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2 

Abstract 30 

This paper presents an ‘enhanced future FLows and Groundwater’ (eFLaG) dataset of 31 

nationally consistent hydrological projections for the UK, based on the latest UK 32 

Climate Projections (UKCP18). The hydrological projections are derived from a range 33 

of river flow models (Grid-to-Grid, PDM, GR4J and GR6J), to provide an indication of 34 

hydrological model uncertainty, as well as groundwater level (Aquimod) and 35 

groundwater recharge (ZOODRM) models. A 12-member ensemble of transient 36 

projections of present and future (up to 2080) daily river flows, groundwater levels and 37 

groundwater recharge were produced using bias corrected data from the UKCP18 38 

Regional (12km) climate ensemble. Projections are provided for 200 river catchments, 39 

54 groundwater level boreholes and 558 groundwater bodies, all sampling across the 40 

diverse hydrological and geological conditions of the UK.  An evaluation was carried 41 

out, to appraise the quality of hydrological model simulations against observations and 42 

also to appraise the reliability of hydrological models driven by the RCM ensemble, in 43 

terms of their capacity to reproduce hydrological regimes in the current period. The 44 

dataset was originally conceived as a prototype climate service for drought planning 45 

for the UK water sector, so has been developed with drought, low river flow and low 46 

groundwater level applications as the primary focus. The evaluation metrics show that 47 

river flows and groundwater levels are, for the majority of catchments and boreholes, 48 

well simulated across the flow and level regime, meaning that the eFLaG dataset could 49 

be applied to a wider range of water resources research and management contexts, 50 

pending a full evaluation for the designated purpose. 51 

 52 

1. Introduction 53 

 54 

This paper presents an ‘enhanced future FLows and Groundwater’ (hereafter referred 55 

to as “eFLaG”) dataset of nationally consistent, and spatially coherent, hydrological 56 

(river flow and groundwater) projections for the UK, based on UKCP18 – the latest 57 

climate projections for the UK from the UK Climate Projections programme (Murphy et 58 

al. 2018). eFLaG provides a successor to the Future Flows and Groundwater Levels 59 

(FFGWL) dataset (Prudhomme et al. 2013), which was based on the UKCP09 60 

projections (Murphy et al. 2010).  61 

The eFLaG dataset was developed specifically as a demonstration climate service for 62 

use by the water industry for water resources and drought planning, and hence by 63 

design is focused on future projections of drought, low river flows and low groundwater 64 

levels. By providing a consistent dataset of future projections of these variables, eFLaG 65 

can potentially support a wide range of applications across other sectors. The 66 
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predecessor, FFGWL, has been widely used within the water industry, but also found 67 

very wide application for diverse research purposes (see Section 8). 68 

As in FFGWL, in eFLaG the climate projections are used as input to a range of 69 

hydrological models to provide nationally consistent, spatially coherent projections of 70 

river flow and groundwater levels for the 21st century. The use of an ensemble of river 71 

flow models also provides information on hydrological model uncertainty. As well as 72 

using an updated set of climate projections, eFLaG capitalises on advances in 73 

national-scale river flow and groundwater modelling since FFGWL, and detailed 74 

evaluation of the applicability of models for drought simulation, notably research under 75 

the NERC Drought and Water Scarcity (DWS) Programme (e.g. Rudd et al. 2017; 76 

Smith et al. 2019).   77 

 78 

Previous research on hydrological projections 79 

There is a long history of climate change impact assessment within the UK water 80 

industry and academia, which we do not review in detail here. Watts et al. (2015) 81 

provides an overview of past research (up to around 2013) on climate projections 82 

relevant for the water sector, including for future water resources and drought. 83 

However, as context for eFLaG it is worth considering some key developments since 84 

that review. 85 

The original FFGWL did not present an assessment of future drought risk, other than 86 

seasonal river flows (Prudhomme et al. 2012) and groundwater levels (Jackson et al. 87 

2015), which suggested: pronounced decreases in future summer flows; reductions in 88 

annual average groundwater levels; and increases (decreases) in winter (summer) 89 

groundwater levels. Since then, the original FFGWL projections have been used in a 90 

number of hydrological impact studies. Collet et al. (2018) presented a probabilistic 91 

appraisal of future river flow drought (and flood) hazard in the UK, showing hydro-92 

hazard ‘hot-spots’ in western Britain and northeast Scotland, especially during the 93 

autumn. Hughes et al. (2021) used the ZOODRM distributed groundwater recharge 94 

model to assess changes in 21st century seasonal recharge across river basin districts 95 

and groundwater bodies in the UK based on the FFGWL climate change projections. 96 

The results showed a consistent trend of more recharge being concentrated over fewer 97 

months with increased recharge in winter and decreased recharge in summer.  98 

In addition to UKCP09/FFGWL, other datasets have been developed using different 99 

Global Climate Model (GCM)/Regional Climate Model (RCM)/hydrological modelling 100 

chains. One major development has been the use of large ensemble projections of 101 

future climate variables from the Weather@Home RCM (specifically HadRM3P) as 102 

part of the MaRIUS project within the DWS Programme (Guillod et al., 2018). The 103 

MaRIUS projections provide large ensembles (100+) of past, present (1900–2006) and 104 
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future (2020–2049 and 2070–2099) climate outputs. These were used as inputs to the 105 

national-scale Grid-to-Grid (G2G) hydrological model to provide a similarly large 106 

gridded (1km2) dataset of river flow and soil moisture (Bell et al., 2018). Analysis of 107 

these datasets has been conducted for drought (Rudd et al. 2019) and low flows (Kay 108 

et al. 2018), indicating future increases in hydrological drought severity and spatial 109 

extent, and decreases in absolute low flows.  110 

A further source of hydro-meteorological projections now available are those from the 111 

EDgE project (End-to-end Demonstrator for improved decision-making for the water 112 

sector in Europe), see Samaniego et al. (2019). EDgE delivered an ensemble 113 

comprising of two GCMs and four ‘impact’ models (gridded land surface and 114 

hydrological models at a 5x5km scale) for the whole of Europe. Visser-Quinn et al. 115 

(2019) analysed future river flow drought risk in this ensemble, using a similar approach 116 

to Collet et al. (2018), and found similar results in terms of the spatial distribution and 117 

magnitude of future changes in droughts, albeit with some differences arising from the 118 

use of different scenarios, GCMs and hydrological models.  119 

While such products may be used for climate adaptation research, the most relevant 120 

for eFLaG is the release of UKCP18. To date, relatively few studies using UKCP18 121 

have been published. Kay et al. (2020) made a rapid assessment of UKCP18 impacts 122 

on hydrology compared to UKCP09. More recently, Kay (2021), Kay et al. (2021a,b,c) 123 

and Lane & Kay (2021) provided future assessments of potential changes in seasonal 124 

mean river flows, high flows and low flows using various UKCP18 products with the 125 

G2G hydrological model. They found potential increases in winter mean flows and high 126 

flows, and decreases in summer and low flows, albeit with wide uncertainty ranges. To 127 

date, and to the authors’ knowledge, there have been no published assessments of 128 

future groundwater levels or groundwater recharge using UKCP18. 129 

In summary, there have been substantial scientific advances in hydrological 130 

projections for the UK since Watts et al. (2015) and FFGWL, including some research 131 

on future indicators relevant for water resource availability and drought. However, 132 

relatively few datasets have been made available to the community since FFGWL. 133 

While MaRIUS and EDgE provide complementary hydrological datasets, there remains 134 

a need for an accessible dataset based on UKCP18. Existing UKCP18 studies have 135 

been focused on time-slice projections and used a single hydrological model (e.g. Kay 136 

et al., 2021 a,b,c) so there will be significant benefit arising from the eFLaG dataset of 137 

transient projections from a range of hydrological models covering river flows, 138 

groundwater levels and groundwater recharge. 139 

 140 

 141 
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2. Outline of dataset and overview of the modelling chain 142 

 143 

In the following sections we set out the methodology behind the eFLaG dataset. This 144 

section firstly provides a brief overview of the various stages of the methodology, and 145 

how our method samples the ‘cascade of uncertainty’ (Smith et al. 2019) emerging 146 

from the multiplicity of projections and other modelling choices. While the original 147 

FFGWL methodology provided an initial foundation for eFLaG, much has changed in 148 

the decade since that study was commissioned, and the new UKCP18 projections 149 

differ from UKCP09 (e.g. Kay et al. 2020). . eFLaG therefore required the development 150 

of a new methodology, which is described in detail in the following sections.  151 

The whole project workflow is illustrated in Fig 1. eFLaG is driven by the UKCP18 152 

dataset, specifically the ‘Regional’ 12km projections, to which a bias correction is 153 

applied. Section 3 describes the processing of the climate projections, including the 154 

bias correction method. The UKCP18 projections are used as input to three river flow 155 

models (GR, PDM and G2G), one groundwater level model (AquiMod) and one 156 

groundwater recharge model (ZOODRM) to provide simulations for 200 river 157 

catchments, 54 groundwater boreholes and 558 groundwater bodies respectively. 158 

Section 4 provides more detail on how these sites were selected.  Details of the 159 

hydrological models and their calibration are given in Section 5. The evaluation of the 160 

models is covered in sections 6 and 7. Fig 1 also illustrates how all of the eFLaG 161 

projections are feeding into a series of water industry demonstrators, in partnership 162 

with UK water providers (specifically, Dwr Cymru/Welsh Water and Thames Water). 163 

These are not discussed in detail in this paper, but these were relevant for the site 164 

selection and as such are mentioned briefly below. 165 
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 166 

Figure 1 Project workflow illustrating the stages of analysis described in this paper 167 

The question of uncertainty in climate impacts modelling is a challenging one that has 168 

been explored in a whole range of studies, going back as far as climate projections 169 

have been routinely produced from the 1980s. There are inherent uncertainties at 170 

every step of the process, from climate emissions scenarios through to climate 171 

modelling, and on to environmental modelling (in our case hydrological modelling, 172 

which itself has a vast literature when it comes to uncertainty estimation) and then to 173 

wider impacts modelling (e.g. in water supply systems). Recently, Smith et al. (2018) 174 

presented this issue as a ‘cascade of uncertainty’ (using widely adopted terminology, 175 

e.g. Wilby and Dessai, 2010). Within eFLaG, as with the majority of climate impact 176 

applications, it is not possible to sample across all sources of uncertainty. Following 177 

Smith et al. (2019) we adopted a pragmatic approach to ‘crystalising’ the uncertainty 178 

within the available time and resource constraints. In Table 1, we consider the sources 179 

of uncertainty, and our approach to sampling from them. The focus in eFLaG is on 180 

uncertainty arising from initial/boundary conditions. Additionally, for the river flow 181 

simulations, the uncertainty arising from model choice is also accounted for, and within 182 

this, model structure is accounted for by considering two versions of one of the models. 183 

 184 

 185 

 186 
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Table 1: Sources of uncertainty explored in eFLaG (building on the framework of 187 

Smith et al. 2018) 188 

Uncertainty Source Sampling Approach Details 

Emissions Scenarios One scenario RCP8.5 

Climate Models One model Hadley Centre GCM 

Initial/Boundary 

Conditions 

12x member PPE 

(Perturbed Parameter 

Ensemble) 

PPE perturbs the parameters of 

the climate model (both the RCM, 

and the GCM within which it is 

nested) 

Temporal/Spatial 

Downscaling 

One method Hadley Centre RCM, monthly 

mean bias correction 

Model Choice 3x river flow models 

2x groundwater 

models 

 

GR, PDM, G2G 

Aquimod, ZOODRM 

Model Structure 2x model structures for 

the GR modelling 

framework 

Fixed structure for G2G and 

PDM, but for GR two different 

model structures were used 

(GR4J and GR6J), as discussed 

in section 4. 

Model parameter 

uncertainty 

Not considered in 

eFLaG  

Not considered in eFLaG 

 189 

 190 

3. UKCP Data Processing 191 

 192 

The UKCP18 regional climate projections were created using perturbed-parameter 193 

runs of the Hadley Centre global climate model (GCM, HadGEM3-GC3.05) and 194 

regional climate model (RCM, HadREM3-GA705) (Murphy et al. 2018). These provide 195 

a set of 12 high resolution (12km) spatially consistent climate projections over the UK, 196 

covering the period Dec 1980-Nov 2080. The 12-member RCM perturbed parameter 197 

ensemble (PPE) is valuable to represent climate model parameter uncertainty; 198 

ensemble members are numbered 01–15 excluding 02, 03 and 14 (as there are no 199 

RCM equivalents for these GCM PPE members, Murphy et al. 2018 section 4.3), and 200 

01 is the standard parameterisation. However, it is important to note that, as all 201 

ensemble members are based on the same high emissions scenario (RCP8.5) and 202 

underlying climate model structure, they do not represent the full climate uncertainty. 203 

The UKCP18 RCM output was processed to provide the variables needed for 204 
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hydrological modelling – namely, 1km gridded and catchment-average time-series of 205 

available precipitation (i.e. after the application of a snow module, see below) and 206 

Potential Evapotranspiration (PET), not itself a UKCP18 output but estimated using 207 

available UKCP18 variables as described below.   208 

The Hadley Centre climate model uses a simplified 360-day year, consisting of twelve 209 

30-day months. The RCM precipitation and temperature time-series are given for this 210 

360-day calendar, and are therefore not consistent with the 365/6-day observed time-211 

series. Previously, the FFGWL Climate project inserted five (or six in a leap year) days 212 

of zero rainfall into the RCM time-series so that the observed and RCM data were 213 

using comparable calendars (Prudhomme et al., 2012). However, here the data were 214 

kept in the 360-day format, to avoid modifying the time-series with artificial data.   215 

Precipitation  216 

Daily precipitation time-series were available for each of the UKCP18 RCM-PPE 217 

members. However, the RCM data showed biases compared to observed precipitation, 218 

as is common for climate data (Murphy et al., 2018; Teutschbein & Seibert, 2012). The 219 

RCM data was found to substantially over-estimate precipitation for most months, the 220 

exception being for August-October, as shown in Murphy et al. (2018) Fig 4.4. A simple 221 

monthly-mean bias-correction methodology was therefore applied, through the 222 

following steps:  223 

1. The 1km HadUK-Grid observed rainfall product was averaged to 12km for 224 

consistency with the RCM data (Hollis et al., 2019).   225 

2. For each month and grid-cell, change factors were calculated between the RCM 226 

simulated precipitation and observation-based HadUK-Grid time-slice mean of 227 

monthly total rainfall over the period 1981-2010. This resulted in bias-correction 228 

factor grids being made for each month and RCM, as shown in Fig. 2.   229 

3. The change factor grids were then smoothed to prevent spatial discontinuities, 230 

by updating each grid cell using a weighted combination of the original grid-cell 231 

value and neighbouring values, as in Guillod et al. (2018).  232 

4. To produce bias-corrected precipitation estimates, the RCM simulated 233 

precipitation time-series were multiplied by the bias-correction factor grid for 234 

each month (i.e. all January precipitation was multiplied by the January bias-235 

correction grids, February precipitation by the February correction grid, etc.).  236 

The bias-corrected precipitation products were then downscaled from 12km to 1km 237 

based on the distribution of the Standard Average Annual Rainfall (SAAR) for the 238 

period 1961-1990, as in previous studies (Bell et al., 2007; Kay & Crooks, 2014). This 239 

involved calculating the ratio of the observed SAAR at 1km to the observed SAAR 240 

averaged up to the 12km RCM grid, and then multiplying RCM precipitation values by 241 

this ratio. This introduces further spatial variability related to typical rainfall patterns, 242 

but the total rainfall across the original 12km RCM grid cell remains unchanged. 243 
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 244 

Accounting for snowmelt processes  245 

A simple snow module was applied to account for snow-melt processes (Bell et al., 246 

2016). The snow module converted the 1km bias-corrected precipitation into rainfall 247 

plus snowmelt (i.e. available precipitation), based on temperature. This used the 248 

minimum and maximum daily temperatures provided by each RCM ensemble member, 249 

which were first scaled from a 12km resolution to 1km using a lapse rate based on 250 

elevation data. The parameters used in the snow module are given in Supplementary 251 

Info (Table S1).  252 

Potential evapotranspiration  253 

Potential evapotranspiration (PET) was not directly available as an RCM output, and 254 

was therefore generated using a range of variables from the RCM-PPE climate time-255 

series (Table S2). The PET was calculated using the same methodology as the hydro-256 

PE dataset (Robinson et al. 2022) except for the use of eFLaG bias-corrected 257 

precipitation data within the interception correction component. This produces 258 

Penman-Monteith PET parameterised for short grass. The equation also included 259 

monthly stomatal resistance values, which were adjusted for the future period to 260 

account for the impact of increased carbon dioxide concentrations on stomata (as in 261 

Rudd & Kay, (2016), based on Kruijt et al., (2008)). The PET data were then copied 262 

down from a 12km to 1km resolution by simply setting all 1km grid cells to the value of 263 

the containing 12km grid cell.   264 

Outputs  265 

The 1km gridded time-series of ‘available precipitation’ and PET were then used to 266 

produce the time-series of catchment-averages required for each of the eFLaG river 267 

catchments and groundwater boreholes. For the river catchments, the catchment 268 

average values were derived using the standard UK National River Flow Archive 269 

approach for catchment average rainfalls, as described in NRFA (2021). For the 270 

boreholes, following Mackay et al. (2014a), averages were taken over the 271 

representative aquifer length which was determined as the groundwater flow path 272 

between the borehole and a single discharge point on a river based on the catchment 273 

geometry and hydrogeology. For the grid-based models, ZOODRM and G2G, the 274 

gridded data were used directly. 275 

The bias-corrected climate outputs are part of the eFLaG dataset described further in 276 

Section 9. For each river catchment and groundwater borehole, bias-corrected data 277 

are available for the observational period, for the purposes of evaluation of the 278 

hydrological model outputs, and for the future. In addition, the gridded bias-corrected 279 

climatology will be made available as a separate dataset in future. 280 
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 281 

 282 

 283 

Figure 2: Bias-correction grids applied to correct monthly precipitation. Values are 284 

correction factors used to modify precipitation, with a value of 0.5 halving precipitation, 285 

1 meaning no change to precipitation and 2 doubling precipitation etc. Columns show 286 

results from each RCM PPE member, rows show results for each month.  Note the 287 

column numbers reflect the RCM PPE number  (see Sect. 3)  288 
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4. Catchment selection 289 

 290 

The UK is fortunate to have one of the densest hydrometric networks in the world, with 291 

a legacy of strong commitment to data quality and completeness. There are more than 292 

1,500 river flow gauging stations with flow records on the UK National River Flow 293 

Archive (NRFA, Dixon et al. 2013 and https://nrfa.ceh.ac.uk/) and more than 180 294 

observation boreholes with groundwater level records on the BGS National 295 

Groundwater Level Archive (NGLA). These archives are the principal sources of 296 

validated river flow and groundwater level data at the UK scale. A remit of the NRFA 297 

and NGLA is to archive data that are useful for a wide variety of applications, primarily 298 

focusing on the most strategically important records. However, such catchments are 299 

not always the most relevant for the water industry, and water companies often have 300 

their own sites on which they undertake analysis. Since the eFLaG project aims to 301 

maximise utility for a range of users, the catchment selection strategy considered both 302 

research and industry needs.  303 

Detailed site lists and metadata for river flow, groundwater level and groundwater 304 

recharge are catalogued on the dataset held on the Environmental Informatics Data 305 

Centre (EIDC) (Hannaford et al. 2022).  306 

River Flows 307 

To support selection, a metadatabase was assembled for all NRFA gauging stations 308 

in the UK, primarily using the NRFA’s metadata holdings published on the NRFA 309 

website and in the UK Hydrometric Register (Marsh and Hannaford, 2008).  Metadata 310 

compiled included membership of key national strategic networks (e.g. near-natural 311 

Benchmark (UKBN2; Harrigan et al. 2018a) and operational monitoring networks), 312 

capitalising on efforts of other projects in quality controlling data and ensuring 313 

catchments are fit for purpose. Selection also considered whether catchments were 314 

used in previous relevant projects that have simulated river flows for drought analysis. 315 

The selection ensured a strong representation of the original FFGWL catchments (with 316 

117 catchments featuring in both) and also overlap with recent modelling endeavours 317 

through the DWS Programme (AboutDrought, 2021) projects ‘Historic Droughts’, 318 

‘IMPETUS’ and ‘MaRIUS’ projects, that used several of the models used by eFLaG 319 

(specifically G2G, GR4J). In this regard we ensured that 165 eFLaG catchments 320 

overlapped with at least one DWS project.  321 

Selection also focused on data quality. Longer record lengths were prioritised and 322 

hydrometric quality was evaluated where possible. Given the extent of hydrometric 323 

issues (at low flows especially) it is not possible for all sites to have the highest quality 324 

data, but where decisions were made on similar sites, quality was considered as a 325 

tiebreaker. The selection included 80 Benchmark catchments, but did not seek to focus 326 

entirely on natural catchments given the limited range of variability they capture (being 327 

https://nrfa.ceh.ac.uk/
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mostly small and clustered in headwaters), and also included large and disturbed sites 328 

known to be important for water industry purposes. Artificial influences are prevalent 329 

across the UK and have been shown to prominently affect flow regimes (e.g. 330 

Rameshwaran et al. 2022) and drought characteristics (Tijdeman et al. 2018) in many 331 

catchments. Hence, the incorporation of a range of Benchmark near-natural 332 

catchments and artificially influenced sites is important for ensuring representativeness 333 

and demonstrating the utility of the different models used, which treat artificial 334 

influences differently (Sect 5). Membership of the Benchmark catchments is 335 

highlighted in the dataset description, and information on artificial influences can be 336 

accessed for all sites on the NRFA website (in station descriptions and ‘Factors 337 

Affecting Runoff’ codes).  338 

Catchment representativeness was also considered, enabling the eFLaG dataset to 339 

sample the hydrological variability of the UK. Representativeness was considered by 340 

comparing the distribution of eFLaG potential selections relative to various catchment 341 

descriptors from the NRFA Hydrometric Register (altitude, area, annual rainfall, Base 342 

Flow Index, land cover and so on).  343 

Finally, this activity focused on ensuring water industry relevance. At the national scale, 344 

this was achieved by asking stakeholders at an eFLaG workshop for views on 345 

additional catchments (Durant et al. 2022). In this way, 12 catchments were added. 346 

Similarly, for the regional demonstrators (Dwr Cymru/Welsh Water and 347 

Thames Water), water company teams were consulted to gain a better understanding 348 

of strategically important flow records for water companies in the case study regions, 349 

leading to an additional five catchments.  350 

The final eFLaG dataset consists of 200 catchments (Fig. 3a) giving good geographical 351 

coverage and representativeness of the UK.  352 

Groundwater Levels 353 

Boreholes were selected to ensure a number of essential criteria were met. Firstly, only 354 

those boreholes with the highest-quality records of groundwater level were considered. 355 

This required regular (at least monthly) and continuous (at least 10 years in length) 356 

records of data from boreholes that are in zones which are not significantly affected by 357 

groundwater abstraction.  358 

Secondly, sites were chosen to ensure coverage of the UK’s principal aquifers where 359 

possible, enabling the eFLaG dataset to sample the hydrogeological variability of the 360 

UK. This broadly aligns with the requirements of other national-scale assessments of 361 

groundwater resources undertaken as part of the original FFGWL project and the 362 

‘Historic Droughts’ and ‘IMPETUS’ projects. Accordingly, the selection aimed to ensure 363 

good coherence with these studies also. 364 
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Thirdly, as with river flow catchment selection, an additional activity focused on 365 

ensuring water industry relevance, both at the national scale, through consultation with 366 

stakeholders at the eFLaG workshop, and through consultation with key demonstrator 367 

partners (Dwr Cymru/Welsh Water and Thames Water) who identified strategically 368 

important boreholes that would strengthen the outputs for long-term drought risk 369 

assessment to support the water resources planning case study. Through this activity, 370 

several additional boreholes were identified. 371 

These selection criteria identified over 70 ‘candidate’ boreholes for the eFLaG project. 372 

A final quality assurance procedure was then undertaken whereby a preliminary 373 

analysis of AquiMod’s ability to capture low groundwater levels was undertaken at each 374 

borehole via visual inspection of the simulated hydrographs. A final set of 54 boreholes 375 

was selected (Fig. 3b). They represent a significant advance in aquifer coverage 376 

compared to the 24 NGLA boreholes used in FFGWL, 15 of which are used in both. 377 

Groundwater Recharge 378 

The gridded groundwater recharge simulations have been aggregated over 558 379 

‘groundwater bodies’ covering England (Environment Agency, 2021a), Wales (Natural 380 

Resources Wales, 2021) and Scotland (Ó Dochartaigh et al., 2015) (Fig. 3c). These 381 

units were used for two principal reasons. Firstly, they are physically justifiable as they 382 

reflect known hydrogeological characteristics including groundwater recharge and 383 

groundwater flow regimes so that each catchment represents a distinct body of 384 

groundwater that can reasonably be considered in isolation. Secondly, they are 385 

coherent with the licensing areas defined as part of Catchment Abstraction 386 

Management Strategy (Environment Agency 2021b) and management areas for the 387 

implementation of the Water Framework Directive. They are, therefore, directly 388 

relevant to water regulation and the wider water industry. 389 

 390 
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 391 

 392 

Figure 3 a) Map of the 200 eFLaG catchments - highlighting those used as Case Study 393 

sites; b) Map of 54 eFLaG boreholes and principal UK Aquifers including The Chalk, 394 

Devonian and Carboniferous aquifers (Devonian/Carbonif.), Jurassic limestones 395 

(Jurassic), Magnesian limestones (Magnesian) and Permo-Triassic sandstones (Permo 396 

Trias.); c) Map of 558 groundwater bodies. Inset of Figure 3b shows the Berkshire 397 

downs where there are a high number of boreholes. 398 

 399 

5. Hydrological and groundwater model ensemble setup 400 

 401 

Creation of an enhanced Future Flow and Groundwater (eFLaG) dataset is 402 

underpinned by hydrological and groundwater models used to transform rainfall and 403 

potential evaporation (PE) to river flow, soil moisture, groundwater levels and recharge. 404 

The approach builds on that employed under FFGWL (Prudhomme et al. 2013) whilst 405 

exploiting developments in hydrological modelling for droughts since that time.  406 

For modelling of river flows, eFLaG used two lumped catchment models, PDM (Moore 407 

2007) and the GR suite (Perrin et al. 2003), and one distributed grid-based hydrological 408 

model, Grid-to-Grid (G2G; Bell et al. 2009). PDM was used in FFWGL and therefore 409 

provides some comparability with that project. Embracing a range of different model 410 

structures and spatial representations can provide insights into how assessments of 411 

future river flows (and hence, drought or low flow risk under climate change) is sensitive 412 

to hydrological model choice. It should be noted that an important difference between 413 

the river flow models is in treatment of artificial influences (abstractions and 414 
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discharges). G2G is not calibrated and simulates natural river flows only (i.e. it does 415 

not include artificial influences). The GR suite and PDM do not explicitly include 416 

artificial influences either, but as calibrated models they will implicitly include the net 417 

effect of artificial influences in the simulations. We return to this important distinction in 418 

the results and discussion. 419 

For groundwater, eFLaG adopted the lumped, conceptual, AquiMod groundwater 420 

model (Mackay et al. 2014a) to simulate groundwater level time series on a daily time 421 

step at the boreholes identified in Section 4. AquiMod was the groundwater level model 422 

used in FFGWL providing direct comparison. In addition to groundwater levels, the 423 

zooming object oriented distributed recharge model (ZOODRM) (Mansour and 424 

Hughes, 2004) was used to study changes in future groundwater recharge. 425 

In the following sub-sections, we describe each of these models in turn, providing 426 

information on the model set-up, calibration and past approaches to evaluation. A 427 

consistent approach was applied to the model application and evaluation across all 428 

these models where possible. However, it is important to emphasise that while some 429 

aspects were common, insofar as possible (e.g. model driving data), it was necessary 430 

to apply different approaches to suit the model in question. Calibration was done 431 

according to past applications and best-practice. Hence, the calibration approach 432 

described below is similar for the GR suite and PDM, but different for Aquimod, and by 433 

its nature G2G requires no specific calibration here. Where calibration was carried out 434 

for the conceptual models, it was undertaken for the full period of record of available 435 

data. 436 

Identical approaches to evaluation were adopted across all river flow models, but minor 437 

differences applied with groundwater, as described below.  438 

There are two sets of model output in eFLaG, described below – this terminology is 439 

adopted throughout. 440 

 simobs: observation-driven simulation (i.e. simulations for the observed period, 441 

driven by observational climate datasets, described below). The simobs period 442 

varies between models, but covers at least the January 1961 – December 2018 443 

period. 444 

 simrcm: UKCP18 RCM-driven simulation (12 ensemble members) (i.e. 445 

simulations driven by the UKCP18 RCM bias-corrected dataset as described in 446 

Section 3). These are available for 1980 to 2080. The simrcm runs from the 447 

observed period could then be evaluated against the simobs data.  448 

Common driving data was applied across all models for the simobs runs. Accepted 449 

national-standard observational climate products were used, including: 450 
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 Precipitation and temperature: HadUK-Grid 1km x 1km dataset (Hollis et al. 451 

2019), the national standard gridded meteorological dataset and observational 452 

product associated with UKCP18.  453 

 Potential Evaporation (PE). MORECS (Hough et al., 1997), an established, 454 

national gridded PE product. Other PE datasets such as CHESS (Robinson et 455 

al., 2017) and more recently the Environment Agency’s PE product 456 

(Environment Agency, 2021c) are available, however the decision to use 457 

MORECS was based on availability of data for the whole of the UK.  458 

 459 

For all models, evaluation was undertaken in two stages, which is typical practice for 460 

appraising a model for simulation of climate change impacts: 461 

1. Evaluation when driven with baseline observed climate data 462 

2. Evaluation when driven with baseline climate model data. 463 

Stage 1 involves the use of a range of statistics to assess the performance of model 464 

simulations driven by observed climate data (the simobs runs) against observations of 465 

river flow and groundwater. For Stage 1, a range of metrics are available and widely 466 

used to assess how well rainfall-runoff or groundwater models perform against 467 

observations. Within eFLaG, a range of different metrics were used to assess 468 

performance (Table 3). For river flows, these metrics have a focus on low flow metrics 469 

(e.g. NSE on log-transformed flows), but some do evaluate performance across the 470 

flow regime. For groundwater levels, a generalised NSE score was used which 471 

provides an overall assessment of process realism and fit to groundwater level data. 472 

The simulated and observed Standardized Groundwater level Index (SGI) were also 473 

compared using the NSE (NSESGI) which focusses in on groundwater extremes 474 

including droughts. 475 

It is not possible to do a thorough evaluation of the recharge simulations from 476 

ZOODRM, given the difficulty in measuring recharge, particularly at a scale that is 477 

commensurable with a national model. However, past applications of ZOODRM (e.g. 478 

Mansour et al., 2018) have successfully used monthly river flow data as a means to 479 

evaluate ZOODRM’s ability to capture catchment water balances and infer the 480 

accuracy of seasonal recharge simulations (further details provided in model 481 

description). Accordingly, a subset of the river flow metrics relevant to monthly river 482 

flows have been used to evaluate ZOODRM for stage 1. 483 

 484 

 485 

 486 

 487 

 488 

 489 
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Table 3.  Model calibration and evaluation metrics used in eFLaG. 490 

Evaluation 

Metric 

Equation 
Focus 

Nash-

Sutcliffe 

Efficiency (R2 

Efficiency) 

 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑖 − 𝑞𝑖)2𝑛

𝑖=1

∑ (𝑄𝑖 −  �̅�)2𝑛
𝑖=1

 

Qi and qi are observed and modelled flow for day i of a n 

day record. Q̅ is the mean observed flow. 

𝑁𝑆𝐸 = 1 −  
∑ (𝐻𝑖 −  ℎ𝑖)2𝑛

𝑖=1

∑ (𝐻𝑖 − �̅�)2𝑛
𝑖=1

 

Hi and hi are observed and modelled groundwater level for 

day i of a n day record. H̅ is the mean observed 

groundwater level. 

 

High 

Flows/Generalised 

groundwater 

levels 

 

 

 

Nash-

Sutcliffe 

Efficiency log 

flows* 

 

𝑁𝑆𝐸𝑙𝑜𝑔 = 1 − 
∑ (log (𝑄𝑖) −  log (𝑞𝑖))2𝑛

𝑖=1

∑ (log (𝑄𝑖) − log (𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

 
Low Flows 

 

Nash-

Sutcliffe 

Efficiency 

square root 

flows 

 

𝑁𝑆𝐸𝑠𝑞𝑟𝑡 = 1 −  
∑ (√𝑄𝑖 − √𝑞𝑖)2𝑛

𝑖=1

∑ (√𝑄𝑖 −  √𝑄
̅̅̅̅̅

)2𝑛
𝑖=1

 

Generalised 

Flows 

 

Nash-

Sutcliffe 

Efficiency 

standardised 

groundwater 

level index 

𝑁𝑆𝐸𝑆𝐺𝐼 = 1 − 
∑ (𝑆𝐺𝐼𝑖 − 𝑠𝑔𝑖𝑖)2𝑛

𝑖=1

∑ (𝑆𝐺𝐼𝑖 −  𝑆𝐺𝐼̅̅ ̅̅ ̅)2𝑛
𝑖=1

 

SGIi and sgii are observed and modelled SGI for day i of a 

n day record. SGI̅̅̅̅̅ is the mean observed SGI. 

 

Groundwater 

extremes 

Modified 

Kling Gupta 

Efficiency 

[square root 

flows] 

𝐾𝐺𝐸′𝑠𝑞𝑟𝑡 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

where 𝑟 is the correlation coefficient, 𝛽 is the bias ratio 
µ

√𝑞

µ
√𝑄

, 

and 

𝛾 is the variability ratio 
𝐶𝑉

√𝑞

𝐶𝑉
√𝑄

 or 
𝜎

√𝑞 µ
√𝑞⁄

𝜎
√𝑄

µ
√𝑄

⁄
 

µ,  𝜎 and 𝐶𝑉 are the mean, standard deviation and 

coefficient of variation of flow (here of the square root of 

modelled and observed flows as indicated by the suffix) 

Generalised flows 
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Absolute 

Percent Bias 

 

𝑎𝑏𝑠𝑃𝐵𝐼𝐴𝑆 = |
∑(𝑞𝑖 − 𝑄𝑖) 

∑ 𝑄𝑖
| 100 Water Balance 

Mean 

Absolute 

Percent Error 

 

MAPE = (
1

𝑛
∑ |

𝑄𝑖 − 𝑞𝑖

𝑄𝑖
| 

𝑛

𝑖=1

) 100 Systematic 

Absolute 

Percent Error 

in Q95 

 

𝑄95𝐴𝑃𝐸 = |
𝑄95 − 𝑞95

𝑄95
 | 100 Low Flows 

Low Flow 

Volume 

 

𝐿𝐹𝑉 = 100
∑ (√𝑞𝑝

95
𝑝=70 − √𝑄𝑝)

∑ (95
𝑝=70 √𝑄𝑝)

 

Here qp and Qp are the modelled and observed flow p 

percentiles 

Low Flows 

Absolute 

Percent Error 

in the Mean 

Annual 

Minimum on 

a 30-day 

moving 

average* 

 

𝑀𝐴𝑀30𝐴𝑃𝐸 =  |
𝑄𝑀𝐴𝑀30 − 𝑞𝑀𝐴𝑀30

𝑄𝑀𝐴𝑀30
| 100 

where 𝑄𝑀𝐴𝑀30

=
1

𝑛
∑ min𝑗 (

𝑄𝑗,𝑖−29 + 𝑄𝑗,𝑖−28 + 𝑄𝑗,𝑖−27 … 𝑄𝑗,𝑖−1 + 𝑄𝑗,𝑖

30
)

𝑛

𝑗=1

  

Here Qj,i is observed flow for day i of hydrological year j 

for a record of n years 

Low Flows 

*1/100th of the mean observed flow was added to both modelled and observed flow values during evaluation in order 

to avoid errors and biases due to very small and zero flows. 

 491 

 492 

 493 

Sources of quality controlled, long-term observational data for model calibration and 494 

evaluation were the national standard repositories for hydrological data: 495 

 River Flows: UK National River Flow Archive https://nrfa.ceh.ac.uk/ 496 

 Groundwater Levels: UK National Groundwater Level Archive 497 

https://www2.bgs.ac.uk/groundwater/datainfo/levels/ngla.html   498 

 499 

Stage 2 appraises the performance of the models when driven by the climate model outputs. 500 

That is, it compares the simobs and simrcm runs over the common baseline period. This 501 

assessment cannot use performance metrics based on time-series, as climate models are 502 

not expected to reproduce the sequencing of events seen over the historical period (Kay et al. 503 

https://nrfa.ceh.ac.uk/
https://www2.bgs.ac.uk/groundwater/datainfo/levels/ngla.html
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2015). Instead, the comparison has been done in terms of river flow and groundwater level 504 

duration curves, low flow/level metrics and seasonal recharge values. Thus, comparing the 505 

statistical characteristics of river flows, groundwater levels and groundwater recharge rather 506 

than their day-to-day equivalence (Kay et al. 2015, 2018). When looking at the performance 507 

of an ensemble of climate model runs, the model simulation driven by observed data would 508 

ideally sit within the range covered by the ensemble (assuming an ensemble of sufficient 509 

size). However, it would not necessarily be expected to sit in the middle of the ensemble 510 

range, because the set of weather events that actually occurred within the historical observed 511 

baseline period is just one realisation of what could have occurred within the range of natural 512 

variability (Kay et al. 2018).  513 

 514 

Description of the models and specific setup 515 

GR4J/GR6J 516 

The GR4J and GR6J models come from a suite of hydrological models provided in the 517 

“airGR” modelling suite (Coron et al. 2021) for the R software programme. Both models are 518 

well suited to application across many catchments using the inbuilt automatic parameter 519 

optimisation function. The simple, efficient form of airGR models also make them suitable for 520 

uncertainty and ensemble analyses. 521 

GR4J (Génie Rural à 4 paramètres Journalier) is a simple daily lumped conceptual model 522 

with only four free parameters. GR4J has been used for hydro-climate change research 523 

across the globe, and has demonstrated good performance in a diverse set of catchments in 524 

the UK. The model has been applied in the UK for operational seasonal forecasting, as well 525 

as for long-term drought reconstructions nationwide (Harrigan et al. 2018b, Smith et al. 526 

2019).  527 

GR6J (Génie Rural à 6 paramètres Journalier) (Pushpalatha et al. 2011) is a six parameter 528 

variant of the GR modelling suite that was developed to improve low flow simulation and 529 

groundwater exchange. Recently, GR6J has increasingly been applied in UK water resources 530 

applications (e.g. Anglian Water Drought Plan, 2021).  531 

For eFLaG, it was decided, therefore, that using both GR4J and GR6J would be beneficial. 532 

Both GR4J and GR6J were calibrated using the inbuilt automatic calibration function, with the 533 

modified Kling Gupta Efficiency (KGE, Gupta et al, 2009; Kling et al 2012) as the Error 534 

criterion (‘ErrorCritKGE2’). KGE offers a thorough error criterion as it calculates the 535 

correlation coefficient, the bias and the variability between simulated and observed flows. 536 

KGE values range from –Inf to 1, with 1 being a perfect fit. The calibration algorithm was 537 

applied to square-root transformed flows in order to place weight evenly across the flow 538 

regime. The airGR snowmelt module “CemaNeige” was not applied, as a simple snow 539 
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module was applied to the climate data to pre-process the precipitation data into rainfall and 540 

snowmelt based upon temperature (See section 3). 541 

Grid-to-Grid 542 

The Grid-to-Grid (G2G) hydrological model is an established area-wide distributed model that 543 

has been used to investigate the spatial coherence and variability of floods and droughts at 544 

catchment, regional and national scales. Model output typically consists of natural river flows 545 

at both gauged and ungauged locations, and can be provided as time-series for specific 546 

locations as well as 1km x 1km grids. The G2G has been used for climate impacts modelling 547 

of floods (Bell et al., 2009, 2012), low flows (Kay et al., 2018) and droughts (Rudd et al., 2019) 548 

and is also used operationally for flood forecasting (Cole and Moore, 2009; Moore et al., 549 

2006). 550 

The G2G is typically configured on a 1km×1km grid using spatial datasets of landscape 551 

properties such as soil type and drainage network, together with a few nationally-applied 552 

model parameters. The model is thus parameterised using national-scale spatial datasets 553 

(e.g. soil grids), rather than via individual catchment calibration. The spatial datasets and 554 

parameters used here are the same as those used in previous studies (Rudd et al., 2019; 555 

Bell et al., 2009, 2012; Kay et al., 2018).  556 

The G2G can either be initialised with model water stores set to default or zero values, or 557 

from a states file appropriate to the run start date. In eFLaG the G2G was run for two years 558 

with observed rainfall and PE to provide a 1 January 1963 states file to initialise the 559 

observation-driven G2G model run. The RCM-driven G2G runs were all initialised with a 560 

generic December states file provided by an obs-driven run (for 1 December 1980), then the 561 

first two years of each RCM-driven run were discarded to allow for model spin up. The eFLaG 562 

river flow datasets therefore cover the periods, 1 January 1963 to 31 December 2018 563 

(simobs) and 1 December 1982 to 30 November 2080 (simrcm).  564 

PDM 565 

The Probability Distributed Model or PDM (Moore, 2007; UKCEH, 2021) is a simple, very 566 

widely used lumped rainfall-runoff model that can be configured to a variety of catchment flow 567 

regimes. Within the model, a soil water store with a distribution of water absorption capacities 568 

controls runoff production through a saturation excess process; stored water is also lost to 569 

evaporation. In one configuration, all runoff enters a surface store (the fast pathway) while a 570 

groundwater store (the slow pathway) is recharged by soil water drainage. In an alternative 571 

configuration, the runoff is split between the two stores according to a fixed fraction. Water in 572 

the surface- and ground-water stores is routed using a non-linear storage equation (powers 573 

of 1, 2 and 3 were trialled under eFLaG), or, for the surface store, a cascade of two linear 574 

reservoirs, before being combined to produce the modelled flow at the catchment outlet. 575 

Water is conserved within the model, whilst a multiplicative factor (equal to 1 if not required) 576 
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is applied to the input precipitation. Alternatively, a Groundwater Extension (Moore and Bell, 577 

2002) may be invoked to allow modelling of underflow at the catchment outlet, external 578 

springs, pumped abstractions, and the incorporation of well level data. Multiple hydrological 579 

response zones within a catchment can also be represented (not trialled under eFLaG). PDM 580 

may be thought of as a toolkit of model components representing a range of runoff production 581 

and flow routing behaviours, and with a choice of time-step. 582 

Under eFLaG, single zone PDM models were invoked with a daily time-step. The model 583 

stores were initialised using the mean observed flow over the period of record, and the first 584 

two years of model flow discarded to allow for model spin-up. Nineteen different combinations 585 

of the above-mentioned toolkit options were systematically trialled for each catchment. 586 

Parameter estimation was performed using an automatic calibration procedure that applied 587 

a simplex optimisation scheme (Nelder and Mead, 1965) to different combinations of model 588 

parameters in turn during three increasingly aggressive stages. The rainfall factor, or, when 589 

employed, a spring factor (representing net water exchange for the catchment), were used 590 

to achieve zero bias in the modelled flows with respect to observations. Remaining 591 

parameters were estimated so as to optimise the modified Kling-Gupta Efficiency calculated 592 

on either the square root transformed flows, or, to a limited extent, the log transformed flows 593 

(Supplementary info S.2).  594 

AquiMod 595 

AquiMod is a lumped conceptual groundwater model that links simplified equations of soil 596 

drainage, unsaturated zone flow, and saturated groundwater flow to simulate daily 597 

groundwater level time series at a specified borehole (Mackay et al., 2014b). Each of these 598 

three components use model parameters that describe site-specific hydrological and 599 

hydrogeological characteristics of the groundwater catchment surrounding the borehole. The 600 

model also has a flexible saturated zone model structure that can be modified to represent 601 

different levels of vertical heterogeneity in hydrogeological properties. 602 

For each borehole, the AquiMod parameters and structure were calibrated to achieve the 603 

most efficient simulation of available historical groundwater level data using the Nash-604 

Sutcliffe Efficiency (NSE), which provides a reliable assessment of overall process realism 605 

and goodness of fit to groundwater level time series; following the approach of Mackay et al. 606 

(2014a) and Jackson et al. (2016), model parameters that could be related to catchment 607 

information (e.g. relating to known land cover and soil type) were fixed. The remaining 608 

parameters were then calibrated, using six different saturated zone model structures 609 

including a one-layer model (fixed hydraulic conductivity and specific yield); two- and three-610 

layer models with variable hydraulic conductivity and fixed specific yield; two- and three-layer 611 

models with variable hydraulic conductivity and variable specific yield; and a ‘cocktail glass 612 

representation of hydraulic conductivity variation with depth (Williams et al., 2006). The 613 
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optimal structure-parameter combination was obtained for each borehole using the Shuffled 614 

Complex Evolution global optimisation algorithm. 615 

The calibrated models were then evaluated for their ability to capture groundwater level 616 

extremes using the Standardized Groundwater level Index, SGI (Bloomfield and Marchant, 617 

2013) as the basis for this evaluation. The SGI is a normalised index, calculated directly from 618 

groundwater level time series, which can be used to identify droughts and provide a 619 

quantitative status of groundwater resources drought events (e.g. Bloomfield et al., 2019).  620 

 621 

ZOODRM 622 

ZOODRM is a distributed recharge calculation model originally developed to estimate 623 

recharge values to drive groundwater models (Mansour and Hughes, 2004). It is applied over 624 

the British Mainland using a 2km square grid. The FAO Drainage and Irrigation Paper 56 625 

(FAO, 1988) approach, modified by Griffiths et al. (2006), is used to calculate potential 626 

recharge. This method removes actual evaporation and soil moisture deficit from rainfall and 627 

calculates potential recharge as a fraction of the excess water using a runoff coefficient value. 628 

The model was driven by daily rainfall and potential evaporation data. The model was 629 

primarily parameterised using available national scale data including data relating to the soil 630 

hydrology (Boorman et al., 1995), vegetation (LCM2000, NERC) and surface topography. 631 

The latter of these was used to route surface water runoff.  632 

The runoff coefficient, which defines the proportion of excess soil water that drains overland 633 

via surface runoff, is an unknown parameter which must be calibrated. This was done in two 634 

stages. Firstly, the calibration problem was simplified by defining zones of equal runoff 635 

coefficient. In total 35 zones were used in ZOODRM which were based on UK 636 

hydrogeological and geological maps (DiGMapGB-625, 2008). Then, the runoff coefficient 637 

for each zone was manually calibrated by comparing simulated runoff to observed river flows 638 

minus baseflow which was calculated using a well-established baseflow separation method 639 

(Gustard et al., 1992). This was done using monthly mean flows given that ZOODRM does 640 

not have a sophisticated runoff routing scheme, and it is not expected, therefore, to capture 641 

daily variability in runoff. The comparison to monthly flows does, however, provide a useful 642 

means to evaluate the seasonal water balance of the model which serves as the best 643 

available proxy for the accuracy of the recharge simulations. In total, 41 gauging stations 644 

were used to assess the model performance.  645 

The only hydrological process that needs initialisation in the ZOODRM is the soil moisture 646 

deficit. As all simulations start in January, which is a wet month with minimal potential 647 

evaporation, it is assumed that the initial soil moisture deficit is equal to zero. Even so, a 648 

warm up period of one year is used to initialise the model. 649 

 650 
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6. Hydrological model evaluation (Stage 1 evaluation) 651 

 652 

This section provides a brief summary of the outputs of the Stage 1 evaluation. Note that for 653 

river flows, model evaluation was undertaken at the same gauged locations and for the same 654 

period of time used for model calibration, except G2G which is not specifically calibrated. 655 

River Flows 656 

Fig. 4 summarises the range of Stage 1 evaluation metrics across all catchments, while 657 

Supplementary Figs S2 to S5 provide maps of the evaluation metrics at each catchment. For 658 

GR4J, generally there was good performance across performance metrics in most 659 

catchments. Some outliers are present in the drought metrics, particularly in the South East 660 

and London. For GR6J, we observed good performance across all performance and drought 661 

metrics. GR6J generally performs slightly better than GR4J, particularly as shown in low flow 662 

catchments in the logNSE metric. For PDM, very good scores are obtained across the 200 663 

sites, especially the low flow/drought indicators (bottom rows). 664 

For G2G, again, good performance was observed overall (medians for NSE/ logNSE/ 665 

sqrtNSE/ KGE2 ≥ 0.7). However, the performance was generally lower than for GR or PDM 666 

because the G2G is not calibrated to individual catchments, and G2G simulates natural flows, 667 

whereas the lumped models are calibrated to the observations used for performance 668 

assessment. In catchments with a high degree of anthropogenic disturbance, G2G is less 669 

able to simulate observed flows, whereas the calibration of the other hydrological models will 670 

implicitly account for such artificial impacts, meaning they are inevitably more likely to 671 

replicate observed flows, even if these processes are not included explicitly.   672 

This distinction highlights an important benefit of eFLaG: PDM and GR4J/GR6J are calibrated 673 

to present-day flows and hence simulated flows are not natural, as they implicitly include 674 

artificial impacts. These runs do not, therefore, allow users to separate natural flows and 675 

artificial influences in the baseline period, nor to project how they may change relative to each 676 

other in future. On the other hand, although not used here, G2G has the capability of including 677 

artificial influences separately (e.g. Rameshwaran et al., 2022). We return to this issue in 678 

Section 8.  679 

 680 

 681 

 682 

 683 

 684 

 685 
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a) GR4J 

 

b) GR6J 

 

c) G2G 

 

 

 

d) PDM 

 

 

Figure 4: Evaluation results summarised across the different models for all 200 catchments  686 

for the key evaluation metrics outlined in Table 3 687 

In general, the eFLaG dataset shows a very good range of performance comparable with 688 

previous applications of these models for the UK (e.g. Rudd et al. 2017; Harrigan et al. 2018b; 689 

Smith et al. 2019). There are some commonalities with these previous studies in terms of 690 

spatial patterns. Rudd et al. (2017) also noted that G2G performance is likely to reflect the 691 

fact that simulated flows are natural (hence performance is poorer in the south and east 692 

where artificial influences are typical greater). Issues with poorer performance in 693 

groundwater-dominated catchments were highlighted for GR4J by Smith et al. (2019) and the 694 

present study shows that eFLaG enables some improvement through GR6J. Smith et al. 695 

(2019) also highlighted how a lack of snowmelt constrained performance in some areas (e.g. 696 

NE Scotland) while the current results also show improvements in these areas in eFLaG, 697 

given the inclusion of snowmelt accounting. 698 

 699 
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Groundwater levels 700 

Fig. 5 summarises the model evaluation results for the 54 AquiMod models used in eFLaG. 701 

The results show that all 54 models demonstrate good overall efficiency in capturing daily 702 

groundwater level dynamics, achieving a NSE ≥ 0.77. All but 11 of the models achieve a NSE 703 

≥ 0.85 and 28 of the models achieve a NSE ≥ 0.90. These include all 7 models situated in 704 

the Permo-Triassic sandstone and 4 out of 5 of the models situated in the Devonian and 705 

Carboniferous aquifers. Swan house and Lower Barn Cottage; the only models situated in 706 

the Magnesian limestones and Lower Greensand respectively, achieved a NSE of 0.82 and 707 

0.86. The Chalk and Jurassic limestones borehole models span the full range of NSE scores.  708 

The results show that all 54 AquiMod models are able to capture the historical SGI time series 709 

efficiently, achieving a NSESGI ≥ 0.6 which indicates that the models effectively capture 710 

groundwater extremes including periods of drought. The majority of models show a lower 711 

NSESGI compared to the NSE, although several models show negligible difference. On 712 

average the NSESGI is 0.15 less than the NSE.  713 

 714 

Figure 5: AquiMod evaluation metric results including NSE (a) and NSESGI (b). 715 

 716 

Groundwater recharge 717 

ZOODRM demonstrates an ability to efficiently capture monthly mean river flows as is 718 

reflected by the medians for NSE and KGE2 which both exceed 0.75 and the median absolute 719 

percent bias which is 12.7% (Fig. 6). Fig. S6 shows the distributed recharge model results at 720 

the 41 gauging stations across the country. The model uses a simplistic overland routing 721 
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approach, which is implemented to check the water balance at a monthly basis, noting that 722 

large scale spatial recharge values are most commonly used to drive groundwater flow 723 

models using monthly stress periods.  724 

 725 

 726 

NSE  MKGE  absPBias  

      

 727 

Figure 6: Distributed recharge model ZOODRM evaluation results.  728 
 729 

7. Evaluation of RCM-based runs in the baseline 730 

 731 

This section briefly considers the outcomes of the Stage 2 evaluation, focusing firstly on 732 

flow/groundwater duration curves for a subset of eFLaG sites, and then specifically on 733 

representation of particular low flows (low groundwater level) quantiles.  734 

Flow duration curves 735 

Flow duration curves (FDCs) summarise the entirety of the flow regime from high to low flows 736 

by including all river flows and expressing them in terms of the percentage of time a given 737 

flow is exceeded. Fig.7 and Figs. S7 to S9 provides a perspective on the ability of the RCM-738 

driven river flow simulations (simrcm) to replicate the range and frequency of flows based on 739 

the observation climate-driven river flow simulations (simobs). FDCs are shown for a common 740 

baseline period of 1989-2018 741 
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742 
Figure 7 -- Flow duration curves (FDCs) comparing the baseline flow regime in the 12 RCM 743 

ensemble members (simrcm, grey lines) to simulated observed (simobs, red line), 1989-2018. 744 

FDCs are featured for four hydrological models (GR4J, GR6J, PDM, G2G; rows) and eight 745 

catchments in southern and eastern England (32003 Harpers Brook, 33029 Stringside, 37005 746 

Colne, 39025 Enborne, 39034 Evenlode, 41022 Lod, 48003 Fal, 52010 Brue; columns). The y-747 

axis represents river flows (cumecs) on a logarithmic scale. 748 

 749 

The close correspondence between FDCs derived from the RCM ensemble members and 750 

model observations suggests that the RCM ensemble is performing well in replicating flows 751 

across the regime This is consistent across most UK catchments, illustrated by the 752 

representative subset of 32 catchments featured in Fig. 7 and Figs.S7 to S9. The model 753 

observations are usually within the range of values from the 12 ensemble members 754 

throughout the flow regime.  There are some catchments for which the RCM ensemble is 755 

more likely to overestimate the lowest half of the flow regime (exceedance probabilities of 50-756 

100), most notably for the Stringside (33029; Fig.7), Dove (28046; Fig.S7), Frome (53006; 757 

Fig. S8), and Lud (29003; Fig. S7).   758 

For certain catchments such as the Stringside (33029; Fig. 7) and Lud (29003; Fig. S7), 759 

although there appears to be greater RCM uncertainty in river flows than for other 760 

catchments, the differences tend to be exaggerated in smaller, drier catchments with lower 761 

flows across the flow regime.  The logarithmic y-axis is also a contributing factor to this, and 762 

also accounts for the seemingly larger RCM uncertainty in low flows than high flows across 763 

all catchments. These findings are also consistent across the four hydrological models, with 764 

no systematic differences identified for a given hydrological model. In some exceptional 765 

circumstances, there are examples of certain models in specific catchments in which the 766 

lowest river flows derived from the RCM ensemble are much lower than those in the model 767 
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observations (e.g. 23004 South Tyne (Fig. S7) and 67018 Welsh Dee (Fig. S8) for GR6J, 768 

33029 Stringside (Fig. 7) for G2G). 769 

Groundwater level duration curves 770 

Overall, an analysis of the groundwater level duration curves (GLDCs) at all boreholes 771 

(Figs.S10-S15) shows close correspondence between the simrcm and simobs runs whereby 772 

the simobs GLDC typically lies within the range of the simrcm GLDCs. However, there are 773 

some different behaviours across the boreholes which are summarised in Fig. 8. Fig.8a 774 

shows the GLDCs for the New Red Lion borehole situated in the Lincolnshire Limestone, the 775 

results of which are representative of most boreholes where the majority of simobs GLDCs 776 

falls within the range of the simrcm GLDCs. Several of the boreholes show a relatively high 777 

degree a variability across the simrcm runs in comparison to the simobs including the 778 

Heathlanes borehole situated in the Permo-Triassic Sandstone (Fig. 8b). These appear to be 779 

associated with boreholes which are known to respond relatively slowly to climate due to local 780 

hydrogeological conditions. For example, Heathlanes is known to be representative of a 781 

relatively low hydraulic diffusivity aquifer. For some boreholes there are areas of the GLDCs 782 

where the simobs GLDC does not lie within the range of the simrcm GLDC. In the most 783 

extreme cases, systematic biases across almost the entire GLDC can be seen (e.g. Fig. 8c). 784 

 785 

Figure 8 – Groundwater level duration curves (GLDCs) for the period 1989-2018 using the 786 

simrcm (grey lines) simobs (red line) simulations. GLDCs are featured for three boreholes in 787 

different hydrogeological settings which show contrasting behaviour: (a) New Red Lion, 788 

(Lincolnshire Limestone), (b) Heathlanes (Permo-Triassic sandstone, Shropshire), (c) Tank 789 

Hall (Chalk).  790 

 791 

Low river flows and groundwater levels 792 

Replication of observed low river flows and groundwater levels over a baseline period 793 

provides an indication of how well the simrcm runs are performing at the lower part of the 794 

river flow and groundwater level regime, and therefore enhances confidence in future low 795 
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flow and level projections. Figs 9a-d show the difference between the simobs and simrcm 796 

90% exceedance flow (Q90) over the 1989-2018 baseline period reported as absolute 797 

percentage error (APE) at each of the 200 catchments for all four river flow models. 798 

 799 

Figure 9 -- Comparison of simobs and simrcm runs for river flows and groundwater levels 800 

exceeded 90% of the time (Q90 and L90 respectively) between 1989 and 2018. Colour scale 801 

indicates the mean of 12 absolute percent errors (APEs) between Q90/L90 in model 802 

observations and Q90/L90 in each of 12 ensemble members. Results are presented for: (a) 803 

GR4J; (b) GR6J; (c) PDM; (d) G2G; (e) AquiMod.  Note: AquiMod levels are expressed as a 804 

percentage of the simobs range in groundwater levels to remove the influence of aquifer 805 

storage.  Figures S16 to S18 feature the equivalent baseline assessment for Q30/L30, Q50/L50 806 

and Q70/L70. 807 

Overall, there is a reasonable agreement between the simobs and simrcm Q90 values across 808 

all four models. Mean APEs are less than 20% for most catchments across the four 809 

hydrological models.  Modelled low flows for GR6J, G2G and particularly PDM are especially 810 

well replicated in catchments across the UK, with mean APEs higher (20-50%) in GR4J river 811 

flows for catchments in East Anglia and parts of northern England and south Wales.  The 812 

lumped catchment models GR6J and PDM struggle to capture low flows in groundwater-813 

influenced catchments of the east Chilterns north of London, with APEs of up to 70%. 814 

Considering the natural flows simulated by G2G and the prevalence of artificial influences on 815 
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rivers further south and east in the UK, mean APEs are reasonable in this region and are 816 

actually higher in more natural parts of Wales and northern England.   817 

Mean APEs at a range of other flow quantiles demonstrate similar patterns (Figs S16 to S18).  818 

Mean APEs of Q30 for the vast majority of catchments for all four hydrological models are 819 

less than 20% (Fig. S16).  Mean APEs of Q50 (Fig. S17) and Q70 (Fig. S18) are also 820 

reasonable in most catchments and models, though higher mean APEs (20-50%) are 821 

apparent for both of these flow quantiles in East Anglia for GR4J, in parts of northern England 822 

for G2G, and in groundwater-influenced parts of the Chilterns for PDM.  Mean APEs are 823 

similarly higher in GR6J flows at Q50 in East Anglia and at Q70 in the groundwater-influenced 824 

Chilterns.  Whilst this analysis is primarily an assessment of the ability of the RCM ensemble 825 

to replicate flows across the regime, it is clear that the hydrological model calibrations also 826 

have a role in influencing the outcomes. 827 

Fig. 9e shows the difference between the simobs and simrcm 90% exceedance groundwater 828 

level (L90) over the 1989-2018 baseline period reported as absolute percentage error (APE) 829 

relative to the simobs range in groundwater levels at each of the 54 boreholes. The use of 830 

the range in groundwater level as a reference removes the influence that the aquifer storage 831 

has on groundwater variability across the boreholes. There is good agreement between the 832 

simobs and simrcm L90 values across the boreholes. Mean APEs are less than 20% for all 833 

of the boreholes except for the Heathlanes borehole in the Permo-Triassic Sandstone where 834 

Mean APE exceeds 30%.   835 

Mean APEs at a range of other groundwater level quantiles demonstrate similar patterns 836 

(Figs S16 to S18).  Mean APEs of L30 do not exceed 5% for the majority of boreholes. The 837 

mean APE’s typically become larger for most boreholes as the level quantile reduces towards 838 

L90. Heathlanes consistently has the highest mean APE for all level quantiles. 839 

Seasonal groundwater recharge 840 

Fig. 10 provides a comparison of simobs and simrcm runs for seasonal average groundwater 841 

recharge between 1989 and 2018 generated by ZOODRM. During the winter months (DJF), 842 

when groundwater recharge is highest, the simrcm simulations show good correspondence 843 

with simobs simulations where the mean APE is less than 20% for all, but seven of the 844 

groundwater bodies. During the summer months (JJA), when groundwater recharge is 845 

lowest, the majority of groundwater bodies still show mean APE of less than 20%, but over 846 

200 of them show errors exceeding 20%. These larger errors are typically associated with 847 

groundwater bodies that have lower than average recharge for this time of year. For MAM, 848 

the majority of groundwater bodies with errors that exceed 20% are also associated with 849 

those GW bodies with below-average recharge for that time of year. There are also some 850 

additional areas with significant recharge that show errors exceeding 20% including 851 

groundwater bodies in eastern-central Scotland, north-west and south-west England. For 852 

autumn (SON), the simrcm simulations show good correspondence with simobs simulation 853 



31 

where the majority (>80%) of groundwater bodies show a mean APE of less than 20%. The 854 

majority those with larger errors are situated on the east coast of Scotland and England, north 855 

Wales and Cheshire. 856 

 857 

 858 

Figure 10 -- Comparison of simobs and simrcm runs for seasonal average groundwater 859 

recharge between 1989 and 2018 generated by ZOODRM. Colour scale indicates the mean of 860 

12 absolute percent errors (APEs) between simobs and simrcm. 861 

 862 

 863 

 864 
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8. Applications  and limitations 865 

 866 

Applications 867 

 868 

The eFLaG dataset is presented as a nationally consistent dataset of future river flow, 869 

groundwater and groundwater recharge, using the latest available climate projections, from 870 

UKCP18. In this article, we have described the dataset and its evaluation against 871 

observational hydrological datasets, to give some confidence in the use of eFLaG as a 872 

dataset that can be used to assess the potential impacts on climate change on UK hydrology 873 

for a very wide range of applications. 874 

The eFLaG dataset was developed specifically as a demonstration climate service for use by 875 

the water industry for water resources and drought planning, and hence by design is focused 876 

on future projections of drought, low river flows and low groundwater levels. We therefore 877 

present eFLaG primarily as a dataset for this purpose. Ongoing work is underway to 878 

demonstrate the utility of eFLaG for future drought projections (Parry et al. submitted; Tanguy 879 

et al. submitted) and for future drought/water resources planning in practice (Counsell et al. 880 

in prep.). The predecessor product, FFGWL, has been widely used within the water industry 881 

to provide insight into the future evolution of river flows and groundwater levels through the 882 

21st century to support water resources management plans, and also supported significant 883 

academic water resource planning studies (e.g. Borgeomo et al. 2015; Huskova et al. 2016).  884 

To provide users with a platform for accessing eFLaG datasets, and all the evaluation 885 

approaches outlined here, an interactive web application has been developed, the eFLaG 886 

Portal (https://eip.ceh.ac.uk/hydrology/eflag/). The Portal provides a user friendly front-end 887 

for accessing eFLaG results, with several examples shown in Fig 11. The figure 888 

demonstrates how eFLaG data can be used to project future drought characteristics for 889 

various timeslices, and also how low flow characteristics change through the 21st century, 890 

based on the analysis conducted in Parry et al. (submitted). 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

https://eip.ceh.ac.uk/hydrology/eflag/
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 900 

 901 

 902 

Figure 11: screenshots from the eFLaG Portal. Top: map showing percentage change in 903 

drought duration between baseline and near future for eFLaG catchments nationally, using 904 

PDM; boxplots showing % changes (using PDM) for a river in southern England (the river 905 

Pang) for three timeslices, with boxplots showing range of RCM uncertainty; other drought 906 

characteristics available on other tabs. Bottom: map showing percentage change in a low flow 907 

metric (Q90) between baseline and near-future for eFLaG catchments nationally, using PDM; 908 

with time series showing transient projections of Q90 in moving windows through to the 2080s 909 

for the river Pang, each colour representing different RCM runs, black representing median. 910 

For all outputs, models other than PDM can be selected using the tabs at the top.  911 

 912 
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By providing a consistent dataset of future river flows, groundwater levels and groundwater 913 

recharge, eFLaG can potentially support a wide range of applications across other sectors. 914 

The FFGWL product also found very wide application for diverse research purposes (for: 915 

water quality, e.g. Charlton et al. 2018; hydroecology, e.g. Royan et al. 2016; groundwater 916 

recharge, Hughes et al., 2021; groundwater level reconstruction, Jackson et al., 2016). For 917 

eFLaG, the good simulation of river flows and groundwater behaviours across much of the 918 

hydrological range suggests that this product could also find application in a whole range of 919 

impact studies, subject to additional evaluation for the purposes in mind. While not validated 920 

specifically for floods, the encouraging evaluation outputs for higher flow percentiles suggests 921 

users can analyse high flow metrics and variability (e.g. frequency of flows above a 922 

threshold), even if not annual maximum peak flows. 923 

As with FFGWL, there are a number of advantages of using eFLaG for future projections: it 924 

is a spatially coherent dataset, meaning that future changes in hydrological variables can be 925 

compared between catchments, boreholes and aquifers at the regional-to-national scale. This 926 

is a key benefit for both research as well as practical water resources planning. Spatially 927 

coherent projections are needed to address the spatio-temporal dynamics of droughts (e.g. 928 

Tanguy et al. 2021) and how these may change in future and what this may mean for water 929 

resources planning – where, in practice, water resources management plans often involve 930 

transfers between regions (e.g. Murgatroyd et al. 2021). Tanguy et al. (submitted) address 931 

the changing future spatial coherence of droughts using eFLaG.  932 

Another key benefit of eFLaG is that transient time series (daily data from 1980 to 2080) allow 933 

users to can explore the future evolution of river flow and groundwater variability on 934 

interannual and decadal timescales, rather than just using ‘Change Factor’ approaches that 935 

compare between future time slices and the baseline.  936 

The use of an ensemble of outputs enables users to consider uncertainty in driving data (via 937 

the 12 member RCM ensemble) as well as, for river flows, hydrological model uncertainty. In 938 

addition, different models provide different benefits: G2G performs less well against 939 

observations than the (calibrated) lumped catchment models, but does enable the 940 

characterisation of natural flows, which is vital for some uses (e.g. in providing naturalised 941 

river flows for regionalisation or as a baseline for assessing impacts, as common in regulatory 942 

and hydroecology applications e.g. Terrier et al. 2021). Moreover, abstractions and 943 

discharges can be added to the naturalised runs, as demonstrated by Rameshwaran et al. 944 

2022. This opens up the possibility of projecting the evolution of future naturalised and 945 

impacted river flows separately – a follow-up study on this topic is underway by the authors.   946 

Furthermore, G2G’s response to rainfall may be less tailored to the present-day climate than 947 

the calibrated models, as noted in the limitations section. The eFLaG hydrological model 948 

ensemble therefore includes models that may be beneficial for different applications 949 

according to the particular needs of end-users. 950 



35 

Limitations and guidance 951 

Users of the eFLaG dataset should be aware of its limitations. While the evaluation shows 952 

encouraging results at the national scale, there are inevitably some catchments and 953 

boreholes where the evaluation (either Stage 1, Stage 2 or both) indicates poorer quality 954 

simulations. Users must be aware of this, and should consult all the provided evaluation 955 

metrics when considering which catchments to use (and which models to use) in their 956 

analyses.  957 

Users must also be aware that while there is some consideration of uncertainty through the 958 

adoption of the RCM PPE, and the use of a multiple models for river flows, there are many 959 

other sources of uncertainty not sampled in eFLaG. While the PPE gives a range of 12 960 

outcomes, it is only one UKCP18 product and one emissions scenario, so does not sample 961 

the full range of outcomes in UKCP18. The emissions scenario, RCP8.5, is considered to be 962 

a pessimistic scenario (Hausfather & Peters, 2020), so this should be borne in mind, and the 963 

eFLaG projections (along with other uses of the UKCP18 Regional projections) can arguably 964 

be seen as akin to a ‘worst case’ for planning (Arnell et al. 2021).  Future work should position 965 

eFLaG against the wider range of UKCP18 outcomes. 966 

Furthermore, only one bias correction approach is used. Although we use a range of river 967 

flow models, clearly other hydrological models could provide different outcomes than the set 968 

used here, and we have only used one groundwater level model and recharge model 969 

respectively so have not considered model uncertainty for groundwater. We have also not 970 

considered other sources of uncertainty in the hydrological modelling (e.g. parametric 971 

uncertainty, as in e.g. Smith et al. 2019), nor the impacts of different observational driving 972 

climate datasets (e.g. different formulations of Potential Evapotranspiration, as in e.g. Tanguy 973 

et al. 2018). These studies demonstrate these can be significant sources of uncertainty, but 974 

it was beyond scope to consider within the resources available to eFLaG given the high 975 

number of existing runs – future studies should address this.  976 

The eFLaG modelling framework adopted the approach of calibrating using a full period-of-977 

record, rather than using a split sample approach. Given the length of record, this is unlikely 978 

to be too significant (as shown for GR4J in the UK by Harrigan et al. 2018) relative to using 979 

split sampling, but at the same time, uncertainties inevitably remain about future projections 980 

well outside the calibration period, not least given likely non-stationarities in catchment 981 

properties. It should also be born in mind that strong performance of a model as indicated by 982 

good metric values is not necessarily a reliable indicator of a models ability to reproduce 983 

trends in hydrological signatures such as those describing low flows (Todorović et al. 2022).  984 

Following on from this, one important limitation of this study – in common with the original 985 

Future Flows product (Prudhomme et al. 2012), and indeed a great majority of climate 986 

projections in hydrology – is the lack of explicit modelling of human disturbances. This is 987 

simply unavoidable as large-scale datasets of artificial influences have only recently been 988 
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made available in the UK, and only for England (e.g. Rameshwaran et al. 2022). This 989 

especially applies for the lumped catchment models and groundwater level model. As such 990 

processes are not represented, they will simply be accounted for implicitly during calibration. 991 

Of course, this is unrealistic as artificial influences are likely to change in future and such 992 

non-stationarity could be locally significant. However, it should be borne in mind that the 993 

purpose of eFLaG is to model future river flow characteristics based on current catchment 994 

conditions, rather than truly chart future river flow trajectories in these catchments. For most 995 

practical applications, assuming current artificial influences and projecting forwards in time is 996 

entirely reasonable, especially in the absence of any informed understanding of how artificial 997 

influences will change. 998 

There are also considerations for end users when applying the projections directly in impact 999 

assessments. Notably, the HadREM3-GA705 climate model that underpins the UKCP18 1000 

RCM outputs is run on a 360-day calendar year. The eFLaG projections do not modify this 1001 

calendar when producing the meteorological, hydrological and hydrogeological variables and 1002 

it is therefore the responsibility of the end user to deal with this in an appropriate way. There 1003 

are a number of ways of doing this (e.g. Prudhomme et al. 2012; Dobor et al. 2015) and in 1004 

general, there is no agreed optimal approach. Where this is performed as a post-processing 1005 

step by the user (as with the eFLaG datasets), it is likely that the best approach will depend 1006 

on the impact or systems modelling being undertaken.  1007 

Finally, eFLaG only provides projections for a subset of the UK gauging station network (200 1008 

catchments from some 1200 on the NRFA). This is an inevitable constraint, as with the 1009 

original FFGWL product (300 locations). While we have tried to sample UK hydrology to give 1010 

users as much scope as possible, there will still be a need to transpose projections to sites 1011 

of interest for some users. One of the benefits of eFLaG is that gridded river flow and recharge 1012 

models are used. While these gridded datasets are not yet openly available, current follow-1013 

up initiatives are looking to exploit them for providing projections at ungauged locations.  1014 

 1015 

9. Data Availability 1016 

 1017 

The eFLag dataset is associated with a Digital Object Identifier. This must be referenced fully 1018 

for every use of the eFLag data as: https://doi.org/10.5285/1bb90673-ad37-4679-90b9-1019 

0126109639a9 1020 

 1021 

All eFLaG files are available through the UKCEH Environmental Informatics Data Centre: 1022 

https://catalogue.ceh.ac.uk/documents/1bb90673-ad37-4679-90b9-0126109639a9 1023 

 1024 

The data are stored as .csv files in the folder structure shown in the Guidance note available 1025 

at Hannaford et al. (2022). In total there are 3304 files: one for each variable, model and 1026 

https://doi.org/10.5285/1bb90673-ad37-4679-90b9-0126109639a9
https://doi.org/10.5285/1bb90673-ad37-4679-90b9-0126109639a9
https://catalogue.ceh.ac.uk/documents/1bb90673-ad37-4679-90b9-0126109639a9
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catchment/borehole combination. They can be broadly split into two groups of files (Table 4), 1027 

simobs and simrcm, as follows. 1028 

simobs 1029 

For the meteorological data, the simobs files contain date-indexed, observation-driven 1030 

simulations (sim) data for precipitation with snowmelt and potential evaporation. For river 1031 

flows and groundwater levels the simobs files contain date-indexed, observation-driven 1032 

simulations (sim) and associated observations (obs) if they exist. 1033 

simrcm 1034 

For the meteorological data, the simrcm files contain date-indexed, RCM-driven simulations 1035 

for the twelve RCMs used in eFLaG for both precipitation with snowmelt and potential 1036 

evaporation. For river flows and groundwater levels the simrcm files contain date-indexed, 1037 

RCM-driven simulations for the twelve RCMs used in eFLaG. 1038 

Table 4.  eFLaG dataset structure information 1039 

 Data Name of file Years available 

simobs 

 

Daily meteorology 

(precipwsnow (mm d-1) + 

PET (mm d-1)) 

ukcp18_simobs_[nrfa-station-

number/borehole-name].csv 
Jan 1961 – Dec 2018 

Daily river flow (m3s−1) 
modelname_simobs_nrfa-station-

number.csv 
Jan 1963 – Dec 2018 

Daily groundwater levels 

(m AOD) 
AquiMod_simobs_borehole-name.csv Jan 1962 – Dec 2018 

Daily groundwater 

recharge (mm d-1) 

zoodrm_simobs_groundwater-body-

name.csv 
Jan 1962 – Dec 2018 

simrcm 

Daily meteorology 

(precipwsnow (mm d-1) + 

PE mm d-1) 

ukcp18_simobs_nrfa-station-number.csv Dec 1980 – Nov 2080 

Daily river flow (m3s−1) 
modelname _simrcm_nrfa-station-

number.csv 
Dec 1982 – Nov 2080 

Daily groundwater levels 

(m AOD) 
AquiMod_simrcm_borehole-name.csv Jan 1982 – Nov 2080 

Daily groundwater 

recharge (mm d-1) 

zoodrm_simrcm_groundwater-body-

name.csv 
Jan 1981 – Nov 2080 

 1040 

where modelname is G2G, PDM, GR4J, GR6J. NRFA station numbers and borehole names are given 1041 

in the eFLaG_Station_Metadata.xlsx workbook. 1042 

 1043 

Conditions of Use 1044 

The eFLaG dataset is available under a licensing condition agreement. For non-commercial 1045 

use, the products are available free of charge. For commercial use, the data might be made 1046 
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available conditioned to a fee to be agreed with UKCEH and NERC BGS licensing teams, 1047 

owners of the IPR of the datasets and products. 1048 
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