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Abstract. Here we describe the LegacyClimate 1.0, a dataset of the reconstruction of mean July 

temperature (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) from 2594 fossil 

pollen records from the Northern Hemisphere spanning the entire Holocene with some records reaching 

back to the Last Glacial. Two reconstruction methods, the Modern Analogue Technique (MAT) and 

Weighted-Averaging Partial-Least Squares regression (WA-PLS) reveal similar results regarding spatial 

and temporal patterns. To reduce the impact of precipitation on temperature reconstruction and vice 

versa, we also provide reconstructions using tailored modern pollen data limiting the range of the 

corresponding other climate variablesvariable. We assess the reliability of the reconstructions using 

information from the spatial distributions of the root-mean- squared error of prediction and reconstruction 

significance tests. The dataset is beneficial for climate proxy synthesis studies of proxy-based 

reconstructions and to evaluate the output of climate models and thus help to improve the models 

themselves. We provide our compilation of reconstructed TJuly, Tann, and Pann as open-access datasets 

at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.930512; Herzschuh et al., 2021). R code for 

the reconstructions is provided at Zenodo (https://doi.org/10.5281/zenodo.5910989; Herzschuh et al., 

2022b2022), including harmonized open-access modern and fossil datasets used for the 

reconstructions, so that customized reconstructions can be easily established.   

  

1 Introduction 

The comparisonevaluation of climate model outputs withusing climate data is essential for model 

improvements (Eyring et al., 2019). However, the period for which observations are available is only of 

limited use to validate simulations because it is short and characterized by strong changes in the climate 

driver. Climate proxy data derived from natural archives are therefore of great value. The extratropical 

https://doi.pangaea.de/10.1594/PANGAEA.930512
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Northern Hemisphere is of particular interest because it is known for complex spatial and temporal 

temperature and precipitation patterns. However, the period for which instrumental observations are 

available is only of limited use to validate simulations in particular when assessing climate response to 

natural climate drivers because it is too short and because it is impacted by human-induced greenhouse 

gas forcing. Climate proxy data derived from natural archives are therefore of great value.  

  Previous proxy-based climate inferences have contributed to major debates about Holocene climate 

change. For example, while simulations indicate a gradual warming of the Holocene, temperature proxy 

data syntheses rather support a mid-Holocene optimum which resulted in the “Holocene conundrum” 

debate (Liu et al., 2014). Qualitative proxy-based inferences indicate that the mid-Holocene in the 

Northern Hemisphere mid-latitudes was rather dry and warm compared with present-day in agreement 

with modellingmodeling outputs (Routson et al., 2019). Also, quantitative precipitation reconstructions 

from Eastern and Central Asia unveiled the complex monsoon-westerlies interactions (Chen et al., 2019; 

Herzschuh et al., 2019). 

  Fossil pollen records are well-established in their use as a palaeoecological and palaeoclimatological 

proxy and of great value as indicators of past environmental and climatic change for many decades. 

Considerable efforts have been made to establish regional, continental and even global data repositories 

like the North American Pollen Database (NAPD; 

https://www.ncei.noaa.gov/products/paleoclimatology, last access: 1 July 

2020),(http://www.ncdc.noaa.gov/paleo/napd.html), the European Pollen Database 

(EPD; http://www.europeanpollendatabase.net/index.php, last access: 

1 July 2020)(http://www.europeanpollendatabase.net) and the Neotoma Paleoecology Database 

(https://www.neotomadb.org/, last access: 1 April 2021;https://www.neotomadb.org; Williams et 

al., 2018). Pollen data fromRegarding the prevalence of pollen archives across multiple environmental 

settings such as lakes, wetlands, or marine sediments, have beenfossil pollen records are widely used 

to quantitatively reconstruct past vegetation and climate variables (Birks, 2019; Chevalier et al., 2020). 

Pollen data are the only land-derived proxy data that have sufficient temporal and spatial coverage to 

allow for high-resolution climate model evaluation of the late Quaternary period. A number of methods 

have been proposed for making pollen-based climate reconstructions (Chevalier et al., 2020): among 

them, classification approaches like the Modern Analogue Technique (MAT) or regression approaches 

like Weighted-Averaging Partial-Least Squares regression (WA-PLS) are most commonly used. MAT 

https://www.ncei.noaa.gov/products/paleoclimatology
http://www.europeanpollendatabase.net/index.php
https://www.neotomadb.org/
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and WA-PLS rely on extensive collections of modern training data. Designing a robust calibration 

dataset from modern pollen assemblages is a crucial part of the reconstruction process. A suitable 

calibration dataset should cover a wide range of climatic and environmental gradients in order to 

represent an empirical relationship between pollen assemblages and climate (Birks et al., 2010; 

Chevalier et al., 2020). Like with fossil pollen records, data syntheses and repositories also exist for 

modern surface pollen data e.g. for North America (Whitmore et al., 2005), Eurasia (Davis et al., 2013 

and 2020) and China (Cao et al., 2013; Herzschuh et al., 2019). 

  For temperature reconstruction time-series, several broad-scale syntheses exist; however, either they 

originate from different proxies (Kaufman et al., 2020a and 2020b) or are restricted to certain continents 

or regions or/and are poorly documented (Mauri et al., 2015; Marsicek et al., 2018; Routson et al., 2019). 

Temperature reconstructions from the large extratropical Asia are mostly lacking. Precipitation 

syntheses are available from Europe (Mauri et al., 2015), North America (Gajewski, 2000Whitmore et 

al., 2005) and China and Mongolia (Herzschuh et al., 2019) but, hitherto, no global or hemispheric 

syntheses of quantitative precipitation changes are available for the Holocene.  

  In a recent effort, we synthesized and taxonomically harmonized pollen records available in the 

Neotoma Paleoecology Database (Williams et al., 2018) and additional records from China and Siberia 

(Cao et al., 2013 and 2020) into a global Late Quaternary fossil pollen dataset (LegacyPollen 1.0; were 

synthesized and taxonomically harmonized (Herzschuh et al., 2022c) and revised submitted). 

Furthermore, all chronologies of thosethese records were recently revised using a Bayesian approach 

that allows for the inference of temporal uncertainties (LegacyAge 1.0; Li et al., 2022). Here, in the third 

part of interconnected studies, we present the pollen-based reconstruction of mean July temperature 

(TJuly), mean annual temperature (Tann) and annual precipitation (Pann) including reconstruction and 

temporal uncertainties as well as quality measures fromfrom these 2594 records from the Northern 

Hemisphere using WA-PLS and MAT (LegacyClimate 1.0; this study).. 

  

2 Methods 

2.1 Input data 

The objective of this study is to create a dataset of quantitative reconstructions of TJuly, Tann and Pann 

spanning the last 30 ka and beyondHolocene from a set of fossil pollen records. These variables (or 
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variables highly correlated to them) were shown to explain most variance in the modern pollen data 

(TJuly, Pann) or are typically used in synthesis studies (Tann). We used fossil data set compiled in 

LegacyPollen 1.0 (stored on the PANGAEA open database and presented in Herzschuh et al. (2022c) 

that integrates pollen records archived in from the Neotoma Paleoecology Database, (Williams et al., 

2018; https://www.neotomadb.org; downloaded in July 2020), a dataset from Eastern and Central Asia 

(Cao et al., 2013; Herzschuh et al., 2019) and a dataset from Northern Asia (Cao et al., 2020). The 

harmonized dataset is stored on PANGAEA (LegacyPollen 1.0) and presented in Herzschuh et al. 

(submitted). Ages were taken from the “Bacon” (Blaauw and Christen, 2011) age-depth models 

presented in Li et al. (2022, ), who recently provided a set of harmonized chronologies under the 

“LegacyAge 1.0),” framework, and for each record, we provide an ensemble of 1000 realizations of the 

age-depth model in applied to our data product so that it can be used to account for chronological 

uncertainty on the reconstructions. 

We compiled the fossil data into four sub-continental datasets for Eastern North America (<104pollen 

synthesis. °W; Williams et al., 2000), Western North America, Europe and Asia. We restricted the 

analyses to the 70 most common taxa on each continent to reduce computational power after making 

sure that higher taxa number would not substantially improve model statistics in climate reconstructions. 

To identify the most common taxa we used Hill´s N2 diversity index (i.e., the effective number of 

occurrences of a species in the dataset; Hill, 1973). For all analyses, square-root percentages were 

used if not indicated otherwise. 

A modern pollen training dataset comprised of 1537915,379 sites includes datasets from Eurasia 

(EMPD1, Davis et al. 2013; EMPD2, Davis et al. 2020; Herzschuh et al., 2019; Tarasov et al., 2011) and 

North America (Whitmore et al., 2005). The In order to reduce inconsistencies in pollen identification, 

the modern and fossil pollen datasets were taxonomically harmonized in accordance : major tree and 

shrub pollen were merged to genus level and most of the herbaceous taxa (except the most common 

ones such as Artemisia, Thalictrum or Rumex) to family level. We excluded aquatic pollen (with the fossil 

pollen dataset (see details in Herzschuh et al., 2022c). 

exception of Cyperaceae), spores from ferns and fungi, as well as algae and calculated pollen 

percentages on the basis of the total number of terrestrial pollen grains. The site- specific Tann, TJuly, Pann 

were derived from WorldClim 2 version 2.1 (spatial resolution of 30 seconds (~1 km2), 

https://www.worldclim.org/
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https://www.worldclim.org1 km, https://www.worldclim.org, Fick and Hijmans, 2017) by extracting the 

climate data at the location of the modern sample sites using the raster package in R (version 3.5-11, 

Hijmans et al., 2021; R Core Team, 2020).    

  We compiled the fossil data into four sub-continental datasets for Eastern North America (<105°W; 

Williams et al., 2000), Western North America, Europe and Asia. For consistency with the amount of 

taxa in the North American training dataset, the fossil datasets were reduced to the 70 most common 

taxa on the respective sub-continents, according to Hill´s N2 diversity index (i.e., the effective number 

of occurrences of a species in the dataset; Hill, 1973). The WorldClim 2 dataset provides spatially 

interpolated gridded climate data aggregated from weather stations as temporal averages between 

1970-2000 (Fick and Hijmans, 2017). We used monthly average temperature data to extract the mean 

TJuly and the “bioclimatic variables” bio1 (Tann) and bio12 (Pann).  

 

2.2 Reconstruction methods 

Our reconstruction approach included MAT (Overpeck et al., 1985) and WA-PLS (ter Braak and Juggins, 

1993) by applying the MAT and WAPLS functions from the rioja package (version 0.9-21, Juggins, 2019) 

for R (R Core Team, 2020) on our Northern Hemispheric fossil pollen synthesis. For each fossil location, 

we calculated the geographic distance between each modern sampling site and the fossil pollen record 

using the rdist.earth function from the fields R-package (version 10.3, Nychka et al., 2020) and selected 

a unique calibration set from modern sites within a 2000 km radius. We fixed the radius to 2000 km, 

instead of 1500 km as suggested from a study in Eastern Asia by Cao et al. (2017), because the modern 

dataset density is rather low in Northern Asia. For the reconstruction with MAT, we used the original 

pollen percentages of the selected fossil pollen taxa, looking for 7 analogues between the pollen data 

and the selected calibration dataset. The dissimilarity between the fossil samples and the modern pollen 

assemblages was determined by squared-chord distance of the percentage datametrics (Simpson, 2012; 

Cao et al., 2014).  

For the reconstruction with WA-PLS, we used the square-root transformed pollen percentages in a 

leave-one-out cross-validation approach (Cao et al., 2014). In addition to the classic WA-PLS 

reconstruction, we also proposeprovide WA-PLS_tailored. This approach addresses the problem that 

https://www.worldclim.org/
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co-variation of climate variables today in space is transferred to the reconstruction even if the past 

temporal relationship among the climate variables mechanistically differs. In fact, this approach aims to 

make use of the full climate space covered by the modern pollen samples avoiding those samples in 

the calibration set that cause spatial covariation. This approach is based on the assumption that several 

climate variables can be reflected in one and the same pollen assemblage because different plant taxa 

have different optima in temperature and precipitation ranges and might therefore occur with different 

co-occurrence and abundance pattern. To reconstruct TJuly we “tailored” our modern training dataset 

with respect to the Pann range. For this purpose, we identified the Pann range of the reconstructed by WA-

PLSPann and extended it by 25% to both ends of the modern Pann range in order to reduce the influence 

of Pann on Tann and TJuly reconstruction due to co-variation. We applied the same method to the 

reconstruction of Pann. Tann and TJulyTjuly were tailored by Pann; Pann was tailored by TJuly and, additionally, 

by Tann (illustrated for an example in Appendix Fig. 1). Reconstruction uncertainties are provided as root 

mean square errors (RMSE) derived fromA statistical significance test (Telford and Birks, 2011) was 

performed for the outputreconstruction by using the randomTF function in the MAT and WAPLS 

functions. Model errors of WA-PLS and MAT are reportedpalaeoSig R-package (version 2.0-3, Telford, 

2019). The reconstructed climate parameters were tested as single variables, as root mean square error 

of prediction (RMSEP) derived from leave-one-well as with partialling out cross-validation.  

We provide site- or sample-specific measures of quality in addition to the error estimates and model 

statistics to allow the user to assess the quality of the climate reconstruction dataset. First, werespective 

other variable. We applied a Canonical Correlation Analysis (CCA) to the modern training dataset in 

order to explore the modern relationship between the pollen spectra and the climate variables and to 

infer the explained variance in the modern pollen dataset by the target climate variables (ter Braak, 

1988)dataset by using the cca function in the vegan R-package (version 2.5-7, Oksanen et al., 2020). 

The ratio between constrained (𝜆1) and unconstrained (𝜆2) explained variance was determined for all 

modern training datasets used for climate reconstructions. High values of 𝜆1 vs 𝜆2 are commonly 

considered as an indicator to measure how well the target environmental variable is strongly related to 

the variation in the modern pollen data set (e.g. Juggins, 2012).To infer the analogue quality as an 

indicator of no-analogue situations we calculated the minimum dissimilarity (squared chord distance) 

between modern pollen assemblages and fossil pollen assemblages with probability thresholds of 1%, 

2.5% and 5% using the minDC function from the analogue R-package (version 0.17-6, Simpson et al., 

2021). . 
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A statistical significance test (Telford and Birks, 2011) was applied using the randomTF function in the 

palaeoSig R-package (version 2.0-3, Telford, 2019). In this test, the proportion of variance in the fossil 

pollen data explained by the reconstructed environmental variable is estimated from redundancy 

analysis (RDA) and tested against a null distribution generated from a total of 999 randomly generated 

environmental variables from the training data. A reconstruction is considered statistically significant if 

the reconstructed variable explains more of the variance than 95% of the random reconstructions 

(Telford and Birks, 2011). The reconstructed climate parameters were tested as introducing the 

environmental variable as a single variable in a run, as well as with partialling out the explained variance 

in the pollen data by the respective other variables.  

We used Plantaginaceae (mostly representing Plantago lanceolata-type in Europe) and Rumex-type to 

assess human influence as an indicator for intense herding (Behre, 1988). In addition, we calculated the 

correlation between the WA-PLS reconstruction of TJuly, Tann and Pann and the pollen percentages of 

Plantaginaceae and Rumex for 9000, 3000 and 1000 years BP. 

 

3 Dataset description LegacyClimate 1.0: input data, reconstructions and reconstruction model 

statistics 

LegacyClimate 1.0 provides pollen-based reconstructions and sample-specific reconstruction errors of 

Tann, TJuly and Pann for 2594 fossil pollen records (i.e., a total of 146067146,067 single pollen samples) 

from three reconstruction methods (WA-PLS, WA-PLS_tailored, MAT). Furthermore, we provide the 

method-specific model metadata and quality measuresstatistics for each record and each climate 

variable (Table 1). To ease data handling, the dataset files are separated into Western North America, 

Eastern North America, Europe and Asia. 

 

Table 1. Structure and content of the LegacyClimate 1.0 data with details about the information 

contained in the input, datasets, in the climate reconstructions and the reconstruction model statistics. 
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Datasets Content 

Input datasets Modern pollen dataset of 1537915,379 sites 

Modern dataset of Tann, TJuly, Pann 

Fossil pollen data (LegacyPollen 1.0) for 2594 

sites with a total of 146067146,067 samples 

Bacon age-depth models (LegacyAge 1.0) for 

2579 sites 

LegacyClimate 1.0: Climate reconstructions Reconstructions and sample-specific 

reconstruction errors of Tann, TJuly and Pann for 

2594 sites using MAT, WA-PLS and WA-

PLS_tailored 

Ensemble of 1000 realizations of the Bacon age-

depth models for 2579 sites 

LegacyClimate 1.0: Reconstruction model 

statistics 

Site information (Event label, Source, ID, Site 

name, Longitude, Latitude) 

Modern pollen dataset information (number 

of modern analogues, range of climate 

variables) 

Model statistics for each site for MAT, WA-

PLS, WA-PLS_tailored (including r2 observed 

vs. predicted, RMSEP, no. of WA-PLS 

components) 
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LegacyClimate 1.0: Quality Measures Canonical Correlation Analysis (CCA) of the 

modern training dataset 

Minimum dissimilarities between modern 

pollen assemblages and fossil pollen 

assemblages for each site for MAT 

Statistical significances sensu Telford & Birks 

(2011) for each site for MAT, WA-PLS, WA-

PLS_tailored 

 

4 Dataset assessment 

4.1 Spatial and temporal coverage of LegacyClimate 1.0 

In total, we provide reconstructions for 2594 fossil pollen records. Among, among them 670 records are 

located from Eastern North America, 361 records from Western North America, 1075 records from 

Europe and 488 Asian records (Fig. 1). The temporal coverage of the records is rather 

 uneven: 119 and 289 records cover the periods before 30,000 years (Fig. 2) and 

 the Last Glacial Maximum, respectively. A total of 1229, 1845 and, 2052 records 

 are available for 12-11 ka, 6-5 ka BP and  2-1 ka BP, respectively. 
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Figure 1. Topleft: map indicating the spatial distribution and record lengths covered by the LegacyPollen 

1.0 dataset (Herzschuh et al., 2022csubmitted) for which climate reconstructions, temporal and 

reconstruction uncertainties and reconstruction quality measures are provided in LegacyClimate 1.0 with 

a total of 2594 records; Bottomright: spatial distribution of modern pollen dataset used for reconstruction 

with a total of 1537915,379 sites. 
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Figure 2. Number of records that cover certain millennia of the last 30 ka. 

 

4.2 Modern relationships between pollen and climate assessed by constrained ordination.  

Results from CCA applied to modern datasets reveal that TJuly-constrained ordinations have high 𝜆1/𝜆2 

ratios, indicating a strong relationship between this climate variable and modern pollen assemblages, in 

Eastern North America while low ratios can be found in Central Asia. The spatial pattern of 𝜆1/𝜆2 of 

ordinations constrained by Tann is overall similar to those of TJuly but the ratios are slightly higher for Tann 

than for TJuly. 4.2Reconstructions for Pann show low ratios in Europe and Eastern North America. Areas 

with high ratios are concentrated in Alaska and East Asia (Fig. 3). 
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Figure 3. Maps showing 𝜆1/𝜆2, representing the ratio of explained variance of first axis (constrained) vs. 

second (unconstrained) axis as revealed by applying a CCA to all modern training datasets that were 

used for the reconstructions. High ratios (>1) indicate a strong relationship between the modern pollen 

datasets and climate. Constraining variables as well as tailoring of the dataset (see methods) is indicated 

in the map captions. 

 

4.3 Analogue quality 
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Figure 4. Analogue quality as assessed by squared chord distance between modern pollen 

assemblages and fossil pollen assemblages. Results identify a very good (<1%), good (<2.5%) and poor 

(<5%) analogues Distances >5% are considered to indicate non-analogue situations. (As percentage of 

all distances among pollen samples in the modern dataset used for calibration.) 

The dissimilarity (squared chord distance) between modern pollen assemblages and fossil pollen 

assemblages was calculated and extracted for distinct time-slices at 9000, 6000 and 3000 years BP. In 

total, 36.4% (9000 years BP), 39.2% (6000 years BP) and 45.6% (3000 years BP) records indicate a 

very good (<1%) analogue quality.  the central part of the North American continent, Scandinavia and 
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Central Asia show a very good analogue quality for all time-slices investigated. Poor (<5%) analogues 

can be found in Western Europe, the eastern parts of the United States and along the eastern Asian 

coastline. Non-analogues (>5%) are found for 22.6% (9000 years BP), 20.47% (6000 years BP) and 

12.5% (3000 years BP) record respectively, especially in Western Europe and at 9000 years BP in 

Alaska. 

 

4.4 Prediction errors of LegacyClimate 1.0 

The mean RMSEPs and their standard deviations for Tann are 1.98±0.52°C (MAT), 2.61±0.53°C (WA-

PLS) and 2.24±0.61°C (WA-PLS_tailored) and mean RMSEPs as a percentage of modern Tann range 

are 7.68±1.93% (MAT), 10.09±2.05% (WA-PLS) and 10.26±2.79% (WA-PLS_tailored). The largest 

mean RMSEP values are located in Central Asia in Kazakhstan, Mongolia and the north-western parts 

of the Tibetan Plateau and are consistent across all three reconstruction methods. Other areas with 

large mean RMSEP values are located in Western North America, Southern and Central Europe and 

south-east Asia. The smallest RMSEPs can be found along the east coast of North America. Relative 

to the modern temperature range, the RMSEP from this region also reveals the lowest fraction. In 

general, MAT has the lowest mean error fraction relative to the modern temperature range of all three 

methods.  

  The mean RMSEPs of TJuly are 1.90±0.63°C (MAT), 2.50±0.73°C (WA-PLS) and 2.21±0.75°C (WA-

PLS_tailored) and mean percentages of TJuly range are 8.11±1.64% (MAT), 10.71±1.94% (WA-PLS) 

and 10.70±2.60% (WA-PLS_tailored). Thus, they are slightly smaller than those of Tann but slightly larger 

as a percentage of the range.  The spatial patterns, however, are largely similar to those of Tann.  

  The mean RMSEPs of Pann are 176.38±51.40 mm (MAT), 244.48±75.84 mm (WA-PLS) and 

232.71±98.57 mm (WA-PLS_tailored) and mean percentages of Pann range are 6.78±1.48% (MAT), 

9.27±1.70% (WA-PLS) and 10.26±2.67% (WA-PLS_tailored). High RMSEPs are found for Western 

North America, Europe and along the coastline of south-east Asia, while the lowest RMSEP values are 

found for Central Asia. A clear division in RMSEPs are found on the North American continent: while 

the western part of North America (with the exception of Alaska) has a rather high RMSEP, the eastern 

part of North America has a smaller RMSEP. This pattern is found for all three methods (Fig. 53). 
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Figure 53. Spatial distribution of root- mean- squared error of prediction (RMSEP) as inferred from 

leave-one- out cross-validation presented as absolute values and as a percentage of the range of mean 

July temperature (TJuly), mean annual temperature (Tann), mean annual precipitation (Pann) in the modern 

pollen data used for reconstruction for the three methods applied (Weighted-Averaging Partial-Least 

Squares regressionweighted-averaging partial least squares (WA-PLS), WA-PLS using a training set 

from within a limited climate range (WA-PLS_tailored) and Modern Analogue Techniquemodern 

analogue technique (MAT)).  

 

4.5 Significance test 

  A significance test (p < 0.1, see methods) according to Telford and Birks (2011) for the whole 

reconstructed time period was performedrun for each record and for the reconstructions with WA-PLS 

and WA-PLS_tailored (Fig. 64; Table 2). For theThe TJuly reconstruction, is significant for 30.9% (WA-

PLS) and 35.2% (WA-PLS_tailored) of all records passed the significance test when included as a single 
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variable in the significance test. Partialling out precipitation as a conditional variable causes an increase 

in the amount of significant records to 35.5% for WA-PLS of TJuly, but a decrease for WA-PLS_tailored 

to 33.6% of all records. TheFor Tann reconstruction is significant for, 32.8% (WA-PLS) and 36.1% (WA-

PLS_tailored) of all records pass the significance test when tested as a single variable. When partialling 

out precipitation, the amount of significant records decreases for both WA-PLS and WA-PLS_tailored. 

32.1% (WA-PLS) and 33.4% (WA-PLS_tailored) of all records pass the significance test when testing 

Pann as a single variable. In contrast to the significance tests for Tann, partialling out the mean July 

temperature as a conditional variable increases the number of significant records for both WA-PLS and 

WA-PLS_tailored. 
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Figure 64. Maps showing mean July temperature (TJuly), mean annual temperature (Tann), mean annual 

precipitation (Pann) records that passed the reconstruction significance test (p<0.1). ColorsColor 

indicates the significance level. 

 

Table 2. Percentage of records that pass the reconstruction significance test (p<0.1) sensu Telford and 

Birks (2011).  

 

 

 

 

 

  WA-PLS WA-PLS_tailored MAT 
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TJuly 30.9% 35.2%  

TJuly partialling out Pann 35.5% 33.6%  

Tann 32.8% 36.1%  

Tann partialling out Pann 32.6% 34.1%  

Pann 32.1% 33.4%  

Pann partialling out TJuly 34.3% 36.5%  

  

4.6 Human impact 

We used the abundance of Plantaginaceae and Rumex as indicators of grazing and such intense animal 

husbandry. Overall weak human impact is inferred for North America and Northern Asia. The indicators 

indicate strong human impact only in single records at 9000 years BP in China and the Mediterranean 

region (Fig. 7). The percentage values of Plantaginaceae and Rumex were high especially in Europe 

for 3000 years and 1000 years BP which indicates growing human impact on that region. High 

Plantaginaceae correlate with low TJuly in Central Europe indicating potential biases in the temperature 

reconstructions i.e. too low temperatures become reconstructed (Fig. 8).   
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Figure 7. Abundance of Plantaginaceae (left) and Rumex (right) at 9000, 3000 and 1000 years BP. 

Colors indicate percentage values. 
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Figure 8. Correlation between the percentage of Plantaginaceae (left) and Rumex (right) and 

reconstructed TJuly, Tann and Pann with WA-PLS. 

 

4.73 Assessment of major temporal patterns of LegacyClimate 1.0  

To illustrate the difference between Mid- and Late Holocene climateFor analyzing the temporal variation, 

we calculated the value for themeans of all three climate variables at 6for the time periods between 6.5 

and 5.5 ka BP and between 1.5 and 0.5 ka BP, each time taking the average of the interpolated values 

at and subtracted those ages for the ensemble of 1000 realizations of the age-depth models (Li et al., 

2022).means from every record in order to evaluate the changes between the reconstructed mid-

Holocene conditions and those of modern times. Differences between these time-slices periods reveal 

warmer and drier conditions during Mid-Holocene compared with Late Holocene conditions, especially 

in Eastern North America but also in Central and Northern Europe. The overall patterns are in good 

agreement for all three methods but show differences on a regional scale, especially when comparing 

the reconstructions with WA-PLS and MAT. For TJuly, the reconstruction with MAT shows greater 

temperature differences in Western North America and south-east Asia. Compared to the reconstruction 

with WA-PLS, there is a reduced cooling from 6 to 1 in Eastern Europe and a warming instead of a 
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cooling in the Western Mediterranean region and along the south-eastern Asian coastline in MAT.in 

Eastern Europe and a warming in the Western Mediterranean region and along the south-eastern Asian 

coastline. Comparing the reconstructions of Tann, more gradual patterns are seen in the reconstruction 

with WA-PLS: Western North America reveals a mid-Holocene warming, while Eastern North America 

shows a cooling. In Europe records that report a cooling are more concentrated in the northern and 

western parts of the continent. In the reconstruction with MAT, Eastern North America is divided into a 

reported cooling in the northern part and a warming in the southern part. In Western North America, 

there is a mixture of locations with a warming and a cooling since the mid-Holocene. In Europe, only 

France and Southern Scandinavia show a cooling; in Central and parts of Southern Europe, a warming 

can be found in the reconstructions. For large areas in North America and Europe, the reconstructions 

with WA-PLS suggest an increase in precipitation fromsince 6 to 1 ka BP. A shift to drier conditions can 

be found along the south-eastern coastline in North America, in the Mediterranean Region and 

especially in south-east Asia. The reconstruction with MAT reveals a gradient from increasing 

precipitation in south-western Europe to decreasing precipitation in north-eastern Europe. In contrast to 

the reconstructions with WA-PLS, records along the south-eastern Asian coastline suggest an increase 

in precipitation with MAT rather than a decrease (Fig. 9).5).  



26 

 

 



27 

 

 

Figure 95. Difference from 6 ka to 1 ka for mean July temperature (TJuly), mean annual temperature 

(Tann), mean annual precipitation (Pann) and Pann% as reconstructed from weighted-averaging partial 

least squares (WA-PLS (upper panel), WA-PLS using a training set from within a limited climate range 

(WA-PLS_tailored (middle panel) and modern analogue technique (MAT (lower panel).).  

  Time-series of absolute Tann reconstructions reveal temporal as well as latitudinal spatial variation on 

the single continents. Eastern North America and Asia show the most variation in the low latitudes. It is 

also Eastern North America which shows the most pronounced latitudinal gradient. In Western North 

America, the most variation takes place in the high latitudes, while the variation is concentrated to the 

mid-latitudes in Europe. Especially in North America, the warming since the last deglaciation and the 

beginning of the Holocene is well shown in the temporal variation of the time-series (Fig. 106). 
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Figure 106. Time-series of absolute mean annual temperature (Tann) reconstruction for each 

(sub-)continent. Colors denote the latitude of record origin. Age and reconstruction uncertainties are not 

plotted but are available for each time-seriesNote logarithmic x-axis. 

  

4.84 Assessment of consistency among reconstruction methods 

Reconstructions with MAT are, in general, in good agreement with those derived from the WA-PLS. 

Comparing MAT with WA-PLS, 37.3% (TJuly), 38.9% (Tann) and 30.4% (Pann) of all records have a positive 

correlation of r >= 0.6. Strong positive correlations (r >= 0.9) can mainly be identified in Eastern North 

America, while weak correlation can be found for large areas in central North America and most of 

Europe (Fig. 117). 
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Figure 117. Correlation between time-series of the 3 different reconstruction methods used - weighted-

averaging partial least squares using a global training set (WA-PLS), WA-PLS using a training set with 

a limited modern climate range (WA-PLS_tailored) and the modern analogue technique (MAT) for the 

three climate variables of mean July temperature (TJuly), mean annual temperature (Tann) and mean 

annual precipitation (Pann) 

 

  WA-PLS_tailored used a reduced modern training dataset (illustrated for an example in Appendix Fig. 

1). The tailoring successfully reduced the co-variation of temperature and precipitation in the modern 

dataset as indicated by the distribution of the correlation coefficient in Fig. 128. Nevertheless, the 

obtained reconstructions are largely consistent between WA-PLS and WA-PLS-tailored: a correlation of 

r >= 0.9 is found for 59.2% of all records for TJuly, 60.7% for Tann and 56.5% for Pann.  
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Figure 128. Violin plot of the correlation coefficients between TJuly and Pann in the 1537915,379 training 

datasets used for the reconstructions. Left: used for WA-PLS reconstructions; middle: WA-PLS TJulytjuly-

tailored (used for the reconstruction of Pann); WA-PLS Pannpann-tailored (used for the reconstruction of 

TJuly).  

   A CCA was performed to infer the ratio between constrained and unconstrained explained variance 

for all modern training datasets (𝜆1/𝜆2) for the modern datasets used for WA-PLS and WA-PLS_tailored. 

Modern datasets used for WA-PLS constrained by TJuly reveal a concentration of high ratios in Eastern 

North America while low ratios can be found in Central Asia. While the spatial pattern of 𝜆1/𝜆2 constrained 
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by Tann is similar, the ratios are slightly higher for Tann than for TJuly. Reconstructions for Pann show low 

ratios in Europe and Eastern North America. Areas with high ratios are concentrated in Alaska and East 

Asia. 

 

Figure 9. Maps showing 𝜆1/𝜆2, representing the ratio of explained variance of first axis (constrained) vs. 

second (unconstrained) axis as revealed by applying a CCA to all modern training datasets that were 

used for the reconstructions. Constraining variable as well as tailoring of the dataset (see methods) is 

indicated in the map captions. 

 

5 Discussion 

5.1 Impact of the fossil pollen data source on LegacyClimate 1.0 quality 

LegacyClimate 1.0 contains reconstructions of climate variables from fossil pollen data derived from 

open-access data repositories. The fossil records were derived from multiple natural archives, most 

commonly, assemblages from continuous lacustrine and peat accumulations (Herzschuh et al., 

2022csubmitted). Different sizes of lakes and peat areas result in varying sizes of pollen source areas 

and thus the spatial representativeness of a record, whileas small lakes and peatlands are considered 

to provide information about the (extra-)local scale, while the regional signal is better represented in 

pollen assemblages from large lakes are considered as a regional signal (Jackson, 1990; Sugita, 1993).  

However, taphonomic changessuch signals might be impacted by taphonomy of the records 

originatingrecord, for example, from lake level changes may impact the reconstructed climate pollen 

from azonal riverine vegetation might be over-represented in fluvially impacted pollen records.  
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  Our dataset is based on taxonomically harmonized modern and fossil pollen datasets using a restricted 

number of taxa. (i.e., the most common 70 taxa on each (sub-)continent). Such an approach guarantees 

that all records are handled consistently. Although losing taxonomic information when merging taxa 

together into a higher taxonomic level, it also increases the possibility of matching climate analogues in 

the modern and the fossil datasets. However, one needs to keep in mind that species with different 

ecological requirements may be merged together into one genus or family, for example, Pinus species 

that are restricted to tropical or subtropical areas in China or ones that grow in boreal forests (Cao et al., 

2013; Tian et al., 2017). 

  Along with the pollen assemblages, data repositories also provide chronological information for fossil 

records. The quality of such chronologies varies strongly with respect to dating methods, calibration and 

numerical algorithms for determining an age-depth relationship (Blois et al., 2011; Trachsel and Telford, 

2017). Having accurate and precise chronologies is thus of pivotal importance for reconstructing past 

climate in order to identify temporo-spatial patterns and therefore in helping to evaluate climate model 

outputs. The advantage of the fossil pollen dataset used for the reconstruction presented here (i.e., 

LegacyPollen 1.0; Herzschuh et al., 2022csubmitted) is that it has harmonized chronologies (LegacyAge 

1.0) along with information about uncertainties as well as related metadata and scripts that allow a 

customized re-establishment of the chronologies (Li et al., 2022). Accordingly, we were able to provide 

sample specific age-This, for example, allows the calculation of the temporal uncertainties along 

withwhen presenting reconstruction uncertainties of a specific time-slice. 

  

5.2 Modern pollen and climate data sources and LegacyClimate 1.0 quality 

Palaeoclimate reconstruction methods such as MAT and WA-PLS rely on extensive collections of 

modern training data. Designing a robust calibration dataset from modern pollen assemblages is a 

crucial part of the reconstruction process. A suitable calibration dataset should cover a wide range of 

climatic and environmental gradients in order to represent an empirical relationship between pollen 

assemblages and climate (Birks et al., 2010; Chevalier et al., 2020). Like with fossil pollen records, data 

syntheses and repositories also exist for modern surface pollen data. Most of the records in our modern 

dataset were compiled from well-established pollen assemblages from North America (Whitmore et al., 

2005), Eurasia (Davis et al., 2013 and 2020) and China (Cao et al., 2013; Herzschuh et al., For our 

study we used the, to our knowledge, largest modern dataset ever used in a pollen-based climate 
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reconstruction.2019). For fossil pollen records in areas with an insufficient coverage of modern surface 

pollen samples (e.g., Central Asia or Western Siberia), it might be difficult to create a calibration dataset 

that maps the required variety of environmental and climatic gradients and therefore find enough modern 

analogues for reconstructions with a classification approach such as MAT. This is indicated by the high 

RMSEPs as percentages of gradient length in these areas. Our routine uses the modern pollen data 

from within a radius of 2000 km around the site of the fossil record. The information provided in the 

reconstruction metadata including number of modern pollen samples and ranges of reconstructed 

variables, allows an assessment of the modern dataset used for reconstruction.   

We a priori selected TJuly, Tann and Pann as target variables for our reconstructions. However, we provide 

𝜆1/𝜆2 (i.e. explained variance of the climate variable in the modern pollen data set relative to the variance 

explained by the unconstrained first axis; ter Braak, 1988), a commonly used proxy for the assessment 

of reconstructions. The higher 𝜆1/𝜆2 in the spatial modern dataset the higher the chance that this target 

climate variable has also impacted vegetation over time and is thus reflected in the variation of the fossil 

pollen dataset. As a rule of thumb, a ratio of 1 is considered to indicate reliable reconstructions (Juggins, 

2012) though useful reconstruction may also be obtained from datasets with lower values. As expected, 

maps of RMSEPs reveal similar spatial pattern as the results of constrained ordination. Our results 

indicate that in particular calibration sets from Europe have low ratios and a high RMSEP for all climate 

variables (despite we have a high number of modern samples), likely related to the human impact on 

the modern and fossil data. Some areas that are known for its sensitivity to precipitation e.g. Eastern 

Asia show low RMSEPs as expected for Pann but on the other hand show a low sensitivity to Tann and 

TJuly. 

  

5.3 Reconstruction method and LegacyClimate 1.0 quality 

Overall, the three reconstruction approaches, MAT, WA-PLS and WA-PLS_tailored yield rather similar 

results i.e. indicated by the overall high correlation between the reconstructions of the different methods 

(Fig. 11). Accordingly, the major trends at global or continental scales are similar, even if the actual 

amplitude of change may vary locally. As each method has its own strengths and weaknesses, there is 

not one set of reconstructions that is absolutely superior. One advantage of our multi-method 

reconstruction dataset is that users can identify the methods that are likely to perform best in a selected 

region and/or specific reconstructions. MAT is often recommended for large-scale studies, but it is highly 
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sensitive to the quality of analogues (Chevalier et al. 2020). Low analogue situations can arise from two 

causes: climate conditions that differ strongly from today (e.g., the low atmospheric CO2 concentration 

during the LGM; Jackson and Williams, 2004), or in regions with limited modern samples (e.g., 

extratropical Asia). We report the analogue distance for each sample to help identify such situations. 

From our assessments, we revealed that analogues quality is overall rather good at least for the 

Holocene and except for Western Europe in particularly the British Isles (Fig. 4).  

In contrast MAT, WA-PLS (and most regression techniques in general) model relationships between 

pollen and climate and are, as such, less sensitive to the low analogue situations (Birks et al., 2010). 

They are, however, based on some modelling assumptions, such as the unimodality of the response of 

the pollen taxa to climate (ter Braak and Juggins 1993). This condition is not always met at the 

continental scale, primarily because of the limited taxonomic resolution of pollen data that merges 

several plant species with distinct climate requirements as one single pollen taxon. WA-PLS_tailoring 

has the same limitation but it has the advantage of reducing the influence of the correlation between 

variables when reconstructing, for instance, temperature and precipitation. This may be particularly 

relevantClimate reconstruction methods all have different strengths and weaknesses. MAT and WA-

PLS for regions with a temperature-moisture driven circulation system such as the East Asian Summer 

Monsoon (EASM) that can heavily affect precipitation patterns in certain regions (Herzschuh et al., 2019). 

Using WAPLS_tailoring also increases the number of records that pass a significance level of p < 0.1 

(Telford and Birks, 2011). Providing several reconstructions based on different assumptions also allow 

exploring, even if only partially, the uncertainties associated with the modelling assumptions (e.g., MAT 

vs WA-PLS, the number of analogues, type metric used to compare pollen samples).  

All reconstruction methods used in this study heavily rely on extensive collections of modern 

assemblage data covering diverse climatic and environmental gradients and are applicable on a broad 

spatial scale.  As discussed, all theHowever, both methods may struggle with some intrinsic 

characteristics of pollen data and of pollen compilations, including complex species responses, 

sensitivityare sensitive to spatial autocorrelation, limited analogues thatcan only deal with a certain 

extent of non-analogous situations and may produce poor results in so-called “quantification deserts” 

(Chevalier, 2019), where fossil pollen is hardly preserved or nearby modern surface pollen samples are 

missing (Chevalier et al., 2020). However, we designed ourNonetheless, for reconstructions on a local 

or regional scale, MAT and WA-PLS are most commonly used in climate reconstructions. The format of 

the modern and fossil datasets so that more methods can be included in ouras well as the provided 
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scripts could also be easily adapted to apply to other reconstruction scripts 

(https://doi.org/10.5281/zenodo.5910989; Herzschuh et al., 2022b), methods such as CREST, ana 

Bayesian approach that combines presence-only occurrence data from species distribution databases 

instead of modern pollen samplesand modern climatologies to estimate the responsesconditional 

response of pollen taxa to the climate variable to reconstructa given taxon to a climate variable 

(Chevalier et al., 2014 and 2022). CREST is, therefore, more independent from the availability of modern 

pollen samples. Employing the Inverse-Modelling through iterative forward modeling (IMIFM) (Izumi and 

Bartlein, 2016) might also be possible in such regions. Its use would be particularly interesting to 

reconstruct the LGM samples, because IMIFM is the only technique that can explicitly take the effect of 

CO2 on plants (Chevalier et al., 2020). The inclusion of CREST and/or IMIFM in such large scale studies 

would complement our multi-model reconstruction ensemble by exploring a larger fraction of the 

“method uncertainty” space in greater details (e.g. Brewer et al, 2008). 

  Through numerous physical processes that vary with both location and time, temperature and 

precipitation are interconnected, especially within the extratropical regions (Adler et al., 2008; Trenberth, 

2011) and thus temperature and precipitation may not be treated as independent variables. Due to the 

numerical mechanisms in the transfer function, the correlation between both climate variables may 

reduce the reliability of the reconstructions. This is especially true for regions with a temperature-

moisture driven circulation system such as the East Asian Summer Monsoon (EASM) that can heavily 

affect precipitation patterns in certain regions (Herzschuh et al., 2019). With our tailoring approach we 

are able to reduce the influence of co-variation of these two climate variables for the reconstruction and 

increase the number of records that pass a significance level of p < 0.1 (Telford and Birks, 2011). 

5.4 Potential use of LegacyClimate 1.0 

Our LegacyPollen 1.0 fossil pollen synthesis (Herzschuh et al., 2022c) contains records from all over 

the Northern Hemisphere extratropics. Climate reconstruction data sets like LegacyClimate 1.0 and thus 

can be used to infer spatio-temporal patterns in climate reconstructions that are not only limited to a 

local or regional scale. Although several hemispheric or global reconstruction studies exist, they have 

been largely restricted to temperature or have included relatively few records (Marcott et al., 2013; 

Marsicek et al., 2018; Routson et al., 2019; Kaufman et al., 2020a and 2020b). Our dataset is therefore 

a valuable addition. It may be used in a multi-proxy approach, synthesizing marine and terrestrial records 

in order to assess temperature development during the Holocene and can help to highlight possible 

https://doi.org/10.5281/zenodo.5910989
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interdependencies between oceans and land masses and such contribute to the “Holocene conundrum” 

debate (Liu et al., 2014). Temperature reconstructions from proxy data indicate peak temperatures 

during the Holocene Thermal Maximum around 6000 years BP followed by a pronounced cooling trend 

toward the late Holocene (KaufmanLiu et al., 2020b2014; Bova et al., 2021), which is also visible in our 

pollen-based reconstructions (Fig. 6). In contrast, climate models simulate a monotonic warming 

throughout the Holocene, which resulted in the “Holocene conundrum” debate (Liu et al., 2014). 

Temperature reconstructions are often derived from sea-surface temperatures as either mean annual 

temperatures (Birks, 2019; Bova et al., 2021) or global mean surface temperature (Marcott et al., 2013; 

Marsicek et al., 2018; Kaufman et al., 2020a and 2020b). However, it is argued that proxy-based climate 

reconstructions are seasonally biased and therefore might be the reason for the observed proxy-model 

divergence (Liu et al., 2014; Rehfeld et al., 2016; KaufmanBova et al., 2020b2021). In this respect, it 

might help that we provide TJulyTjuly along with Tann reconstructions derived from our tailoring approach, 

which provides the opportunity to assess seasonal impacts on the reconstruction. 

  So far, reconstructions of precipitation have not been implemented on a hemispheric scale. The 

interconnection between temperature and precipitation (Trenberth, 2011) and its spatio-temporal 

variation across the Northern Hemisphere is therefore an important aspect of evaluating climate models 

(Wu et al., 2013; Hao et al., 2019; Herzschuh et al., 2022asubmitted). A broad-scale quantitative 

reconstruction of temperature and precipitation would therefore be of great value for evaluating transient 

model runs performed by climate model experimentsmodels such as TraCE 21k (He, 2010). 

Our assessments of the modern dataset (e.g. using CCA), the transfer function (e.g. RMSEP) and the 

reconstruction (e.g. the significance test) revealed also the potential biases in the pollen-based 

reconstruction and pointed to limitations. Further validation and assessments of the results and more 

comprehensive uncertainty analyses e.g. by applying forward modelling approaches (Izumi & Bartlein, 

2016; Parnell et al., 2016) would be highly valuable. 

 

6 Data and code availability 

The compilation of reconstructed TJuly, Tann, and Pann, is open access and available at PANGAEA 

(https://doi.pangaea.de/10.1594/PANGAEA.930512.930512; in the “Other version” section; Herzschuh 

https://doi.pangaea.de/10.1594/PANGAEA.930512
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et al., 2021). The dataset files are stored in machine-readable data format (.CSV), which are already 

separated into Western North America, Eastern North America, Europe, and Asia for easy access and 

use. 

  The R code to run the reconstructions for single sites is available at Zenodo 

(https://doi.org/10.5281/zenodo.5910989; Herzschuh et al., 2022b2022) including harmonized open-

access modern and fossil pollen datasets so that customized reconstructions can be easily established.   
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Appendix Figure 1. Example to illustrate the effect of tailoring the modern dataset for the location 

“Yellow Dog Pond” in Eastern North America. Upper part: reconstruction of TJuly and Pann with WA-PLS 

(red) and WA-PLS_tailored (blue); lower part: correlation of TJuly and Pann in the modern dataset and the 

effect of tailoring the modern dataset (indicated with the red box). Correlations are given for non-tailored 

(red) and tailored (blue) data.  
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Appendix Figures 

 

Appendix Figure 1. Example to illustrate the effect of tailoring the modern dataset for the location 

“Yellow Dog Pond” in Eastern North America. Upper part: reconstruction of TJuly and Pann with WA-

PLS (red) and WA-PLS_tailored (blue); lower part: correlation of TJuly and Pann in the modern dataset 

and the effect of tailoring the modern dataset (indicated with the red box). Correlations are given 

for non-tailored (red) and tailored (blue) data.   

 

 


