3), referring to that newly developed urban neighbor pixels are more attributable to urban development 

than those urbanized neighbor pixels in earlier years (Li et al., 2020). 

𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡 = 1 −

𝑁𝑁𝑖𝑖𝑖𝑖
𝑢𝑢

𝑁𝑁
                                                                                    (2) 

Ω𝑖𝑖𝑖𝑖𝑡𝑡 =
∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚2 �𝐿𝐿𝑖𝑖𝑖𝑖=𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�×𝑊𝑊𝑖𝑖𝑖𝑖

𝑡𝑡𝑡𝑡

𝑚𝑚∗𝑚𝑚−1
                                                                           (3) 20 

where Ω represents the neighborhood that considers the temporal contexts of urban sprawl using a weighting factor of 𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡. 

𝑁𝑁𝑖𝑖𝑖𝑖𝑢𝑢 is the accumulated year of the cell (𝑖𝑖, 𝑗𝑗) with the status as urban from the annual urban time series data with a temporal 
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interval of N, m is the window size, and Con() is a conditional function, which returns 1 when the status of the cell (𝑖𝑖, 𝑗𝑗) is 

urban. 

We obtained the urban development probability at the pixel scale from Eq. 4. Thus, during each iteration (i.e., 5-year interval), 

all grids were sorted in descending order according to their development probabilities, and those ranking ahead were 

preferentially considered in the modeling. The increment of the urban fraction was estimated for each pixel according to the 5 

calibrated sigmoid growth model (Eq. 2). We iteratively updated urban fractions in these pixels by estimating gradual ISA 

increments per iteration, until the total urban demand in each state has been allocated.  

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝛺𝛺 × 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑆𝑆𝑆𝑆                                                                   (4) 

where 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑  indicates the development probability; 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛺𝛺, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, and 𝑅𝑅𝑖𝑖𝑖𝑖𝑡𝑡  are the suitability surface, neighborhood, land 

constraint, and stochastic disturbance, respectively. Details of these parameters can be referred to the Supplementary texts.  10 

3.2 Calibration of the Logistic-Trend-ISA-CA model 

We calibrated the Logistic-Trend-ISA-CA model at the state level using historical urban extent time series data (i.e., GAIA) 

from satellite observations. First, we evaluated the performance of derived suitability surface using the receiver operating 

characteristic (ROC) method (Sunde et al., 2014). That is, the continuous values can be divided into binary maps using different 

thresholds to measure the agreement between threshold-derived results and the referenced urban extent. In this way, the area 15 

under the curve (AUC) is commonly used to quantitatively evaluate the performance of derived global suitability (Hosmer et 

al., 2013). Furthermore, at the global scale, we assessed the model performance using the root mean square error (RMSE) (Eq. 

5) and coefficient of determination (R²) between the modeled and observed ISAs.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛
∑ (𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜)2𝑛𝑛
𝑖𝑖=1                                                               (5) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐼𝐼𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜  are the modeled and observed ISA results, respectively; 𝑛𝑛 is the pixel number. 20 

3.3 Projection of future global urban fractional change under eight scenarios 

To mitigate the uncertainty of future urban demand, we harmonized country-specific future urban area growth (2015-2100) 

from LUH2 with the urban area in 2015 obtained from satellite observations (i.e., GAIA). The harmonization process is 
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inevitable because there is a distinct gap in urban areas in 2015 across different regions between these two datasets. Given that 

the GAIA data were derived from satellite observations with good quality and fine resolution, we harmonized future urban 

growth trends (2015-2100) from LUH2 under different SSP-RCP scenarios with the derived urban areas from GAIA in 2015. 

The harmonization of urban areas between these two datasets can be formulated as Eqs. (6-7).  

                       Areaℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐,𝑡𝑡 = Area𝐿𝐿𝐿𝐿𝐿𝐿2,𝑐𝑐,𝑡𝑡 ∗ 𝛾𝛾                                                              (6) 5 

𝛾𝛾 = Area𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐,2015
Area𝐿𝐿𝐿𝐿𝐿𝐿2,𝑐𝑐,2015

                                                                             (7) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐,𝑡𝑡 is the harmonized urban area of country 𝑐𝑐 in the year 𝑡𝑡; 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿2,𝑐𝑐,𝑡𝑡 is the original urban area of country 

𝑐𝑐  derived from LUH2 in year 𝑡𝑡 ;  𝛾𝛾  is the harmonized rate between LUH2 and observed data (i.e., 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜,𝑐𝑐,2015  and 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿2,𝑐𝑐,2015 are urban areas of the country 𝑐𝑐 in 2015, from satellite observations and LUH2, respectively). 

We modeled future global urban fractional changes at 1km resolution under eight SSP-RCP scenarios. Here we assumed the 10 

trend of urban sprawl at the state level is consistent with that at the country level, as population and GDP change are commonly 

estimated at the country and regional scale (Doelman et al., 2018). Thus, we implemented the Logistic-Trend-ISA-CA model 

with the harmonized urban area growth from LUH2 and GAIA. Given that the conversion from non-urban to urban is 

commonly assumed to be monotonically (Li et al., 2015), here we regarded the urban area in those regions with a declining 

population in the future as plateaued after it reaches the peak. Also, we compared our projected results with similar products 15 

regarding the provided details of gradual urban fractional change under eight SSP-RCP scenarios in a spatially explicit manner. 

4. Results and discussion 

4.1 Future global urban fractional change under eight scenarios 

There are distinct spatial variations across countries regarding urban area growth rates during 2015-2100 under eight SSP-

RCP scenarios (Fig. 2). Among these scenarios, Global South countries located in middle Asia, south America, and Africa, 20 

would likely experience more noticeable urban growth than Global North countries in the future (Fig. 2), e.g., the growth rates 

of the United States of America (USA) and China are 3.95 and 1.05 times in 2100 under SSP2-RCP4.5, respectively, relative 

to the base year of 2015. It is worth to note that the future urban growth in China is relatively low in these scenarios, mainly 
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due to the nearly plateaued population growth by 2030, which is distinctly different from the continuously increasing 

population in other developing countries such as India and Nigeria (Chen et al., 2020b). In addition, the urban growth rates in 

the USA are relatively low among different SSP-RCP pathways, except for SSP5 with Fossil-fueled development (Fig. 2) 

(O’neill et al., 2017), suggesting that future socioeconomic development may significantly impact the urban area growth in 

different regions and countries.  5 

The country-specific urban sprawl is notably different under eight SSP-RCP scenarios in the future (Fig. 3). Considering 

different urban development pathways from 2015 to 2100, we selected three specific countries (i.e., the USA, China, and 

Nigeria) for illustration. Spatially explicit patterns of urban sprawl were compared under three kinds of scenarios: low-, 

median-, and high- growth, which were selected from eight SSP-RCP scenarios regarding the total urban area growth in each 

country (Fig S4). To be specific, the urban growth of the USA is highest in SSP5 and lowest in SSP4 (Fig. 3b), which is 10 

different from Nigeria (Fig. 3a) and China (Fig. 3c). Apparently, under the high-growth scenario, more natural lands would be 

developed as urban, resulting in a discernible urban sprawl with connected pixels around urban centers (Fig. 3, a-c). Besides, 

it is worth noting that China's urban area will continue to grow until around 2050, although the peak of the population is likely 

to plateau by around 2030, whereas the per capita urban area is anticipated to keep growing (Fig. 3c) (Li et al., 2019b). Our 

result can also reflect the gradual urban fractional change across years throughout 2100 (Fig. 4). For instance, small human 15 

settlements in Nigeria are likely to grow in the future, and most of them occur in small settlements (Fig. 4a). In contrast, in the 

USA, most newly developed urban areas in the future are likely to occur in/around the city center (Fig. 4b). The urban fractions 

both in the urban and rural areas would increase and plateau around 2050 in China (Fig. 4c), showing different temporal trends 

as reflected by the USA and Nigeria. In addition, the spatially explicit pattern of urban sprawl in our dataset is consistent with 

historical observations (GAIA), as illustrated in China (Fig. 5), showing the relatively complete urban evolution from early 20 

1985 to 2100. Similar long-term dynamics of urban sprawl in the form of ISA can be found in Fig. S5-6.   

4.2 Model performance 

4.2.1 Spatially explicit ISA growth model 
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The parameters revealed from the sigmoid model show noticeable spatial variations across different states worldwide (Fig. 6). 

In total, there are four parameters in characterizing the urban area growth over the past decades using Eq. (1), including the 

initial urbanization level (𝛼𝛼), the increment of ISA during the growth (𝑏𝑏) (i.e., amplitude), and the rate of urban growth (𝑐𝑐) 

during the most rapid growth period (𝑑𝑑). The parameters 𝛼𝛼, 𝑏𝑏, and 𝑐𝑐 indicate the corresponding ISA rate (0-1), while parameter 

𝑑𝑑 represents the most urbanized year. The spatial distribution of urban growth patterns revealed from the sigmoid model is 5 

probably caused by varying ISA growth patterns across spaces. The initial urbanization level (𝛼𝛼) is steadily around zero, as 

illustrated in Fig. 6a, except for those states in North America and Asia with low urbanization levels (e.g., without distinct 

growth of urban areas over past decades). The increment of ISA (𝑏𝑏) follows the general pattern of urban evolution in the urban 

cycle of each state, agreeing well with the common urbanization level from 60% to 90%, especially in countries that 

experienced a fast urbanization process over the past decades (e.g., China) (Fig. 6b). Besides, the rate of urban growth (𝑐𝑐) (Fig. 10 

6c) changes steadily from 0.1 to 0.25 and the corresponding year with the fastest growth rates (d) (Fig. 6d) mainly falls into 

the range 1995-2015, which jointly determine the shapes of state-specific sigmoid curves in the modeling process. Such a 

spatially explicit ISA growth pattern suggests diverse urban growth stages over the past decades, mainly gained from the long-

term annual urban extent time series data (GAIA). The spatially explicit urban area growth patterns with parameters can well 

reflect the pathway of urban development in regions with different urbanization levels. 15 

4.2.2 Performance of the suitability surface 

The derived suitability surface from the Logistic regression model can well separate the urbanized and persistent regions (Fig. 

7). Countries in East Asia (e.g., China, Mongolia, Thailand), West Europe (e.g., France, Germany), and North America (e.g., 

USA) have better performance than other regions, with AUC values greater than 0.8 (Fig. 7b). For instance, the AUC in China 

is above 0.9, suggesting the developed model can well distinguish those urbanized regions from the spatial proxies, as China 20 

experienced an unprecedented urban expansion over past decades (Gong et al., 2020a). However, the model performances in 

Canada, Afghanistan, and West African regions (e.g., Zambia), are relatively worse compared to other regions, probably due 
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to the poor quality of these spatial proxies (Fig. 7a) or relatively small urban growth (Fig. 2), i.e., the ROC curves in Sudan 

and Zambia are associated with lower AUCs, different from those in China and USA (Fig S7). 

4.2.3 Performance of Logistic-Trend-ISA-CA model 

The proposed Logistic-Trend-ISA-CA model can achieve a good performance at the global scale, with the overall R2 of 0.9 

and the RMSE of 0.08 (Fig. 8). Overall, over 30% of countries have relatively low ISA differences between observed and 5 

modeled results, i.e., with ISA difference ranging from -0.01 to 0.01 (Fig. 8a). Only around 3% of global countries are 

associated with considerable over- or under-estimations (Fig. 8a). The modeled ISAs in Global South countries (e.g., India and 

Bolivia) are slightly overestimated compared to satellite observations; whereas in northern regions such as Ukraine and 

Uzbekistan, our modeled results are relatively underestimated. Although the under- and over-estimations of modeled ISAs in 

our results are not so evident, the reasons behind them are likely related to the relatively low suitability surface (Fig S1-f) or 10 

the low rates of urban sprawl in these regions over the past decades (Gong et al., 2020b). For example, the modeled ISAs in 

Global South countries are slightly underestimated in general due to the initial urbanization stages with relatively slow growth 

rates over the past decades in these regions (Fig. 8a). Also, patterns of suitability surface (Fig S1-f) and ISA difference are not 

always consistent across regions. Although the performance of the suitability surface is relatively worse in Canada (Fig. 7a), 

the modeled ISA difference is small. Moreover, the underestimated ISA during the modeling process was considerably reduced 15 

in our results (Fig. 8b), because those overestimated errors in the traditional urban CA model can be mitigated due to the 

fractional increase mechanism in our model, especially in regions (e.g., China) with massive discrete urban landscape. 

4.2.4 Harmonized urban demands 

The adopted scheme of urban demand harmonization considerably mitigated the gap in urban areas across different countries 

between LUH2 and satellite observations (i.e., GAIA), which was regarded as a reference in our study. Countries with urban 20 

harmonized rates 𝛾𝛾  less than 1 (i.e., green color in Fig. 9a) represent that the urban demand derived from LUH2 are 

underestimated, especially for those Global-South countries in central Africa and South America, due to the relatively coarse 

resolution global urban extent product (i.e., the History of the Global Environment database, HYDE). Similarly, countries with 
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harmonized rates 𝛾𝛾 above 1 (i.e., orange color in Fig. 9a) are likely to be overestimated in LUH2 regarding the urban demands, 

such as China, Canada, the USA, Russia, and most European countries. The uncertainties caused by LUH2 can be reduced by 

using satellite-derived urban extent time series data (i.e., GAIA), which is equipped with fine spatial resolution and good data 

quality. Overall, our harmonized urban area results follow the general trend of historical urban development meanwhile 

mitigate the uncertainties of country-specific urban areas in LUH2. Besides, the harmonized future urban demands at the global 5 

scale vary across different SSPs (Fig. 9b). Urban sprawl under SSP2 (middle of the road) and SSP3 (regional rivalry) is notably 

slower than in the observed period (1985-2015), while the urban sprawl under SSP5 (fossil-fueled development) is much 

higher (Fig. 9b). Specifically, urban expansion under SSP3-RCP 7.0 has lowest urban demands in the future. In contrast, the 

urban growth is highest in SSP5-RCP8.5 (Fig 9c), with a relatively large area difference across different countries.  

4.3 Data comparison with similar global urban extent products 10 

Our results can provide spatially explicit information of urban fraction compared to other global urban sprawl products, such 

as Gao and O’neill (2020) and Chen et al. (2020a). The projected urban area in these three products were derived from different 

mechanisms (i.e., harmonization with LUH2 and GAIA in our result, data driven and panel data analysis using the Global 

Human Settlement Layer (GHSL) data in Gao and O’neill (2020) and Chen et al. (2020a), respectively). It is worth noting that 

the spatial patterns were compared with other global urban products under the SSP2 scenario (i.e., middle of the road), under 15 

which scenario the urban area growth follows the historical trend in general (Fig. 10). Overall, our modeled results can provide 

more detailed information of urban fraction at 1km spatial resolution around the urban core and rural areas (Fig. 10). In Gao 

and O'neill (2020) 's result, due to the relatively coarse spatial resolution, many details of the urban extent and the urban 

fractional change have been ignored (Fig. 10). In Chen et al. (2020) 's result, the urban pixels in/around the urban fringe indeed 

are associated with relatively low urban fractions compared to those in the urban core (Fig. 10). Supported by the long-term 20 

urban extent time series data and the ISA-based modeling scheme, our results can maintain many details of urban intensity 

(i.e., both high and low intensity levels) from the city core to surrounding rural areas in a spatially explicit manner. Continuous 
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urban fractional change at a fine resolution can be better applied in global urban studies with notably improved spatial details 

and reduced uncertainties. 

Our dataset can model spatially explicit urban fractional change at a 1km spatial resolution and can well capture the different 

intensity of urban development (e.g., New York City in the USA) under eight scenarios (Fig.11). Under different scenarios in 

the future, which were selected from different potential magnitudes of urban growth (Fig S4), the spatial patterns of urban 5 

sprawl in New York City under different scenarios show more spatial details and continuous urban fractional change in our 

results than that revealed in Gao and O’neill (2020) and Chen et al. (2020a) (Fig.11). Under the low urbanization pathway 

(SSP4 derived from Fig S4), urban sprawl was under-estimated around/in urban fringe in our result and Chen et al. (2020a), 

while Gao and O’neill (2020) simulated more intensive urban sprawl in urban fringe under this scenario (Fig.11b). Under the 

high urbanization pathway (i.e., SSP5 derived from Fig S4), there is some over-estimated urban land in urban fringe in Gao 10 

and O’neill (2020) and Chen et al. (2020a), however, less over-estimation was occurred around urban fringe in our result 

(Fig.11c). This is probably due to the mechanism of sigmoid growth model we selected that correspond with historical urban 

development in this region, which differs from Gao and O’neill (2020) and Chen et al. (2020a). 

5 Data availability 

The gridded dataset of global urban fractional change (2015-2100, 5-year interval) at 1km spatial resolution under eight future 15 

development pathways can be viewed and downloaded from https://doi.org/10.6084/m9.figshare.20391117.v2 (He et al., 2022). 

The historical annual long-term urban extent data (30m resolution) were derived from annual Global Artificial Impervious 

Area (GAIA) data (http://data.ess.tsinghua.edu.cn/) (Gong et al., 2020a). Future urban area growth trends across different 

countries were derived from the Land Use Harmonization (LUH2) data (https://luh.umd.edu/data.shtml) (Hurtt et al., 2020).  

6 Conclusions 20 

In this study, we developed a gridded dataset of global urban fractional change (2015-2100, 5-year interval) at a 1km spatial 

resolution, under eight scenarios of socioeconomic pathways and climate change. We first characterized ISA growth patterns 
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and developed a state-specific ISA-based growth model based on long-term observations, using the sigmoid model to account 

for different urban growth rates under varying urbanization levels. Then, through incorporating the ISA-based growth 

mechanism with the CA model, we calibrated the state-specific urban CA model with evaluations at the global scale 

quantitatively. Finally, we projected future urban gradual changes at 1km resolution under eight future development pathways 

with harmonized urban growth demand from the GAIA and LUH2 datasets. 5 

Our database can provide temporally consistent and spatially explicit urban fractional changes under eight development 

pathways. It is worth noting that the temporal contexts of urban evolution were comprehensively considered in our projected 

dataset, using long-term and annual urban extent time series data (i.e., GAIA). The average urban growth rates derived from 

the LUH2 dataset at the country level show significant differences under eight future SSP-RCP scenarios, of which Global 

South countries/regions are primary drivers of future global urbanization. In addition, the spatially explicit ISA growth patterns 10 

differ across states, reducing the uncertainties in urban sprawl modeling. Besides, the urban demand harmonization process 

considerably mitigated the gap of projected urban areas across different countries between LUH2 and GAIA. Furthermore, the 

overall R2 and RMSE of modeled and observed ISAs are 0.9 and 0.08, respectively, suggesting an overall good performance 

of urban sprawl modeling. Compared to other global urban products under future scenarios, our results can promote future 

urban land use efficiency by simulating gradual urban fractional change with notably improved spatial details (i.e., 1km).  15 

The global dataset of gridded urban fractional changes under eight SSP-RCP scenarios is of great potential to support various 

global urban studies. For example, future urban extents with fractional information can delineate the intensity gradient from 

the urban core to rural areas, which is helpful for relevant studies such as urban heat island estimation and human-natural 

interactions in urban ecosystems (Acuto et al., 2018; Castán Broto and Bulkeley, 2013; Klein Goldewijk et al., 2010). Besides, 

our developed dataset can serve as a base input for global integrated assessments (e.g., urban energy consumption, inequality 20 

evaluation) (Zhou et al., 2022) and Earth system models, in which the anthropogenic activities within the urban extent can be 

quantitatively measured (Li et al., 2014; Li and Gong, 2016).  
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Fig. 1: The proposed overall framework of global urban fraction dynamics under future scenarios using the developed ISA-

based urban CA model, including the characterization of urban fraction change with urban CA model (a), the calibration of 5 

Logistic-Trend-CA model (b), and the projection of future global urban fraction changes under 8 scenarios (c).  
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Fig. 2: The average urban growth rate (2100/2015) derived from LUH2 at the country level and the comparison between Global 

South and North countries, under 8 future development pathways. The USA and China are represented as solid dots in boxplots, 

as representative countries in Global South and North countries. Detailed comparison among 8 RCPs in a common SSP 

scenario can be found in Fig S3.  5 
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Fig. 3: The modeled urban sprawl in 2100 with urban demand change in Nigeria (Enugu) (a), the USA (Atlanta) (b), and 

China (Yangtze River Delta) (c) under typical SSP-RCP scenarios selected by grouping future urban demand in Fig S4. 
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Fig. 4: The projected spatial patterns of urban sprawl in some typical urbanization regions of Nigeria (a), the USA (b), and 

China (c) from 2030 to 2100 under the most fluctuating scenario. 
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Fig. 5: Change of urban sprawl in China at 1km spatial resolution from 1985 to 2100 under the SSP5-RCP8.5 scenario.  
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Fig. 6: The spatial distribution of the initial urbanization level (a), increment of ISA during the growth (b), the fastest growth 

rate (c) during the most rapid growth period (d) of the derived sigmoid growth curve in each state. 
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Fig. 7: The model performance of derived suitability surfaces using the indicator of the area under the curve (AUC) at the 

global scale. The ROC curves in some representative countries can be found in Fig S7. 
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Fig. 8: The spatial distribution of the ISA difference between modeled and observed results in 2015 (a) and the scatter plots 

(b) of these two datasets at the global scale and typical countries (i.e., USA, China). 
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Fig. 9: The spatial distribution of harmonized rates at the country level in the base year 2015 (a), trends of global urban 

demand after harmonization (b), and the comparison across 8 scenarios (c). 
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Fig. 10: Comparisons of our results with two similar projection products from Gao and O’neill (2020) and Chen et al. (2020a) 

under SSP2-RCP4.5 in 2100. An overview of urban sprawl at global scale and two typical cases in the USA and China of 

relatively high intensity regions. 
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Fig. 11: Comparisons of modeled urban patterns in New York City (USA) with our results, Gao and O’neill (2020), and Chen 

et al. (2020a) under general (SSP2-RCP4.5) (a), low urbanization (SSP4-RCP6.0) (b), and high urbanization (SSP5-RCP8.5) 

(c) pathways in 2100. The modeled results under SSP2-RCP4.5 were considered as the base for comparison. 
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Table 1: The adopted spatial proxies in this study. 
Spatial proxies Description Source 

Land Land cover 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
Land Cover Dynamics (MCD12Q2) 

Infrastructure 

Protected area The World Database on Protected Areas (WDPA) 

Major cities World cities – city center 

Traffic World roads - major road 

Terrain Derived from dem 
Shuttle Radar Topography Mission - Digital Elevation Model 
(DEM) 
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