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Supplementary texts 

The Logistic-Trend-ISA-CA model is a self-evolution system, consisting of four primary components, 

including the suitability surface (here we implemented a logistic regression model for transition rules 

extraction, Eq. S1-2), the trend-adjusted neighborhood (Eq. 2-3), the stochastic perturbation (Eq. S3), 

and the land constraint.  

We implemented a logistic regression model for transition rules extraction with considerations of various 

spatial proxies. The neighborhood configuration, which closely relates to its size, shape, and surrounding 

land cover types, is a basic and crucial component in the urban CA model as a driving force to modeling 

urban dynamics. Most urbanized pixels were developed following the historical pathway coupling with 

the neighborhood altering by the temporal trend. In this procedure, the non-urban grids are more likely 

to transform into urban grids in next iterations if there are more developed urban grids surrounded. 

Thereafter, the weighting factors of urban pixels developed in more recent years are higher than those 

developed in earlier years. We also included land constraint and stochastic perturbation in the developed 

Logistic-Trend-CA model. Land cover/use type in the initial year will influence spatial allocation in the 

urban sprawl process and restricted lands, such as water and protected areas, were not allowed for 

development in the Logistic-Trend-CA model; thereafter, they were represented as a land constraint term 

as Land = 0. Stochastic perturbation represents unconsidered factors (e.g., policies) in the modeling 

process. 
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                            ሺS2ሻ 

𝑅௜௝
௧ ൌ 1 ൅ ሺെlnሺ𝜑ሻሻఈ                          (S3) 

where 𝑃௦௨௜௧  is the obtained suitability of development from the biophysical and socioeconomic 

conditions and 𝑏௜ and 𝑥௜ are the ith coefficient and spatial proxy, respectively. Ω is the influence of 

neighborhood considering the historical contexts of urban sprawl using a weighting factor of 𝑊௜௝
௧௦ (Eq. 

2-3). 𝑅௜௝
௧  is the stochastic perturbation, 𝜑 is a random value in [0, 1], and α is a parameter determining 

the degree of perturbation. 

We then calculated the overall development probability based on the suitability surface, neighborhood, 

land constraint and stochastic perturbation. We determined their development probabilities 𝑃௦௨௜௧ using 

Eq. (4) based on urban time series data derived from Landsat. The units with the higher combined 

development probability have higher priority for urban grid allocation than those with lower probability. 
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Fig. S1 

 

Fig S1. The distance to city centers (a), the distance to major road (b), the land use types (c), the digital 

elevation model (DEM) (d), the protected area (PA) (e), and the derived suitability surface at the global 

scale (f)
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Fig. S2 

 

Fig S2. Illustration of the ISA-based urban area growth model in a specific region, with distinct ISA 

growth trends at different urbanization levels. Here we set the ISA conceptual model of Victoria in 

Australia as an example.
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Fig. S3 

 

 

Fig S3. The average urban growth rate (2100/ 2015) derived from LUH2 at the country level, under 

various RCP levels and same SSP levels. 
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Fig. S4 

 

 
Fig S4. The future urban demand of the typical countries in Fig. 3. 
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Fig. S5 

 

 

Fig S5. The temporal spatial patterns of urban sprawl of Nigeria at 1km spatial resolution from 1985 to 

2100 under the most fluctuating scenario (SSP4-RCP6.0). 
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Fig. S6 

 

 

Fig S6. The temporal spatial patterns of urban sprawl of USA at 1km spatial resolution from 1985 to 

2100 under the most fluctuating scenario (SSP5-RCP8.5). 
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Fig. S7 

 

 

Fig S7. The ROC curves in some representative countries like China, USA, Sudan, Zambia, India, and 

Argentina. 

 

 


