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Abstract. The spatio-temporal variation of surface water storage (SWS) in the Congo River basin (CRB), the 

second largest watershed in the world, remains widely unknown. In this study, satellite-derived observations are 

combined to estimate SWS dynamics at the CRB and sub-basin scales over 1992-2015. Two methods are 25 

employed. The first one combines surface water extent (SWE) from the Global Inundation Extent from Multi-

Satellite (GIEMS-2) dataset and the long-term satellite-derived surface water height from multi-mission radar 

altimetry. The second one, based on the hypsometric curve approach, combines SWE from GIEMS-2 with 

topographic data from four global Digital Elevation Models (DEMs), namely The Terra Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Observing Satellite (ALOS), Multi-30 

Error-Removed Improved-Terrain (MERIT) and Forest And Buildings removed Copernicus DEM (FABDEM). 

The results provide SWS variations at monthly time step from 1992 to 2015 characterized by a strong seasonal 

and interannual variability with an annual mean amplitude of ~101 ± 23 km3. Middle-Congo sub-basin shows 

higher mean annual amplitude (~71 ± 15 km3). The comparison of SWS derived from the two methods and four 

DEMs shows an overall fair agreement. The SWS estimates are assessed against satellite precipitation data and 35 

in situ river discharge and, in general, a relatively fair agreement is found between the three hydrological variables 

at the basin and sub-basin scales (linear correlation coefficient > 0.5). We further characterize the spatial 

distribution of the major drought that occurred across the basin at the end of 2005 and early 2006.  The SWS 

estimates clearly reveal the widespread spatial distribution of this severe event (~40% deficit as compared to their 

long-term average), in accordance with the large negative anomaly observed in precipitation over that period. This 40 

new SWS long-term dataset over the Congo basin is an unprecedented new source of information for improving 

our comprehension of hydrological and biogeochemical cycles in the basin. As the datasets used in our study are 

available globally, our study opens opportunities to further develop satellite -derived SWS estimates at the global 
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scale. The dataset of the CRB’s SWS is available for download at  https://doi.org/10.5281/zenodo.7299823 

(Kitambo et al., 2022b). 45 

1 Introduction 

Freshwater on Earth’s ice-free land accounts for only ~1% of the total amount of water globally (Vörösmarty et 

al., 2010; Steffen et al., 2015; Cazenave et al., 2016; Albert et al., 2021). However, terrestrial freshwater is 

essential to all human needs, ecosystem environments, and biospheric processes. Freshwater on land (excluding 

ice caps) is stored in various forms, including glaciers, snowpack, aquifers, root zone (upper few meters of the 50 

soil), and surface waters. The latter includes rivers, lakes, man-made reservoirs, wetlands, floodplains and 

inundated areas (Boberg, 2005; Zhou et al., 2016). All these continental components are permanently interacting 

with the atmosphere and oceans, exchanging energy and water fluxes (i.e., precipitation, evaporation, transpiration 

of the vegetation, heat transfer, and surface and underground runoff) through horizontal and vertical motions, 

characterizing the global water cycle (Trenberth et al., 2007, 2011; Good et al., 2015; Cazenave et al. 2016). These 55 

exchanges and the associated storage variations of continental freshwater, specifically surface waters, are key 

players in the climate system and water resources variability as well as in the global biogeochemical and 

hydrological cycles (Chahine, 1992; de Marsily et al., 2005; Oki and Kanae, 2006; Shelton, 2009; Stephens et al., 

2020). For instance, despite their small surface coverage (~6% of the continents), wetlands and floodplains have 

a substantial impact on flood flow alteration, sediment stabilization, water quality, groundwater recharge, and 60 

discharge (Bullock and Acreman, 2003). The amount of water stored through large floodplains and wetlands is a 

key component to understand the exchange between the main river channel and the dissolved and particulate 

material (sediment and organic matter) (Melack and Forsberg, 2001; Ward et al., 2017). Furthermore, it also acts 

as a regulator for basin hydrology owning to storage effects along channel reaches (Reis et al., 2017; Wohl, 2021).  

Additionally, the amount of water stored and flowing through surface water bodies influences the biogeochemical 65 

and traces gas exchanges and transport between the atmosphere land and the ocean (Richey et al., 2002; Raymond 

et al., 2013, Hastie et al., 2021). 

Surprisingly, in spite of the importance of surface water storage (SWS), our current knowledge about its spatio-

temporal variability is still poorly known, especially at regional and global scales (Mekonnen and Hoekstra, 2016; 

Cooley et al., 2021). Therefore, there is a fundamental need for the quantification of the storage of surface 70 

freshwater on land (Alsdorf et al., 2003, 2007; Rodell et al., 2015; O’Connell, 2017). 

Efforts have recently been devoted to measure SWS for large lakes, reservoirs, rivers, floodplains, and wetlands 

in large river basins using satellite-derived observations. Papa and Frappart (2021) provide an overview of the 

recent advances in the quantification of SWS in rivers, floodplains, and wetlands from Earth observations, 

presenting several studies (e.g., Frappart et al., 2008, 2010, 2012, 2015, 2018; Papa et al., 2013, 2015; Becker et 75 

al., 2018; Tourian et al., 2018; Normandin et al., 2018; Pham-Duc et al., 2020) that characterize the variations in 

SWS changes in different large river basins. For instance, Frappart et al. (2012) used continuous multi -satellite 

observations of surface water extent and water level from 2003 to 2007 to monitor monthly variations of SWS in 

the Amazon basin and the signature of the exceptional drought of 2005, when the amount of water in rivers and 

floodplains was found to be ~70% below its long-term average.  Papa et al. (2013) developed a hypsometric curve 80 

approach to derive SWS variations by combining surface extent from the Global Inundation Extent from Multi-

satellite (GIEMS; Prigent et al., 2007) and topographic data from the global digital elevation model from the 

https://doi.org/10.5281/zenodo.7299823
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Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). At the basin scale, they showed 

that the mean annual amplitude of the Amazon SWS is ~1 200 km3 and contributes to about half of the annual 

terrestrial water change as detected by Gravity and Recovery Climate Experiment (GRACE) data (Papa  et al., 85 

2021). 

Despite being the second largest river system in the world, both in terms of the drainage area and discharge to the 

ocean, the Congo River basin (CRB)’s SWS still remains widely unknown. CRB yet hosts extensive floodplains 

and wetlands such as the well-known Cuvette Centrale region, which stores a large amount of freshwater, playing 

a crucial role in the sediment dynamics of the river, as well as in the global carbon storage (Datok et al., 2020; 90 

Biddulph et al., 2021). 

Crowley et al. (2006) estimated terrestrial (surface plus ground) water storage within the Congo Basin for the 

period of April 2002 to May 2006 using GRACE satellite gravity data. The result showed a significant seasonal 

(30 ± 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of ~280 km3 of 

water over the 50-month period of analysis. Lee et al. (2011) determined the amount of water annually filling and 95 

draining the Congo main wetlands to 111 km3. This was done by using a water balance equation combining several 

remotely sensed observations (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS). 

Richey et al. (2015) provided a groundwater stress assessment quantifying the relationship between groundwater 

use and availability in the world’s 37 largest aquifer systems using GRACE data. The Congo Basin aquifer is 

characterized as low stress from the Renewable Groundwater Stress ratio. At the basin scale, Becker et al. (2018) 100 

further estimated the spatio-temporal variability of SWS by combining surface water extent from GIEMS and 

radar altimeter-derived surface water height of rivers at 350 virtual stations (VSs) from the Environmental Satellite 

(ENVISAT) mission over the period 2003-2007. They reported that the mean annual variations of the CRB’s 

SWS was about 81 ± 24 km3, contributing to 19 ± 5% of the annual variations of GRACE-derived terrestrial water 

storage. Recently, Frappart et al. (2021) proposed a densification of the network of VSs by including water 105 

elevation variations over the floodplains of the Cuvette Centrale and showed that SWS estimates can be much 

larger than when only VSs over the rivers are used. In parallel, PALSAR observations in InSAR acquisitions were 

used over the Cuvette Centrale of the Congo in combination to ENVISAT altimetry to establish relationships 

between water depth and surface water storage and derived absolute surface water storage change over 2002–

2011 (Yuan et al. 2017).  110 

Despite these efforts to characterize CRB’s SWS, there is still  a lot to unravel about the dynamics of SWS in the 

basin, leaving major questions open: What are the spatio-temporal dynamics of SWS over long-term period at 

CRB basin and sub-basins scales? How is these dynamics modulated by climate variability and what is the SWS 

behavior during exceptional drought events?   

Earth observation is a unique means to answer these questions and is very useful for monitoring large drainage 115 

basin climate and hydrology where in situ information is lacking (Fassoni et al., 2021, Kitambo et al., 2021). Thus, 

in this study, we use two approaches to estimate, for the first time, the spatio-temporal variations of CRB’s SWS 

over the period 1992-2015. The first approach (Frappart et al., 2008, 2011, 2012, 2019) is based on the 

complementarity between the spatio-temporal dynamics of the surface water extent, and satellite-derived surface 

water height. The second approach relies on the methodology developed by Papa et al. (2013) using the 120 

relationships between elevation from digital elevation models and surface water extent variations, called the 

hypsometric curve approach, that enables the estimation of SWS changes.   
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Section 2 presents the study area. Section 3 describes the datasets and Section 4 the methodology used in this 

study. Section 5 is dedicated to results and validation. An assessment is performed comparing the developed SWS 

with other independent datasets such as historic and contemporary river discharge and precipitation data. Section 125 

6 presents an application case of the dataset in which the spatial distribution of the major drought that occurred 

across the basin at the end of 2005 and early 2006 is investigated. Section 7 presents the repository from which 

the SWS dataset can be accessed freely, and finally, Section 8 provides the conclusions and future perspectives. 

 

2 Study area 130 

The CRB (Fig. 1) represent the second largest freshwater system in the world, behind the Amazon basin, both in 

terms of drainage area (~3.7 × 106 km2) and mean annual river discharge (40 500 m3 s-1) (Laraque et al., 2009, 

2013). This large basin hosts the Earth’s second-largest expanse of tropical forest, covering about 45% of its area 

and the world’s largest tropical peat carbon storage (~28% of the total tropical peat carbon). The vast resources 

of the basin support the livelihoods of 80% of the riparian population (Verhegghen et al., 2012, Inogwabini, 2020; 135 

White et al., 2021; Crezee et al., 2022). The Congo River flows over 4 700 km from its source in the southeastern 

part of the Democratic Republic of Congo (DRC) to the Atlantic Ocean and its drainage area spans over nine 

countries, Central Africa Republic, Cameroon, Republic of the Congo, Angola, DRC, Zambia, Tanzania, Rwanda, 

and Burundi.  

The CRB is generally divided into six main subbasins (Fig. 1) based on the physiography of the basin (Laraque 140 

et al., 2020): Lower-Congo (southwest), Middle-Congo (center), Sangha (northwest), Ubangui (northeast), Kasai 

(south-center), and Lualaba (southeast). The mean surface air temperature over the basin is estimated to be 25° C. 

The average rainfall is 2 000 mm yr-1 in the central part of the basin and decreases to 1 100 mm yr-1 away from 

the equator. While the peak annual potential evapotranspiration is ~1 500 mm yr-1 near the equator, it decreases 

northwards and southwards to less than 1 000 mm yr-1 (Sridhar et al., 2022).  145 

The central part of the basin is characterized by an internal drainage basin and a large tropical rainforest, the 

Cuvette Centrale, where the river system is dominated by large wetlands and floodplains, with flat topography 

(Bricquet, 1993; Laraque et al., 2009, 2020). The hydrology of the CRB is also dominated by the presence of 

several lakes (Figure 1). The southeast Lualaba sub-basin contains the majority of them. In the highland of the 

Bangweulu region, there are several lakes characterized by small depths (less than 10 m) of which lake Bangweulu 150 

is the largest (~2 000 km2) and is bordered on its east part by large wetlands (14 000 km2) formed of large grassy 

swamps and floodplains. One can also find Lake Mweru (~4 413 km2 and ~37 m depth) and Lake Mweru Wantipa 

with a smaller surface area (~1500 km2). The Upemba depression contains a mosaic of lakes (e.g., Upemba Lake) 

and wetlands that can reach seasonally ~8 000 to ~11 840 km2 in extent. The east part of the CRB hosts Tanganyika 

and Kivu Lakes. Tanganyika Lake, the second deepest (i.e., ~1 470 m) lake worldwide, contains a volume of 155 

~18 800 km3 and drains into the CRB system through the Lukuga River (Gasse et al., 1989; Runge, 2007; Harrison 

et al., 2016). In the south center region of the CRB, the Mai-Ndombe and Tumba Lakes are located in the Kasaï 

and Middle-Congo sub-basins, respectively.  

 

3 Datasets 160 

3.1 Multi-satellite-derived surface water extent  
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We used the estimates of surface water extent (SWE) derived from the Global Inundation Extent from Multi-

Satellite (GIEMS-2) which provides global coverage at monthly time step of different water bodies including 

wetlands, rivers, lakes at 0.25° (~27 km) spatial resolution at the Equator (on an equal-area grid, i.e., each pixel 

covers 773 km2; Prigent et al., 2007, 2020). The dataset was developed by merging observations from different 165 

sensors, as described in Prigent et al. (2007) and Papa et al. (2010). The last version used in this study, spans over 

a long-term period from 1992 to 2015. For more details about the technique, we refer to Prigent et al. (2007, 

2020). 

Several studies such as Prigent et al. (2007, 2020), Papa et al. (2008, 2010, 2013) and Decharme et al. (2011) have 

been assessing the interannual and seasonal dynamics of the long-term SWE in different environments against 170 

several variables, such as the in situ river discharges, in situ and satellite-derived water level in rivers, lakes, 

wetlands, the total water storage from GRACE, and the satellite-derived rainfall. Recently, the characterization 

and evaluation of the 24-year SWE from GIEMS-2 have been conducted in the CRB against the in situ river 

discharge and water level and the performance gave satisfactory results (see Fig. 6 to Fig. 10 of Kitambo et al., 

2022a for details on the characterization and the assessment of GIEMS-2 over the CRB). 175 

 

3.2 Radar-altimetry-derived surface water height 

Satellite radar altimetry provides a systematic monitoring of surface water height (SWH) of large rivers, lakes, 

wetlands, and floodplains at the virtual station (VS), defined as the intersection of a water body with the satellite 

theoretical ground track. The temporal variation of SWH is retrieved according to the repeat cycle of the satellite 180 

(Da Silva et al., 2010; Cretaux et al., 2017), cycle that varies from ten to twenty-seven days for current operational 

satellites. Several studies, including Frappart et al. (2006), Da Silva et al. (2010), Papa et al. (2010, 2015), Kao et 

al. (2019), Kittel et al. (2021), Paris et al. (2022), and Kitambo et al. (2022), to name a few, have been conducted 

in different river basins to validate SWH variations against in situ water levels. Results generally show a good 

capability of radar altimeter to retrieve SWH variability with uncertainties ranging from a few centimeters to tens 185 

of centimeters, depending on the acquisition mode of the satellite and the environment characteristics (Bogning 

et al., 2018; Normandin et al., 2018; Jiang et al., 2020; Kittel et al., 2021; Kitambo et al., 2022a).  

Over CRB, Kitambo et al. (2022) used ~2300 VSs from different satellite missions and their pooling based on the 

principle of the nearest neighbor (located at a minimum distance of 2 km, see Da Silva et al., 2010; Cretaux et al., 

2017) to generate long-term time series with records lengths ranging from 12 to 25 years records (Fig. 2d of 190 

Kitambo et al., 2022a). A thorough assessment and validation of these long-term satellite-derived surface water 

height at nine in situ gauge stations provided root mean squared error ranging from 10 (with Sentinel-3A) to 75 

cm (with European Remote Sensing satellite-2) (see Table 2 of Kitambo et al., 2022a). 

In the current study, the satellite-derived SWH used are the ones spanning the record period 1995-2015, acquired 

from three satellites missions, (1) European Remote Sensing-2 satellite (ERS-2), with observations spanning April 195 

1995 to June 2003, (2) the Environmental Satellite (ENVISAT, hereafter named ENV), with observations 

spanning March 2002 to June 2012, and (3) the Satellite with ARgos and ALtiKa (SARAL/Altika, hereafter 

named SRL), from which we use observations from February 2013 to July 2016. All the three satellite missions 

have 35 days repeat cycle. These datasets were made available by the Centre de Topographie des Océans et de 

l’Hydrosphère (CTOH, http://ctoh.legos.obs-mip.fr). They come from the Geophysical Data Records made 200 

available by space agencies. For ERS-2, land reprocessing was used (Frappart et al., 2016). These datasets were 

http://ctoh.legos.obs-mip.fr/
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processed using either the Multi-mission Altimetry Processing Software (MAPS, Frappart et al., 2015b) or the 

Altimetry Time-Series software (Frappart et al., 2021b) to generate the time series of water level. Therefore, the 

generated 160 VSs cover the entire CRB (see Fig. S1, in supplementary materials) and a period of ~21 years.  

The southern-eastern portion of the basin, including Upemba and Bangweulu Lake regions, was not covered by 205 

the SWH VSs due to the simultaneous lack of data from the three aforementioned satellite mission . Over this 

region, missing data were replaced by the annual cycle computed using the altimetry-based water levels available 

during the study period.  

 

3.3 Digital elevation model 210 

We used four freely available global Digital Elevation Models (DEMs) (Table 2): (1) Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) version 3, (2) Advanced Land Observing Satellite 

(ALOS), (3) Multi-Error-Removed Improved-Terrain (MERIT), and (4) Forest And Buildings removed 

Copernicus DEM (FABDEM).  

DEMs are divided broadly in two categories based on the specific topographic surfaces they represent, which are 215 

digital surface model (DSM) and digital terrain model (DTM). DSM refers to the upper surface of natural and 

built or artificial features of the environment such as buildings, man-made features, and trees, while DTM 

represents the elevation of the earth surface removed with all natural and built features, i.e., the bare -earth surface 

(Guth et al., 2021; Hawker et al., 2022). Among the DEMs used, ASTER and ALOS are classified as DSM. 

MERIT is closer to a DTM because of the removal of tree height bias but it is not a complete DTM (Yamazaki et 220 

al., 2017; Hawker et al., 2022) due to other artifacts such as man-made features. In this study, only FABDEM can 

be considered as DTM (Hawker et al., 2022).  

Therefore, in order to remove the presence of tree bias in DSMs, we subtract from them the forest canopy height 

from a global dataset (Potapov et al., 2020). For that, the global canopy height dataset, ASTER and ALOS were 

all resampled to 90 m spatial resolution using the nearest neighbour resampling method. 225 

 

3.4 Global Forest Canopy Height 

The global forest canopy height (available at https://glad.umd.edu/dataset/gedi/, last access 17 May 2023) is a 

global dataset developed by combining the Global Ecosystem Dynamics Investigation (GEDI) lidar forest 

structure measurement and Landsat analysis-ready data time series (Potapov et al., 2020). GEDI is a new 230 

spaceborne lidar instrument onboard the International Space Station collecting data on the vegetation structure 

since April 2019 (Dubayah et al., 2020a). The spatial resolution of the dataset is 30  m providing the global forest 

canopy height map for the year 2019 in WGS84 reference system. The dataset covers zones between 54°N and 

52°S globally and then we use it over the CRB. For more details on the dataset, we refer to Potapov et al. (2020). 

 235 

3.5 Lake water storage anomaly  

Over the largest lakes of the CRB, time series of monthly water storage anomaly for Lakes Bangweulu, Kivu, 

Mweru, Tanganyika, Upemba (see Fig. 1 for their locations; Fig. S2 for their time series) are estimated using 

surface water extent and water level time series obtained from HydroSat database (accessible 

at http://hydrosat.gis.uni-stuttgart.de/ [Tourian et al. 2022]). After collecting the simultaneous lake water area and 240 

https://glad.umd.edu/dataset/gedi/
http://hydrosat.gis.uni-stuttgart.de/
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height measurements, the empirical relationship between lake surface water level and area is developed. This 

model represents the bathymetry of the lake for the part which is captured by remote sensing observations. By 

assuming that the lake has a regular morphology and a pyramid shape between two consecutive measurement 

epochs, the lake water level-area-storage model is developed. Finally, time series of lake water storage anomaly 

are calculated using the developed model and lake water level or surface extent measurements.    245 

 

3.6. Auxiliary data 

3.6.1 In situ river discharge  

We used the monthly time series of historical and contemporary observations of in situ river discharge located at 

the outlet of five sub-basins (see Fig. 1 for their locations and Table 2 for their characteristics) obtained from the 250 

Congo Basin Water Resources Research Center (CRREBaC, https://www.crrebac.org/), and from the 

Environmental Observation and Research project (SO-HyBam; https://hybam.obs-mip.fr/fr/, last access: 17 May 

2023). 

 

3.6.2 Rainfall  255 

We used precipitation estimates from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version 2.8 

(V2.8). MSWEP is a global precipitation product with a spatial resolution of 0.1° at 3-hourly temporal resolution 

(also available at daily scale), covering the period from 1979 to present in near real-time. MSWEP precipitation 

estimates are derived by optimally merging multiple precipitation data sources, such as gauge, satellite, and 

reanalysis estimates (Beck et al., 2019a). The latest MSWEP version (V2.8) includes several changes compared 260 

to its previous version (V2.2). Among the major updates, in addition to near real -time (NRT) estimates, it also 

features new data sources that were defined based on their superior performances. 

The historical MSWEP V2.8 considers i) one model-based precipitation product: European Centre for Medium-

Range Weather Forecasts (ECMWF) ReAnalysis 5 (ERA5); ii) two satellite-based precipitation products: the 

Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm and the Gridded Satellite (GridSat) data; and 265 

iii) gauge observations from various sources: the Global Historical Climatology Network-Daily (GHCN-D), the 

Global Summary of the Day (GSOD) databases, and several national databases. On the other hand, MSWEP V2.8 

NRT merges i) two model-based precipitation products: ERA5 and National Centers for Environmental Prediction 

(NCEP) Global Data Assimilation System (GDAS) Analysis; and ii) two satellite-based precipitation products: 

Global Satellite Mapping of Precipitation (GSMaP) and IMERG. MSWEP was globally and regionally assessed 270 

and it exhibits realistic spatial precipitation patterns in frequency, magnitude, and mean (Beck et al., 2017; Beck 

et al., 2019b). MSWEP V2.8 is available via http://www.gloh2o.org. 

 

3.6.3 Total Water Storage Anomaly from the Gravity Recovery and Climate Experiment mission 

The Gravity Recovery and Climate Experiment (GRACE) is a joint NASA and German Aerospace Center (DLR) 275 

mission launched in March 2002 (Tapley et al., 2004) and, together with its successor GRACE Follow-On 

(GRACE-FO) launched in 2018 (Tapley et al., 2019), provides estimates of changes in water storage at the basin 

scale. For the analysis in this study, we used data from GRACE/GRACE-FO Mascon data available 

https://hybam.obs-mip.fr/fr/
http://www.gloh2o.org/
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at http://grace.jpl.nasa.gov (Wiese et al., 2016,2018). The mascon data provides surface mass changes with a 

spatial sampling of 0.5 degrees in both latitude and longitude (Watkins et al., 2015). From this dataset, we obtained 280 

time series of Terrestrial Water Storage Anomaly (TWSA) over the CRB through area weighted aggregation of 

those grid cells in basins. 

 

4 Methods 

In order to estimate SWS variations over the CRB, two approaches are used (Figure 2): a) the multi-satellite 285 

approach following the methodology of Frappart et al. (2008, 2011) and b) the hypsometric curve approach 

following the methodology of Papa et al., (2013) and Salameh et al., (2017).  

 

4.1 Multi-Satellite Approach 

The multi-satellite approach (Fig. 2a) consists of the combination of the SWE and satellite-derived SWH over 290 

inland water bodies (rivers, lakes, reservoirs, wetlands, and floodplains), generally derived from radar altimetry 

over a common period of availability for both datasets (Frappart et al., 2008, 2011; Becker et al., 2018; Papa and 

Frappart, 2021). Therefore, this complementarity of multi-satellite observations offers the possibility to quantify 

SWS changes and water volume variations in a watershed. SWE and SWH used in th is study are respectively 

from GIEMS-2 and the family of spaceborne radar altimeters with 35 days repeat cycle (hereafter ERS-2, ENV, 295 

and SRL). Their common period of availability is 1995-2015. 

We summarize in the next sections the two-step methodology and, for more details, we refer to Frappart et al. 

(2008, 2011, 2012, 2019).  

 

4.1.1 Monthly maps of surface water level anomalies 300 

Monthly maps of water level anomalies of 0.25° spatial resolution referenced to the EGM2008 geoid are derived 

by combining GIEMS-2 and the combined long-term time series of ERS-2_ENV_SRL (1995-2015) satellite-

derived water levels. For each given month of the water levels, these are linearly interpolated over the GIEMS-2 

grid and the elevation of each pixel is provided with reference to a map of minimum surface water levels estimated 

over 1995–2015 using the principle of the hypsometric curve approach between SWH from radar altimetry and 305 

SWE from GIEMS-2 to take into account the difference of altitude in each cell area of GIEMS-2. (See Frappart 

et al., 2012 for more details).  

4.1.2 Monthly time series of surface water storage variations 

Following Frappart et al. (2012, 2019), the time variations of SWS are computed at the basin scale as  

𝑉SW(t) = 𝑅𝑒
2∑𝑗𝜖𝑆 𝑃(𝜆𝑗,𝜑𝑗 ,t)(h(𝜆𝑗,𝜑𝑗 ,t) – ℎ𝑚𝑖𝑛(𝜆𝑗,𝜑𝑗 )) cos (𝜑

𝑗
)ΔλΔφ                                                                   (1) 310 

where  𝑉SW is the volume of surface water, 𝑅𝑒 is the radius of the Earth (6 378 km),  𝑃(𝜆𝑗,𝜑𝑗 ,t), h(𝜆𝑗,𝜑𝑗 ,t), and 

ℎ𝑚𝑖𝑛(𝜆𝑗,𝜑𝑗 ) are respectively, the percentage of inundation, the water level at time t, and the minimum of water 

level at the pixel (𝜆𝑗,𝜑𝑗), and Δλ and Δφ are respectively, the grid steps in longitude and latitude.  

The maximum error on the volume variation is estimated as follows:  

http://grace.jpl.nasa.gov/
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𝛥𝑉𝑆𝑊,𝑚𝑎𝑥  ≤ 𝛥𝑆𝑚𝑎𝑥𝛿ℎ𝑚𝑎𝑥 + 𝑆𝑚𝑎𝑥Δ (𝛿ℎ𝑚𝑎𝑥)                                                                                                       (2) 315 

where  𝛥𝑉𝑆𝑊,𝑚𝑎𝑥 is the maximum error on the water monthly volume anomaly, 𝑆𝑚𝑎𝑥 is the maximum monthly 

flooded surface, 𝛿ℎ𝑚𝑎𝑥 is the maximum water level variation between two consecutive months, 𝛥𝑆𝑚𝑎𝑥 is the 

maximum error for the flooded surface, and Δ (𝛿ℎ𝑚𝑎𝑥) is the maximum error for the water level between two 

consecutive months.  

Note that the volume of SWS variations in a given basin is the sum of the contributions of the water storage 320 

contained in floodplains, wetlands, rivers, and small lakes. For larger lakes, as mentioned previously, estimates 

of SWS are complementarily obtained by the HydroSat database (Tourian et al. 2022). Therefore, the water 

storage analysis takes into account variations in floodplains, wetlands, rivers, and lakes.  

  

4.2 Hypsometric Curve Approach Using Digital Elevation Models 325 

In complement to the multi-satellite approach, we also used the hypsometric curve approach that consists of the 

combination of SWE and DEM-based topographic data. Following Papa et al. (2013), we summarize here the 

four-step process (Fig. 2b) to estimate SWS, using as example the combination of GIEMS-2 SWE and FABDEM 

topography resampled at 90 m:  

 330 

4.2.1 Establishment of the hypsometric curve (area – elevation relationship) 

For each GIEMS-2 pixel (Fig. 3; left column), we first derived the cumulative distribution function of elevation 

values within the corresponding FABDEM subset (Fig. 3; center column). For each GIEMS-2 pixel, over the 

CRB, this corresponds to ~95 000 elevation points falling within the satellite-derived SWE pixel, from which the 

hypsometric curve or curve of cumulative frequencies is established. It is equivalent to the distribution of elevation 335 

values in each 773 km2 pixel (with 773 km2 of flood coverage at the abscissa convert into percentage 100%) sorted 

in ascending order to represent an area – elevation relationship (Fig. 3; right column).  

 

4.2.2 Correction of the hypsometric curve 

To avoid the overestimation of SWS at the pixel level from the  unrealistic amplitude, this step corrects the 340 

behavior of the FABDEM hypsometric curve (Fig. 4). For each GIEMS-2 pixel, the established area- elevation 

relationship enables us to derive the elevation amplitude (i.e., Similar to the amplitude of SWH) from the 

corresponding difference between the average annual minimum and the average annual maximum of SWE over 

the period 1992-2015. The mean maximum amplitude of SWH over the CRB varies between 1.5 to ~7.5 m (see 

Fig. 5 of Kitambo et al., 2022a). In most cases (~90% of GIEMS-2 pixels), the elevation amplitude derived from 345 

the difference between the average minimum and maximum provides values that satisfactorily match the range of 

the SWH amplitude. Often, these realistic values correspond on the FABDEM hypsometric curve to the 

percentage of flood coverage representing the main channel or floodplains (lower part of hypsometric curve) with 

a smooth increase of slope (as in Fig. 4a and g). However, Fig. 4 also points out that some elevation amplitudes 

(from ~10% of GIEMS-2 pixels) are above the range of 1.5 to ~7.5 m. These pixels therefore present unrealistic 350 

amplitude as compared to the range of previous findings over the CRB that can lead to the overestimation of SWS 

at the pixel level (Fig. 4c and d). Usually, these higher values are localized above 20% of flood coverage.     



 

10 

For this, following Papa et al. (2013), we propose a simple procedure to correct the behavior of FABDEM 

hypsometric curve exceeding the range of 1.5 to ~7.5 m of elevation amplitude. For each percent increment of 

flood coverage area, if the corresponding value of elevation belongs to a 5% window of 773 km2 pixel (i.e., ~35 355 

km2) where the standard deviation (STD) of elevation is below 0.7 m threshold, the elevation value is kept. 

Conversely, if the elevation value corresponding to the percent increment of flood coverage belongs  to a window 

in which the STD is above 0.7 m, the elevation value is replaced by the fitted value based on a  simple linear 

regression analysis using the two previous elevation values of the hypsometric curve. For instance, a given 

elevation value corresponding to 8% of flood coverage belonging to a window with STD (i.e., calculated using 360 

values at 8, 9, 10, 11, and 12%) greater than 0.7 m, will be replaced by the fitted value calculated using the simple 

linear regression equation obtained from the values at 6 and 7%. The next STD will be computed with values of 

elevation at 9, 10, 11,12, and 13%, and so on.  

Several attempts of correction with different STD values ranging from 0.3 to 1.1 m were performed (as shown in 

Fig. S3 as supplementary material) and the STD 0.7 m was chosen due to the realistic comparisons with the 365 

variations of surface water heights from altimetric VS. This value is also in agreement with the one chosen for the 

Amazon River basin (Papa et al., 2013). 

Note that there is a non-significant percentage of pixels (~1%) for which, the hypsometric curve correction results 

in a slight increase of elevation amplitudes instead of a decrease (Fig. S4, in supplementary materials). However, 

these pixels generally provide acceptable estimates of SWS, without unrealistic overestimations.  370 

Note also that, beside this correction, the hypsometric curve obtained from ASTER and ALOS showed roughness 

in their curve (Fig. S5, in supplementary materials), which was smoothed out using Savitzky-Golay filter 

embedded in SciPy API package in python before applying the correction described above.  

 

4.2.3 Establishment of the area – surface water storage relationship 375 

The hypsometric curve representing the area-elevation relationship is then converted into an area-SWS 

relationship by estimating the surface water storage associated with an increase of the pixel fractional open water 

coverage (with an increment of 1%) by filling the hypsometric curve from its base level to an upward level. Here 

we used three formulas for comparison purposes: 

 380 

V(α) = ∑𝛼
𝑖=1 (𝐻𝑖−𝐻𝑖−1) ∗ 𝑆𝑖                                                                                                                                                                                                     (3) 

V(α) = ∑𝛼
𝑖=1 (𝐻𝑖−𝐻𝑖−1)∗

𝑆𝑖+𝑆𝑖−1

2
                                                                                                                      (4) 

V(α) = ∑𝛼
𝑖=1

(𝐻𝑖−𝐻𝑖−1)

3
∗ (𝑆𝑖 + 𝑆𝑖−1+√𝑆𝑖 ∗ 𝑆𝑖−1)                                                                                               (5)   

where V is the surface water storage in km3 for a percentage of flood inundation α. Note that the incrementation 

is on a step of 1%. S is the 773 km2 area of GIEMS-2 pixel, and H represents the elevation (in km) for a percentage 385 

of flood inundation α given by the hypsometric curve.  

Three formulas, (3), (4), and (5) used to retrieve the estimation of SWS from the hypsometric curve approach are 

compared in Figure 5. It shows that there is a slight difference in the SWS changes of about one hundredth after 

the decimal point between the three formulas (3), (4), and (5) except for Fig. 5d and g where the difference is of 

one-tenth after the decimal point. Overall, the difference seems negligible, and we decided to use only the formula 390 
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(5) representing a volume of a trunk or regular truncated pyramid for SWS computation based on the hypsometric 

curve approach. 

 

4.2.4 Monthly time series of surface water storage variations 

Finally, the hypsometric curve of the area-SWS relationship is combined with the monthly variations of SWE 395 

from GIEMS-2. This enables thus the estimation of SWS for each month by intersecting the hypsometric curve 

value with the GIEMS-2 estimates of pixel coverage for that month (Fig. 5). Note that with such method, the 

lowest level of storage refers to the level zero, determined by the minimum of SWE from GIEMS-2 observations 

for each pixel, from which the variation of the storage is started to be accounted for. Thus, the estimated SWS 

represents the increment above the minimum storage. 400 

It is worth noting that, in the attempt of determining the extreme low storage values of exceptional drought years, 

it can be a potential source of uncertainties in a sense that DEM’s values should have produced credible elevation 

data for those periods at the lower part of the hypsometric curve. Such information is unfortunately difficult to 

assess. 

 405 

5 Results and validation 

5.1 Distribution and variability of surface water storage across the Congo River basin  

Figure 6 presents the characteristics of the SWS temporal dynamics at CRB scale (anomaly time series versus its 

long-term mean, deseasonalized anomaly, and annual cycle for SWS aggregated for the entire CRB). It shows all 

SWS estimates computed with both the multi-satellite (for 1995-2015) and the hypsometric curve (for 1992-2015) 410 

approaches from the use of the four DEMs (ALOS, ASTER, MERIT, and FABDEM). 

Figure 6a shows, for the very first time, the long-term month-to-month variations of the CRB’s SWS over a period 

of 24 years. It shows a strong seasonal cycle of SWS over the CRB showing a comparable behavior in the peak-

to-peak SWS variations from both approaches. The SWS amplitude ranges from ~50 to ~150 km3 over the years, 

showing a large year-to-year variability. The bi-modal patterns that characterizes the hydrological regime of the 415 

CRB’s (Kitambo et al., 2022a), linked to the variability of the intertropical convergence zone (Kitambo et al., 

2022a), is well depicted in the SWS estimates.  

All SWS estimates from the different DEMs show fair agreement in their variations in between them (Fig. 6a). 

However, we observed that SWS from ASTER (violet color) tends to overestimate the SWS at the first peak (i.e., 

spanning over August-February) along the time series.  420 

Figure 6b displays the deseasonalized anomaly (obtained by subtracting the mean monthly values over the 

considered period, 1992-2015, or 1995-2015 from individual months) of CRB’s SWS. A similar observation about 

the matching of SWS anomaly from different approaches and DEMs products is observed.  

 

These SWS estimates also show a substantial interannual variability at basin scale, especially in  terms of annual 425 

maximum and minimum, pointing out extreme events in terms of droughts and floods that recently affected the 

CRB. Figure 6b reveals interesting and strong anomaly signals such as the large positive peaks observed in 1997-

1998 and 2006-2007. These can be related to the positive Indian Ocean Dipole (pIOD) events, in combination 

with the El Niño events that occurred in 1997–1998 and 2006–2007 that triggered floods in western Indian Ocean 
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and eastern Africa (Mcphaden, 2002; Ummenhofer et al., 2009; Becker et al., 2018, Kitambo et al., 2022a). 430 

Another major event is the severe drought that occurred in 2005-2006 that is clearly depicted on the CRB’s SWS 

time series anomaly as the minima of the record (Fig. 6b). This is in agreement with Ndehedehe et al. (2019, 2022) 

and Tshimanga et al. (2022) who reported that, in the 1990s and 2000s’s, multi-year droughts in the CRB affected 

a significant part of the Congo basin. This interannual variability is also superimposed to variations at larger time 

scale, from few years to decadal, such as a large increase in SWS anomaly in 1996-1997, followed by a slight 435 

decrease until the minimum that occurred in 2005-2006, before SWS starts to slowly increase again after the 2007 

peak, until 2015. 

Figure 6c shows the CRB’s SWS annual cycle (computed over 1992-2015 and 1995-2015 period for the 

hypsometric and multi-satellite approaches, respectively) revealing a strong seasonal variation. Both approaches 

present a mean annual amplitude of the same order in magnitude (Table 3) with estimates ranging around 80 ± 440 

17, 101 ± 23, 80 ± 20 km3 (respectively from ALOS, FABDEM and MERIT based on the hypsometric curve 

approach), and 70 ± 17 km3 from the multi-satellite approach. These estimates are of the same order of magnitude 

with previous findings over the CRB, i.e., 81 ± 24 km3 as in Becker et al. (2018). As a matter of comparison, the 

mean annual amplitude of SWS from ASTER represents ~11% of the Amazon basin’s SWS mean annual 

amplitude of ~1200 km3, as reported in Papa et al. (2013, 2021).   445 

As observed in Fig. 6a, ASTER’s SWS provides larger estimates, with a mean annual amplitude of ~124 ± 25 

km3 (Table 3). This can be explained by the fact that, among the four DEMs (ALOS, ASTER, FABDEM and 

MERIT), ASTER has a greater vertical error (i.e., 17 m, see Table 1 of Hawker et al., 2019) compared to the 

others and, consequently, this can impact the elevation amplitude (derived at step 2 of section 4.2 used to calculate 

the SWS variations (step 3 of section 4.2). 450 

Table 3 presents also the statistics errors comparing the FABDEM’s SWS dataset to other estimates and reinforce 

the difference highlighted in SWS magnitude between different approaches and DEMs. Note that trees and urban 

areas biases are only removed from FABDEM, and thus it seems to be the most adequate DEM in representing 

hydrology processes (Hawker et al., 2022). ALOS and MERIT have provided small errors as reflected in the mean 

absolute error (MAE) (9 and 5 km3) and the root mean squared error (RMSE) values (11 and 7 km3) compared to 455 

values greater than 15 km3 of MAE and above 20 km3 of RMSE from multi-satellite approach and ASTER DEM.  

At the basin scale, Fig. 6c clearly depicts a double peak, with a SWS maximum reached in November for the first 

peak and in April for the second peak. In comparison with the annual cycle of GIEMS-2 SWE (Fig. 7c of Kitambo 

et al., 2022a), the first peak of SWS maximum is in phase with the maximum SWE, while for the second peak 

there is a one-month delay, with maximum SWE occurring in March. This can be explained by the non -linear 460 

relationship between SWE and SWS through the hypsometric curve approach. 

It is important to note that SWS from FABDEM and MERIT shows a very good fit at all seasons whereas ALOS 

slightly underestimates the storage at the second peak. Contrary to others, ASTER shows a peculiar behavior with 

its SWS largely underestimating and overestimating the storage at the second and first peak of the hydrological 

regime, respectively.  465 

In agreement with the results from the SWS hypsometric curve approach, SWS from the multi-satellite approach 

also points out the maximum SWS in November and April for the first and second peaks. However, the dynamics 

of SWS from the multi-satellite approach differs from the others over the period from February to May. Over that 

period of time, the hydrological regime of the basin is more controlled by the southeast region, especially by the 



 

13 

Bangweulu and Upemba Lake area (Kitambo et al., 2022a). In this region, the spatial distribution of VSs is not 470 

sufficient enough (Fig. S1, in supplementary materials) to obtain a very accurate representation of the temporal 

variations of the SWS even if the mean annual cycle variations of some VSs from ENV and SRL were used to 

account for the water level over the entire 1995-2015 period. This might explain in part the different dynamics 

observed in the SWS variations over February-May in the southeastern region. 

 475 
In parallel to Fig. 6, Fig. 7 presents the spatial distribution of SWS dynamics (mean annual, Standard Deviation 

(STD), mean annual maximum, and average month of the maximum) for the entire CRB. In the following parts 

of the paper, the estimates obtained with the FABDEM DEM will become our reference and we will use them to 

display the results. This is justified by FABDEM DEM topographic characteristics and properties which makes it 

the closest to a DTM. The estimates obtained with the other DEM will be displayed in Supplementary Material 480 

(Fig. S6).  

In agreement with the spatial distribution of SWE across CRB (Fig. 6 of Kitambo et al., 2022a), SWS (Fig. 7a 

and b) shows realistic spatial patterns along the Congo River and the Cuvette Centrale and depict quite well the 

other main structures of the basin, for instance, the main tributaries (e.g., Sangha, Ubangui, Luvua, Luap ula, 

Lualaba Rivers) along with their large wetlands and floodplains. These are characterized by a strong variability 485 

in SWS (Fig. 7c and d).  

Higher values of SWS ranging from 0.3 to 0.6 km3 in a 773 km2 dominate the extensive wetlands and floodplains 

such as the Cuvette Centrale and in the southeastern part of the basin (Upemba and Bangweulu region). These 

regions display a large variability as well (in terms of the STD, Fig. 7c and d) and are characterized by maximum 

values of surface water storage generally greater than 0.6 km3 per pixel of 773 km2 (Fig. 7e and f).  490 

The heart of the Cuvette Centrale as well as the lake Mai-Ndombe (in the Kasai sub-basin) and a large part of the 

main channel of the Congo (up to Lomami River) present the maximum values of the SWS change in the basin. 

Same observation is done for the lakes in the Upemba depression (e.g., Upemba Lake), Mweru and Bangweulu. 

These maximum values are reached in September-October in the upper part of the Cuvette Centrale and 

November-December in their lower part (Fig. 7g and h). In the Lualaba sub-basin, the average month of the 495 

maximum of SWS is January-February, while in other parts, such as lake Mweru and the east part of Bangweulu, 

with its large grassy swamps and floodplains, it recorded in March-April. Conversely to the general trend in the 

Cuvette Centrale, the region of lake Tumba and Mai-Ndombe reached their maximum of SWS in July-August.  

 

In general, the results from the hypsometric curve (Fig. 7, left column) and multi-satellite (Fig. 7, right column) 500 

approaches are quite similar in terms of spatial distribution, for both magnitude and variability of the changes. 

Nevertheless, as expected, the multi-satellite dataset approach shows a limitation in terms of spatial distribution 

caused by the reduced availability of the combined long-term VSs in some regions. For instance, there is a lack 

of observations on the east part of the Tanganyika Lake and in the Bangweulu region, where the spatial distribution 

of SWS from the multi-satellite approach is smaller than that of the FABDEM hypsometric curve approach. This 505 

is mainly explained by the sparse availability of long-term satellite-derived (ERS2-ENV-SRL) time series in that 

region, leading to less distributed SWS estimates in these regions.  

On the other hand, SWS variations from hypsometric curve approach also present limitations, mainly on small 

lakes and around large lakes where there are almost no variations in elevation from the DEMs leading to flat 
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hypsometric curves, and therefore to the computed storage to be of zero changes. This is for instance the case 510 

around Lake Kivu in the Lualaba sub-basin. In this case, the SWS change of the lake is then added to the dataset 

using the Lake Water Storage Anomaly computed independently (see Data desc ription in section 3.5).  

Finally, for comparison purposes, Fig. S6 (in supplementary materials) shows the same analysis in terms of spatial 

distribution and variability of SWS across the basin for the other estimates based on the hypsometric curve 

approach (i.e., ALOS, see Fig. S6 left column; ASTER, see Fig. S6 middle column; and MERIT, see Fig. S6 right 515 

column). In general terms, results are consistent between one another. The pattern of SWS in terms of the 

distribution and order of magnitude of the mean annual (Fig. S6a, b, and c), variability in terms of STD (Fig. S6d, 

e, and f), mean annual maximum (Fig. S6g, h, and i) and average month of the maximum (Fig. S6j, k, and l) 

between the three DEMs and FABDEM are generally similar although results from ASTER DEM (Fig. S6b, e, 

and h) underestimate the storage (i.e., values ranging between 0.15-0.45 km3) compared to other DEMs (i.e., 520 

values greater than 0.6 km3) in the Bangweulu-Upemba region (e.g., Lake Bangweulu, Lake Upemba). 

At the sub-basin scale, the mean annual amplitude for the five sub-basins is provided as follows. Middle-Congo 

is the sub-basin with the large amplitude (71 ± 15 km3), associated with the strong variations of SWS anomaly 

observed in the Cuvette Centrale. It is followed by Lualaba sub-basin with 59 ± 15 km3 due to the presence of 

major lakes (Kivu, Tanganyika, Mweru, Bangweulu) and large wetlands that show large variability and are 525 

characterized by maximum values of surface water storage generally greater than 0.6 km3 per pixel of 773 km2. 

Sangha and Kasaï show quite similar annual amplitude (i.e., respectively of 24 ± 5 and 24 ± 6 km3). Both sub-

basins are overlapped at their mouth (i.e., downstream part) by the Cuvette Centrale. Among the five sub-basins, 

Ubangui is the one with the smallest mean annual amplitude (13 ± 4 km3) although it is among the two northern 

sub-basins (i.e., Ubangui and Sangha) with higher satellite-derived SWH mean maximum amplitude (see Fig. 5a 530 

of Kitambo et al., 2022a). As observed for Sangha and Kasaï subbasins, Ubangui subbasin is also occupied by its 

downstream part by the Cuvette Centrale (Fig. 1). 

 

5.2 Evaluation against independent datasets 

 535 
In order to evaluate the monthly estimates of the large-scale SWS over the CRB, we compare, at the basin and 

sub-basin levels, their seasonal and interannual variability against other independent hydrological variables such 

as precipitation data from MSWEP V2.8 and in situ discharges. For clarity purpose, only the SWS result from the 

hypsometric curve approach with FABDEM and from the multi-satellite approach are displayed and discussed 

here. 540 

At the basin level, Fig. 8 presents the comparison of the aggregated normalized SWS anomaly variation over the 

entire basin against the normalized precipitation anomaly and the in situ normalized discharge anomaly at the 

outlet of the basin (Brazzaville/Kinshasa station, see Table 2). The normalized anomalies here are estimated by 

subtracting the mean value of the time series from individual months and by dividing the obtained series by the 

STD of the original time series). As a complement, we report in Table 4, the maximum linear Pearson correlation 545 

coefficient, along with their lag, calculated between the aggregated normalized SWS anomaly variation, the 

normalized precipitation anomaly, and the in situ normalized discharge anomaly, at basin and sub -basin scales.  

Figure 8a presents a fair agreement between the SWS and the other two hydrological variables, with a maximum 

correlation coefficient r of 0.56 (lag = 0; p value < 0.01) between SWS and precipitation variations. A similar 

correlation coefficient (r = 0.57 with a 0-month lag; p value < 0.01) is found between normalized SWS anomaly 550 
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and in situ normalized discharge anomaly. The deseasonalized normalized anomaly (acquired by subtracting the 

mean monthly values over the considered period, 1992-2015 or 1995-2015 from individual months and dividing 

by the STD of the raw series) (Fig. 8b) show correlation coefficient of r = 0.52 (lag = 0; p value < 0.01) and r = 

0.12 (lag = 0; p value < 0.05) respectively between SWS versus in situ discharge and SWS versus precipitation.  

Additionally, we also perform a comparison with previous estimates of SWS over the Congo basin from Becker 555 

et al. (2018), estimated using the multi-satellite approach and available over the period 2003-2007. The assessment 

with SWS anomaly from FABDEM shows a good agreement (Fig. 8a), with similar amplitude, with a maximum 

correlation coefficient of r = 0.73 (lag = 0; p value < 0.01).   

At the seasonal time-scale, Fig. 8c reveals for the first peak (i.e., August-February) that SWS anomaly reaches 

their maximum in November, one month before the maximum of the river normalized discharge anomaly 560 

(December) and after the maximum of normalized precipitation anomaly data (October). Same observation is 

made in terms of the temporal shift for the second peak (i.e., March-July), where the maximum of SWS anomaly 

occurs in April and one month later for normalized discharge anomaly and one month before for normalized 

precipitation anomaly respectively in May and March.    

Figure 9 displays the comparison at the basin level between the aggregated normalized SWS anomaly and TWSA 565 

from GRACE. Both variables, show a similar interannual variability during the common period of availability of 

data (i.e., 2002 to 2015) presenting a fair correlation of r = 0.84 (lag = 1; p value < 0.01; Fig. 9a). It is worth to 

mention as well that both datasets capture the bi-modal patterns. Figure 9b presents the deseasonalized normalized 

anomaly for the two variables (r = 0.4; lag = 0; p value < 0.01), showing quite similar variations, especially in the 

long-term variability. We also notice the higher magnitude of the normalized SWS anomaly as compared to the 570 

normalized TWSA. At the seasonal time-scale, Fig. 9c reveals a similar behavior, with the two peaks depicted in 

the two variables, one in November-December and one in April. The lowest level of the SWS happens in July that 

is one month ahead of TWSA minimum.Figure 10 presents the same comparison as done in Fig. 8 but at the sub-

basin level (considering Ubangui, Sangha, Middle-Congo, Kasaï, and Lualaba sub-basins, see Fig.1). The seasonal 

variations of all sub-basins are provided in Fig. 10 (right column). The outlet of Kasaï and Lualaba sub-basins 575 

provides historical observations (i.e., data before the 1990s), thus, the comparison with its in situ normalized 

discharge anomaly time series was integrated only at the annual cycle.  For Ubangui, Sangha, and Lualaba sub-

basins, the maximum linear correlation coefficient is not significant between normalized SWS anomaly and 

normalized precipitation anomaly variations at the interannual level and their associated anomaly (Figs. 10a, b, d, 

e, m, and n, Table 4). This could be associated to the bi-modal dynamics observed in the precipitation data whereas 580 

the SWS variations do not show that behavior. Becker et al. (2018), using similar datasets (GIEMS-1 for SWE 

and VS from ENVISAT), reported the same observation between precipitation data with a bi-modal patterns and 

SWE with uni-modal patterns (Fig. 4 of Becker et al., 2018). Another reason could be that, for Ubangui and 

Sangha, SWS is mainly function of discharge variations, while for the Lualaba sub-basin, that encompasses many 

lakes and floodplains, the various processes and their link for instance with evaporation lead to an insignificant 585 

precipitation-SWS correlation. Additionally, one can observe a negative lag between normalized SWS anomaly 

and normalized precipitation anomaly for Ubangui and Lualaba sub-basins which is not physically acceptable 

since we except positive temporal shift between SWS and precipitation. This is probably due to the fact that SWS 

show uni-modal pattern while precipitation shows bi-modal pattern. Nevertheless, the comparison between 

normalized SWS anomaly versus normalized discharge anomaly for Ubangui and Sangha, except for Lualaba 590 
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sub-basin, shows fair correlation coefficient (r > 0.7; p value < 0.01) at the interannual time -scale (Fig. 10a and 

d). Their related deseasonalized normalized anomalies (Fig. 10b and e) presents lower values of correlation 

coefficients (r < 0.4; p value < 0.01). Regarding Middle-Congo and Kasaï subbasins (Fig. 10g and j), a maximum 

linear correlation coefficient is respectively of r = 0.32 and r = 0.69 (lag = 0; p value < 0.01) between normalized 

SWS anomaly and normalized precipitation anomaly. Their associated deseasonalized normalized anomaly (Fig. 595 

10h and k) does not show significant correlation coefficient. In contrast to this, for Middle-Congo, the comparison 

between SWS and discharge provides moderate correlation coefficient for both interannual and deseasonalized 

anomaly variations (r > 0.5 with a delay lag of 1-month; p value < 0.01). In accordance with other results (see 

Fig. 10h of Kitambo et al., 2022a), the Middle-Congo appears to be the main sub-basin for which the variability 

of the normalized discharge anomaly at the outlet Brazzaville/Kinshasa stat ion is fairly related (~35%) to the 600 

variations of normalized SWS anomaly in the Cuvette Centrale region due to its significant correlation coefficient 

of r = 0.58 between the deseasonalized normalized anomaly of both SWS and discharge. Northern and the Middle-

Congo sub-basins reach their SWS anomaly’ maximum in November (for Sangha and Middle-Congo, fig. 9f and 

i) and October (for Ubangui, Fig. 10c), and this is in phase with the maximum of the normalized discharge 

anomaly and a backward temporal shift of 1 month with the normalized precipitation anomaly. Comparatively to 605 

northern sub-basins, southern sub-basins (Kasaï and Lualaba), for the period January to May, reach their SWS 

anomaly’ maximum in March (Fig. 10l and o) that is in phase with the occurrence of the maximum of normalized 

precipitation anomaly. The maximum of normalized discharge anomaly occurs two months later in May for 

Lualaba and one month later for Kasaï. In contrast to the other sub-basins, Kasaï and Middle-Congo have depicted 

the bi-modal patterns in SWS anomaly variations. For Middle-Congo, the first peak is reached in November and 610 

the second in May while for Kasaï, the first peak occurs in December and the second peak with a steadily evolution 

occurs in March and May. Similar results were observed in the Cuvette centrale by Frappart et al. (2021a). 

 

The temporal patterns in Fig. 8 and 10 follow alternatively wet and dry events associated with large-scale climatic 

phenomena, for all dataset (SWS, precipitation and discharge). A focus on the Lualaba and Kasai deseasonalized 615 

normalized anomaly of SWS reveals that there are the two main sub-basins significantly impacted (large positive 

anomaly in Fig. 10k and 10n) by the major flood event triggered by the positive Indian Ocean Dipole in 

combination with the El Niño event that characterized the period 1997-1998. Conversely, recent studies using 

hydro-meteorological datasets have shown that some parts of the CRB are subjects to a long-term drying trend 

over the past decades (Hua et al., 2016; Ndehedehe et al., 2018). The droughts that affected large areas of CRB 620 

in recent years are amongst the most severe ones in the past decades (Ndehedehe et al., 2022), including the large 

anomalous event of the 2005-2006 drought (Fig. 8). This is further investigated below. 

 

6 Application: the spatio-temporal dynamics of SWS during the 2005-2006 drought 

 625 
SWS estimates are essential in the characterization of large-scale, extreme climate events such as droughts and 

floods (Frappart et al., 2012; Pervez and Henebry, 2015, Papa et al., 2021). Here, we investigated the spatial 

signature and distribution of the major drought that occurred in the end of 2005 and ear ly 2006 across the CRB 

(Ndehedehe et al., 2019, 2022). During that period, SWS anomaly was at its lowest level at basin-scale (Fig. 6b). 

The spatial patterns of this drought are further illustrated in Fig. 11 using the FABDEM estimates. The anomaly 630 

of SWS from FABDEM in the end 2005 and early 2006 is estimated here by subtracting the November-December-
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January mean values over 1992-2015 from the maximum value between November 2005 to January 2006 and by 

dividing the obtained value by the November-December-January mean values.  

Figure 11 evidences that during that period the major part of the basin was affected by large negative anomalies 

of SWS, with values sometimes reaching a 50% deficit as compare to their long-term average. It clearly shows a 635 

widespread severe drought across the basin (< - 40% of the mean maximum), even if some parts of the Oubangui 

sub-basin and Lukenie Rivers in the north of Kasaï sub-basin are relatively less affected (> - 10% of the mean 

maximum of SWS). Figure 11 shows the large drought spatial signature of the southeastern wetlands/floodplains 

(e.g., Bangwelo, Upemba) in the Lualaba sub-basin, with SWS estimated at more than -40% of the mean 

maximum during that period. Notably, the heart of the Cuvette Centrale displays a stronger negative signal in 640 

terms of SWS. The hydrological dynamic in the Cuvette Centrale might explain that the mainstream that receives 

water from all adjacent wetlands and streams experiences a less intense impact of drought (Lee et al., 2011).  

This aligns with the previous findings that large parts of the CRB found to be extensively affected (Ndehedehe et 

al., 2019) and it is confirmed by analyzing the monthly mean spatial distribution of MSWEP precipitation anomaly 

(Fig. 12) around that period of time. Figure 12 shows the monthly mean spatial distribution of MSWEP 645 

precipitation anomaly at 0.25° spatial resolution from the period September 2005 to February 2006 based on the 

1992-2015 climatology. Over the six months, November 2005 to January 2006 are the most impacted months 

(Fig. 12c, d, e). November 2005 (Fig. 12c) displays a large spread negative anomaly all over the basin whereas 

December 2005 (Fig. 12d) and January 2006 (Fig. 12e) show severe negative anomalies only in the southern part 

of the basin, in accordance with the spatial distribution of SWS across the basin as described previously.  However, 650 

some parts of the Oubangui sub-basin and Lukenie Rivers in the north of Kasaï sub-basin seem to be relatively 

less affected by the drought in terms of SWS, even if large precipitation negative anomaly is observed of these 

regions. Investigating the climatic and hydrological drivers of these anomalous events in CRB is far beyond the 

scope of the present study, but our results point out to the capability of this new long-term estimates of SWS to 

be used in future studies. 655 

 

7 Data availability 

The SWS estimates from the multi-satellite approach (1995-2015), as well as the hypsometric curves approach 

providing the surface water extent area-height relationships from the four DEMs (before and after the corrections), 

the surface water extent area-storage relationships, along with the four SWS estimates (1992-2005) are publicly 660 

available for non-commercial use and distributed via the following URL/DOI: 

https://doi.org/10.5281/zenodo.7299823 (Kitambo et al., 2022b). 

 

8 Conclusions and perspectives 

In this study, we present an unprecedented dataset of monthly SWS anomaly of wetlands, floodplains, rivers and 665 

lakes over the entire Congo basin during the 1992-2015 period at ~ 0.25o spatial resolution. Two methods are 

employed, one based on a multi-satellite approach and one on a hypsometric curve approach. The multi-satellite 

approach consists of the combination of SWE from GIEMS-2 and satellite-derived SWH from radar altimetry 

(long-term series ERS-2_ENV_SRL) on the same period of availability for the two datasets, here 1995-2015. The 

hypsometric curve approach consists of the combination of SWE from GIEMS-2 dataset and hypsometric curves 670 

obtained from various DEMs (i.e., ASTER, ALOS, MERIT, and FABDEM). Both methods generate monthly 

https://doi.org/10.5281/zenodo.7299823
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spatio-temporal variations of SWS changes across the entire CRB, enabling for the first time the quantification of 

surface freshwater volume variations in the Congo basin over a long-term period (24-year). The SWS computed 

from different approaches, multi-satellite and hypsometric curve, and from different DEMs (ALOS, ASTER, 

MERIT, FABDEM), generally show good agreements between them at the interannual and seasonal scale, with 675 

minor exceptions for SWS variations from ASTER DEM due possibly to its largest vertical error. SWS variations 

from the multi-satellite approach show some limitations due to the spatial distribution of altimetry-derived VSs 

over the basin. The two approaches are complementary: the hypsometric curve approach allows to generate the 

SWS changes over the entire basin with limitation over lakes and in high altitude topography, while the multi-

satellite one can generate SWS variations over lakes but with a spatial constraint on the availability of VSs.  SWS 680 

variations from FABDEM, which is the only DTM among all the DEMs used (i.e., both biases associated with 

trees and building have been removed) is then used to illustrate the capability of the new dataset.  

The temporal variations of SWS satisfactorily depicted the bimodal pattern at the interannual and seasonal scales, 

a well-known characteristic of the hydrological regime of the Congo basin. The mean annual amplitude was 

determined to be 101 ± 23 km³, which, in perspective, represents ~8% o f the Amazon basin’s mean annual 685 

amplitude. The spatial distribution of the SWS has shown a realistic pattern for major tributaries of the Congo 

basin and its analysis showed large SWS variability (e.g., 0.3 to 0.6 km3) over the extensive wetlands and 

floodplains such as the Cuvette Centrale and in the southeastern part (i.e., Bangweulu, Mweru, Upemba) of the 

basin. In the Cuvette Centrale, the maximum SWS values are reached in September-October in the upper part and 

in November-December in the lower part. The new monthly surface water storage has been compared on common 690 

period to the previous estimates over 2003-2007 showing a good agreement and a fair correlation coefficient. 

Furthermore, an evaluation was conducted with independent hydrological variables, precipitation from MSWEP 

dataset and in situ discharges from contemporary and historical observations, showing an overall good 

correspondence among all variables. The estimates of SWS variations also enable to depict the major anomalous 

events related to droughts (e.g., exceptional drought documented in 2005-2006) and floods (e.g., exceptional flood 695 

occurred in 1997-1998). We further map, across the basin, the spatial signature of the widespread drought that 

took place in the end of 2005 and the beginning of 2006, revealing the severity of this particular event on surface 

freshwater store, in agreement with satellite-derived precipitation observations, although the northeast of the 

Cuvette Centrale and some tributaries of the Kasaï River (in the Mai-Ndombe Lake region) were less impacted.  

These unique long-term monthly time series of CRB’s SWS provide the broad characteristic of the variability of 700 

surface water storage anomaly at the basin and sub-basin levels over 24-year in the CRB. It opens new 

perspectives to move toward answering several crucial scientific questions regarding the role of SWS dynamics 

into the hydrological and biogeochemical cycles of CRB. For instance, SWS estimates are a relevant source of 

information to make progress in the understanding of the hydrodynamic processes that drive the exchanges 

between rivers and floodplains, both in terms of freshwater and dissolved and particulate materials. Such datasets 705 

also enable us to explore the link between regional climate variability and water resources, especially during 

extreme events, and can now be used to improve our understanding of hydroclimate processes in the Congo region 

(Frappart et al., 2012). 

Overall, these results from satellite-based observations also confirm the capability and benefits of using Earth 

observations in a sparse gauged basin such as the CRB to better characterize and improve our understanding of 710 

the hydrological science in ungauged basins. The information derived from SWS will therefore be very pertinent 
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as a benchmark product regarding the calibration/validation of the future hydrology-oriented Surface Water and 

Ocean Topography (SWOT) satellite mission,launched  on the 16th of December 2022, which will provide water 

storage variability of water bodies globally (Biancamaria et al., 2016). Additionally, SWS estimates provide a 

unique opportunity for future hydrological or climate modeling and to evaluate regional hydrological models 715 

(Scanlon et al., 2019) that still lack proper representation of surface water storage variability at large scale (Paris 

et al., 2022), especially in major African river basins (Papa et al., 2022).  

Following previous studies (Frappart et al., 2019, Becker et al., 2018), SWS estimates also open new opportunities 

to generate a long-term spatio-temporal variations of sub-surface freshwater through decomposition of the Total 

Water Storage variations as measured by the GRACE/GRACE-FO (Gravity Recovery and Climate Experiment 720 

Follow-On) (Pham-duc et al., 2019). Such understanding of freshwater variations in the continental reservoirs has 

many potentials to better characterize the hydro-climate processes of the region and improve our knowledge on 

the water resources availability in CRB. For instance, SWS estimates are key to determine the total drainable 

water storage of a basin (Tourian et al., 2018, 2022), that provide essential information about the distribution and 

availability of freshwater in a basin. 725 

Finally, since GIEMS-2 and the DEMS used in this study are available globally, our results thus present also a 

new first step toward the development of such SWS databases at the global scale. Furthermore, the proliferation 

of new DEMs that are proper DTMs, and the increasing availability of high-accuracy bare-earth DEMs 

(O’Loughlin et al., 2016; Yamazaki et al., 2017; Hawker et al., 2022) has opened new opportunities to better 

investigate SWS dynamics at the global scale. As highlighted in Papa and Frappart (2021), global SWS estimates 730 

and variations are crucial to understand the role of continental water in the global water cycle and global estimates 

will offer new opportunities for hydrological and multidisciplinary sciences, including data assimilation, land–

ocean exchanges and water management. 
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Figure 1:  The Congo River basin (CRB) and its main subbasins (thin dark line), along with the major rivers and lakes 1100 

(light blue color). The green portion in the central part circled by red line corresponds to the Cuvette Centrale. The 

background topography is derived from the Multi-Error-Removed Improved Terrain (MERIT) digital elevation model 

(DEM). The red triangles display the available in situ gauging stations, with their characteristics reported in Table 2.  
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Figure 2: Schematic representation of (a) the multi-satellite and (b) hypsometric curve approaches algorithms. The 

numbers on the left refer to the sections where the different steps are described.  
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 1110 

Figure 3: Hypsometric curve from FABDEM over the CRB. Left column: Map of FABDEM elevations within a 773 

km2 pixel of GIEMS-2. Middle column: The hypsometric curve from FABDEM, i.e., the distribution of elevation values 

in each 773 km2 pixel sorted in ascending order. Right column: the hypsometric curve from FABDEM providing the  

relationship between the elevation and the inundated area of 773 km2 pixel (as a percentage). The blue (red) line is the 

average minimum (maximum) coverage of SWE observed by GIEMS-2 over 1992-2015. 1115 
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Figure 4: Correction of hypsometric curve from FABDEM by calculating the STD (m) of elevation over 5% flood 

coverage windows (see details of the procedure in section 4.2.2). Black and magenta curves stand respectively for non-1120 

corrected and corrected hypsometric curve. Am_Elev_no_corr (from non-corrected curve) and Am_Elev_corr (from 

corrected curve) are the elevation amplitude derived from the average minimum (blue line) and maximum (red line) 

coverage of surface water extent observed by GIEMS-2 over 1992-2015. (a) to (i) show different pixels of GIEMS-2 in 

which the hypsometric curve is derived.  
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Figure 5: For the same GIEMS-2 pixel as in Fig. 3, the Surface Water Storage profile, i.e., the relationship between 

SWS within each GIEMS-2 pixel and the fractional inundated area of 773 km2 in percentage (abscissa – right ordinate) 

obtained from the area-elevation relationship (abscissa – left ordinate). Magenta, green, orange colors are respectively 

the curve of SWS from the formulas (3), (4), and (5). The grey curve stands for the corrected FABDEM hypsometric 1130 

curve. The blue (red) line is the average minimum (maximum) coverage of surface water extent observed by GIEMS-

2 over 1992-2015. (a) to (i) represent different pixels of GIEMS-2 in which the hypsometric curve is derived. 

 

 

Figure 6: Long-term monthly time series of Congo River Basin’s Surface Water Storage (a) and its deseasonalized 1135 

anomaly (b) obtained from the hypsometric curve approach for 1992-2015 (violet for ASTER, aqua for ALOS, 

limegreen for FABDEM, red for MERIT) and from the multi-satellite approach for 1995-2015 (orange) (c) Annual 

cycles for each SWS estimate, with the shaded areas illustrating the standard deviations around their long -term mean. 
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Figure 7: Spatial characterization of the CRB’s SWS variations from the FABDEM hypsometric curve approach (over 

1992– 2015, left column) and from the multi-satellite approach (over 1995-2015, right column). (a, b): SWS mean 

annual amplitude in km3; (c, d) Standard deviation (STD) in km3, (e, f) mean annual maximum in km3 and (g, h) 

average month of the maximum (in month). 
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Figure 8: Comparison between the monthly aggregated normalized surface water storage anomaly, normalized 

precipitation anomaly over the basin and normalized discharge anomaly variations (at the outlet of CRB, 

Brazzaville/Kinshasa station) (for comparison purposes, SWS, precipitation and discharge were normalized by 1150 

dividing their time series of anomalies by the standard deviation of the raw series). (a) For the entire Congo basin, the 

green and orange line represent respectively the SWS anomaly variations from hypsometric curve (over 1992 -2015, 

from FABDEM) and multi-satellite (over 1995-2015) approaches, the red line shows SWS anomaly estimated by Becker 

et al. (2018) over 2003-2007, the black line is the discharge, the blue line is the normalized precipitation anomaly. (b) 

Deseasonalized normalized anomaly for SWS (green and orange), precipitation (blue), and discharge (black). (c) 1155 

Normalized mean annual cycle for the three variables (except for the SWS), with the shaded areas depicting the 

standard deviations around the SWS anomaly. 

 

 

Figure 9. Comparison between the monthly aggregated normalized surface water storage anomaly and the normalized 1160 

Terrestrial Water Storage Anomaly over the basin (for comparison purposes, SWS and TWSA were normalized by 

dividing their time series of anomalies by the standard deviation of the raw series). (a) For the entire Congo basin, the 

green and black line represent respectively the SWS anomaly variations from hypsometric curve approach (over 1992-

2015, from FABDEM) and TWSA. (b) Deseasonalized normalized anomaly for SWS (green) and TWSA (black). (c) 

Normalized mean annual cycle for TWSA (black) (except for SWS, in green) calculated over the same period of data 1165 

availability of the two variables, SWS and TWSA. 
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Figure 10: Same to Fig. 8 but the discharge is considered at the outlets of each sub-basin, and the precipitation is the 

estimated mean over each sub-basin, both are compared to the normalized SWS anomaly variations. (a) For each sub-

basin, the green and orange line represents respectively the SWS anomaly variations from hypsometric curve (over 1170 

1992-2015, from FABDEM) and multi-satellite (over 1995-2015) approaches, the red line shows SWS anomaly from 

Becker et al. (2018) over 2003-2007, the black line is the normalized discharge anomaly, the blue line is the normalized 

precipitation anomaly. (b) Deseasonalized normalized anomaly for SWS (green and orange), precipitation (blue), and 

discharge (black). (c) Normalized mean annual cycle for the three variables (except for the SWS), with the shaded areas  

depicting the standard deviations around the SWS anomaly. 1175 

 

 

 

Figure 11: The 2005-2006 drought over the CRB as seen from the hypsometric curve approach SWS dataset based on 

FABDEM. Anomaly of the maximum SWS over November 2005 to January 2006 as compared to the 1992-2015 1180 

November-December-January mean value. The unit is in percentage of the 24-years mean monthly value. 
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Figure 12: Monthly mean spatial distribution of MSWEP precipitation anomaly in mm (resampled at 0.25° spatial 1185 

resolution) from the period September 2005 to February 2006 based on the 1992-2015 climatology.  

 

 

Table 1: Characteristics of the used Digital Elevation Models.  

Dataset ALOS AW3D30 ASTER MERIT FABDEM 

Producer JAXA 
Japan Aerospace 
Exploration Agency 

NASA & METI 
National 

Aeronautics and 

Space 
Administration 

(US)  
Ministry of 

Economy, Trade, 
and Industry 

(Japan) 

University of Tokyo University of 
Bristol 

Available at https://www.eorc.ja
xa.jp/ALOS/en/aw3
d30/data/index.htm, 
last access: 17 May 

2023 

https://search.earthd
ata.nasa.gov/search/
?fst0=Land%20Surf
ace, last access: 17 

May 2023 

http://hydro.iis.u-
tokyo.ac.jp/~yamad
ai/MERIT_DEM/, 
last access: 17 May 

2023 

https://doi.org/10.55
23/bris.25wfy0f9uk
oge2gs7a5mqpq2j7, 
last access: 17 May 

2023 

DEM coverage 90N-90S 83N-83S 90N-60S 80N-60S 

Acquisition year 2006–2011 2000–2013 2000 2011–2015 

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
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Sensor Panchromatic 
Remote-sensing 
Instrument for 

Stereo Mapping 

Optical AW3D30, Shuttle 
Radar Topography 
Mission (SRTM) & 

Viewfinder 
Panorama 

Synthetic 
Aperture Radar 

(SAR) 
interferometer 

Vertical datum Orthometric 

EGM96 
Orthometric 

EGM96 
Orthometric 

EGM96 
Orthometric 

EGM2008 

Spatial resolution 30 m 30 m 90 m 30 m 

 1190 

Table 2: Location and main characteristics of the in situ discharge stations used in this study. The number in the first 

column refers to the location of the station in Fig. 1. 

N° Name Latitude Longitude Sub-basin Period Source 
 

1 Kisangani 0.51 25.19 Lualaba 1950-1959 CRREBaC  

2 Bangui 4.37 18.61 Ubangui 1936-2020 
CRREBaC/ SO-

Hybam  
 

3 Ouesso 1.62 16.07 Sangha 1947-2020 
CRREBaC/ SO-

Hybam 
 

4 Lediba -3.06 16.56 Kasaï 1950-1959 CRREBaC  

5 
Brazzaville/ 

Kinshasa 
-4.3 15.30 Middle-Congo 1903-2020 

CRREBaC/ SO-

Hybam 
 

 

Table 3: Mean annual amplitude over the CRB calculated from multi-satellite and hypsometric curve approaches. 

Error statistics comparing SWS from ALOS, ASTER, MERIT, and the multi-satellite approach against SWS from 1195 

FABDEM, considered here as the reference. Comparisons are done over the same period by aggregating all SWS pixels 

over the basin for the compared datasets. MAE stands for mean absolute error and RMSE for root mean squared 

error, in km3. 

Method DEM Time span 
Mean annual 

amplitude (km3) 

Error in relation to SWS 

from FABDEM (km3) 

MAE RMSE  

Hypsometric curve 
approach 

FABDEM 1992 - 2015 101 ± 23 / / 

ALOS 1992 - 2015 80 ± 17 9 11 

ASTER 1992 - 2015 124 ± 25 22 26 

MERIT 1992 - 2015 80 ± 20 5 7 

Multi-satellite 
approach 

/ 1995 - 2015 70 ± 17 18 22 

 

Table 4: Summary of the maximum linear Pearson correlation coefficient r along with the lag for the comparison 1200 

between SWS, precipitation, and discharge. Des. Ano. stands for deseasonalized anomalies. In bold are shown the 
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significant correlation coefficients with p value < 0.01. For Kasaï and Lualaba sub-basins no contemporary discharge 

data are available therefore no correlation are reported. 

 

Basin and sub-basin 

r(lag) 

SWS vs Precipitation SWS vs Discharge 

Raw series Des. Ano. Raw series Des. Ano. 

CRB 0.56(0) 0.12(0) 0.57(0) 0.52(0) 

Sangha 0.04(0) 0.15(-2) 0.73(0) 0.43(0) 

Ubangui 0.63(-2) -0.06(3) 0.89(0) 0.39(0) 

Middle-Congo 0.32(0) 0(3) 0.87(1) 0.58(1) 

Kasaï 0.69(0) 0.03(-2) / / 

Lualaba 0.50(0) 0.43(-2) / / 

 1205 
 

 


