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Abstract. Laser scanning from different acquisition platforms enables collecting 3D point clouds from different perspectives

and with varying resolutions. Sueh-These point clouds allow us to e-gsretrieve-information—abeut-theforest-structure-and

individual-tree-properties;-or-to-model-individual-trees-in-3Dretrieve detailed information on the individual tree and forest
structure. We conducted airborne laser scanning (ALS), UAV-berne-uncrewed aerial vehicle (UAV)-borne laser scanning (ULS)

and terrestrial laser scanning (TLS) in two German mixed forests with species typical for Central Europe. We provide the
spatially overlapping, georeferenced point clouds ef-the-different-acquisitionsfor 12 forest plots. As a result of individual
tree extraction, we furthermore present a comprehensive database of tree point clouds and corresponding tree metrics;-both
measured-in-the-field-and-. Tree metrics were derived from the point clouds and, for half of the plots, also measured in the
field. Our dataset may be used for the creation of 3D tree models for radiative transfer modelinger-, LIDAR simulation studies
or to fit allometric equations between point cloud metrics and forest inventory variables. It can further serve as a benchmark
dataset for different algorithms and machine learning tasks, in particular automated individual tree segmentation, tree species
classification or forest inventory metric prediction. The dataset and supplementary metadata are available for download on the

PANGAEA data publisher at https://doi.org/10.1594/PANGAEA.942856 (Weiser et al., 2021b).

1 Introduction

Petatled-Airborne and terrestrial laser scanning enables the collection of detailed 3D tree-models-are-requiredfor-aplethora
ofapplications—Forexample-information on forest structure. This information can be used to estimate important tree and forest

stand attributes including tree and stand height (Pearse et al., 2019; Wang et al., 2020), wood volume (Dassot et al., 2012; Disney et al., 201

biomass (Disney et al., 2018; Ne&sset et al., 2011), canopy cover (Arumie and Lang, 2018; Smith et al., 2009), tree densit
Pearse et al., 2019), diameter at breast height (DBH) (Bruggisser et al., 2020; Liu et al., 2018) and basal area (Pearse et al., 2019
. Laser scanning data from airplanes and helicopters have been widely applied in the forest sector and are operationally used for

forest inventories in several countries (Montaghi et al., 2013; Scion, 2021; White et al., 2017) using the area-based a

Bouvier et al., 2015; Holopainen et al., 2014; Nasset, 2002). In the area-based a

roach

roach, wall-to-wall laser scanning data is
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combined with information collected in field plots to estimate forest attributes across the complete area covered by the laser
scanning survey. Besides the area-based approach, individual tree-based approaches in which first single trees are detected from

. Terrestrial laser scanning data with stationary or mobile sensors can be used to obtain detailed information on individual
trees which typically cannot be directly derived from airborne surveys. Corresponding attributes include DBH and tree stem

taper information but also information on small-scale understorey variation which may be important for characterizing local

fuel conditions or habitat properties. Finally, laser scanning with uncrewed aerial vehicles (UAVS) represents a compromise

between airborne and terrestrial laser scanning, UAY-borne laser scanning (ULS) allows for data collection over larger areas
compared to TLS but cannot reach the fine spatial resolution of TLS data. Due to the lower flying height, ULS achieves higher
point densities and a better penetration of the canopy than ALS, but covers smaller areas due to constraints in flying time and
speed.

Ouver the last years, notable progress has been made in both sensor systems and workflows to derive forest attributes from

laser scanning data collected by various platforms (Cal, 2020; Maltamo et al., 2014; Morsdorf et al., 2017; Roussel et al., 2020; Wallace et

- At the same time, there is still space for improvements for example when it comes to (1) understanding and comparing the
potential of tree delineation algorithms or (2) deriving certain attributes such as tree species from laser scanning point clouds.
Furthermore, (3) there are still open questions related to the influence of acquisition settings on the model performances in the
area-based approach. For issues (1) and (2), obtaining reliable reference data in the field is often extremely challenging and
time-intensive and preparing openly-available high-quality benchmark datasets may contribute to make further advancement
in the research field. For issue (3), cost is often a limiting factor since in many cases it is impossible to acquire numerous ALS
flights in a research project to examine the influence of acquisition parameters due to the high costs of the flights. In this case, a
combination of synthetic forest stands and laser scanning simulators may be one way forward by enabling extensive sensitivity.
analyses (Disney et al., 2010; Roberts et al., 2020).

One key-element for creating synthetic forest stands, enabling laser scanning simulations, are detailed and realistic 3D tree

reconstructed from 3D point clouds obtained with terrestrial, UAV-borne or airborne laser scanning. Virtual forest scenes can be
built from such 3D tree models and used as input to complex radiative transfer models (e.g., DART, Gastellu-Etchegorry et al.

2015) or Light Detection and Ranging (LiDAR) simulators (e.g., HELIOS++, Winiwarter et al. 2022). Such simulations enable
an improved understanding of the relation between forests’ structural elements and electromagnetic radiation (Disney et al.,
2010; Weiser et al., 2021; Widlowski et al., 2015). This is particularly relevant for improving remote sensing-assisted forest

inventory approaches. 3D tree models ean-alse-derived from laser scans of real trees have also been used to develop structural

tree allometries to, e.g., non-destructively estimate the above-ground biomass of tree individuals (Calders et al., 2015). Further.

3D tree models can be used to parameterize eco-physiological models (Sinoquet et al., 2001) to quantify shading effects
and evapotranspiration properties of urban trees. Other applications of detailed tree models include their integration in 3D

visualizations as, e.g., used in urban landscape planning projects or in computer games (Bournez et al., 2017).

the point clouds and then attributes are estimated for the individual trees have also received attention (Latifi et al., 2015; Maltamo et al., 200:
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(Semi-)automated methods to extract tree models from TLS point clouds are readily available (e.g., SimpleTree/SimpleForest,
Hackenberg et al. 2015; TreeQSM, Raumonen et al. 2013) but data collection and extraction of high-quality tree point clouds
is still very time-demanding-time-consuming because it requires manual interaction and control. This generally limits the ac-
quisition and processing of very large numbers of trees in single projects and thus underlines the importance of publishing such

datasets as open data for shared usage.

he dataset presented here is one of the
biggest open-access collections of multi-platform tree point clouds with matching inventory data of common tree species of

Central European forests. For1285-trees—We present 1491 trees which were identified in point clouds acquired in 12 forest
lots in southwest Germany. 249 trees were extracted from all three types of point clouds, ALS, ULS and TLS. Another 1031
trees were extracted from both ALS and ULS point cloudsare-available-and-for-. 1168 trees - ULS-point-clouds-acquired-under

both-leaf-off-and-were extracted from two different ULS datasets, acquired under leaf-on eanopy-conditions—are-avaitable:

BN 40 an

d-—For-the-feaf-on-data;-the-conditions and leaf-off

conditions (Figure 8). The maximum time period between s-(laser scanning acquisitions

under leaf-on conditions is 70 daysbetween-AkLS-and-ULS)—. Single tree metrics, including species, height, DBH and crown
metrics, were derived from the point clouds and, for half of the plots (1060 trees), also measured in the field. Thus, one or more

oint clouds and corresponding metrics are provided for each tree. In addition to the 3D coordinates, each point of the point
cloud has attributes including reflectance, echo number, waveform deviation and time of recording. The dataset further exists

of the larger area forest point clouds of the acquisitions and the flight trajectory or scan position information.

laberintensive—Figure 1 displays the workflow of the data acquisition and processing steps.
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Figure 1. Workflow for the generation of the dataset, starting with the laser scanning data acquisition and forest inventory measurements and
resulting in single tree point clouds and corresponding point cloud-derived and field-measured metrics. This figure has been designed using

resources from http://www.flaticon.com/ (Smashicons, Freepik).
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2 Methods

In this section, we introduce the study site, give an overview of the measurements taken in the field and document the LiDAR
acquisitions from the three different platforms (airborne, UAV-borne, terrestrial) which were conducted in 2019 and 2020
under leaf-on and leaf-off canopy conditions. We describe how we extracted single tree point clouds from the LiDAR datasets

to a) match them to the field measurements, and b) derive individual tree metrics directly from the point clouds.
2.1 Study site

The two study study sites, the Bretten municipal forest (49°00°36"N 8°41°35"E) and the Hardtwald forest in Karlsruhe-
Waldstadt (49°02°04"N 8°25°40"E), are located in a region of temperate forests in the federal state of Baden-Wiirttemberg,
Germany (Figure 2). Data acquisitions cover three forest plots in the Karlsruhe forest and nine in the Bretten municipal for-
est, totaling twelve forest plots (Figure 2). The Bretten site is characterized by the hilly landscape of the Kraichgau, and the
Karlsruhe site is on flat terrain of the Upper Rhine Plain. The main tree species in the managed forest stands are Scots pine (Pi-
nus sylvestris L.), European beech (Fagus sylvatica L.), common oak (Quercus robur L.), sessile oak (Quercus petraea (Matt.)
Liebl.), red oak (Quercus rubra L.), European hornbeam (Carpinus betulus L.), Douglas fir (Pseudotsuga menziesii (Mirb.)
Franco), and Norway spruce (Picea abies (L.) H. Karst). Most stands have multiple layers, a mixed species composition, and a
dense forest cover. Karlsruhe plots are dominated by Scots pine, red oak and beech. Bretten plots are more diverse and charac-

terized by beech, spruce, Douglas fir, oaks (mostly sessile oak) and European hornbeam. We provide a summary of forest plot

characteristics in Table A1, including the number of trees, basal area [m2ha '], the percentage of dead trees and the median
tree height [m], also separated by tree species.

2.2 Laser scanning data acquisition and co-registration of the multi-modal datasets
2.2.1 Airborne laser scanning (ALS)

MILAN Geoservice GmbH was commissioned by the Institute of Geography and Geoecology (IFGG) of Karlsruhe Institute
of Technology (KIT) to carry out the ALS acquisitions. The flights were conducted on July 5, 2019 under leaf-on conditions
with a RIEGL VQ7801 (RIEGL Laser Measurement Systems, 2019) sensor mounted on an aircraft of type Cessna C207. Data
were acquired in 38 parallel flight strips, plus two orthogonal strips, in Karlsruhe, covering an area of around 65km?. In
Bretten, data were acquired in 25 parallel flight strips, plus two orthogonal strips, covering an area of around 32 km?. Detailed
acquisition parameters are listed in Table 1. The data were georeferenced and transformed into the coordinate reference system
ETRS89 / UTM zone 32 (EPSG:25832) with ellipsoidal height (GRS80). Full-waveform data are available from the authors
on reasonable request.

For quality control, seven small built-up areas surrounding the area of interest were recorded by the 3DGeo Research Group

of Heidelberg University using ULS, for which georeferencing was carried out as described in the next section.
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Figure 2. Map of the forest plots in Karlsruhe (left) and Bretten (right) in the federal state of Baden-Wiirttemberg, Germany. The extent of
the extracted ALS data is outlined in black, areas for which field measurements were conducted are outlined in purple ("Full inventory").
All plots except BR04 are covered by the ULS acquisitions. TLS was performed in selected locations within the plots. Coordinates are given
in the projected coordinate system ETRS89 / UTM zone 32N (EPSG:25832). Map data: © OpenStreetMap contributors 2021. Distributed
under the Open Data Commons Open Database License (ODbL) v1.0. Administrative boundaries: © EuroGeographics (2021).
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Table 1. Airborne laser scanning acquisition parameters. Laser beam divergence is specified as the points where the energy drops to 1/¢? of

the maximum.

Date 2019-07-05
Aircraft Cessna C207
Sensor RIEGL VQ-780i
Laser beam divergence 0.25 mrad

Pulse repetition frequency 1000 kHz

Scan frequency 225 lines per second
Altitude above ground 650 m

Off-nadir scan angle +30°

Flight line distance 175m

Flight line overlap 76 %

Speed 100 kn

Flight strips were merged and the point clouds were clipped to the 12 forest plots, using a generously sized buffer to cover the
other datasets (ULS, TLS, field measurements). This resulted in extracted ALS point clouds of 300 m x300 m, 200 m x 200 m,
or 120 mx120 m extent (Figure 2), depending on the spatial coverage of the TLS and ULS datasets. Pulse density grids with
a cell size of 1 m were computed for each point cloud. Pulse density, averaged over all 12 plot point clouds, was 72.5 pts/m?

(standard deviation: 31.0 pts/m?).
2.2.2 UAV-borne laser scanning (ULS)

UAV-borne laser scanning point clouds were acquired with a RIEGL miniVUX-1UAV (RIEGL Laser Measurement Systems,
2020b) sensor mounted on a DJI Matrice 600 Pro Hexacopter (DJI, 2018). Flights were conducted in August and September
2019, in December 2019, and in March and April 2020 to obtain data of trees under both leaf-on and leaf-off conditions. Table 2
shows the general settings used in all 21 flights. For plots KA10 and KA11 in Karlsruhe, only leaf-on data were acquired in
summer. Two overlapping double grid patterns, offset by 45° in orientation were employed for all flights (Figure 3). In the
2019 flights, adaptive banked turns were flown, while in the 2020 flights, the UAV was operated in stop and turn-mode, i.e.,
stopped in each corner to turn without inclining about the roll axis. Flying altitude, speed and flight line distance varied across
the different flight campaigns and are listed in Table 3. Note that for the 2019 flights of plots BR03 and BRO08, the two parts of
the double cross were flown at different speeds.

ULS data was processed using the software RiProcess (RIEGL Laser Measurement Systems 2020a, version 1.4.2). GNSS
reference measurements were retrieved as a virtual base station from SAPOS Baden-Wiirttemberg (https://www.sapos-bw.de),
and were used to post-process the trajectory using Applanix PosPac MMS 8.3 (Applanix Corporation, 2018). The trajectory and
the point cloud data from the scanner were imported to RiProcess. At import, the point cloud data were filtered for reflectance

between —22dB and 10dB, scan angle < + 90° off-nadir, and ranges between 5m and 150 m to filter outliers from the



Table 2. Constant UAV-borne laser scanning acquisition parameters. Laser beam divergence is specified as full angle measured at 50 % peak

intensity (full width at half maximum; FWHM).
UAV DIJI Matrice 600 Pro
Sensor RIEGL miniVUX-1UAV
Laser beam divergence 1.6 mrad x 0.5 mrad
Pulse repetition frequency 100 kHz
Sean-frequeney-50-linespersecond-Off-nadir scan angle ~ +90°
—= ALS

ULS double grid 1
—— ULS double grid 2 "

-

0 20 40 60 80 100 m
- . .
I

Figure 3. UAV-borne laser scanning (ULS) and airborne laser scanning (ALS) flight trajectories of plot KA10. Background: Orthophoto of

the forest plot, acquired on 2019-09-06.
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data. The point cloud data were converted from the scanner (SDCImport) and then transformed from local polar to world
coordinates (ETRS89/UTM Zone 32N) using the flight trajectory (RiWorld). For the subsequent strip adjustment, only points
with a scan angle < + 45° off-nadir were considered, because larger off-nadir angles constitute almost only of within-canopy
returns which we presumed to be less accurate and/or less suitable for strip adjustment. Finally, each flight strip (with the full
scan angle range of & 90°) was exported in LAZ format including intensity information (signal amplitude and reflectance) and
waveform information (pulse shape deviation). Using LAStools (Rapidlasso GmbH 2020, version 200509), the single flight
strips were merged and the information on the flight lines was encoded in the LAS field "Point Source ID".

Pulse density grids were computed for extracted +-ha-1 ha point clouds of the 12 plots (i.e., excluding the edges of the flight

lines) with a cell size of 1 m. The mean pulse densities derived for these grids are shown in Table 3.
2.2.3 Terrestrial laser scanning (TLS)

TLS acquisitions were performed at selected spots within the 12 forest plots. Our focus was on the most common species in
our study site. In total, we conducted 31 TLS surveys on 20 days between June and September 2019 under leaf-on conditions.
In each survey, a group of selected trees was scanned from S-te-8-five to eight scan positions (SPs), regularly distributed around
the target trees. Depending on the size of the scan area, the terrain, and the forest density, the number and the exact positions
of the SPs were adjusted. The scans were acquired with a RIEGL VZ-400 terrestrial laser scanner, which has a wavelength of
1550 nm and a beam divergence of 0.3 mrad (full angle, measured at the 1/e? points; RIEGL Laser Measurement Systems
2017). Scans were performed with a pulse repetition frequency (PRF) of 300 kHz and vertical and horizontal angle increments
of 0.017° (0.3 mrad). This results in 3 mm point spacing at 10 m range for a single scan and ensures non-overlapping footprints.
Only in three acquisitions on June 3, 2019 and June 4, 2019, the vertical resolution was erroneously set to 0.099° (1.73 mrad).
Each scan had a vertical field of view of 60° (-20/+40° from the horizontal plane) and a horizontal field of view of 60° to 100°
facing the target trees. If the distance between scanner and target trees was low in relation to the tree height, we performed an
additional tilted scan at respective SPs to increase the vertical extent of the scan. Five cylindrical reflective targets mounted
on tripods were positioned in the area to be scanned. They serve as tiepoints in the tiepoint-based co-registration of multiple
scans. Further circular reflectors were pinned onto trees of interest to later facilitate their identification in the point cloud.

For each campaign, RTK GNSS measurements from one scan position, referred to as the main stable position, and one
tiepoint were used for initial georeferencing of the respective scan. Remaining scans were registered to the main stable position
in the software RiSCAN Pro (versions 2.8.0, 2.8.2, 2.9.0) using the cylindrical and circular reflective targets in the scene. After
the tiepoint-based registration, a fine alignment was performed using the Multi Station Adjustment (MSA) function of RiISCAN
Pro, which uses a variant of the iterative closest point (ICP) algorithm based on planar areas in the point cloud. Because of the
weak GNSS signal below the leaf canopy, the positional measurements taken in the forest only allowed coarse georeferencing
of the TLS point clouds. Therefore, TLS point clouds were registered to the ULS point clouds by tree matching and subsequent
ICP-alignment. Because stems are sampled better in the leaf-off point clouds due to the higher penetrability of the defoliated
crowns, we used the ULS leaf-off point clouds for stem detection where available. TLS point clouds were downsampled for the

stem detection using the RiSCAN octree filter with a voxel size of 0.05 m. We calculated normal vectors, linearity and 3D point



Table 3. UAV-borne laser scanning acquisition parameters per flight and resulting approximate pulse densities, quantified on extracted point

clouds of 1 ha, thereby excluding points on the flight line edges.

Scan Altitude Speed Flight line Mean pulse
ee
Plot Date frequency above [ P - distance density
Canops ms
[lines/s] ground [m] [m] [pts m 2]
onditi
Canopy
condition
2019-09-12 leaf-on 68.3,+2.4 5.0 30 936
BRO1 SEEN
2019-12-04 leaf-off 62.3,+ 1.7 5.0 30 859
33.0
2020-03-27 leaf-off 724,+1.9 5.0 27 824
34
2019-08-24 leaf-on 72.1,+3.4 5.0 26 1091
BR02 100
2020-04-01 leaf-off 62.4,+ 3.9 5.0 26 1026
34
2019-08-24 leaf-on 62.5,+ 1.3 5.0/4.0 26 1262
BRO3 100
2020-03-31 leaf-off 67.7,+2.9 5.0 27 1114
34
2019-09-12 leaf-on 70.8, = 4.7 5.0 30 909
BRO5 33.4
2020-03-26 leaf-off 74.5,+5.0 5.0 27 988
334
2019-09-12 leaf-on 61.2,+2.8 5.0 30 953
BRO6 33.4
2020-03-27 leaf-off 61.2,+3.3 5.0 26 1023
34
2019-08-24 leaf-on 70.1, &£ 5.7 4.4 26 1115
BRO7 100
2020-03-26 leaf-off 71.4,+5.4 5.0 27 1050
34
2019-08-24 leaf-on 63.9,+22 5.0/4.0 26 1205
2020-03-31 leaf-off 69.3,4+2.3 5.0 27 1024
34
2019-09-03 leaf-on 64.0, & 2.5 4.0 25 797
2020-04-01 leaf-off 66.2, + 3.1 5.0 26 919
B4 10
2019-09-13 leaf-on 65.6, + 0.8 5.0 30 941
KA09



185

190

195

FagSyl_BR05_P3T5

10m

B ALS
B ULS leaf-on
I ULS leaf-off
B TLS

Figure 4. Point cloud visualizations showing the different point density and coverage for each platform. Left: Section of point clouds of a
beech tree in plot BRO5. The section has a depth of 1 m. Right: Point clouds of oaks in plot BRO1. The trees are 16 m to 18 m tall. Point
clouds are labeled by their tree ID in the dataset.

densities in corresponding TLS and ULS point clouds using OPALS (Pfeifer et al. 2014, version 2.3.1). By filtering for these
three attributes, stem points were extracted and then segmented. To derive the final stem positions, each segment was projected
to the horizontal plane and the center of gravity was computed. For each pair of overlapping point clouds, TLS-derived tree
positions were manually matched to ULS-derived tree positions and the resulting rigid transformation was applied to the TLS
point cloud. The height offset was estimated by selecting corresponding points in a vertical profile in both point clouds. After
correcting the height offset, a fine alignment between TLS and ULS point clouds was performed with the ICP implementation

of OPALS. A visual assessment of the alignment between ALS, ULS and TLS is presented in Figure 4.
2.3 Tree point cloud extraction

We used different procedures to extract single tree point clouds from the laser scanning data (Figure 5). The full TLS point
clouds were automatically segmented into individual tree point clouds (section 2.3.1). For the trees of interest in the center of the
acquired scene, the segmentation was improved by manual editing. ULS and ALS tree point clouds were delineated manually
in the point clouds. Because our multi-platform laser scanning point clouds are georeferenced and spatially overlapping, it was

possible to extract trees from one point cloud using already extracted tree point clouds from another platform or acquisition.

11



200

205

TLS

Automatic segmentation

Section
2.3.1

Manual correction

TLS tree ULS tree

point clouds

ULS tree
point clouds

ALS tree
point clouds

ALS tree
point clouds

point clouds

Manually extracted tree point
clouds serve as template for
automatic extraction

Figure 5. The different ways of single tree extraction. TLS point clouds were extracted with a combination of automatic segmentation and
manual correction. ULS and ALS point clouds were partly segmented manually and partly extracted using a higher resolution point cloud

from another platform (i.e., TLS and ULS).

This way, we only had to delineate each tree in one of the overlapping point clouds. Table 6 and Figure 8 give an overview of

the number of tree point clouds that are available for each data source, i.e., for each platform and canopy condition.

2.3.1 Automatic tree segmentation from TLS point clouds and manual post-processing

264 trees were extracted from the TLS point clouds. We first automatically segmented each TLS plot and then refined the
segmentation result for our selected trees by manually editing the point clouds.

Automatic segmentation was performed with CompuTree software (Computree Group 2017, version 5.0.054b). The work-
flow consists of an Euclidean clustering approach combined with a competitive Dijkstra’s algorithm and relies largely on the
SimpleTree plugin (Hackenberg 2017, Beta version 4.33.06). After importing the point cloud of the forest scene, a digital
terrain model (DTM) is computed. Next, a slice of the point cloud is extracted between 1.0 m and 1.6 m above the DTM. The
sliced point cloud is spatially clustered to derive one seed cluster per tree stem. Each point in a stem seed is assigned a cluster

ID and an initial distance of 0. A competitive Dijkstra’s algorithm is run, where each vegetation point is connected to one of

12
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the clusters and receives the according cluster ID. A graph is built from the connected points. If there are multiple possible
paths between a seed point and a target point, the shortest path is chosen.

The result of this automatic approach is error-prone, i.e., the Dijkstra’s algorithm cannot guarantee the assignment of each
point to the correct tree cluster. This is due to overlapping tree crowns and occlusions in the crown. Furthermore, errors in the
clustering of stems seeds can lead to false labeling of points.

We applied a manual correction procedure. Selected tree point clouds were compared to surrounding segmented trees to
identify erroneous or missing points and correct them manually. This was done in two stages by independent editors using the
interactive segmentation tool of CloudCompare (CloudCompare, 2019). Human experts can take into account the morphology
of the crowns in ways which are barely feasible automatically. A combined approach of automatic segmentation and manual

correction is therefore a good solution to precisely delineate trees.
2.3.2 Manual tree extraction from ALS and ULS point clouds

From ALS and ULS point clouds, we delineated trees manually in the point cloud using the interactive segmentation tool of

CloudCompare or we used already manually delineated trees as templates for automatic extraction (section 2.3.3).
2.3.3 Automatic tree extraction from ALS and ULS point clouds using extracted template tree point clouds

Because our laser scanning point clouds are spatially overlapping and co-registered, we were able to use already extracted tree
point clouds from one dataset to query points from another dataset. For each point in the source tree point cloud, we queried
all nearest neighbors within a given search radius in the larger area target point cloud to extract the same tree in the target point
cloud. This was done with a k-nearest neighbor (kNN) search using a kDTree. We ensured that the source point clouds were
of equal or higher resolution than the target point clouds to avoid extrapolation. For instance, we extracted ULS point clouds
using TLS source point clouds but not ALS source point clouds because this could lead to missing points if, e.g., the stem was
not completely captured in the ALS point cloud. When using TLS point clouds as source point clouds, we used search radii of
0.3 m, 0.5m and 1.0 m in the nearest neighbor search. We then visually examined the extracted ALS and ULS point clouds and
chose the search radius achieving the best trade-off between errors of omission and errors of commission. For the extraction

using ULS template point clouds, we always used a search radius of 1.0 m.
2.3.4 Tree positions

We define the tree position as the intersection of the tree stem center with the terrain. To derive the tree positions, we first
computed digital terrain models (DTMs) from the ALS point clouds. We then cut a slice through the bottom of the tree point
cloud, preferably the TLS or ULS point clouds, if available. We determined the x-y position of the stem as the means of the
x and y coordinates of all points in the slice. At this position, we queried the elevation of the DTM to retrieve the matching

z-value. For quality control, the derived positions were visually investigated. In some cases, they had to be corrected either

13
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Table 4. Tree measurements and the source(s) they were recorded or computed from. Tree height was only measured from TLS point clouds
for understory trees, for which tree height measurements from ALS or ULS would not be reliable. Tree height was only recorded in FM for
smaller trees, where the top of the crown was visible from the ground (section 2.4.1). ALS = Airborne laser scanning, ULS = UAV-borne
laser scanning, TLS = Terrestrial laser scanning, FM = Field measurements. All height measurements refer to height above the ground level

at the stem position. For each tree, there can be multiple values for one tree metric if they were derived from different sources.

Metric Unit  Description Source(s)
1 Tree height m Height of the tree ALS ULS (TLS) (FM)
leaf-on
2 Diameter at breast height (DBH) cm Stem diameter, - - TLS FM

measured at 1.3 m above ground

3 Crown base height (CBH) m Height of the lowest branch ALS ULS - FM

4 Crown base height (CBH) green m Height of the lowest green - - - FM
(living) branch

5  Mean crown diameter (CD) m Mean of two orthogonal ALS ULS - FM

crown diameters

6  Crown projection area (CPA) m Area of the tree crown ALS ULS - -

because of DTM errors or because the point cloud did not have enough stem points. If not enough stem points were present to

determine the tree stem center at ground level, the x-y positions of the lowest visible stem point was used.
2.4 Tree measurements

Tree measurements were recorded in the field and/or derived from the point clouds. Table 4 gives an overview of the metrics

and the data source they were derived from.
2.4.1 Field measurements

Field measurements were conducted in six plots of 1ha (Figure 2): BRO1, BRO3 and BRO5 in Bretten and KA09, KA10
and KA1l in Karlsruhe. For each tree, the diameter at breast height (DBH) was measured with a measuring tape at 1.3 m
above ground. To determine the crown diameter (CD), the diameter of the estimated dripline (i.e., the line right under the
outer circumference of the crown) was measured in two orthogonal directions using a Haglof Vertex-IV hypsometer. Mean
CD was then calculated as the mean of these two distance measures. We define crown base height (CBH) as the height of
the lowest branch with a minimum length of 1 m and crown base height green (CBH green) as the height of the lowest green

(living) branch with a minimum length of 1 m. We selected the branches fulfilling these conditions by visual estimation and
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then measured their heights above ground using the hypsometer. Since measuring tree height with the hypsometer is difficult
in dense forest stands where high tree tops are barely visible, tree height was only measured for about 10 % of the trees. These
were mostly understory trees, where the crown was in direct view. As additional attributes, tree species and state (alive or dead)
were recorded. For trees outside of the six field measurement plots, only species and state were determined. Field measurements
and single tree point clouds were matched based on extracted tree positions, the distinct crown shape and branch architecture,
and the local neighborhood of the trees. For this, additional field surveys were conducted, in which 3D views of the laser

scanning point clouds were used to identify the corresponding trees in the field.
2.4.2 Tree metrics derived from point clouds

In addition to field measurements, tree metrics were estimated from the laser scanning point clouds. For the computation of the
metrics, the height values of each tree point cloud were height-normalized by subtracting the z-coordinate of the tree position
(representing the terrain height at the location of the stem) from all z-coordinates in the point cloud.

DBH was estimated only from TLS tree point clouds. Due to the terrestrial view point and close range, many returns are
recorded from the stems, allowing accurate DBH estimation. A slice of the tree point cloud was extracted at a height between
1.28 m and 1.32 m above ground. In case the stem was partly occluded, a thicker slice was extracted or the vertical position
of the slice was adapted to achieve better results. We projected the slice onto the x-y plane and fit a circle to the points using
the random sample consensus (RANSAC) algorithm to derive the diameter using 1000 random samples. For slanted-leaning
trees, errors may arise from the projection of points to the x-y plane instead of a plane perpendicular to the stem. However,
since most of our TLS trees were upright, this error is negligible. Some tree stems have a rather elliptical than circular stem
shape. In these cases (44 of 264 TLS point clouds), we-fit-an-eHipse-an ellipse was fitted to the projected points of the stem
slice using least squares'. The DBH was then determined as the arithmetic mean of the major and the minor axes of the ellipse.
For all trees, the quality of the fit was controlled visually. All figures of the circle/ellipse fitting are included in Supplement 1
together with a list of trees for which a) a different

Tree height was derived as the height-nermalized-z-coordinate of the highest tree point—, normalized by the elevation of the

tree position, i.e., the base of the tree.
CBH was determined by dividing the point cloud into height sections of 0.1 m and calculating the maximum x-y distance

slice height was used, b) the visual assessment suggests low accuracy and

between any two points in the section. Starting from the bottom, we iterate over the height sections. Once the maximum
horizontal point distance exceeded a threshold of DBH + 1 m (if no DBH measurement was available, a default of 0.5 m was
used), the center of the height section is defined as the CBH (Figure 6) and the iteration is terminated. Because of the fixed
section height, CBH estimates have decimeter resolution.

The tree crown is defined by all points above the CBH. Crown projection area (CPA) was calculated in two different ways:

a) as the area of the 2D (x-y) convex hull of all crown points using the Quickhull algorithm (Barber et al., 1996).

'as implemented by Nicky van Foreest: https://github.com/ndvanforeest/fit_ellipse
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Figure 6. Overview of single tree measurements a) recorded in the field and b) derived from the point clouds. Numbers are cor-
responding to Table 4. Icon on the left ("man looking up") by DonBLC, https://thenounproject.com/. Picture of diameter tape from

https://www.forestry-suppliers.com/.

b) as the area of the 2D (x-y) concave hull of all crown points using the k-nearest neighbors approach by Moreira and

Yasmina Santos (2007) as implemented by Craig (2017).

Lastly, mean CD was computed as the mean of the largest diameter and the largest perpendicular diameter of the concave

hull (Figure 6).

3 Results

The data records are split into two parts:

1) The full TLS and ULS point clouds and extracted ALS subsets covering the ULS, TLS and field measurement plots (see
Figure 2)

2) The extracted single tree point clouds and respective measured and point cloud-derived tree metrics

The folder structure is visualized in Figure 7.
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[ PlotID

20 ALS
ALS-on_PlotID_YYYY-MM-DD_SSSm.laz

ALS-on_PlotID_YYYY-MM-DD_trajectory.txt
[ ] single_trees
L[j SpeciesID_PlotID_ID
% SpeciesID_PlotID_TreeID.geojson
% SpeciesID_PlotID_TreeID_YYYY-MM-DD_qq-ALS-on.laz
% SpeciesID_PlotID_TreeID_YYYY-MM-DD_qq-TLS-on.laz
ﬁ SpeciesID PlotID_TreeID YYYY-MM-DD_qq_ULS-off.laz
ﬁ SpeciesID_PlotID_TreeID_YYYY-MM-DD_gq_ULS-on.laz

% SpeciesID PlotID_TreeID_general.txt

% SpeciesID PlotID_TreeID metrics.txt

Gy - -
S0 TLS

% TLS-on_PlotID_YYYY-MM-DD.laz

ﬁ TLS-on_PlotID_YYYY-MM-DD_scan_positions.txt

[ uLs

ﬁ ULS-off PlotID YYYY-MM-DD.laz

% ULS-off PlotID_YYYY-MM-DD_trajectory.txt

ﬁ ULS-on_PlotID_YYYY-MM-DD.laz

% ULS-on_PlotID_YYYY-MM-DD_trajectory.txt

Figure 7. Folder structure for a single forest plot. PlotID = ID of the forest plot, e.g., BRO1; SpeciesID = ID of the tree species, e.g., AcePse,
see Table 5; TreeID = unique (in combination with PlotID and SpeciesID) identifier for the tree; YYYY-MM-DD = day of acquisition; qq =
quality indicator, e.g., q2; on/off = canopy condition; SSSm = side length of the ALS forest plot in m, e.g. 300m. The ALS folder contains
only one point cloud per plot. Multiple point clouds may be within the ULS folder due to different acquisition times and in the TLS folder due
to different acquisition times and locations (in case of several acquisitions in the same plot on the same day, a suffix is added to distinguish

the acquisitions, i.e., "_A","_B", etc.). The single_trees folder always contains several subfolders, one for each tree.
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3.1 LAS point format

All point clouds are stored in ASPRS LAS 1.4 format (ASPRS, 2013) or ASPRS LAS 1.2 (ASPRS, 2008), compressed
(lossles) to LAZ. The field "Point source ID" holds the IDs of the flight lines or scan positions that the points originated from.
All LAZ files contain the extra bytes amplitude [dB], reflectance [dB] and (pulse shape) deviation [] as exported by RIEGL
systems. The amplitude is calibrated as the ratio of the optical power of the reflected light to the detection threshold of the
instrument and depends on the distance of the target to the scanner (Pfennigbauer and Ullrich, 2010). The reflectance, however,
is distance independent and determined by the properties of the target that was hit by the ray. Reflectance is given as the ratio
of the amplitude of the hit target to the amplitude of the target the instrument was calibrated with, i.e., a diffuse white target
(Pfennigbauer and Ullrich, 2010). The pulse shape deviation indicates the degree to which the shape of the received pulse

deviates from a device-specific reference pulse shape.
3.2 Full forest plot or acquisition records

In order to also capture the neighborhood context of the single trees, understory and terrain information, we provide the larger-
area georeferenced point clouds of each platform. These include 31 EAZfiles-of the TES-acquisttions-together-with-TLS point
clouds stored in LAZ files. For each acquisition, we provide a tab-separated ﬁe&ﬁ}e&eeﬂ%aifﬂnghﬂ&e&e&%&eﬂ&eﬁseaﬂﬁeﬂﬂeﬁs

xt-file containing
the coordinates of the scan positions. 20 LAZ-files are available containing the ULS point clouds acqulred under leaf-on and

leaf-off conditions as summarized in Table 3. Note that the ULS leaf-on data for plots BRO3 and BROS8 is included in one
single LAZ file and no ULS data is available for plot BR0O4. For each acquisition, the trajectory is provided as a tab-separated
txt-file, containing continuous records of the location and orientation of the sensor in the air. The "Time [s]" in the trajectory
files corresponds with the "GPSTime" in the respective LAZ point cloud files and represents seconds since beginning of the
respective GPS week (ASPRS, 2013). Finally, we provide 12 LAZ files with extracted ALS point clouds, one for each plot
(Figure 2). ALS point clouds of plots BRO1, BR03, BR05, KA09, KA10 and KA11 are 300 m x 300 m in size and encompass
the 100 m x 100 m plots in which field measurements were recorded. ALS point clouds of plots BR0O2 and BR06 are 200 m x
200 m and ALS point clouds of BR04, BRO7, BRO8 and SP02 are 140 m x 140 m in size. For these six plots (BR02, BR04,
BRO06, BR0O7, BRO8 and SP92), no field measurements are available. We provide the trajectory points for the respective parts
of the flight strips covering the area in tab-separated txt-files. All ALS point clouds spatially overlap with the TLS and ULS

acquisitions conducted in the respective plots.

All point clouds and the coordinates of the scan positions and trajectories are in the same coordinate reference system:
ETRS89/UTM zone 32N; EPSG:25832; ellipsoidal height, GRS80.

3.3 Single tree point clouds and metrics

Point clouds and point cloud-derived metrics are provided for 1491 individual trees of in total 22 different species. An overview

of tree species and the respective number of trees is given in Table 5. Field measured metrics are available for 1060 of the trees.
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Table 5. Number of trees of each species in the dataset.

Species SpeciesID  Number of trees
Abies alba Mill. AbiAlb 25
Acer campestre L. AceCam 7
Acer pseudoplatanus L. AcePse 39
Betula pendula Roth BetPen 6
Carpinus betulus L. CarBet 94
Fagus sylvatica L. FagSyl 398
Fraxinus excelsior L. FraExc 11
Juglans regia L. JugReg 19
Larix decidua Mill. LarDec 30
Picea abies (L.) H. Karst. PicAbi 205
Pinus sylvestris L. PinSyl 158
Prunus avium (L.) L. PruAvi 19
Prunus serotina Ehrh., nom. cons. PruSer 7
Pseudotsuga menziesii (Mirb.) Franco  PseMen 191
Quercus petraea (Matt.) Liebl. QuePet 156
Quercus robur L. QueRob 7
Quercus rubra L. QueRub 111
Robinia pseudoacacia L. RobPse 1
Salix caprea L. SalCap 1
Sorbus torminalis (L.) Crantz SorTor 1
Tilia spec. L. TilSpec 4
Tsuga heterophylla (Raf.) Sarg. TsuHet 1

1491

Tree point clouds acquired from all three platforms, i.e., ALS, TLS, and ULS (leaf-on), are provided for 249 trees. 1168 tree

point clouds were extracted both from ULS leaf-on and ULS leaf-off data. A summary of all available data types per tree

is given in Table 6 and Figure 8. Figure 4 shows the different characteristics of the point clouds acquired from the different
platforms and in the different canopy conditions. When comparing the TLS leaf-on point clouds with the ULS leaf-off point
clouds, it is clearly visible that the branches hang down more in the summer when they are full of leaves than in the fall or

There are multiple reasons for the different available data types per tree:

— TLS acquisitions did not cover the entire ALS/ULS acquisitions but only selected locations, so only 246 TLS point

clouds of trees are available.
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Table 6. Number of trees per plot for each data source.

Plot  ALS  ULS(eaf-on) ULS (eafoff) ULS(eaf-off) TLS Ficld measurements Total
Autamn 2019 Spring 2020

BROI 514 503 503 503 15 410 514,
BRO2 42 2 0 41 2 0 2
BRO3 195 141 0 141 a1 162 200
BRO4 9 0 0 0 9 0 9.
BROS 278 278 0 278 35 24 218
BROS 29 29 0 2 29 0 2
BRO7 15 16 0 15 16 0 16
BROS 13 13 0 12 13 0 13
sP2 17 7 0 21 2 0 2
KAQY 177 136 133 0 15 98 177,
KAI0 40 14 0 0 i 35 40
KAIL 151 97 0 0 16 131 151

636 1040
AL 1480 1286 1173 264 1060 1491
— No ULS acquisition was performed in plot BR04.
335 — ALS point clouds of understory trees with very few points were discarded. This concerned only silver firs in plot SP02

AbiAlb_SP02_01 to AbiAlb_SP02_05) which had between 11 and 247 ALS points.

— Some trees were only extracted manually from ALS point clouds and these were not used for automatic extraction due
to the lower resolution compared to ULS and TLS point clouds, which would cause information loss (e.g., missing parts

of the stem).
340 Tree properties are provided in two tab-separated txt-files:

— General tree characteristics such as the species and the tree position in geographic coordinates and in UTM coordinates

are listed in a tab-separated txt-file with suffix "_general".

— Tree metrics are provided in a tab-separated txt-file with suffix "_metrics". There is one row for each measurement source

(e.g., field inventory measurement (FI), ALS, etc.) and one column for each tree metric.

345 We furthermore provide all tree metadata in GeoJSON files, including geometry (position), properties (field measurements
and point cloud metrics) and data (point cloud data filenames and metadata). These files can be loaded into common GIS

software to visualize the tree positions and access the data.

20



350

355

ALS leaf-on
1480

Field measurements
1060
TLS leaf-on

ULS leaf-on
1286

ULS leaf-off
1173

ULS leaf-on + ULS leaf-off

Figure 8. Venn diagrams showing the number of trees covered by the different acquisitions.

4 Quality assessment

In the following, we describe how we assessed different aspects of data quality for our dataset. Table 7 summarizes all quality

indicators related to point cloud alignment and georeferencing.
4.1 Airborne and UAV-borne laser scanning (ALS and ULS)
4.1.1 Positional accuracy

Positional accuracy of the ULS data was determined using roof-shaped wooden targets of 1 m length and 0.6 m width (for one
side of the roof). The two planes of the roofs were recorded with four points each using a Leica Viva GS10/GS15 RTK GNSS
unit tied into the SAPOS correction network (https://www.sapos-bw.de). A visual inspection of the the-wooden target point
clouds and the GNSS reference measurements showed good alignment, with differences in the range that was expected due to

the limited scanner and RTK accuracies (Figure 9).
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Figure 9. Roof-shaped wooden targets used for assessing the positional accuracy of the ULS point cloud. (a) Set-up in the field. The two
planes of each roof are 1 m by 0.6 m in size. The red squares in both images mark the points, where GNSS measurements are taken. (b)
View in a point cloud viewer. The ULS point cloud is colored by z-coordinate, the GNSS measurements are shown as large red squares. The
georeferencing quality is considered good if the ULS points on the roofs agree closely with the GNSS reference measurements, as shown in

this example.

Absolute altitude accuracy of ALS data was determined by MILAN Geoservices GmbH using reference tiles recorded
with ULS by the 3DGeo Research Group of Heidelberg University. The height of selected reference points was compared to
the median of ALS points within a radius of 0.2 m (Bretten) and 0.3 m (Karlsruhe). The mean altitude differences (standard
deviations) were —0.003 m (4+0.023 m), 0.006 m (+0.016 m), —0.016 m (4+0.026 m), —0.028 m and (£0.029 m) for the four
tiles in Bretten and —0.016 m (£0.017 m) for the tile in Karlsruhe. The quality of these reference tiles was, in turn, ensured by
the same method as for the ULS data in general, see above.

Positional (horizontal) accuracy of the ALS data was controlled by MILAN Geoservice GmbH using building edges (i.e.,
stable surfaces). A building layout derived from TLS data, which was acquired by the 3DGeo Research Group and georefenced
with RTK GNSS, was overlaid with the building layout derived by digitizing the classified ALS point cloud to control the
positional accuracy.

A further independent assessment of positional and altitude accuracy was conducted by the 3DGeo Research Group Heidel-
berg by comparing points sampled by ULS and ALS on roofs and other stable surfaces in control areas. Figures of the visual
assessment are included in Appendix B in the metadata document published along with the dataset on the data repository
PANGAEA (https://download.pangaea.de/reference/109167/attachments/SYSSIFOSS_2019-2020_meta-3.pdf, Weiser et al.
2021a). To obtain quantitative measures, we computed cloud-to-cloud distances between these ALS and ULS point clouds
of the stable areas (six in Karlsruhe, three in Bretten). Resulting mean distances were between 0.03 m and 0.06 m -whieh-with

standard deviations between 0.01 m and 0.023 m. This confirmed the good alignment of the datasets.
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4.1.2 Strip alignment

The internal alignment of ALS and ULS flight strips was investigated by the 3DGeo Research Group by quantifying the height
differences between the flight strips with OPALS (version 2.3.2). For ALS, strip differences were quantified for the extracted
plot point clouds (with the extents as shown in Figure 2). The ULS point clouds were cropped to the +-ha-plots-1 ha plots for
the assessment of the strip alignment to exclude points at the flight line edges.

For both datasets, single strip point clouds were first filtered for last returns. Second, grids of the standard deviation of the
interpolated height (sigmaZ) and of the distances between grid points and the center of gravity of data points (excentricity)
were computed to derive a mask of areas suited for the quality check. For the quantification of strip differences, areas with
sigmaZ > 0.1 m and excentricity > 0.8 m were masked. This concerns most areas with high vegetation, where strip differences
cannot be quantified reliably.

For the ALS point clouds, median absolute strip differences were below 5mm for 10 of 12 plots. The maximum median
value was 11 mm. g(MAD) was between 17 mm and 51 mm?. For ULS leaf-on point clouds, median absolute differences were
up to 14 mm (mean: up to 55 mm). For ULS leaf-off point clouds, median absolute strip differences were only up to 2 mm
(mean: below 20 mm for 10 acquisitions, 51 mm and 62 mm for the remaining two acquisitions), suggesting that the large
values in the leaf-on differences are remaining influence from vegetation. Histograms and maps of strip differences for ALS
and ULS data are included in Appendix A in the metadata document published along with the dataset on the data repository
PANGAEA (Weiser et al., 2021a).

4.2 Terrestrial laser scanning (TLS)
4.2.1 Positional accuracy and alignment to ULS point clouds

TLS point clouds were georeferenced by coarsely registering them to the ULS data via tree stem matching, followed by a fine
alignment with the ICP-algorithm. Before running the ICP, we created downsampled TLS point clouds with the octree filter in
RiSCAN Pro with voxel sizes of 0.05 m. For each voxel of the octree, a new point is created by taking the center of gravity
for all the points within each voxel. We performed an ICP adjustment with 5-five iterations, keeping the ULS point cloud fixed
while transforming the TLS point cloud. With these settings, we achieved mean point-to-plane distances of less than 2 mm
with standard deviations between 120 mm and 140 mm.

For 13 of the 31 point clouds, we still observed significant shifts in a visual assessment and repeated the ICP with revised
settings: We used the ULS point cloud as moving, preferably the one acquired under leaf-off canopy condition (if available)
due to the better representation of the stems, and the TLS point clouds as fix-fixed point clouds. This means, that the subset
of points, for which correspondences are established and to which planes are fitted to subsequently minimize point-to-plane
distances are selected from the TLS point cloud. This is likely to achieve better results, because the TLS point cloud has higher

point density (allowing for better plane fit) and higher accuracy. We used the full resolution TLS point clouds and in some

25(MAD) is the median absolute deviation to median (MAD) scaled by 1.4826 to obtain a robust estimator for the standard deviation o under the

assumption of a normal distribution, https://opals.geo.tuwien.ac.at/html/stable/ModuleHisto.html
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cases filtered for points below 15 m or 10 m to exclude crown points. For the tree crowns, the coverage of TLS and ULS point
clouds is very different and there are many moving objects (branches and leaves). We furthermere-increased the number of
iterations to up to 10. We then applied the inverse output transformation matrix to the TLS point cloud to ensure that the final
georeferenee-georeferencing is derived from the ULS data. This resulted in mean point-to-plane distances of below 4 mm with
standard deviations of 50 mm-100 mm. More importantly, the visual alignment improved considerably.

Because of the lack of bigger planar areas in the scene, the influence of moving branches and leaves, the different viewing
geometries and resulting occlusions of the ULS and TLS point clouds, and the sensor accuracy limits, it is expected that no
sub-millimeter point-to-plane distances were achieved and the standard deviation is comparably high. The final alignment is
sufficient for our main intention, i.e., the extraction of trees from ULS and ALS point clouds using template TLS point clouds.
A visual impression of the quality of the alignment between the datasets acquired from the different platforms is given in

Figure 4. The visual assessment and the low mean distances suggest no remaining systematic shifts.
4.2.2 Internal co-registration of single scan positions

Co-registration quality of scan positions relative to the main stable position for each plot was assessed in two stages. In the
first stage we investigated differences computed in the least squares algorithm of the Multi Station Adjustment performed
in RiISCAN Pro. The overall average of the standard deviation of registration error (RMSE) was 5 mm with a maximum of
8 mm. In the second stage, a visual assessment was conducted by projecting a narrow section of the point cloud onto a plane
and coloring the points by their scan position. We used stem slices for assessing horizontal registration errors and cylindrical
reflective targets for assessing vertical registration errors. Horizontal stem slices were manually extracted for selected trees
with an approximate section width of 0.2m. To minimize the influence of wind effects, stem slices were cut out from low
heights above ground where tree stems are very stable. This was especially relevant for younger trees where tree stems are
smaller in diameter and therefore more prone to movement. No significant vertical registration errors were present in any of
the plots. In most of the acquisitions (26 of 31), no or very small (< 10 mm) horizontal registration errors were observed. In
five acquisitions the maximum horizontal registration error was estimated to be between 10 mm and 20 mm. Appendix C in
the metadata document published along with the data (https://doi.org/10.1594/PANGAEA.942856, Weiser et al. 2021b) shows

the assessment of horizontal and vertical TLS registration errors.

4.3 Quality of single tree point clouds

Tree point clouds were assigned a quality tag from highest (q1) to lowest (q6). Reasons for lower grades include
— segmentation errors, e.g., additional branches in the point cloud

— extraction errors, e.g., additional points from neighboring trees in the point cloud because of the fixed search radius used

for the automatic kKNN-based extraction

— missing parts/occlusion of tree parts
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— wind effects (in case of TLS)
— scan position or flight strip alignment errors

The quality tags were subjectively assigned by different operators. For most trees that were extracted automatically using
the kNN-algorithm, the quality was set to one lower than the source point cloud. The quality tag therefore provides a rough

idea of the point cloud quality but is not guaranteed to be comparable across the entire dataset.
4.4 Quality of the tree metrics

The quality of the tree metrics computed from the tree point clouds depends on the accuracy of the tree point cloud segmentation
and the point density of the tree point cloud. Error of commission in the segmentation may cause higher tree height, mean CD
and CPA values and lower CBH values, while error of omission or a low point density may cause the opposite. Especially
ALS tree point clouds of understory trees have a low point density and thus the computed metrics might differ from the field
measured metrics. As field measurements were conducted from the ground, field measured height, mean CD and CBH of high
trees have higher uncertainty than those of smaller trees. It is difficult to consider either the field measurements or the point
cloud derived metrics as true reference. By comparing field measured and point cloud derived metrics, we can nevertheless get
an idea of the error ranges and potential biases.

Tree metrics derived from different sources are highly correlated (except CBH). The Pearson correlation coefficient (p)
of DBH measured in the field and DBH computed from the TLS tree point clouds is 0.98 and the root-mean-square error
(£A-SERMSE) is only 3.5 cm. The correlation of tree heights derived from different laser scanning point clouds is 1.00
and the RMSE is 0.3 m—0.4m. This is lower than the search radius of 0.5 m which was mostly used for the automatic tree
extraction. The deviation of field measured tree height to point cloud tree height is higher (RMSE = 2.5 m-2.7m, p = 0.96).
Field measured tree heights might be less accurate especially in case of high trees with flat crowns, where the tree top was
not visible from the ground. The RMSE of mean CD is 0.7 m-1.2 m between different point cloud metrics (p = 0.97-0.98)
and 1.5 m—1.6 m (p = 0.88-0.90) between field measurements and point cloud metrics. Absolute crown diameters are between
2m and 22.1 m with a median value of 7.7 m (values based on field measurements). Higher deviations in CD between field
measurements and point cloud metrics occur for trees with an elongated horizontal crown extent where the direction of the
two orthogonal diameter measurements is more important than for crowns with nearly circular circumference. The CD values
computed from point clouds might be overestimated for stanted-leaning trees, because the part of the stem which is not covered
by the crown may still be included in the crown extent if it is above the estimated CBH. Field measured diameters might be
inaeetrate-of lower accuracy for high tree crowns where the outer crown circumference was difficult to estimate. The definition
and determination of CBH is difficult both in the field and in the point cloud, resulting in high deviation of CBH values derived
from different data sources. The RMSE of CBH computed from different laser scanning point clouds is 4.8 m—6.9m (p = 0.66—
0.76). On the one hand, the point-cloud derived CBH is sensitive to segmentation errors especially in case of the automatic
tree extraction from template point clouds. If understory points are wrongly assigned to a tree point cloud, the CBH may be

underestimated. On the other hand, the lowest branches may not be sampled well in ULS and especially ALS point clouds,
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hence the CBH may be overestimated. The field-measured CBH accuracy is negatively affected by an over- or underestimation
of branch lengths resulting in a wrong selection of the lowest branch defining the CBH. The RMSE between field measured
and point cloud derived CBH is 4.0 m—5.1 m and p is 0.59 —0.72 Figure 10 shows scatter plots of field measured compared to

point cloud-derived DBH, tree height, mean CD and CBH.
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Figure 10. Scatter plots of metrics computed from tree point clouds and measured in the field. Pearson correlation, root-mean-square error

and the equation of a linear model fit to the data are given. DBH = diameter at breast height, H = tree height, ED=-erown-diameter;CBH =
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5 Usage notes

There are different methods to clean point clouds prior to further processing, e.g., applying the statistical outlier removal (SOR,
Rusu et al. 2008 ) as implemented, e.g., in the Point Cloud Library (PCL, Rusu and Cousins 2011) or in CloudCompare. When
working with the TLS data, we recommend to filter the point cloud by pulse shape deviation (as defined by RIEGL). This
deviation can give an idea of the reliability of the range measurement, so excluding points with high deviation can improve the
overall quality of the point cloud (Pfennigbauer and Ullrich, 2010). We found a value of 50 to be a suitable threshold.

Because we define the tree position as the position of the stem at ground level, this position (in ETRS89 / UTM 32N
coordinates; EPSG:25832, ellipsoidal height, GRS80) can be used to normalize the height values of the point clouds to derive
heights above ground.

Point clouds can be visualized and processed using the open-source software CloudCompare, other LiDAR software like

OPALS (Pfeifer et al., 2014) or LAStools (Rapidlasso GmbH, 2020), or custom code.

We created the Python software package pytreedb (https:/github.com/3dgeo-heidelberg/pytreedb) which provides a
using different filter, viewing maps of the selection results and exporting data in different formats (LAZ point clouds, GeoJSON.
files, CSV files).

Software for the generation of tree models from TLS tree point clouds include TreeQSM (Raumonen, 2020; Raumonen et al.,
2013), SimpleForest (Hackenberg et al., 2015; Hackenberg, 2021), PlantScan3D (Boudon, 2021) and AdTree (Du et al., 2019;
Nan et al., 2021). These tools reconstruct the woody structure of the trees and therefore require input point clouds without leaf
points. Leaves may be removed from TLS point clouds using spectral and geometric features, as proposed in multiple studies
(Krishna Moorthy et al., 2020; Vicari et al., 2019; Wang et al., 2020; Yun et al., 2016; Zhou et al., 2019) and implemented in
different software packages (TLSeparation, Vicari 2021; LeWoS, Wang 2020). Structural tree reconstruction algorithms may
also perform well on some of the ULS leaf-off point clouds, for which no leaf removal is required. Trees may furthermore be
reconstructed using voxel-based approaches (Weiser et al., 2021).

To perform simulation studies with the reconstructed 3D forest scenes, e.g., to conduct sensitivity analyses, radiative transfer
models such as DART (Gastellu-Etchegorry et al., 2004), librat (Calders et al., 2013; Lewis and Muller, 1993; Philip Lewis,
1999) or Rayspread (Widlowski et al., 2006) may be used. DART also allows to simulate LiDAR. Furthermore, there are
specialized LiDAR simulators such as HELIOS++ (Winiwarter et al., 2022, 2021). The point clouds presented here can be
used as scene parts for HELIOS++ after converting LAZ files to ASCII files, e.g. using LAStools:

las2txt —-i <pointcloud.laz> -o <pointcloud.xyz> -oparse xyz

and using the xyzloader of HELIOS++ (https://github.com/3dgeo-heidelberg/helios/wiki/Scene#xyz-point-cloud-loader).
Alternatively, the trees can be loaded as PetailedVoxels-DetailedVoxels (https://github.com/3dgeo-heidelberg/helios/wiki/Scene#
detailedvoxels), e.g., after deriving voxel-based plant area density estimates using the software AMAPVox (Vincent et al. 2017,

Weiser et al. 2021, https://amap-dev.cirad.fr/projects/amapvox).
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Our dataset can furthermore be used as a benchmark and testing dataset for tree segmentation and species classification
algorithm. This was shown by Fu et al. (2022), who used the TLS point clouds of this dataset for testing the accuracy of their
individual tree segmentation algorithm, It may be used to explore the differences between the point cloud measurements from
different acquisition platforms and the tree and forestry metrics that can be derived from them. Our dataset can be valuable
for developing and testing algorithms on the retrieval of forestry parameters on the single tree or the plot level. Furthermore,
open forest datasets like this can serve as reference datasets for the calibration and validation of spaceborne data products
like biomass maps from satellite images or from spaceborne LiDAR data such as the NASA’s Global Ecosystem Dynamics
Investigation GEDI (Dubayah et al., 2020).

6 Conclusions

Our dataset encompasses terrestrial and airborne laser scanning point clouds acquired from three different platforms: a static
tripod, an uncrewed aerial vehicle (UAV) and an-a fixed-wing aircraft. We thus obtain georeferenced different-point cloud
representations of the overlapping forest areas at different resolutions and from different viewpoints. UAV-borne laser scanning
(ULS) point clouds were furthermore recorded in different season, under leaf-on and leaf-off canopy condition. From the fult
point-eloudsfull-coverage point clouds of the plot acquisitions, which are also provided within this publication, we identified
and extracted individual single trees, resulting in 4205 point clouds of 1491 individual trees of 22 different species. Most
of these trees were captured by airborne and UAV-borne laser scanning;—for-. For 249 trees, high-resolution terrestrial laser
scanning point clouds are additionally available. We furthermore-recorded tree measurements in the field, which we compare
to and complement with point cloud derived tree metrics. This results in single tree forest inventory data with one to five 3D
point cloud representations of each tree. The full aerial point clouds, the single tree point clouds and the measured and point-
cloud derived tree metrics have high reuse value for numerous applications. We identified the following main areas for such
applications: 1) Development of allometric equations between 3D tree structures and forest inventory variables, ii) application
as training data for machine learning applications like-such as tree instance segmentation, tree species classification or tree

metric computation, and iii) creation of detailed tree models for LiDAR simulations or for computer rendering.

7 Code and data availability

Our dataset is published with PANGAEA and available under the DOI: https://doi.org/10.1594/PANGAEA.942856 (Weiser
et al., 2021b). For each forest plot, one zip folder is provided, containing the forest plot point clouds with trajectory or scan
position information and the single tree point clouds and measurements. Point clouds of the full-coverage airborne laser scan-
ning acquisitions (covering around 65 km? in Karlsruhe and 32 km? in Bretten) and associated full-waveform data are not part
of the PANGAEA dataset, but are available from the authors on reasonable request.

Python code used for processing the dataset is openly available on GitHub (https://github.com/3dgeo-heidelberg/syssifoss).
The code uses the libraries NumPy, pandas, laspy, pykdtree, SciPy, jsonschema and Matplotlib. The scripts for georeferencing
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use the Python bindings of OPALS (Pfeifer et al., 2014) modules and were tested with versions 2.3.1 and 2.3.2. Please contact

the authors for guidance on using the code.

Appendix A

Table A1: Forest characteristics of full inventory plots of 1 ha. It must be noted that point clouds were not extracted from eve
tree in these plots.

Plot  Species Number Basal area Percentage of Median height
of trees [m2ha—1] dead trees [m]
Acer campestre L. 5 0% 017 (% 0%. 19,
Acer pseudoplatanus L. 2 Q% 005 0% 0%. 98
Carpinus betulus L. U8 (6% LI0 (4% 1%. 83
Fraxinus excelsior L. 2B G% 018 (% 9%. 120
Quercus petraea (Matt,) Franco 121 6% 264 Q% 9% 137
unidentified coniferous 1 0% 010 (0% 100 %. 274
BRO3 all 473 (100%) 4200 (100 %) 5% 204
Abies alba Mill, 28 6% 375 0% 4% 265
Acer campestre L. 4 1% 008 0% 0% 104
Acer pseudoplatanus L. U G 010 Q%) 0% 92
Betula pendula Roth 1 0% 001 % 100 % 182
Carpinus betulus L. 123 26% 182 (4% 5%. 1.0
LEuonymus europaeus L. 2 0% 000 (0% 0% 4.1

Continued on next page
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Table Al — continued from previous page

Plot  Species Number Basal area Percentage of Median height
of trees [m2ha—1] dead trees [m]

Fraxinus excelsior L. 6 (%) 019 (0% 0%. 208
Juglans regia L. 2 Q% 000 0% 0%. 6.0
Metasequoia glyptostroboides 2 0% 016 ©%) 0% 233
Hu et Cheng
Prunus aviwm (L) L. 6 (% 020 % 0% 131
Pseudotsuga mengiesii (Mirb,) Franco 164 (35.%)  28.04 (67 %) 2% 359
Quercus robur L. 5% 240 (6%) 0% 278
Sambucus nigra L. 8 Q% 002 (0% 0% 64
Tsuga heterophylla (Raf.) Sarg, 30 0% 043 (1% 0% 208
unidentified broad-leaved 4 0% 005 0% 100%. 138
Fagus sylvatica L. 48 @5%) 1205 (1% 5%. 237,
Juglans regia L. 2 0% 07 Q% 3% 158
Larix decidua Mill. 20 6% 410 (2% 0%. 315
Picea abies (L) H, Karst. 2 (3% 345 (10%) 5%. 286
unidentified coniferous 1 Q% 00l 0% 100 % 93
Acer pseudoplatanus L. 1 0% 001 (0% 0% 10.3

Continued on next page

[
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Table Al — continued from previous page

Plot  Species Number Basal area Percentage of Median height
of trees [m2ha—1] dead trees [m]

Amelanchier lamarckii 3 1% 001 0% 0% 10,0
(Raf.) F. G. Schroed.
Betula pendula Roth 17 6% 016 (% 0%. 18
Hex aguifoliwm L. 5% 002 0% 0%. 56.
Sambucus nigra L. 5Q% 003 (0% 40%. 44
Sorbus aucuparia L. 30 A% 001 0% 0%. 14,
Taxus baccata L. 1 Q% 000 0% 0%. 38
unidentified broad-leaved. 2 (A% 000 Q%) 100 % 6.3
Acer pseudoplatanus L. 28 (0% 0271 (% 0% 10.1
Aesculus hippocastanum L. 1 0% 02 (1% 0% 173
Betula pendula Roth 2 0% 016 (1% 0%. 19.7.
Carpinus betulus L. 108 5% 382 (1% 4% 5.0
Prunus serotina Ehrh., nom. cons. 140 33 %) 088 4% 1% 7.0
Sambucus nigra L. 4 0% 004 Q%) 75%. 62
Tilia spec. L. 30 0% 003 0% 0%. 89
unidentified broad-leaved 1 0% 002 0% 100 % 145

Continued on next page

[
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Table Al — continued from previous page

Plot  Species Number Basal area Percentage of Median height
of trees [m2ha—1] dead trees [m]

Prunus serotina Ehth,, nom. cons. 118 (A3%). 126 (‘4% 4% 94

Quercus petraea (Matt) Liebl. 18 Q% 01 Q2% 0%. 17.9.

Quercus rubraL. 219 (28%) 1182 (41% 0%. 23

Tilia spec. L. 5 0% 009 (0% 0%. 12,0
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