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Abstract. Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, 18 

harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 19 

1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The 20 

pollen data cover the Late Quaternary (mostly the Holocene). The original 10,110 pollen taxa names (including 21 

variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa 22 

and major herbaceous taxa to genus level and other herbaceous taxa to family level. The dataset is valuable for 23 

synthesis studies such as taxa areal changes, vegetation dynamics, human impact (e.g., deforestation), and 24 

climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization 25 



2 

table are available from PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.929773; Herzschuh et al., 2021). 26 

R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 27 

2022) so that datasets at a customized harmonization level can be easily established. 28 

 29 

1 Introduction 30 

Broad-scale palaeo-proxy databases provide important opportunities for making comparisons of 31 

palaeoenvironmental synthesis studies and for palaeodata-model validation, where harmonized data processing 32 

is the foundation (Gaillard et al., 2010; Cao et al., 2013; Trondman et al., 2015). Several continental fossil pollen 33 

databases have been successfully established (Gajewski, 2008), for example, the European Pollen Database (EPD; 34 

http://www.europeanpollendatabase.net/index.php, last access: 1 July 2020), the North American Pollen 35 

Database (NAPD; https://www.ncei.noaa.gov/products/paleoclimatology, last access: 1 July 2020) and the Latin 36 

American Pollen Database (LAPD; http://www.latinamericapollendb.com/, last access: 1 July 2020). In recent 37 

years, efforts have been made to integrate such databases into the Neotoma Paleoecology Database 38 

(https://www.neotomadb.org/, last access: 1 April 2021; Williams et al., 2018), which provides a global collection 39 

of pollen data among other palaeoenvironmental proxy data. Furthermore, fossil pollen datasets for China and 40 

Mongolia (Cao et al., 2013; Herzschuh et al., 2019) and Siberia (Cao et al., 2020) have been compiled.  41 

  The numerous pollen records available in open databases, however, are not yet consistent concerning data 42 

type (e.g., pollen counts or percentages), pollen taxonomy, and nomenclature (Fyfe et al., 2009; Cao et al., 2013) 43 

and neither are their metadata approved and harmonized. For example, palynologists identify pollen taxa to 44 

different taxonomic levels ranging from (sub-)species to order, depending on the purpose of their study and the 45 

differentiability and preservation of the pollen grains. Some efforts have been made to harmonize taxonomies 46 

of pollen taxa in the databases (Fyfe et al., 2009; Giesecke et al., 2019; Mottl et al., 2021; Githumbi et al., 2022), 47 

however, a general framework is needed that can be applied to existing and newly published records. 48 

  Here we present LegacyPollen 1.0, a global taxonomically harmonized pollen dataset along with standardized 49 

metadata from 2831 sites for which recent chronologies have also been established (Li et al., 2022). This dataset 50 

is based on a general framework and implemented in R, which allows customized datasets to be built as well as 51 

the inclusion of new pollen records. The LegacyPollen 1.0 dataset is available at PANGAEA 52 

(https://doi.pangaea.de/10.1594/PANGAEA.929773; Herzschuh et al., 2021) and provides both count and 53 

https://doi.pangaea.de/10.1594/PANGAEA.929773
https://doi.pangaea.de/10.1594/PANGAEA.929773
http://www.europeanpollendatabase.net/index.php
https://www.ncei.noaa.gov/products/paleoclimatology
https://doi.pangaea.de/10.1594/PANGAEA.929773
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percentage pollen data. We also provide the R code and the taxa harmonization table at Zenodo 54 

(https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022). 55 

 56 

2. Methods 57 

2.1 Data sources 58 

We initially downloaded 3147 late Quaternary fossil pollen records (including dating) from the Neotoma 59 

Paleoecology Database (Neotoma hereafter) using the Neotoma package in R (Goring et al., 2019; R Core Team, 60 

2020). As the spatial coverage of Neotoma records in certain regions is poor, for example, in China and Siberia, 61 

these records were supplemented by 324 records compiled by Herzschuh et al. (2019) and Cao et al. (2013, 2020) 62 

and our own data (AWI, Alfred Wegener Institute). Out of this pool, we selected 2831 records, including both 63 

raw (94.2%) and digitized (5.8%) data, for which standardized chronologies could be established (Li et al., 2022). 64 

2.2 Metadata processing 65 

After checking the metadata of all records from the Neotoma and Asian datasets, we implemented the following 66 

modifications: 1) we evaluated the units of the provided depth information (metre/millimetre to centimetre) of 67 

all records and contacted Neotoma to correct the depth information of one record (Dataset-ID 27027); 2) we 68 

checked each record's archive type (e.g., peat, lake) based on its site description from Neotoma or original 69 

publication; and 3) we integrated two records (Dataset-ID 835, 3127) into a combined record (Dataset-ID 70001). 70 

  We collected the sample ages from the chronologies provided by Li et al. (2022), which were newly established 71 

for all 2831 records using a standardized approach. Li et al. (2022) present estimated ages for each centimetre. 72 

For those records with sample depth at a sub-centimetre scale, we applied a linear interpolation to assign ages 73 

for each sample, performed in R (R Core Team, 2020). 2.3 Pollen data processing 74 

2.3.1 Pollen taxa harmonization 75 

Only terrestrial pollen taxa (including Cyperaceae) were taken into account, excluding aquatic pollen taxa as well 76 

as spores from mosses, ferns, fungi, and algae. First, we standardized the taxon nomenclature. To do so, we set 77 

up a master table containing all pollen taxa names from the 2831 records and made names consistent (e.g., 78 
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‘betula’ to ‘Betula’), italics for all taxa under family level (e.g., ‘Artemisia’ to ‘Artemisia’), abbreviation (e.g., ‘P. 79 

pumila’ to ‘Pinus pumila’), synonym (e.g., ‘Gramineae’ to ‘Poaceae’), wrong spelling (e.g., ‘Aluns’ to ‘Alnus’). This 80 

master table is published in a machine-readable data format on PANGAEA 81 

(https://doi.pangaea.de/10.1594/PANGAEA.929773, in the “Further details” section; Herzschuh et al., 2021). 82 

Second, we harmonized the pollen taxa according to the classification of the Angiosperm Phylogeny Group IV 83 

system (APG IV; The Angiosperm Phylogeny Group et al., 2016) and the Gymnosperm Database 84 

(https://www.conifers.org/). Woody taxa were harmonized to genus level as well as some very common 85 

herbaceous taxa such as Artemisia, Thalictrum, and Rumex. All other herbaceous taxa were harmonized to the 86 

family level. The various pollen taxa of heather plants were summarized at the order level as Ericales.  87 

2.3.2 Pollen data type standardization 88 

Although most pollen records contain the count data (‘raw‘ data hereafter), the ‘pollen counts’ for those without 89 

raw pollen counts were back-calculated using the pollen percentages and assuming a terrestrial pollen sum of 90 

300 pollen grains, as most of the publications do not provide a pollen sum. We replaced the original taxon name 91 

with its harmonized name and summed up all counts of the harmonized taxa for each sample. As we only 92 

consider terrestrial plant taxa, some samples in records may contain no pollen counts, and those samples were 93 

excluded from the harmonized dataset. We then recalculated the terrestrial pollen percentages for each sample 94 

based on their total sum. 95 

 96 

3. Structure of the LegacyPollen 1.0 dataset 97 

3.1. Structure of site metadata 98 

The metadata for each site in the LegacyPollen 1.0 dataset includes the following: Event (PANGAEA dataset 99 

identifier), Data Source, Data Type (raw or digitized), Site ID (in the source datasets), Dataset ID (in the 100 

LegacyPollen 1.0 dataset), Site Name, Location (longitude, latitude, elevation, and continent), Archive Type (e.g., 101 

peat, lake sediment core), Site Description (from original publication/Neotoma), and Reference. All site-specific 102 

metadata are available at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.929773; Herzschuh et al., 2021) 103 

in the “Further details” section (“Site metadata of LegacyPollen 1.0 dataset.csv”).  104 

https://doi.pangaea.de/10.1594/PANGAEA.929773
https://doi.pangaea.de/10.1594/PANGAEA.929773
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3.2 Structure of pollen data 105 

Sample-specific pollen metadata for the 2831 sites include depth, age (according to Li et al., 2022; minimum age, 106 

maximum age, mean age, median age), and harmonized taxon names with count and percentage data. To ease 107 

data handling, data files were separated for pollen count data and pollen percentages and files for each region 108 

(Western North America, Eastern North America, Europe, Asia, Latin America, Africa, and Indo-Pacific) are 109 

provided separately in both CSV and TXT format. In total, 28 pollen data files are published at PANGAEA 110 

(https://doi.pangaea.de/10.1594/PANGAEA.929773, in the ‘Other version’ section; Herzschuh et al., 2021) and 111 

can be joined by the dataset ID with other data products. Furthermore, we also provide the taxa harmonization 112 

table at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.929773, in the “Further details” section; 113 

Herzschuh et al., 2021). 114 

 115 

4. Dataset assessment 116 

4.1 Spatial and temporal coverage of the dataset 117 

Of the 2831 records included in LegacyPollen 1.0, 670 records originate from Eastern North America (<105°W; 118 

Williams et al., 2000), 362 from Western North America, 1075 from Europe, 488 from Asia, 150 from Latin 119 

America, 54 from Africa, and 32 from the Indo-Pacific (Fig. 1). Most records (2659 records, 93.9%) are in the 120 

Northern Hemisphere, where the main vegetation and climate zones are covered.  121 

https://doi.pangaea.de/10.1594/PANGAEA.929773
https://doi.pangaea.de/10.1594/PANGAEA.929773
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 122 

Figure 1. Map of the 2831 records for which standardized chronologies were established by source and data 123 

type. 124 

  As shown in Fig. 2, only 5.8% of the records are available from periods before the Last Glacial Maximum (>26.5 125 

cal ka BP), 10.2% cover part of the Last Glacial Maximum (26.5–19.0 cal ka BP; Clark et al., 2009), and 45.7% 126 

cover part of the Last Deglaciation (ca. 19.0–11.7 cal. ka BP; Clark et al., 2012). Almost all records (97.8%) cover 127 

part of the Holocene, among them, 65.2, 79.5, and 89.5% cover the early Holocene (11.7–8.2 cal. ka BP), middle 128 

Holocene (8.2–4.2 cal. ka BP), and late Holocene (4.2–0 cal. ka BP), respectively.  129 
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 130 

Figure 2. Histogram showing the number of available records in distinct time slices. 131 

4.2 Harmonized taxonomy  132 

A total of 10,110 terrestrial pollen taxa or taxa notations were obtained from the 2831 records, which we 133 

condensed to 1002 families or genera through taxonomic harmonization (Fig. 3; Appendix Fig. 1). On average, 134 

10.8 original taxa or taxa notations are covered by one harmonized pollen taxon, ranging from 1 to 599 (median: 135 

2). Overall, Asteraceae (599), Fabaceae (437), and Apiaceae (276) are the pollen taxa with most variants. 136 

  The biggest difference in taxa names and notations before and after harmonization can be found in Europe 137 

with a mean of 42 variants per harmonized taxon and in Eastern and Western North America (average of 22) 138 

with both regions also exhibiting the highest record density (Fig. 4). A high amount of tropical and subtropical 139 

tree and shrub taxa can be found in the Southern Hemisphere, which are harmonized to genus level and 140 

therefore subsume to fewer harmonized taxa, and overall have a higher taxa diversity than the Northern 141 

Hemisphere continents. In the Southern Hemisphere, the most taxa and variants are harmonized for Fabaceae 142 

as this is the most common family found in tropical rainforests and dry forests of Latin America and Africa. 143 

  Europe has the most harmonizations of herbaceous taxa from open landscapes: e.g., Asteraceae, Apiaceae, or 144 

Caryophyllaceae. In North America and Asia, several species or species groups of major woody taxa are 145 

harmonized to their respective genus level, e.g., Alnus and Acer in North America, or Betula and Quercus in Asia. 146 
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The Pinus Haploxylon and Diploxylon subgenera are subsumed into the genus level Pinus, as the differentiation 147 

to subgenera level is not provided consistently.  148 

 149 
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Figure 3. Number of records with taxa occurrences (per continent) and number of subsumed variants per 150 

harmonized taxon. The figure shows the top 200 taxa with the highest number of records in the dataset. A full 151 

overview of all taxa is given in Appendix Fig. 1. 152 

 153 

Figure 4. Number of taxa before and after harmonization (number of taxa > 150 were all grouped into the class 154 

of 150). 155 
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5. Discussion 156 

5.1 Quality of the LegacyPollen 1.0 dataset  157 

To our knowledge, LegacyPollen 1.0 is the largest harmonized fossil pollen dataset including more than twice 158 

the number of records integrated in previously published datasets (e.g., Fyfe et al. (2009): 1032 records; 159 

Trondman et al. (2015): 636 records; Marsicek et al. (2018): 642 records; Giesecke et al. (2019): 749 records; 160 

Mottl et al. (2021): 1181 records; Githumbi et al. (2022): 1128 records). Several regions have poor pollen-record 161 

coverage either because no records are available due to the scarcity of suitable archives (e.g., continental 162 

interiors) or because available records were not compiled and integrated into Neotoma. Ongoing initiatives on 163 

compilation of pollen data from Africa and Latin America will allow a straightforward extension of the 164 

LegacyPollen 1.0 dataset using the provided framework. 165 

  Representing a further advantage, the LegacyPollen 1.0 dataset is accompanied by consistent metadata 166 

allowing for subsetting of the dataset. Aside from information about the location and archive type, the metadata 167 

also include sample ages that were inferred from recently revised chronologies (Li et al., 2022) along with their 168 

age uncertainties (i.e., output from BACON; Blaauw and Christen, 2011) and the framework and R code also 169 

allows a customized reestablishment of the age-depth models.  170 

  Generally, temporal coverage is good since about 14 cal. ka BP. Rather few records cover the glacial period, 171 

which is mainly due to an absence of archives as many lakes and peatlands were dry or covered by ice-sheets. 172 

Many Asian records cover the Marine Isotope Stage 3 compared with Europe and North America. 173 

  Taxonomic harmonization is required for multi-site synthesis studies (Fyfe et al., 2009; Trondman et al., 2015; 174 

Marsicek et al., 2018; Herzschuh et al., 2019; Routson et al., 2019; Mottl et al., 2021; Zheng et al., 2021; Githumbi 175 

et al., 2022). This is particularly true when numerical approaches are applied that measure compositional 176 

dissimilarity between pollen spectra, for example, between fossil and modern sites for climate reconstructions 177 

using the Modern Analogue Technique or regression methods, or among fossil records for beta-diversity studies 178 

(Birks et al., 2012).  If taxa are not harmonized, an inferred high dissimilarity between two spectra may originate 179 

just from differences in taxa nomenclature. On the other hand, if all taxa are harmonized to too high a taxonomic 180 

level, the ecological signal might be lost (Giesecke et al., 2019). We applied an intermediate level of 181 

harmonization taking growth-form (i.e., woody vs. non-woody) as additional guidance. We assume that our 182 

approach best reflects the typical presentation of pollen data which is mainly limited by the pollen morphological 183 
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features visible at 400x magnification using light microscopy and the typical precision in taxa identification of 184 

most pollen analysts.  185 

5.2 Potential uses of LegacyPollen 1.0 186 

LegacyPollen 1.0 can be used for a variety of palaeoenvironmental synthesis studies including reconstructions 187 

of taxa distributions, climate, and biome change, which can be used for palaeo-model validation (Gaillard et al., 188 

2010; Cao et al., 2013; Trondman et al., 2015; Cao et al., 2020; Mottl et al., 2021).  189 

  Plant taxa distribution changes based on mapping of pollen taxa can yield information about glacial refugia and 190 

past migration patterns, as, for example, previously implemented for Quercus (Brewer et al., 2002), Picea (van 191 

der Knaap et al., 2005; Zhou and Li, 2012), Larix (Cao et al., 2020), east Asian tree taxa (Cao et al., 2015), and 192 

European broad-leaf forest (Woodbridge et al., 2014; Fyfe et al., 2015). With the establishment of LegacyPollen 193 

1.0, a Northern Hemisphere-wide analysis of past changes in distributional ranges is now possible, as would help, 194 

for example, to better understand the different post-glacial colonization patterns of Larix in Europe, North 195 

America, and Siberia (Herzschuh, 2020). Such understanding of past range changes can underpin conservation 196 

management via the use of species distribution modelling at a broad scale enhanced by the higher spatial 197 

resolution and larger extent of LegacyPollen 1.0.  198 

  Studies aiming at broad-scale pollen-based vegetation reconstructions can benefit from the harmonized 199 

LegacyPollen 1.0 dataset including via biomization approaches (Prentice et al., 1996), multi-site ordination or 200 

classification approaches (e.g., two-way indicator species analysis; Hill, 1996; Fletcher and Thomas, 2007; Connor 201 

and Kvavadze, 2009), or approaches relating modern to fossil datasets (e.g., Modern Analogue Technique; 202 

Overpeck et al., 1985). Furthermore, quantitative vegetation reconstructions (e.g., Regional Estimates of 203 

Vegetation Abundance from Large Sites (REVEALS) model; Sugita, 2007) can be easily implemented, as a 204 

synthesis of relative pollen productivity estimates is already available for the Northern Hemisphere (Wieczorek 205 

and Herzschuh, 2020). Such quantitative information about taxa covers changes that can be directly compared 206 

to vegetation model outputs (Dallmeyer et al., 2021) at regional to continental scales, which is a potentially more 207 

accurate approach than translating pollen and model outputs first to biomes (Cao et al., 2019).  208 



12 

  Pollen-based climate reconstructions are the backbone of palaeoclimate synthesis studies for the continents 209 

(Marcott et al., 2013; Marsicek et al., 2018; Routson et al., 2019; Kaufman et al., 2020a, b). The reconstruction 210 

of mean annual temperature (Tann), mean annual precipitation (Pann), and mean temperature of July (TJuly) using 211 

LegacyPollen 1.0 as input is an ongoing LegacyClimate 1.0 project. This will substantially increase the number of 212 

records and close data gaps in the global temperature datasets and thus enable the evaluation of climate 213 

simulations at a hemispheric scale (Wu et al., 2013; Hao et al., 2019). It will contribute to the “Holocene 214 

conundrum” debate (Liu et al., 2014) and to the discussion of the relationship between temperature and 215 

precipitation change (Trenberth, 2011; Routson et al., 2019). 216 

  Human activities are an important driver of vegetation change in addition to climate and other natural forces 217 

(Ellis and Ramankutty, 2008; Mottl et al., 2021; Pavlik et al., 2021). Deforestation during the Holocene period is 218 

of particular relevance which, with the help of the LegacyPollen 1.0 dataset, can now be investigated at the 219 

hemispheric scale. The harmonized chronologies of the LegacyPollen 1.0 dataset allow for the analysis of 220 

similarities and dissimilarities in the temporal pattern of deforestation between continents.  221 

6 Data and code availability 222 

The data are published in the PANGAEA repository under PANGAEA 223 

(https://doi.pangaea.de/10.1594/PANGAEA.929773, in the “Other version” section; Herzschuh et al., 2021) in 224 

both comma-separated values (.CSV) and tab-delimited text (.TXT) formats for LegacyPollen 1.0 dataset of 225 

counts per continent and LegacyPollen 1.0 dataset of percentages per continent. Site metadata, as well as a taxa 226 

harmonization master table, are provided in the “Further details” section.  227 

  The R code for taxa harmonization is stored on Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh 228 

et al., 2022) along with an example dataset. Downloading pollen data from the Neotoma Paleoecology Database, 229 

harmonizing the pollen taxa, and assigning ages to sample depth data to create customized datasets can thus 230 

be easily done. 231 
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Appendix Figure 1 (complete Figure 3). Number of records with taxa occurrences (per continent) and number 422 

of harmonizations per taxon (full taxon list). 423 


