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Abstract. Deep learning methods driven by in situ video and remote sensing images have been used in fire detection. The 

performance and generalization of fire detection models, however, are restricted by the limited number and modality of fire 

detection training datasets. A large-scale fire detection benchmark dataset covering complex and varied fire scenarios is 

urgently needed. This work constructs a 100,000-level Flame and Smoke Detection Dataset (FASDD) based on multi-source 15 

heterogeneous flame and smoke images. To the best of our knowledge, FASDD is currently the most versatile and 

comprehensive dataset for fire detection. It provides a challenging benchmark to drive the continuous evolution of fire 

detection models. Additionally, we formulate a unified workflow for preprocessing, annotation and quality control of fire 

samples. Meanwhile, out-of-the-box annotations are published in four different formats for training deep learning models. 

Deep learning models trained on FASDD demonstrate the potential value and challenges of our dataset in fire detection and 20 

localization. Extensive performance evaluations based on classical methods show that most of the models trained on FASDD 

can achieve satisfactory fire detection results, and especially YOLOv5x achieves nearly 80% mAP@0.5 accuracy on 

heterogeneous images spanning two domains of computer vision and remote sensing. And the application in wildfire 

location demonstrates that deep learning models trained on our dataset can be used in recognizing and monitoring forest fires. 

It can be deployed simultaneously on watchtowers, drones and optical satellites to build a satellite-ground cooperative 25 

observation network, which can provide an important reference for large-scale fire suppression, victim escape, firefighter 

rescue and government decision-making. The dataset is available from the Science Data Bank website at 

https://doi.org/10.57760/sciencedb.j00104.00103 (Wang et al., 2022). 

1 Introduction 

Fire is one of the most severe disasters that threaten human safety and Earth ecology (Gaur et al., 2020; Gibson et al., 2020; 30 

Shamsoshoara et al., 2021). Extreme forest fire accidents can cause severe economic losses and devastating ecological 

damage, lead to human respiratory and cardiovascular diseases, and even endanger human life (Chowdary et al., 2018; Gaur 
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et al., 2020). According to the 2022 report from International Association of Fire and Rescue Services, the frequency of 

global fire events has shown an increasing trend in the last decade (Brushlinsky et al., 2022). The seven-month-long 

Australian bushfire emergency in 2019, as a representative of extreme fire disasters, leaves a deep imprint on the Earth. Fire 35 

detection is a very crucial task in the pre-suppression process. However, the suddenness and scenario complexity of fire 

events bring tremendous challenges to the early detection and warning of fires. The development process of fire is generally 

manifested in two states: the initial wisps of light smoke and the subsequent raging fire. Fire detection methods that rely on 

traditional smoke sensors usually have low sensitivity or high false alarm rate (FAR). Smoke or heat takes a long time to 

diffuse, so it is difficult to achieve real-time alarm and timely stop loss (Gong et al., 2019; Bu et al., 2019). The vision-based 40 

fire detection methods have the advantages of low cost, rapid response, wide detection area, and remote visualization. 

However, in complex real-world environments, flame and smoke have multiple characteristics of flickering, growth, disorder, 

various colors, and variable intensity (Muhammad et al., 2018). Flame is also easily confused with many objects such as 

lights, sun and maple leaves, and smoke are easily confused with clouds, waterfalls and hair (Geetha et al., 2021). When 

coupled with the low signal-to-noise ratio scene, it brings additional difficulties to vision-based fire detection methods 45 

(Muhammad et al., 2018).  

Vision-based fire detection methods mainly include static feature-based, dynamic feature-based, traditional machine 

learning-based, and neural network-based methods. Static feature-based methods usually implement fire discrimination 

based on representative features of flame and smoke such as color features (Foggia et al. 2015; Calderara et al. 2008). These 

static feature-based methods have lower computational costs, yet they also bring lower reliability and higher false alarm rates 50 

(Muhammad et al., 2018). Dynamic feature-based methods analyze flame and smoke videos based on flicker (Töreyin et al. 

2005), motion and dynamic texture or the evolution of spatio-temporal information (Dimitropoulos et al. 2015). These 

methods employ the irregularity and growth properties of flame and smoke, which can improve the detection accuracy to 

some extent, yet it requires high computational cost. Traditional machine learning based methods perform fire detection with 

classical classifiers such as decision tree, support vector machines and random forest, which are usually trained based on 55 

hand crafted features (Chi et al. 2017; Wang et al. 2017). However, these methods face the feature selection bias problem 

and usually have a high operational complexity and time cost. In this context, neural network-based fire detection methods 

are emerging. Dua et al. (2020) detect fires based on deep convolutional neural networks (DCNN) and the Transfer Learning 

approach, which outperforms traditional machine learning models. Cheng et al. (2019) use the generative adversarial 

network (GAN) to predict the changing trend of smoke and improve the smoke segmentation accuracy based on Deeplabv3+ 60 

and DenseCRF. 

Neural network-based methods have gradually developed into the mainstream fire detection methods, which can generally 

achieve satisfactory detection accuracy. Considering that visual features of flame and smoke have significant differences in 

different scenes, robust deep learning models usually require large-scale, high-quality training samples to drive (Torralba et 

al., 2011). Existing open-access training datasets for fire detection are oriented to specific modality data (such as visible light 65 

video, infrared thermal imaging video, and optical satellite imagery), specific tasks (such as image classification, object 
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detection, and semantic segmentation) or specific scenes (such as indoor fires and wildfires). Those datasets have some 

limitations such as small number of samples, fixed image size or resolution, single data source, poor task compatibility, and 

similar scenes. There is an urgent need to establish a training dataset with a large amount of heterogeneous flame and smoke 

samples. Such a dataset shall be produced using a unified specification, and managed following FAIR (findability, 70 

accessibility, interoperability, and reusability) principles (Geetha et al., 2021). 

In this paper, a large-scale heterogeneous Flame and Smoke Detection Dataset (FASDD) is provided, which includes fire 

data from multiple modalities and various scenarios. To overcome the limitations of existing datasets, we collected and 

carefully selected a large number of fire images captured by surveillance, drones, and multi-source remote sensing satellites, 

which can provide data support for training robust fire detection models. The main contributions of this paper are briefly 75 

summarized as follows: (1) A 100,000-level flame and smoke detection dataset is constructed. To the best of our knowledge, 

it is the largest open-access fire dataset with the most complexity in fire scenes, the highest heterogeneity in image modality 

and feature distribution, and the most significant difference in image size and shape. It can support object detection and 

classification tasks in different fire scenes captured by various sensors. (2) The dataset is generated according to a unified 

data model. Moreover, the annotation files are provided in four common dataset formats for FASDD to support different 80 

deep learning models. (3) Extensive performance comparison and evaluation based on representative object detection 

methods are performed on FASDD to provide a valuable reference for using our dataset.  

2 Related work 

2.1 Existing fire detection datasets 

There are many works on datasets for fire detection. Jakovcevic et al. (2010) first propose a wildfire smoke dataset for the 85 

smoke segmentation task, which focuses on smoke in the wild. For the smoke classification task, Yuan (2011) provides a 

dataset that includes real-time smoke, synthetic smoke, non-smoke images, and videos. Chino et al. (2015) present a flame 

and smoke dataset that includes 240 training samples and 226 test samples. However, these datasets have a small sample size 

and are only applicable to simple classification tasks without accurate bounding box or mask labels. There are also some 

datasets produced based on videos. Ko et al. (2012) publish a wildfire smoke video dataset. Foggia et al. (2015) provide an 90 

influential flame and smoke video dataset containing videos captured indoors and outdoors, during day and night, and at 

different distances. Zhang et al. (2018) introduce a wildfire smoke video dataset from watchtowers and UAVs (unmanned 

aerial vehicles). Shamsoshoara et al. (2021) describe a dataset for forest fire detection containing flame and smoke videos 

and aerial images captured by infrared cameras. Yet, there are many similar frames in these video datasets, and their 

heterogeneity and generalizability are insufficient. Sharma et al. (2017) propose a flame image dataset containing flame 95 

images with different lighting intensities and scenes. Dunnings et al. (2018) from Durham University publish a flame dataset 

for the segmentation task, whose image size is set uniformly to 224 × 224 pixels. The image size in these datasets is 

relatively fixed and small, which cannot be easily generalized for other tasks or scenes. Geng et al. (2020) provide a large 
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dataset of flame and smoke for object detection tasks, but most of these images are unlabeled. These available flame and 

smoke datasets have some limitations in terms of quantity, modality, resolution and scene (Geetha et al., 2021), but they 100 

provide valuable references for developing a large-scale cross-domain fire detection dataset with different scenes and rich 

characteristics. 

2.2 Annotation tools 

An appropriate data annotation tool is beneficial to optimize the data annotation process and improve the data annotation 

efficiency (Geetha et al., 2021). Image annotation tools for object detection can be divided into offline tools and online tools 105 

(Pande et al., 2022). Offline tools have high autonomy and controllability, which can ensure that data collection, cleaning, 

labeling and training are implemented in a local network-free environment. LabelImg (Tzutalin, 2015) is widely used as 

image annotation software for object detection. It supports PASCAL VOC (XML), YOLO (TXT) and CreateML annotation 

formats and can be deployed on Windows, macOS and Linux operating systems. LabelMe (Wada et al., 2021) supports six 

different bounding box shapes, including polygon, rectangle, circle, line, point, and line strip. One of its limitations is that 110 

object labels can only be saved and exported in JSON format. GTCreator (Bernal et al., 2019) allows multiple annotators to 

work simultaneously on the same task and offers full annotation editing and browsing capabilities. ByLabel (Qin et al., 2018) 

is a boundary-based semiautomatic tool that simplifies labeling process by selecting among the boundary fragment proposals 

that the tool automatically generates. However, offline tools may cause compatibility issues with the operating system. 

Online tools allow data to be quickly annotated by enabling team collaboration. The VGG Image Annotator (VIA) tool 115 

(Dutta and Zisserman, 2019) is an open source software that supports both offline and online annotation. Labels annotated in 

VIA can be exported to plain text data formats like JSON and CSV. The downside of the tool is that it lacks dataset 

management capabilities. ImageTagger (Fiedler et al., 2019) provides data and user management, manual and automatic 

labeling, annotations validation, and collaboration capabilities. Its annotations can be exported to a user-defined format. 

BRIMA (Lahtinen et al., 2021) creates a browser-based extension to help researchers and crowdsourcing contributors 120 

conduct online image annotation. Its annotation files can only be exported to the JSON format of MS COCO. Labelbox 

(Sharma et al., 2022) provides many advanced features such as collaboration, automation, data and user management, and 

multiple format support. Yet, its basic version can only realize the labeling of rectangular boxes and polygons. 

2.3 Training data specifications 

Using a unified or common way to describe labels is essential to facilitate training data sharing (Geetha et al., 2021). 125 

Common data formats for object detection tasks mainly include the JSON format adopted by the Microsoft COCO (Lin et al., 

2014) dataset, the XML format adopted by the PASCAL Visual Object Classes VOC (Everingham et al., 2015) dataset, and 

the text format adopted by models of YOLO (Redmon et al., 2016) series. In COCO, a JSON annotation is created for 

training, testing and validation on the entire dataset. The unique bounding box is represented by the coordinates of the upper 

left corner, and the width and height of the bounding box. Its format can be described as [x, y, w, h]. In Pascal VOC, an 130 
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XML annotation is created for each image in the dataset. The "size" keyword is used to store the size information of the 

corresponding image and the "name" keyword is used to store the category of the object. The upper-left corner and lower-

right corner coordinates are used to represent the unique bounding box. Its format can be described as [xmin, ymin, xmax, ymax]. 

In YOLO, an annotation in TXT format is created for each image in the dataset. Its format is [x, y, w, h], which indicates the 

centroid coordinates, width and height of the bounding box after normalization, respectively. 135 

In addition, the Spatio Temporal Asset Catalog (STAC) provides a common language to describe a range of geospatial 

information, representing a single spatiotemporal asset as a GeoJSON feature plus datetime and links. Its bounding boxes are 

represented using either 2D or 3D geometries. Yue et al. (2022) propose a Training data Markup Language (TDML) for 

producing Machine learning training data, which defines a UML model and encodings consistent with the OGC standards 

baseline. It supports exchange and retrieve the geospatial machine learning training data in the Web environment, which is 140 

consistent with the ubiquitous JSON/XML encoding on the Web. It preserves the basic properties in other common data 

specifications, while providing more detailed metadata for formalizing the information model of training data. Datasets 

generated based on these standard data specifications will be more easily adopted and generalized by deep learning 

researchers. 

3 Data generation of FASDD 145 

Considering the limitations of the existing fire datasets in terms of number, modality and visual tasks, this research intends to 

build a large-scale, multi-modal, multi-resolution, scene-complex, and standardized flame and smoke detection dataset 

(FASDD), which is suitable for different application fields and compatible with image classification and object detection 

tasks. Figure 1 illustrates the workflow of generating FASDD. It mainly includes data collection, data preprocessing, data 

annotation, and quality control. Based on these operating processes, we generate a FASDD_CV dataset for computer vision 150 

(CV) tasks, a FASDD_RS dataset for remote sensing (RS) monitoring tasks, and a FASDD dataset for cross-domain object 

detection tasks compatible with CV and RS. The data generation processes are described in more detail in the following 

sections. 
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Figure 1: The workflow for generating FASDD. 155 

3.1 Data source 

To build a comprehensive fire dataset for CV tasks, various data sources are used, including existing open-access flame or 

smoke datasets, social media images, CG (Computer Graphics) paintings, UAV (Unmanned Aerial Vehicle) images, and 

Internet crawler images. First, ten available open flame or smoke datasets are reused, namely Wildfire Observers and Smoke 

Recognition Image and video databases (Jakovcevic et al., 2010), Video-based smoke detection image database (Yuan, 160 

2011), Wildfire smoke detection datasets (Ko et al., 2012), the BoWFire (Best of both Worlds Fire detection) dataset (Chino 

et al., 2015), MIVIA database (Foggia et al., 2015), Fire Detection Image Dataset (Sharma et al., 2017), Smoke Detection 

Datasets (Zhang et al., 2018), Fire Image Data Set for Dunnings 2018 study (Dunnings et al., 2018), Fire-Smoke-Detection-

Dataset (Geng et al., 2020) and the FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) dataset 

(Shamsoshoara et al., 2021). A large number of source data in these datasets including CG images, UAV images and video 165 

frames with good quality, are filtered, extracted and labeled. Some fire-related images are extracted from social media 

platforms such as TikTok. Objects easily confused with smoke (e.g. dark clouds, shadows, hair and impervious surfaces) and 
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flame (e.g. lights, sunset glow, and reflective clothing) are considered as negative samples. Images about these negative 

samples are obtained on Internet via Web crawler. 

In order to produce representative samples of wildfires, ten typical areas (Hu et al., 2021) where wildfires have occurred 170 

frequently in recent years are selected (shown in Fig. 2). These regions cover all continents except Antarctica, including 

Canada, America, Brazil and Bolivia, Greece and Bulgaria, South Africa, China, Russia and Australia. Satellite imagery of 

these regions captured during fire events are collected from Sentinel-2 with 10m resolution and Landsat-8 with 30m 

resolution. Table 1 summarizes the details of remote sensing data sources used in this research. Since the atmospheric 

correction process may lead to the problem of missing pixels around the smoke and clouds in surface reflection imagery, we 175 

make use of Sentinel-2 and Landsat-8 data product that are not corrected for atmospheric conditions, namely Sentinel-2 L1C 

(Level-1C) and Landsat-8 TOA (top-of-atmosphere), to generate FASDD_RS. A total of 310,280 remote sensing images 

with cloudy pixel percentage below 5% are collected. The RS image sizes range from 1000×1000 to 2200×2200. 

 
Figure 2: The typical areas of fire events around the world. The base map (map data from Google Earth Engine © Google Services 180 
2022) shows MODIS global land cover types at yearly intervals (Friedl and Sulla-Menashe, 2020) distributed by NASA's Land 
Processes Distributed Active Archive Center. 
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Table 1 The details of data collection for typical fire events around the world 

Region Continent Time range Spatial range Data source Number Resolution

Canada 
North 

America 

2018.08.05 -  

2018.08.15 

[-129.00, 58.90], [-129.00, 53.06],

[-120.08, 53.06], [-120.08, 58.90]

Sentinel-2, 

L1C 
5764 10m 

America 
North 

America 

2018.11.05 -  

2018.11.15 

[-123.50, 44.62], [-123.50, 37.37],

[-118.16, 37.37], [-118.16, 44.62] 

Sentinel-2, 

L1C 
8437 10m 

Brazil and 

Bolivia 

South 

America 

2019.08.15 -  

2019.08.25 

[-62.30, -11.18], [-62.30, -18.49], 

[-58.68, -18.49], [-58.68, -11.18] 

Sentinel-2, 

L1C 
6977 10m 

Greece and 

Bulgaria 
Europe 

2018.07.15 -  

2018.07.25 

[19.65, 43.16], [19.65, 38.59], 

[25.08, 38.59], [25.08, 43.16] 

Sentinel-2, 

L1C 
10725 10m 

South Africa Africa 
2018.10.20 -  

2018.10.30 

[18.76, -31.84], [18.76, -34.58], 

[25.92, -34.58], [25.92, -31.84] 

Sentinel-2, 

L1C 
9573 10m 

China Asia 
2020.03.30 -  

2020.04.05 

[101.28, 28.25], [101.28, 27.84], 

[101.65, 27.84], [101.65, 28.25] 

Sentinel-2, 

L1C 
624 10m 

Russia Europe 
2018.07.15 -  

2018.07.25 

[118.05, 66.69], [118.05, 64.81], 

[122.26, 64.81], [122.26, 66.69] 

Sentinel-2, 

L1C 
2111 10m 

Australia Oceania 
2019.07.01 -  

2020.02.20 

[113.10, -10.81], [113.10, -23.77],

[151.16, -23.77], [151.16, -10.81]

Sentinel-2, 

L1C 
182932 10m 

[137.37, -23.68], [137.37, -38.99],

[153.27, -38.99], [153.27, -23.68]

Landsat-8, 

TOA 
52669 30m 

[117.41, -23.84], [117.41, -34.41],

[129.89, -34.41], [129.89, -23.84]

Landsat-8, 

TOA 
30468 30m 

3.2 Data preprocessing 185 

To ensure the consistency and standardization of FASDD, some basic preprocessing steps on source data shall be conducted 

before data annotation. For video data, key frame extraction is performed and images are sampled in a step of 30 frames to 

ensure the difference between samples. Then all CV images (including images extracted from videos) are converted into 

JPEG format files. For remote sensing imagery, additional processing steps are required including true-color synthesis, data 

normalization, and image dehazing. All remote sensing images are synthesized into true-color images for human 190 

interpretation. Pixel values are normalized to the range of 0-255. These preprocessing steps allow them to be suitable for 

general flame and smoke detection models. Then, histogram normalization and dehazing are performed to adjust the image 

color components and improve the image clarity. And all remote sensing images are saved as GeoTIFF format files. In the 

https://doi.org/10.5194/essd-2022-394
Preprint. Discussion started: 21 November 2022
c© Author(s) 2022. CC BY 4.0 License.



9 
 

end, all images with the same content are de-duplicated based on the Total Commander tool (Total Commander, 2022) to 

ensure the difference and uniqueness of image features in the dataset. 195 

3.3 Data annotation 

For CV training data annotation, all selected images are distributed to more than 70 volunteers in the field of fire detection 

for collaborative labeling in a crowd-sourced manner. Volunteer annotators are asked to label flame and smoke objects in 

images using non-directional minimum bounding rectangle. Although data are labeled offline with the LabelImg tool, some 

basic annotation rules are formulated to standardize the labeling process. The annotation rules can be summarized as follows: 200 

- A flame or a smoke object that is partially occluded but obviously connected is regarded as a separate object; 

- Multiple tiny objects clustered together are considered to be a particular object; 

- Flame or smoke with significantly different colors are not considered to be the same object; 

- Objects smaller than 10×10 pixels and without apparent flame or smoke characteristics are ignored; 

- Inconspicuous reflections of flame and smoke on smooth surfaces such as water shall be ignored; 205 

- Small objects with prominent characteristics shall be not omitted; 

- Images with too low resolution or with inconspicuous flame and smoke features shall be deleted.  

For RS training data annotation, we adopt a semi-automatic way to annotate RS images with human-computer interaction. 

First, target images which may contain flame and smoke objects or confusing objects are manually searched and screened. 

All the target images are distributed to a small group of trained annotators to produce positive samples. Meanwhile, a flame 210 

and smoke detection model trained on existing FASDD_CV is employed to predict semantic tags of target images. Those 

images with confidence greater than 80% are further screened out from the inference results, and labels in those images 

similar to flame and smoke are manually annotated as negative samples. In the annotation process, spatial information of all 

remote sensing images, including longitude, latitude, and projection information, are retained for the localization and 

tracking of forest fire events. Finally, 5,773 images are annotated based on human-computer interaction. 215 

The flame and smoke objects in FASDD are given the labels "fire" and "smoke" for the object detection task, respectively. 

Annotation files in four kinds of formats are provided in FASDD, i.e., the JSON format defined by the TDML (Yue et al., 

2022), the XML format adopted by the PASCAL VOC (Everingham et al., 2015) dataset, the JSON format adopted by the 

Microsoft COCO (Lin et al., 2014) dataset, and the text format adopted by models of YOLO (Redmon et al., 2016) series. 

Examples of four annotation formats are displayed in the attached file. Since all images could be classified into four 220 

semantic categories, i.e. "Fire", "Smoke", "FireAndSmoke", and "NeitherFireNorSmoke", the category label is added to each 

image filename as prefix. With such category prefixes, FASDD could also be used to train fire scene classification models. 

3.4 Quality control 

To ensure the quality of the dataset, we develop a set of quality control procedures. On the one hand, three-stage manual 

visual inspection procedures are designed after obtaining the initial annotation files of the dataset, i.e., initial inspection, re-225 
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inspection, and refinement, to correct unconfident data. In the initial inspection stage, every two annotators are assigned into 

one group to cross-check and modify the annotation files against each other, which helps find out inconsistent labels between 

different interpreters and reduce cognitive biases in crowdsourcing annotations. In the re-inspection stage, a small group of 

quality inspectors are trained to audit the results from the initial inspection stage to eliminate omission errors and fine-tune 

the position, category, width, and height of bounding boxes. In the refinement stage, we invite well-trained domain experts 230 

to resolve annotation conflicts from the initial stage and relabel difficult-to-determine labeling cases from the previous stages. 

On the other hand, we introduce a programming inspection procedure after manual visual inspection procedures. The 

programming inspection procedure performs final data cleaning on annotation files using annotation checking code. The 

code could automatically modify empty, duplicated or range overflow bounding boxes, and misclassified or misspelt labels 

to prevent invalid and omitted values that are not easily detectable by humans. After these inspection steps, the consistency 235 

and standardization of annotation files can be ensured as much as possible. 

 
Figure 3: The quality control flowchart 

3.5 Dataset characteristics and values 

FASDD contains fire, smoke, and confusing non-fire/non-smoke images acquired at different distances (near and far), 240 

different scenes (indoor and outdoor), different light intensities (day and night), and from various visual sensors (surveillance 

cameras, UAV, and satellites). A total of 101,087 samples are produced, of which 59,177 are annotated as positive samples, 

and 41,910 are labelled as negative samples. Some example images of FASDD are shown in Fig. 4. There are 82,666 flame 

object instances and 57,742 smoke object instances labelled in the entire dataset. FASDD consists of two sub-datasets, a 

computer vision dataset (i.e. FASDD_CV) consisting of 95,314 general computer vision (CV) samples, and a remote sensing 245 

dataset (i.e. FASDD_RS) consisting of 5,773 remote sensing (RS) samples. FASDD_CV contains 73,297 fire instances and 

53,080 smoke instances. The size of CV images spans a relatively large range, with a width range of 78~10,600 pixels and a 
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height range of 68~8,858 pixels. The image aspect ratios are also quite different, widely ranging from 1:6.6 to 1:0.18. 

FASDD_RS contains 9,369 fire instances and 4,662 smoke instances. The sizes of remote sensing images are mainly 

distributed around 1,000×1,000 or 2,200×2,200 pixels. 250 

 
Figure 4: The example images in FASDD. CV images are from open-access datasets (Chino et al., 2015; Sharma et al., 2017; Geng 
et al., 2020). RS images are from Landsat-8 TOA and Sentinel-2 L1C. 

Compared with existing fire datasets including FLAME (Shamsoshoara et al., 2021), MIVIA (Foggia et al., 2015) and 

BoWFire (Chino et al., 2015), FASDD has the following remarkable characteristics.  255 

(1) Large Scale. FASDD consists of more than 100,000 images and 140,000 object instances that are manually labelled with 

bounding boxes. To the best of our knowledge, it is the most versatile, comprehensive, and publicly available dataset for fire 

detection. 

(2) Rich sample variations. The proposed FASDD dataset holds rich variations in image size, resolution, illumination (day 

and night), scene (indoor and outdoor), image range (far and near), sensor (surveillance cameras, UAV sensors, and satellite), 260 

and data source (Internet, social media, and open-access fire datasets). Such image variations will help enhance the 

robustness of models. 

(3) High intra-class diversity and some inter-class similarity. Due to the characteristics of growth, disorder, color diversity, 

and intensity variability of flame and smoke, objects in the same category have different sizes, postures, and colors. There 

are also some similarities between flame and smoke, such as the red smoke by the glow of flame looks like the flame. 265 

(4) Small objects of flame and smoke. It is well known that small object detection is a challenging problem in deep learning 

research related to computer vision. FASDD contains a large number of small flame and smoke objects, especially flame 

objects from remote sensing imagery and far-field wildfire images. 
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(5) Geo-referenced images. Compared with traditional CV datasets, FASDD contains a number of geo-referenced training 

images. The location information in remote sensing images can be used to detect or infer the location of fire events in time. 270 

4 Evaluation and application 

4.1 Experiment Setup 

In our experiment, we select half of the dataset for training, 1/3 for validation, and 1/6 for test. Four classical models with 

significant architectural differences are selected for performance evaluation, including the two-stage Faster-RCNN (Ren et 

al., 2015), the one-stage anchor-free GFL (Li et al., 2020), the anchor-based YOLOv5x (Jocher et al., 2021), and the Swin 275 

Transformer (Liu et al., 2021) that achieves state-of-the-art (SOTA) performance on the COCO dataset. We use the same 

training configuration for all models participating in the evaluation to ensure the fairness of performance comparison. All 

models are trained from scratch without using pre-trained weight files. The only exception is that YOLOv5x uses an image 

size 960×960, while other models use the image size from 1333×480 to 1333×800. Other parameters are consistent for the 

four models, including epoch 36 and batch size 2. In terms of GPU devices, all models for are trained, validated, and tested 280 

on an NVIDIA GeForce RTX 3090 with 24GB memory. 

4.2 Evaluation metrics 

Four metrics are used to quantitatively evaluate the accuracy of the model prediction results, including Precision, Recall, AP 

(Average Precision), and mAP (mean Average Precision). Precision represents the ratio of the correct prediction box to all 

prediction boxes. Recall represents the ratio of the correct prediction box to all ground-truth boxes. AP represents the area 285 

under the curve (AUC) of Precision-Recall for each class in the dataset. mAP represents the AP mean value of all class. We 

select the mAP@0.5, a more representative mAP indicator, as the primary reference metric of model accuracy. The 

mAP@0.5 refers to mAP when the IoU between prediction and ground-truth boxes is not less than 50%, which is usually 

used to evaluate the overall performance of models. Precision and Recall are calculated as shown in Eq. (1) and (2): 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁   

(2) 

where, TP represents the number of prediction boxes when the IoU between prediction and ground-truth boxes is not less 290 

than 0.5. FP represents the number of prediction boxes when the IoU between the prediction and ground-truth boxes is less 

than 0.5. FN represents the number of the ground-truth boxes missed from detection. 
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4.3 Performance evaluation 

We train Faster-RCNN, GFL, Swin Transformer and YOLOv5x models on FASDD_CV, FASDD_RS and FASDD, and 

evaluate and compare the accuracy of these classic object detection models based on validation set and test set in the above 295 

three datasets, respectively. Table 2 shows the accuracy evaluation results of classical models on FASDD_CV, FASDD_RS 

and FASDD.  
Table 2: Accuracy evaluation of classic object detection models 

Datasets Method epoch 
Validation Test 

APfire (%) APsmoke (%) mAP@0.5 (%) APfire (%) APsmoke (%) mAP@0.5 (%)

FASDD_CV 

Faster-RCNN 36 48.20 56.90 52.55 67.40 55.20 61.26 

GFL 36 56.60 69.00 62.82 72.70 73.10 72.90 

Swin Transformer 36 65.00 74.60 69.79 81.50 76.10 78.77 

YOLOv5x 36 70.96 73.29 72.13 86.48 81.66 84.07 

FASDD_RS 

Faster-RCNN 36 25.80 31.60 28.66 24.3 39.8 32.05 

GFL 36 34.00 36.90 35.46 33.5 46.6 40.08 

Swin Transformer 36 43.40 56.80 50.10 41.00 65.00 53.01 

YOLOv5x 36 37.35 45.93 41.64 33.42 49.35 41.39 

FASDD 

Faster-RCNN 36 44.30 53.70 49.00 59.00 51.50 55.24 

GFL 36 53.60 67.10 60.35 65.80 70.60 68.20 

Swin Transformer 36 58.90 72.20 65.55 71.20 71.20 73.20 

YOLOv5x 36 67.80 72.10 69.94 79.14 79.17 79.15 

In the evaluation results on FASDD_CV, the overall accuracy of Faster-RCNN, GFL, YOLOv5x, and Swin Transformer 

is gradually increasing. Among them, the Faster-RCNN model achieves only 52.55% validation mAP@0.5 and 61.26% test 300 

mAP@0.5 on FASDD_CV. The GFL and Swin Transformer models exhibit a good performance, and the Swin model 

achieves the highest validation accuracy of 74.60% on the APsmoke metric. The YOLOv5x model shows the best performance, 

achieving the highest accuracy in all metrics except APsmoke, particularly the 84.07% mAP@0.5 accuracy on the test set. 

Considering the evaluation results again, the worst performing Faster-RCNN also achieves an evaluation accuracy higher 

than 60% on FASDD_CV, which is partly due to the contribution of the large-scale sample of FASDD_CV. 305 

In the evaluation results on FASDD_RS, the overall accuracy of all models is significantly lower than that on 

FASDD_CV, which demonstrates the difficulty of fire detection on Remote Sensing images. Among them, the Faster-RCNN 

exhibits the lowest model performance. Compared with the Faster-RCNN model, GFL exhibits performance improvement to 

some extent. And YOLOv5x outperforms the GFL on both the validation and test sets. The Swin Transformer model 

achieves the best performance with 56.70% and 53.01% mAP@0.5 on the validation and test set, respectively. This may be 310 

attributed to its transformer structure, which is better at capturing global contextual information and large-scale spatial 
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relationships. Some smoke areas in remote sensing images of large fire are relatively large, so the Swin Transformer model 

achieves the most advanced performance on FASDD, especially on the APsmoke metric.  

In the evaluation results on FASDD, the two-stage object detection model, Faster-RCNN, shows the lowest performance 

on both FASDD validation and test set with 49.00% and 55.24% mAP@0.5 respectively. Compared with Faster-RCNN, the 315 

one-stage anchor-free GFL model obtains 11.35% and 12.96% mAP@0.5 performance gains on validation (60.35%) and test 

(68.20%) sets. Compared with Faster-RCNN and GFL, Swin Transformer has significant performance improvement. 

Moreover, its validation set accuracy (65.55%) and test set accuracy (73.20%) are the closest to the accuracy evaluation 

results of YOLOv5x, showing a pretty competitive accuracy evaluation result. The anchor-based YOLOv5x exhibits state-

of-the-art performance on FASDD, achieving the highest 69.94% validation accuracy and 79.15% test accuracy on the 320 

mAP@0.5 metric. The accuracy of the Swin Transformer is slightly lower than that of YOLOv5x. The reason may be that 

the parameter configuration and training strategy of the two models are only as consistent as possible but not entirely 

consistent, which may lead to a loss of comparability to some extent.  

Experiments show that the detection accuracy of the classical object detection model on FASDD_CV is generally better 

than that on FASDD_RS. In terms of overall assessment results, the models also demonstrate good detection performance on 325 

FASDD that integrates cross-domain data (CV and RS). This indicates that the pre-trained model trained on FASDD can 

achieve good accuracy, generalizability, and transfer learning capability on the cross-domain object detection task. However, 

FASDD is still challenging and there is sufficient space to improve its detection accuracy. It can be used to assist researchers 

in developing more targeted and robust algorithms to promote new developments in fire detection. Moreover, based on 

FASDD, we can provide pre-trained large models with better generalization performance for downstream tasks such as 330 

object detection and semantic segmentation.  

4.4 Visual results 

Figure 5 shows the prediction results of classic object detection models on FASDD_CV and FASDD_RS example images, 

and compares them on four categories of fire images, i.e. Fire, Smoke, FireAndSmoke, and NetherFireNorSmoke. In the 

CV_Fire results, Faster-RCNN incorrectly detects a gold necklace as flame and a black shoe as smoke. In the CV_Smoke 335 

results, the lights on the fire truck and helmets of firefighters bring challenges to Faster-RCNN and Swin Transformer. In the 

CV_Both results, Faster-RCNN incorrectly detects grey shadows on the ground as smoke. In the CV_None results, Faster-

RCNN, GFL, and SwinTransformer incorrectly detect colored parrots as flame, and Faster-RCNN detects black backgrounds 

as smoke. In the RS_Fire results, all models have different degrees of omission errors. In particular, GFL does not detect the 

existence of flame objects at all, and Faster-RCNN incorrectly detects large areas of water as smoke. In terms of the 340 

RS_Smoke, Faster-RCNN and GFL show obvious problems of missed detection. In RS_Both, all models show missed 

detection of flame and smoke objects, and the missed detection of Faster-RCNN is severe. In the RS_None category, only 

the Faster-RCNN model incorrectly detects the dark blue surface as smoke, and none of the other models shows the false 

alarm. To sum up, in terms of image features, the significance level of flame and smoke features in FASDD_RS images is 
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slightly less than that of FASDD_CV images, and the flame in FASDD_RS image is easily confused with remote sensing 345 

ground objects or various scenes in reality. That is to say, detecting flame in remote sensing images is much more complex 

and challenging than in CV images. 

 
Figure 5: The visual result of classical object detection models on the example images. Red circles indicate omitted flame, and 
yellow circles indicate omitted smoke. "Both" represents images of the "FireAndSmoke" category, and "None" means images of 350 
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the "NetherFireNorSmoke" category. CV images are from open-access datasets (Chino et al., 2015; Dunnings et al., 2018; Geng et 
al., 2020). RS images are from Landsat-8 TOA and Sentinel-2 L1C. 

In terms of model performance, the false alarm rate of Faster-RCNN is higher than other models, and the model has the 

worst performance. The notable feature of GFL is its highly-missed detection rate on FASDD_RS. Swin Transformer also 

shows the false alarm and missed detection, yet the overall detection effect is good. YOLOv5x can achieve a satisfactory 355 

detection effect except that few missed detections on FASDD_RS. These results are obtained under the small batch size and 

epoch training configuration. Better detection results are possibly achieved using the optimized algorithms, the tuned 

parameters, or an extended training period. 

4.5 Application in wildfire location 

We apply the above classical methods to fire localization experiments in wildfire scenarios from remote sensing images. The 360 

latitude and longitude coordinates of the predicted boxes are used to verify the positioning accuracy of these methods. First, 

the coordinate system of the RS_Smoke image in Fig. 5 is converted to WGS84-based GPS coordinates. Then, inferences are 

performed on the georeferenced RS_Smoke image withfour trained object detection models respectively. Finally, the 

positions of all prediction boxes are converted into the form of latitude and longitude coordinates. 
Table 3: Comparison of coordinates between prediction and ground truth boxes 365 

Box Model Top Left Coordinate Bottom Right Coordinate Centroid Distance Bias (m) IoU 

Box1 

Faster-RCNN [142.5292, -13.8503] [142.5413, -13.8578] 452.22 0.33 

GFL - - - - 

Swin Transformer - - - - 

YOLOv5x [142.5283, -13.8507] [142.5405, -13.8564] 360.03 0.37 

Ground Truth [142.5251, -13.8453] [142.5406, -13.8559] 0.00 1.00 

Box2 

Faster-RCNN [142.5826, -13.8343] [142.5971, -13.8477] 646.24 0.49 

GFL - - - - 

Swin Transformer [142.5831, -13.8347] [142.6084, -13.8486] 31.62 0.90 

YOLOv5x [142.5836, -13.8341] [142.6070, -13.8483] 63.25 0.93 

Ground Truth [142.5841, -13.8344] [142.6076, -13.8483] 0.00 1.00 

Box3 

Faster-RCNN - - - - 

GFL - - - - 

Swin Transformer [142.4985, -13.8446] [142.5161, -13.8555] 36.06 0.82 

YOLOv5x [142.4999, -13.8452] [142.5159, -13.8555] 65.19 0.87 

Ground Truth [142.4997, -13.8448] [142.5155, -13.8548] 0.00 1.00 

Box4 

Faster-RCNN - - - - 

GFL [142.4961, -13.8144] [142.5223, -13.8535] 917.40 0.52 

Swin Transformer [142.4965, -13.8104] [142.5306, -13.8437] 127.48 0.83 

YOLOv5x [142.4976, -13.8126] [142.5291, -13.8401] 68.01 0.89 

Ground Truth [142.4968, -13.8113] [142.5288, -13.8410] 0.00 1.00 
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Table 3 compares the geographic coordinates (top left and bottom right), centroid distance bias and IoU between the 

prediction boxes and ground truth boxes of the RS_smoke image. "-" indicates the missed detection boxes, and the redundant 

boxes of false alarm is not added to the table. Among them, GFL misses three bounding boxes, Faster-RCNN misses two 

bounding boxes, Swin Transformer misses one bounding box, and YOLOv5x can detect all the bounding boxes. Compared 

with the detection results of other models, the predicted geographic coordinates of the YOLOv5x model and the ground-truth 370 

boxes are closer, showing a good fire site localization effect. In terms of the centroid distance, the prediction box centroids 

of both Faster-RCNN and GFL are relatively far from the ground truth centroids, and the prediction box centroids of Swin 

Transformer and YOLOv5x are relatively closer to the ground truth centroids. In terms of the IoU, Swin Transformer and 

YOLOv5x also exhibit good results around 90% on most of the prediction boxes. In particular, YOLOv5x achieve the 

highest IoU between all prediction boxes and ground truth boxes. The above comparison results show that YOLOv5x model 375 

trained on FASDD helps to accurately locate and track wildfire sites in remote sensing images. This has practical 

significance for detecting and monitoring large-scale forest fires using in-orbit satellites. 

5 Data availability  

FASDD is freely available from the Science Data Bank website at https://doi.org/10.57760/sciencedb.j00104.00103 (Wang 

et al., 2022). There are a total of three compressed files, FASDD_CV.zip, FASDD_RS.zip and FASDD.zip represent the CV 380 

dataset, the RS dataset and the full dataset composed of CV and RS respectively. Each zip file contains an "images" folder 

for storing data and an "annotations" folder for storing labels. The 'annotations' folder consists of label files in four formats: 

VOC, COCO, YOLO, and TDML. In each format of labels, the dataset is divided into training, validation, and test sets with 

a ratio of 1/2, 1/3, and 1/6. The prefixes of image and label names are divided into "Fire", "Smoke", "FireAndSmoke", and 

"NeitherFireNorSmoke", which represent different categories of data for classification tasks. The labels contain the classes 385 

"fire" and "smoke" to represent two common objects in fire images for object detection tasks.  

6 Conclusion 

This paper presents an open-access 100,000-level Flame and Smoke Detection Dataset (FASDD). To the best of our 

knowledge, it is the largest fire detection dataset with the most variety of scenes, the highest heterogeneity, and the most 

significant difference in feature distribution. FASDD is compatible with image classification and object detection tasks. It 390 

provides four annotation files to enable out-of-the-box training samples for deep learning models. Especially, the use of 

TDML annotations provides a reference for the application of upcoming OGC training data standard in the future. FASDD 

has significant heterogeneity and challenges, laying a solid data foundation for future fire detection research. Based on the 

proposed dataset, we perform extensive performance evaluations and comparisons using multiple classic object detection 

models. The results show that YOLOv5x model exhibits state-of-the-art performance with the highest test set accuracy close 395 
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to 80%. That is to say, the trained YOLOv5x model can play a considerable role in the early warning and detection of urban 

fires or forest fires. The application in wildfire location finds that YOLOv5x model trained on FASDD can achieve high-

quality location results. The model can be adapted to any other regional and global scales fire scenarios, which can provide 

an important reference for government decision-making and fire rescue. However, there is still room to improve the accuracy 

of fire detection with fine-tuned models. In particular, advanced wildfire detection models need to be developed for the 400 

challenging task of recognizing fire on remote sensing imagery. In the future, vision-based models trained on FASDD can 

also be combined with smoke sensors in practical applications for more accurate fire detection.  
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