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Abstract. Current changes in the world’s climate increasingly impact a wide variety of sectors globally, from 15 

agriculture, ecosystems, to water and energy supply or human health. Many impacts of climate on these sectors 

happen at high spatio-temporal resolutions that are not covered by current global climate datasets. Here we present 

Climatologies at high resolution for the Earth’s land surface areas - WFDE5 over land merged with ERA5 over 

the ocean data (CHELSA-W5E5, https://doi.org/10.48364/ISIMIP.836809.3, Karger et al., 2022): a climate forc-

ing dataset at daily temporal resolution and 30 arcsec spatial resolution for air-temperatures, precipitation rates, 20 

and downwelling shortwave solar radiation.  This dataset is a spatially downscaled version of the 0.5° W5E5 

dataset using the CHELSA V2 topographic downscaling algorithm. We show that the downscaling generally in-

creases the accuracy of climate data by decreasing the bias, and increasing the correlation with measurements 

from meteorological stations. Bias reductions are largest in topographically complex terrain. Limitations arise for 

minimum near surface air temperatures in regions that are prone to cold air pooling, or at the upper extreme end 25 

of surface downwelling shortwave radiation. We further show that our topographically downscaled climate data 

compare well with the results of dynamical downscaling using the regional climate model Weather Research and 

Forecasting Model (WRF), as time series from both sources are similarly well correlated to station observations. 

This is remarkable given the lower computational cost of the CHELSA V2 algorithm compared to WRF and 

similar models. Overall, we conclude that the downscaling can provide higher resolution climate data with in-30 

creased accuracy. Hence, the dataset will be of value for a wide range of climate change impact studies both at 

global level but also as for applications that cover more than one region and benefit from using a consistent dataset 

across these regions.  
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1 Introduction 

With ongoing climate change, the assessment of climate change impacts on natural and social systems requires 

increasing attention (IPCC, 2022). Historically, a strong focus has been on the scientific exploration of climate 

impacts on agriculture, forestry, water management, human health, and other sectors by using climate impact 

models driven by historical or projected future climate data. Yet, with observed climate change impacts emerging 5 

widely already at current levels of warming (IPCC, 2022),  a wide range of decision-making processes as well as 

business activities increasingly rely on actionable knowledge from impact models that is useful beyond the 

scientific community which is developing them. For example, so-called climate services are designed to support 

adaptation of stakeholders and their activities in response to climate change (Brasseur and Gallardo, 2016; Hewitt 

et al., 2012; Lourenço et al., 2016), where the attribution of climate impacts has become highly relevant for climate 10 

litigation (Mengel et al., 2021). There is also an increasing demand to quantify damages that cannot be avoided 

by climate mitigation or adaptation (Huber et al., 2022). These activities require highly accurate climate impact 

datasets at high spatio-temporal resolution. Daily temporal resolution for example allows capturing extreme events 

such as heavy precipitation or heat waves that would not be visible at monthly resolution (Ban et al., 2021). 

Likewise, high spatial resolution (e.g. 30 arcsec, i.e. ~1 km at the equator) allows to capture topographic effects 15 

in mountainous areas or patterns of climate variables with small-scale spatial variability (Gerlitz et al., 2015; Daly 

et al., 1994). 

High resolution climate data can typically be produced using either regional climate models for dynamical 

downscaling (Giorgi et al., 2009), statistical downscaling methods using large-scale predictors of the small-scale 

state of the atmosphere (Maraun and Widmann, 2018), or topographic downscaling methods that mainly use 20 

terrain based predictors to increase the spatial resolution of climate data (Karger et al., 2017; Fiddes and Gruber, 

2014). Regional climate models have the advantage of representing the fundamental physical, chemical and 

biological processes of the climate system. While this makes them powerful tools for studying future climates it 

also makes them computationally expensive wherefore they cannot easily be applied at the global level (Giorgi et 

al., 2009; Sørland et al., 2021; Schär et al., 2019). Statistical downscaling methods are based on empirical 25 

relationships between large-scale predictors and small-scale predictands (Wilby et al., 1998). These relationships 

are typically derived from historical observations of predictors and predictands and then applied to downscale 

large-scale climate projections. While this is computationally less expensive, it implies out-of-sample applications 

of a statistical model, which may lead to physically implausible results (Maraun et al., 2017; Lanzante et al., 

2018). Lastly, topographic downscaling methods primarily use terrain based information to add small-scale details 30 

to large-scale inputs, such as the influence of mountain ranges on precipitation patterns (Roe, 2005). Examples of 

such methods include Climatologies at high resolution for the Earth’s land surface areas (CHELSA) (Karger et 

al., 2017, 2021, 2020), and the Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Daly et 

al., 1997, 1994). Considering the out-of-sample limitation of statistical downscaling, topographic downscaling of 

climate projections is less problematic in comparison, at similar computational cost. On the downside, topographic 35 

downscaling is based on mechanistic equations which, due to their simplicity, may still introduce biases in the 

climate data (Karger et al., 2017, 2021). In addition, those equations are unable to represent small-scale spatial 

patterns that are unrelated to topography, such as small-scale convective precipitation over flat terrain (Karger et 

al., 2021).   
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All approaches have historically been challenged by computational and storage limitations if carried out at the 

global level (Schär et al., 2019). For example, the latest global reanalysis dataset based on the dynamic land 

surface model ‘Hydrology in the Tiled ECMWF 

Scheme for Surface Exchanges over Land’ (HTESSEL, Balsamo et al., 2009) is only available at a resolution of 

~9 km which still masks important local climate variability (Muñoz-Sabater et al., 2021). For these reasons, 5 

climate datasets at high spatial and temporal solution usually only exist at local to regional levels, which is 

adequate for analyses at these levels. However, there are no global products representing temperature, solar 

radiation, and precipitation at both high temporal (daily) and high spatial (~1 km) resolution, although these would 

offer considerable benefits to climate impact modelling. For example, a consistent global dataset that allows 

regional hydrological models to be run at various locations using consistent climate driving data so that impacts 10 

can be integrated across regions (Huang et al., 2017; Krysanova and Hattermann, 2017). Likewise, global analyses 

that are strongly dependent on the resolution of the data could be carried out at much finer resolution than is 

currently the case. For example, Shi et al., (2021) calculated how aridity velocity affects a wide range of species 

using climate data at 0.5 degree resolution, yet this resolution neglects important topographic details that are 

important as species might benefit from topographic diversity for surviving extreme climatic conditions (Barton 15 

et al., 2019). 

To address this gap in data availability and to enable tests of how beneficial such global datasets would be, the 

objective of this paper is to present a global climate dataset at 30 arcsec and daily resolution: CHELSA-W5E5 

v1.0 (https://doi.org/10.48364/ISIMIP.836809.3, Karger et al., 2022). This dataset builds upon WFDE5 over land 

merged with ERA5 over the ocean (W5E5) v1.0, an observational climate dataset that has been thoroughly 20 

evaluated and intensively used in climate impact modelling (Lange, 2019; Cucchi et al., 2020). CHELSA-W5E5 

v1.0 is derived from W5E5 via topographic downscaling using the CHELSA V2 algorithm (Karger et al., 2017, 

2020, 2021). Through a detailed evaluation of CHELSA-W5E5 v1.0, we aim to demonstrate the added value of a 

kilometre-scale resolution downscaling compared to the coarse resolution (0.5°) W5E5 data. We focus on a set of 

key climatic variables that are high relevant for climate impact modelling, namely daily minimum (tasmin, in 25 

units of K), mean (tas, K) and maximum (tasmax, K) near-surface (2 m) air temperature, which are, for example, 

relevant for assessing heat extremes (Huber et al., 2020), daily mean precipitation rate (pr, kg m-2 s-1), a crucial 

variable for example for hydrological and vegetation models (Müller Schmied et al., 2014; Chang et al., 2017), as 

well as daily mean surface downwelling shortwave radiation (rsds, W m-2), which is for example crucial for 

agricultural modelling (Ruane et al., 2015, 2021). The analyses and data are building on earlier efforts to 30 

downscale precipitation (Karger et al., 2017, 2020, 2021) and we focus on assessing where the new dataset 

improves the estimate of a climate variable by moving to a spatial resolution of 30 arcsec, and what caveats have 

to be kept in mind when applying the data for climate impact analyses. 

2. Material and Methods 

To downscale the coarse resolution W5E5 data we used the CHELSA V2 algorithm (Karger et al., 2017). This 35 

algorithm is a topographically informed, mechanistic downscaling method. It downscales 2m air-temperatures 

(tas, tasmax, tasmin) based on air temperature lapse rates in the lower atmosphere, precipitation rates (pr) using 

orographic terrain effects, and surface downwelling shortwave radiation (rsds) using a mechanistic terrain-based 

downscaling. In the following we describe the input data and downscaling procedure in more detail.  
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2.1. Input data 

2.1.1 W5E5  

WFDE5 over land merged with ERA5 over the ocean (W5E5) v1.0 (Lange, 2019) is the observational reference 

climate input dataset used in the Inter-Sectoral Impact Model Intercomparison Project phase 3 (ISIMIP3, 

www.isimip.org). It covers the years 1979-2016 for the entire globe. The data have daily temporal and 0.5° spatial 5 

resolution. W5E5 combines the Waterer and global Change (WATCH) Forcing Data methodology applied to 

ERA5 reanalysis data (WFDE5) v1.0 (Cucchi et al., 2020) over land with data from the latest version of the 

European Reanalysis (ERA5) (Hersbach et al., 2020) over the ocean. In the following we briefly describe ERA5, 

WFDE5 and W5E5. 

The ERA5 global reanalysis (Hersbach et al., 2020) is produced at the European Centre for Medium Range 10 

Weather Forecast (ECMWF) as part of the EU-funded Copernicus Climate Change Service (C3S). It is the 

successor of ERA-Interim (Dee, 2011) and in comparison benefits from 10 years of developments of the 

underlying weather forecast model and data assimilation system. More observations are assimilated in ERA5 than 

in its predecessor ERA-Interim, including stratospheric sulphate aerosols. In addition, ERA5 has higher temporal 

and spatial resolution (hourly and 0.25° compared to 3-hourly and 0.7°). 15 

The WFDE5 meteorological forcing dataset is a bias-adjusted version of ERA5 that covers the global land surface 

at hourly temporal and 0.5° spatial resolution for selected near-surface atmospheric variables (air temperature, 

shortwave and longwave downwelling radiation, rainfall and snowfall, specific humidity, air pressure, and wind 

speed). Bias adjustments were applied according to the WATCH Forcing Data methodology (Weedon et al., 2014, 

2011). That means that (i) monthly mean values of daily mean temperature and the diurnal temperature range 20 

were elevation-adjusted and bias-adjusted using version 4.03 of the Climate Research Unit gridded Time Series 

(CRU TS) (Harris et al., 2020), (ii) pressure, humidity and longwave radiation were aligned with the adjusted 

temperature, (iii) monthly mean shortwave radiation was bias-adjusted using aerosol correction factors (Cucchi 

et al., 2020) and CRU TS4.03 cloud cover, and (iv) rainfall and snowfall rates were bias-adjusted with respect to 

the monthly number of wet days using CRU TS4.03, monthly precipitation totals using observations from either 25 

CRU TS4.03 or data from the Global Precipitation Climatology Centre (GPCC) full data product version 2018 

(Schneider et al., 2018), followed by a gauge-catch correction, and a correction of the snowfall-to-rainfall ratio 

using the adjusted temperature (Cucchi et al., 2020). Using either CRU TS4.03 or GPCCv2018 precipitation totals, 

two different WFDE5 precipitation datasets were produced. The variant based on GPCCv2018 was used for 

W5E5. Wind speed is the only variable that was not adjusted. 30 

Lastly, W5E5 combines WFDE5 data over land with ERA5 data over the ocean to cover the whole globe at daily 

temporal and 0.5° spatial resolution. Here we use daily total precipitation (pr), daily mean downwelling shortwave 

radiation (rsds) as well as daily mean, minimum and maximum near-surface air temperature (tas, tasmin and 

tasmax, respectively) from W5E5. The daily temperature values are equal to the daily mean (for tas), minimum 

(for tasmin) and maximum (for tasmax) of the hourly temperature values from WFDE5 over land and ERA5 35 

aggregated to 0.5° spatial resolution over the ocean. Similarly, W5E5 pr (rsds) is equal to the daily sum (mean) 

of hourly total precipitation (shortwave radiation) from WFDE5 over land and ERA5 aggregated to 0.5° spatial 

resolution over the ocean, with the following exception: W5E5 pr over the ocean was bias-adjusted using monthly 

precipitation totals from version 2.3 of the Global Precipitation Climatology Project (Adler et al., 2003). Monthly 
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rescaling factors used for this purpose were computed following the scale-selective rescaling procedure described 

by (Balsamo et al., 2010).  

2.1.2 Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) 

The Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) (Danielson and Gesch, 2011) dataset 

contains elevation data for the globe collected from various sources at resolutions from 7.5 arcsec to 30 arcsec. 5 

We use the 30 arcsec version of the data that represents the mean elevation of all 7.5 arcsec grid cells. 

2.1.3 Land-sea mask 

The CHELSA downscaling algorithm only has an effect where topography actually varies in space. Over the 

ocean, the output of the downscaling is equivalent to a simple B-spline interpolation of the input data. To reduce 

the size of the high-resolution dataset, we therefore applied a land-sea mask that is intended to cut out the parts 10 

over the ocean that are not affected by topography. To make sure this mask actually covers all land masses, a cell 

of the 30 arcsec CHELSA-W5E5 grid is considered a land grid cell if it overlaps with any of the land polygons 

provided by the global, self‐consistent, hierarchical, high‐resolution shoreline database (GSHHG) v2.3.7 (Wessel 

and Smith, 1996), the 30-m spatial resolution global shoreline vector (GSV) (Sayre et al., 2019), and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) -based Mosaic of Antarctica data (MOA) (Scambos et al., 2007). 15 

To ensure all land pixels are covered we additionally added a buffer of 60 arcsec width to the boundaries of each 

land polygon. 

2.2 Downscaling procedure 

2.2.1 Downscaling of near-surface air temperature (tas, tasmax, tasmin) 

The CHELSA downscaling algorithm was applied day by day. The downscaling of W5E5 air temperature (tas, 20 

tasmax, tasmin) was done by using a daily mean near-surface atmospheric temperature lapse rate, 𝛤 ̅ , derived from 

ERA5, combined with differences in surface altitude between GMTED2010 and W5E5. Here, 𝛤 ̅  is the daily mean 

of hourly lapse rates, 𝛤, with 

 

𝛤 = (𝑡850 −  𝑡950) / ( 𝑧850 –  𝑧950),         (1) 25 

where 𝑡850 and 𝑡950 are ERA5 hourly air temperatures at 850 hPa and 950 hPa, respectively, and 𝑧850 and 𝑧950 

are the geopotential heights of those pressure levels multiplied by the gravitational constant (9.80665 m s-2). We 

then interpolated W5E5 tas, tasmax and tasmin from their original resolution of 0.5° to the 30 arcsec resolution 

of GMTED2010 using a B-spline interpolation (see Karger et al., 2021 for an example on how the B-Spline 

interpolation is implemented), resulting in an interpolated high-resolution temperature surface, tc. To include the 30 

high-resolution topography, we first interpolated the 0.5° orography from W5E5 to 30 arcsec using a B-spline 

interpolation, this way creating a reference elevation grid, zc, that corresponds to tc. We then used 𝛤 ̅  together with 

zc and zh, the GMTED2010 orography at 30 arcsec, to do the topographic downscaling of tc, according to 

𝑡ℎ  = 𝑡𝑐 + 𝛤 ·  ( 𝑧ℎ − 𝑧𝑐  ),          (2) 

where 𝑡ℎ is the downscaled near-surface air temperature at 30 arcsec resolution, either being tas, tasmax, or tasmin.  35 

https://doi.org/10.5194/essd-2022-367
Preprint. Discussion started: 2 December 2022
c© Author(s) 2022. CC BY 4.0 License.



 

6 
 

2.2.2 Downscaling of surface downwelling shortwave radiation (rsds) 

Surface downwelling shortwave radiation at 30 arcsec resolution is strongly influenced by topographic features 

such as aspect or terrain shadows that are less pronounced at 0.5° resolution. The CHELSA downscaling algorithm 

combines such geometric effects with orographic effects on cloud cover for a topographic downscaling of rsds.  

Geometric effects are considered by computing 30-arcsec clear-sky radiation estimates using the methods 5 

described in Böhner and Antonic (2009) as well as Wilson and Gallant (2000). This approach assumes that the 

net shortwave radiation, Sn, can be expressed as 

Sn = Ss + Sh + St -Sr = (Ss + Sh + St)· (1 – r),        (3) 

with Sn being the sum of all direct solar radiation  received from sun, Ss, diffuse solar radiation received from the 

sky’s hemisphere, Sh, radiation by reflection of surrounding land surfaces, St, minus the radiation which is reflected 10 

off the surface, Sr. Alternatively, the reflected fraction of the incoming radiation can be expressed using the 

dimensionless surface albedo, r. This formula for Sn is strictly only valid for a horizontal, unobstructed surface. 

However, topography can severely influence net shortwave solar radiation by e.g. shading. A topographically 

corrected Sn,  𝑆𝑛
∗, is given by  

𝑆𝑛
∗ = (𝑆𝑠

∗ + 𝑆ℎ
∗ + 𝑆𝑡)  ·  (1 − 𝑟),         (4) 15 

where 𝑆𝑠
∗ and 𝑆ℎ

∗ are direct and diffuse solar radiation modified by the surrounding topography of a given 30 arcsec 

grid cell and 𝑆𝑡 gives the reflection from surrounding land surfaces.  

2.2.3 Direct solar radiation under clear sky conditions 

Topographic direct solar radiation 𝑆𝑠
∗ is calculated using: 

𝑠𝑖𝑛 𝜃 = 𝑐𝑜𝑠 𝜆 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝜛 + 𝑠𝑖𝑛 𝜆 𝑠𝑖𝑛 𝛿 ,        (5) 20 

𝑐𝑜𝑠 𝜑 =
 𝑐𝑜𝑠 𝛿  𝑐𝑜𝑠 𝜛  − 𝑠𝑖𝑛 𝜃  𝑐𝑜𝑠 𝜆  

𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜃  
,         (6) 

𝛿 = 23.45 ·  𝑠𝑖𝑛 (
360° · [284 +𝐽 ])

365
) ,         (7) 

𝜛 = 15° ·  (12 − ℎ),          (8) 

where θ is the sun elevation angle, φ is sun azimuth, λ is the latitude, δ is the solar declination angle, J is Julian 

day number, ϖ is the hour angle in degrees, and the value 12 − h is equal to the distance of the given mid-hour 25 

from the true solar noon (0.5, 1.5, 2.5 h, etc.). 

The angle between a plane orthogonal to sun’s rays and terrain (solar illumination angle, γ) is calculated at time 

steps of 15 minutes using  

cos γ = cos β · sin θ + sin β · cos θ · cos(φ - α),       (9) 
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where β and α are surface slope and aspect, respectively, calculated from the high-resolution orography, zh, and θ 

and φ define the sun position on the sky. Shadowing from topography is calculated using the horizon angle, φ, 

which is defined as the maximum angle toward any other point in a given azimuth within 10,000 m horizontal 

distance, 

𝜑 = 𝑚𝑎𝑥𝑑 ≤ 10,000 𝑚 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝛥𝑧(𝑑)

𝑑
)

 
,        (10) 5 

where d is the distance to the point with higher elevation and Δz(d) is the associated elevation difference. 

Topographic direct radiation at hour h, 𝑆𝑠
∗(ℎ), is then calculated using 

𝑆𝑠
∗(ℎ) = 𝜍(ℎ) 

𝑆𝑠(ℎ)

𝑠𝑖𝑛 𝜃 
 𝑐𝑜𝑠 𝛾 ,         (11) 

where ς(h) indicates if a terrain shadow is present (with ς(h)=0 representing shadow and ς(h)=1 representing no 

shadow), depending on h and the horizon angle, 𝑆𝑠(ℎ) is the direct solar radiation on an unobstructed horizontal 10 

surface at hour h, and 𝜃 and 𝛾 also depend on h via their dependence on ϖ. The inclusion of the effect of terrain 

angle, is done by the division using sin θ that tilts the horizontal surface to a surface that is orthogonal to the sun’s 

rays. Multiplication by cos 𝛾 accounts for terrain. 𝑆𝑠(ℎ) also depends on the structure and the composition of the 

atmosphere. We assume a homogenous atmosphere with a transmissivity 𝜏 of 80% and then calculate 𝑆𝑠(ℎ) 

following (Wilson and Gallant, 2000) using 15 

𝑆𝑠(ℎ) = sin 𝜃 𝐺𝑆𝐶𝜏𝑚,          (12) 

where 𝐺𝑆𝐶 is the solar constant defined at 1367 kW m2, and m is the optical air mass, i.e. the length of the 

atmospheric path transversed by the sun’s rays (List, 1968). For a sun elevation angle θ > 30°, m is calculated 

following (Linacre, 1992) using 

𝑚 =
1

cos(90−𝜃)
,           (13) 20 

and for θ ≤ 30° the optical air mass m is determined in 1 degree increments from a vector of known values after 

(List, 1968, p. 422), by using increments of 1° where:  

 

M = {2.00,  2.06,  2.12,  2.19,  2.27,  2.36,  2.45,  2.55, 2.65,  2.77,  2.90,  3.05,  3.21,  3.39,  3.59,  3.82, 4.07,  

4.37,  4.72,  5.12,  5.60,  6.18,  6.88,  7.77, 8.90, 10.39, 12.44, 15.36, 19.79, 26.96, 26.96, 26.96} 25 
 

Then m is calculated using element i in M, where i is the position of θ in M, by:  

 

𝑚 = 𝑀𝑖 + (𝜃 − 𝑖) ∗ (𝑀𝑖+1 − 𝑀𝑖)               (14) 

Daily mean topographic direct radiation, 𝑆𝑠
∗̅̅ ̅, is obtained via integration over all 15 minute time steps of the day, 30 

𝑆𝑠
∗̅̅ ̅ =

1

𝑛
∑  𝑛

ℎ=1 𝑆𝑠
∗(ℎ) =

1

𝑛
∑  𝑛

ℎ=1 𝜍(ℎ) 
𝑆𝑠(ℎ)

𝑠𝑖𝑛 𝜃 
𝑐𝑜𝑠 𝛾,       (15) 

where n denotes the number of 15 min intervals of the day.  
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2.2.4 Diffuse solar radiation under clear sky conditions 

Topographic corrected diffuse radiation 𝑆ℎ
∗ is calculated by quantifying how much of the sky is visible from a grid 

cell, using 

𝑆ℎ
∗ = 𝑆ℎ𝛹𝑠,           (16) 

where Ψs is based on the horizon angles ϕi in different azimuth directions Φi of the full circle originating in a focal 5 

grid cell, and 𝑆ℎ being the diffuse solar radiation calculated using:  

𝑆ℎ = (0.271 − 0.294 𝜏𝑚)𝐺𝑆𝐶 ∙ 𝛹𝑠,          (17) 

Where 𝐺𝑆𝐶 is the solar constant defined at 1367 kW m2, and 𝛹𝑠 is the sky view factor defined as 

𝛹𝑠 =
1

𝑁
∑  𝑁

𝑖=1 [cos 𝛽 cos 𝜑𝑖 + sin 𝛽 cos(𝛷𝑖 − 𝛼) ·  (90 − 𝜑𝑖 − sin 𝜑𝑖 cos 𝜑𝑖) ],    (18) 

with N=8 uniformly distributed directions used for an approximation of the topographic effect.  10 

2.2.5 shortwave downwelling solar radiation under cloudy conditions 

To calculate rsds under cloudy conditions, we calculated surface cloud area fraction (clt) from atmospheric cloud 

fractions cl at pressure levels z from ERA5. We first calculated the windward leeward index H using the u and v 

wind components from ERA5 following the methods described in Karger et al 2021. To distinguish between 

clouds that are influenced by orography from clouds in the free atmosphere, we first adjusted the windward 15 

leeward index relative to the number of pressure levels used, so that the windward leeward index is stronger at 

lower pressure levels than on pressure levels that are not influenced by the orography anymore. For each pressure 

level i..n we calculated the corrected windward leeward index 𝐻𝑖
𝑐𝑜𝑟1 using 

 

𝐻𝑖
𝑐𝑜𝑟1 =  𝐻𝑖 + (1 − 𝐻𝑖) ⋅

𝑖

𝑛−1
.         (19) 20 

 

This gives however the highest orographic effect directly at the surface altitude z, where often cloud formation is 

not possible yet. We therefore additionally corrected the windward leeward index by the distance to the cloud 

base height B-spline interpolated to the 30 arcsec resolution 𝑐𝑏ℎ using, 

 25 

𝐻𝑖
𝑐𝑜𝑟2 =  𝐻𝑖

𝑐𝑜𝑟1 −  (1 − 𝐻𝑖
𝑐𝑜𝑟1) ⋅

𝑧−𝑐𝑏ℎ

𝑐𝑏ℎ
,        (20) 

 

where the cloud area fraction on each pressure level i is then given by a horizontal spline interpolation of the 

coarse grid cloud fraction to a 30 arcsec resolution 𝑐𝑙𝑖
𝑐

 
with the corrected windward leeward index:  

 30 

𝑐𝑙𝑖
ℎ = 𝐻𝑖

𝑐𝑜𝑟2 ⋅ 𝑆(𝑐𝑙𝑖
𝑐)           (21) 

 

Cloud area fraction at the ground level then follows the maximum overlap assumption so that: 

 

https://doi.org/10.5194/essd-2022-367
Preprint. Discussion started: 2 December 2022
c© Author(s) 2022. CC BY 4.0 License.



 

9 
 

𝑐𝑙𝑡 =  𝑚𝑎𝑥(𝑐𝑙1
ℎ…𝑐𝑙𝑖

ℎ)          (22) 

To include surface cloud area fraction clt in rsds we used the parametrization from (Kasten and Czeplak, 1980):  

𝑟𝑠𝑑𝑠 = 𝑆𝑛
∗(1 − 0.75 ⋅ 𝑐𝑙𝑡3.4)         (23) 

2.2.6 Downscaling of precipitation (pr) 

The downscaling method for precipitation mostly follows that of Karger et al. (2021) but does not include the 5 

cloud cover correction based on satellite observations as those are not available for all years. We used the zonal 

and meridional wind components as well as the height of the planetary boundary layer to calculate the windward 

leeward index H. H together with the height of the boundary layer following Karger et al. (2021) were used for a 

first approximation of the orographic precipitation intensity, H≈pi, for the 30 arcsec resolution grid cell i. We then 

used a linear relationship between the input precipitation rate from W5E5, 𝑝𝑟𝑊5𝐸5
 , and pi to compute the 10 

downscaled precipitation of grid cells I, pri, according to 

 

𝑝𝑟𝑖 =  
𝑝𝑖

1

𝑛
∑  𝑛

𝑖=1  𝑝𝑖
 ∗  𝑝𝑟𝑊5𝐸5

 ,         (24) 

 

where 𝑛 equals the number of 30 arcsec grid cells that fall within a 0.5° grid cell. This equation ensures that the 15 

data are to scale, i.e. the precipitation flux at 0.5° resolution is preserved. More details on the exact parametrization 

of the downscaling algorithm for precipitation are given in Karger et al. (2021).  

3. Evaluation 

The evaluation of the downscaling from low (0.5°) to high (30 arcsec) resolution follows the evaluation approach 

outlined in Karger et al., (2021), and compares measurements at meteorological stations with data from both the 20 

low and the high spatial resolution. Since many observations at stations are already included in the W5E5 data 

due to the bias correction applied, we do not only evaluate the actual measurements at the stations, but rather focus 

on the difference between evaluation metrics achieved by the 0.5° data and the downscaled data. This will directly 

evaluate the downscaling, but not the forcing of the downscaling (see: Karger et al. 2021). We use two 

observational datasets, GHCN-D (Global Historical Climatology Network Daily) and GEBA (Global Energy 25 

Balance Archive), as references for the evaluation. The evaluation is performed at daily, seasonal, and long term 

climatological normals. The comparison to the station data is global, whereas the comparison to the dynamically 

downscaled data is constrained to the United States, where model output as well as a dense network of 

observational station data are available. 

 30 

3.1 Evaluation datasets 

To evaluate the performance of the downscaling algorithm we compute several test statistics at the original 0.5° 

resolution of the W5E5 data, and the downscaled data at 30 arcsec from CHELSA-W5E5. We use observations 

at meteorological stations (Table 1) and compare those to W5E5 and CHELSA-W5E5 data from the 

corresponding 0.5° and 30 arcsec grid cells, respectively, in order to assess the value added by the downscaling. 35 
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Table 1: Overview of the datasets used for evaluation, the variables contained, their temporal resolution and the 

number of stations used for the evaluation. tas = daily mean 2 m air temperature, pr = daily mean precipitation, 

tasmax = daily maximum 2 m air temperature, tasmin = daily minimum 2 m air temperature, and rsds = shortwave 

downwelling radiation. 5 

variable dataset number of stations used temporal resolution Reference 

tas GHCN-D 9225 daily (Menne et al., 2018) 

tasmin GHCN-D 24994 daily (Menne et al., 2018) 

tasmax GHCN-D 25018 daily (Menne et al., 2018) 

pr GHCN-D 76369 daily (Menne et al., 2018) 

rsds GEBA 1104 monthly (Wild et al., 2017) 

 

3.1.1 GHCN-D 

For the evaluation of 2 m air temperatures and precipitation rates, we used observations at meteorological stations 

from the Global Historical Climatology Network Daily (GHCN-D) network. This dataset contains meteorological 

station-based measurements from global land areas. About two thirds of the observations are precipitation 10 

measurements only (Menne et al., 2018). 

3.1.2 GEBA 

The station data of the GHCN-D network does not include energy flux variables. Thus, for the validation of 

shortwave downwelling radiation we used the Global Energy Balance Archive (GEBA). This database is 

maintained by the Institute for Climate and Atmospheric Sciences (IAC) at ETH Zurich and consists of globally 15 

measured energy fluxes at the Earth’s surface (Wild et al., 2017).  Its first version was implemented in 1988, it 

has continuously been updated ever since and mainly been improved in terms of data availability, data access, and 

internet appearance (Wild et al., 2017). GEBA provides observations for 15 surface energy flux components. 

Shortwave radiation incident at Earth’s surface (global radiation) is the most widely measured quantity available 

in GEBA. The various observations have been compiled to monthly mean surface energy flux data from various 20 

sources. 

 

3.2 Evaluation using observations at meteorological stations 

To show the improvement resulting from the downscaling from 0.5° to 30 arcsec we compared each variable from 

both CHELSA-W5E5 and W5E5 to observations from meteorological stations (Table 1). For each meteorological 25 

station, the value of the grid cell that contains the location of the station was extracted and evaluated using several 

evaluation metrics.  

3.2.1 Evaluation metrics 

Evaluation metrics include the bias, correlation coefficient, root mean squared error and mean absolute error. The 

correlation is calculated based on Pearson’s correlation coefficient, 30 
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𝑟 =
𝑐𝑜𝑣(𝑥𝑠𝑖𝑚, 𝑥𝑜𝑏𝑠)

𝜎(𝑥𝑠𝑖𝑚) 𝜎(𝑥𝑜𝑏𝑠) 
,          (25) 

 

where 𝑥𝑜𝑏𝑠 represents the observed time series at a meteorological station 𝑥𝑠𝑖𝑚 the downscaled timeseries, cov the 

covariance, and 𝜎 the standard deviation. The root mean squared error (rmse) is defined as  

 5 

𝑟𝑚𝑠𝑒 =  √
1

𝑛
(∑  𝑛

𝑖=0 (𝑥𝑠𝑖𝑚𝑖
− 𝑥𝑜𝑏𝑠𝑖

)
2

),        (26) 

 

where n is the number of time steps of a timeseries. Furthermore, the mean absolute error (mae) was computed 

according to 

 10 

𝑚𝑎𝑒 =
1

𝑛
(∑  𝑛

𝑖=0 |𝑥𝑠𝑖𝑚𝑖
− 𝑥𝑜𝑏𝑠𝑖

|)        (27) 

 

Finally, the relative bias was computed to investigate the average amount by which the observations are greater 

than the estimates of the model output data based on different resolutions by 

 15 

𝑏𝑖𝑎𝑠 =  𝑥𝑜𝑏𝑠𝑖
− 𝑥𝑠𝑖𝑚𝑖

          (28) 

3.2.2 Seasonal performance 

To investigate if the downscaling has a similar performance throughout the year, in a first step we aggregated the 

daily or, in the case of rsds, the monthly data to seasonal values, e.g. winter = December, January, February, 

spring = March, April, Mai, summer = June, July, August, autumn = September, October, November. Based on 20 

the seasonally aggregated means, Taylor diagrams were used to show the performance improvements based on 

correlations, standard deviation and root mean squared error.  

3.2.3 Global and regional performance 

Further comparisons between observations from meteorological stations, W5E5 and CHELSA-W5E5 were done 

at daily resolution (in case of rsds a monthly resolution was used), as well as for long term climatological normals. 25 

Additional analyses were carried out for North America (except for rsds), where both the density of meteorological 

stations and their quality is high. Both globally and for North America, several evaluation metrics were calculated 

(see section 3.2.1). The main focus was on the difference in bias between W5E5 and CHELSA-W5E5 as this 

difference is an indicator of the value added by the downscaling algorithm.  

3.2.3 Evaluation at the extremes 30 

To evaluate the performance of the downscaling at the extremes of the temperatures and precipitation rates we 

defined extreme values based on quantiles over the entire time period 1979-2016. For extreme high temperatures 

we used the 95th percentile of tasmax. Extreme precipitation rates were defined as the 95th percentile precipitation 

rates on wet days (days with pr greater than 0.1 kg m-2 day-1), and for extreme cold days we used the 5th percentile 

of tasmin,  35 
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3.2.4 Comparison with dynamically downscaled data 

To compare the terrain based downscaling to a more complex and computationally demanding dynamical 

downscaling, our evaluation includes a comparison with a simulation of the Weather Research and Forecast Model 

(WRF) (Skamarock et al., 2019) for the historical climate of  North America (Rasmussen and Liu, 2017). The 

simulation was performed over a 13 year period (October 2000 - September 2013) with boundary conditions from 5 

ERA-Interim, at a spatial resolution of 4 km. The comparison between WRF and CHELSA-W5E5 was conducted 

for the variables tas and pr.  

4. Results 

4.1. Evaluation using observations at meteorological stations 

4.1.1 Seasonal performance 10 

The correlation of both datasets with observations at meteorological stations is very high overall (r > 0.9) for all 

variables globally as well as for North America with the exception of daily pr. In general, the downscaling 

decreased the bias, rmse, mae, and increases the correlation for all variables expect rsds (Fig. 1, Table 2). There 

is no obvious deviation during any of the four seasons for tas, tasmax, or tasmin and the downscaling seems to 

perform equally well (Fig. 1). For pr the performance of both W5E5 and CHELSA-W5E5 is slightly higher during 15 

the northern winter months, while for rsds it is higher during northern spring and summer (Fig. 1).   
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Figure 1: Seasonal performance based on a comparison of global long term seasonal means normals (1979-2016) of the global 

topographically downscaled high-resolution (30 arcsec, i.e. ~1 km) data (CHELSA-W5E5, orange) and the coarse (0.5°) orig-

inal data (W5E5, violet) with GHCN-D for daily mean 2 m air temperature (tas), daily minimum 2 m air temperature (tasmin), 

daily maximum 2 m air temperature (tasmax), precipitation (pr), and shortwave downwelling radiation (rsds), based on 5 
monthly aggregated data. Values are shown separately for the four seasons: winter (DJF), spring (MAM), summer (JJA), 

autumn (SON). For the variables tas, tasmin, tasmax, and pr, the observational dataset GHCN-D was used for comparison. For 

rsds, the GEBA dataset was used. 

 

4.1.2 Global and regional performance 10 
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For tas, tasmax, and pr, all error metrics (bias, mae, rmse) decrease after downscaling and the correlation 

coefficient increases (Table 2). For rsds the bias is substantially reduced in the downscaled data, but the correlation 

coefficient is slightly reduced (Table 2). The lower correlation with yet a smaller bias seems to be driven by a 

systematic deviation of the downscaled rsds in areas with high rsds (Fig. 2). For tasmin, the pattern is opposite to 

rsds, i.e., the correlation coefficient increases after downscaling but the bias increases (Table 2). This pattern for 5 

tasmin and rsds is even more pronounced when only stations in North America are used (Table 3). The reduction 

in bias of air temperatures due to the downscaling to 30 arcsec is highest in topographically heterogeneous terrain, 

such as the western parts of North America whereas the topographic downscaling hardly added value in flat terrain 

(Fig. 3). Bias reduction for precipitation is also highest in topographically complex terrain, but considerable in 

flat terrain as well (Fig. 3).   10 

 

Table 2: Statistical scores from the comparison between CHELSA-W5E5 and W5E5, with observations from 

meteorological stations for all five variables (tas = daily mean 2 m air temperature, pr = daily mean precipitation, 

tasmax = daily maximum 2 m air temperature, tasmin = daily minimum 2 m air temperature, and rsds = shortwave 

downwelling radiation) globally. temp. res. = temporal resolution, bias=bias between a modelled value and a 15 
measurement at a specific timestep (temp. res.) at a specific station, sd_bias = standard deviation in bias, bias_re 

= reduction in bias (positive values indicate an increased performance), sd_bias_re = standard deviation in bias 

reduction, r = Pearson correlation coefficient, mae = mean absolute error, rmse = root mean squared error. Normals 

were calculated by averaging values over the entire observation period of a station between 1979-2016. Bias, 

sd_bias, bias_re, sd_bias_re, r, mae, and rmse have been based on comparisons of measurements between 20 
CHELSA-W5E5, W5E5, and observations at each station at each respective timestep (temp. res). Bold values in 

bias_re indicate an increase in performance due to the downscaling.  

model variable unit 

temp. 

res. bias sd_bias bias_re 

sd_ 

bias_re r mae rmse 

CHELSA-W5E5 tas K daily 0.053 2.369 0.378 1.429 0.984 1.601 2.369 

W5E5 tas K daily 0.660 2.755 - - 0.979 1.978 2.833 

CHELSA-W5E5 tasmin K daily -0.548 2.996 0.080 1.404 0.966 2.197 3.046 

W5E5 tasmin K daily 0.247 3.123 - - 0.963 2.276 3.132 

CHELSA-W5E5 tasmax K daily -0.386 2.949 0.288 1.415 0.972 2.096 2.974 

W5E5 tasmax K daily 0.334 3.283 - - 0.965 2.384 3.300 

CHELSA-W5E5 pr kg m-2day-1 daily 0.004 0.707 0.008 0.162 0.511 0.244 0.707 

W5E5 pr kg m-2day-1 daily -0.004 0.733 - - 0.499 0.252 0.733 

CHELSA-W5E5 rsds W m-2 monthly 1.273 19.256 1.098 12.360 0.900 12.732 19.289 

W5E5 rsds W m-2  monthly -10.329 18.731 - - 0.914 13.830 21.382 

CHELSA-W5E5 tas K normals 0.086 1.217 0.510 1.235 0.990 0.830 1.220 

W5E5 tas K normals 0.729 1.812 - - 0.980 1.340 1.953 

CHELSA-W5E5 tasmin K normals -0.564 1.636 -0.015 1.192 0.980 1.282 1.731 

W5E5 tasmin K normals 0.220 1.824 - - 0.970 1.268 1.837 

CHELSA-W5E5 tasmax K normals -0.408 1.701 0.289 1.221 0.980 1.057 1.749 

W5E5 tasmax K normals 0.298 2.192 - - 0.960 1.346 2.212 

CHELSA-W5E5 pr kg m-2day-1 normals 0.027 0.550 0.015 0.284 0.900 0.326 0.551 

W5E5 pr kg m-2day-1 normals -0.039 0.575 - - 0.900 0.342 0.576 

CHELSA-W5E5 rsds W m-2 normals 0.696 23.628 -0.866 13.997 0.958 16.360 23.638 

W5E5 rsds W m-2  normals -9.550 21.751 - - 0.963 15.494 23.755 
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Figure 2: Scatterplots comparing long term mean observations from GHCN-D with values from W5E5 (left 

column, before downscaling), and CHELSA-W5E5 (right column, after downscaling). Each point represents the 

mean of all observations at a specific GHCN-D station in the period 1979-2016, except for downwelling shortwave 

solar radiation where each point represents a specific month. 5 
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Table 3. Statistical scores from the comparison between the two simulated datasets CHELSA-W5E5 and W5E5, 

and observations from GHCN-D stations in North America for all five variables (tas = daily mean 2 m air 

temperature, pr = daily mean precipitation, tasmax = daily maximum 2 m air temperature, tasmin = daily minimum 

2 m air temperature, and rsds = shortwave downwelling radiation) globally. temp. res. = temporal resolution, 5 

bias=bias between a modelled value and a measurement at a specific timestep (temp. res.) at a specific station, 

sd_bias = standard deviation in bias, bias_re = reduction in bias (positive values indicate an increased 

performance), sd_bias_re = standard deviation in bias reduction, r = Pearson correlation coefficient, mae = mean 

absolute error, rmse = root mean squared error. Normals were calculated by averaging values over the entire 

observation period of a station between 1979-2016. Bias, sd_bias, bias_re, sd_bias_re, r, mae, and rmse have been 10 

based on comparisons of measurements between CHELSA-W5E5, W5E5, and observations at each station at each 

respective timestep (temp. res). Bold values in bias_re indicate an increase in performance due to the downscaling. 

model variable unit 

temp. 

res.  bias sd_bias bias_re sd_bias_re r mae rmse 

CHELSA_W5E5 tas K daily 0.062 2.992 0.562 1.585 0.964 2.071 2.993 

W5E5 tas K daily 0.176 3.411 - - 0.952 2.459 3.415 

CHELSA_W5E5 tasmax K daily -0.741 3.234 0.163 1.464 0.965 2.393 3.318 

W5E5 tasmax K daily -0.005 3.566 - - 0.957 2.618 3.566 

CHELSA_W5E5 tasmin K daily -0.691 3.125 -0.134 1.428 0.959 2.319 3.200 

W5E5 tasmin K daily 0.089 3.206 - - 0.957 2.334 3.207 

CHELSA_W5E5 pr 

kg m-2 

day-1 daily -0.077 6.902 0.016 1.625 0.583 2.564 6.903 

W5E5 pr 

kg m-2 

day-1 daily -0.128 7.186 - - 0.569 2.643 7.187 

CHELSA_W5E5 tas K normals 0.108 1.277 0.562 1.249 0.979 0.883 1.281 

W5E5 tas K normals 0.520 1.947 - - 0.950 1.445 2.015 

CHELSA_W5E5 tasmax K normals -0.749 1.661 0.163 1.246 0.970 1.138 1.822 

W5E5 tasmax K normals -0.031 2.199 - - 0.948 1.301 2.200 

CHELSA_W5E5 tasmin K normals -0.668 1.744 -0.134 1.182 0.960 1.415 1.867 

W5E5 tasmin K normals 0.098 1.844 - - 0.955 1.281 1.847 

CHELSA_W5E5 pr 

kg m-2 

day-1 normals 0.137 1.443 0.016 0.320 0.871 0.550 1.449 

W5E5 pr 

kg m-2 

day-1 normals 0.087 1.433 - - 0.867 0.566 1.436 

                 

 

  15 
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Figure 3:  Mean bias of daily 2 m air temperatures and daily mean precipitation rates (from top to bottom) in North 

America averaged over the entire observational period of each station between 1979-2016. Left: Bias between 

W5E5 and observations at GHCN-D meteorological stations. Middle: Bias between the downscaled CHELSA-5 
W5E5 and observations at GHCN-D meteorological observations. Right: Bias reduction at each of the stations as 

a result of the downscaling, i.e., the changes in absolute bias between the 0.5° W5E5 and 30 arcsec CHELSA-

W5E5, with negative values indicating a bias reduction, and positive values indicating an increase in bias. The 

diameter of each dot scales with the absolute bias.  

 10 
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4.1.3 Extreme temperatures and precipitation 

For extreme values such as the 95th percentile of daily maximum 2 m air temperature and the 5th 

percentile of daily minimum 2 m air temperature the bias reduction is again strongest in topographically 

complex terrain (Fig. 4, a,b). For extreme precipitation, the bias reduction is spatially not as coherent 

as for air temperature extremes and the bias can even increase with the downscaling. Generally, the 5 

downscaling shows a higher bias reduction in topographically complex terrain, while in flat terrain the 

downscaling actually introduces a bias in the extremes (Fig. 4, c).  

 
Figure 4: Mean bias of the extremes in maximum and minimum daily 2 m air temperatures and precipitation rates 

(from top to bottom) in North America averaged over the entire observational period of each station between 10 
1979-2016. Left: Mean bias between W5E5 and observations from GHCN-D meteorological stations for extreme 

values in air temperature and precipitation. Middle: Bias between CHELSA-W5E5 and observations from 

GHCN-D meteorological stations for extreme values in air temperature and precipitation. Right: Absolute bias 

reduction after downscaling from 0.5° to 30 arcsec for extreme values in air temperature and precipitation, defined 

as the difference between the absolute bias of W5E5 and the absolute bias of CHELSA-W5E5.  15 
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4.2. Comparison with dynamically downscaled data 

Both the downscaled air temperatures as well as precipitation rates from CHELSA-W5E5 and WRF show 

relatively high congruence with observations at meteorological stations (Fig. 5). Correlation rates are overall 

higher, and biases are lower for CHELSA-W5E5 then WRF when both models are compared to observations at 

GHCN-D stations over the same observational period (Table 4, Fig. 5). Correlations are almost similar for air 5 

temperatures, but slightly higher for CHELSA-W5E5 for precipitation compared to WRF (Fig. 5).  

 

Table 5. Statistical scores from the comparison of CHELSA-W5E5 and WRF with observations from GHCN-D 

stations in North America daily mean 2 m air temperature (tas) and daily mean precipitation (pr). temp. res. = 

temporal resolution, bias=bias between a modelled value and a measurement at a specific timestep (temp. res.) at 10 

a specific station, sd_bias = standard deviation in bias, r = Pearson correlation coefficient, mae = mean absolute 

error, rmse = root mean squared error. Normals were calculated by averaging values over the entire observation 

period of a station between 200-2013. Bias, sd_bias, r, mae, and rmse have been based on comparisons of 

measurements between CHELSA-W5E5, WRF, and observations at each station at each respective timestep 

(temp. res). Bold values in bias_re indicate an increase in performance due to the downscaling. 15 

model variable temp. res. bias sd_bias cor mae rmse 

CHELSA_W5E5 tas daily 0.169 2.734 0.966 1.940 2.739 

WRF tas daily 0.242 2.897 0.967 2.030 2.907 

CHELSA_W5E5 pr daily -0.862 68.840 0.584 25.526 68.845 

WRF pr daily 23.247 78.295 0.452 24.557 81.673 

CHELSA_W5E5 tas normals 0.133 1.590 0.988 1.104 1.595 

WRF tas normals -0.297 3.736 0.939 2.243 3.748 

CHELSA_W5E5 pr normals 1.369 22.099 0.813 8.392 22.141 

WRF pr normals 29.101 35.356 0.710 29.129 45.792 
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Figure 5: Performance based on a comparison of global long term monthly means of the topographically 

downscaled high-resolution (~1 km) data (CHELSA-W5E5, orange) with dynamically downscaled high-

resolution (4 km) data (WRF) over North America, for the climatic variables daily mean 2 m air temperature and 5 

daily mean precipitation. The long-term means are shown separately for the four seasons; winter (DJF), spring 

(MAM), summer (JJA), autumn (SON).  
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5. Discussion 

This paper shows that the CHELSA downscaling procedure generally increases the accuracy of the modelled air 

temperatures, precipitation rates, and downwelling shortwave solar radiation. While correlations between 

simulated and observed variables in the coarse 0.5° resolution W5E5 data are already generally greater than 0.9, 

the downscaling increases this correlation further and decreases the bias and errors of the data in most cases. 5 

Notably exceptions are tasmin, where the increase in correlation comes with an increase in the bias of the 

downscaled data, and rsds, where the reduction in bias comes with a decrease in the correlation with observations, 

specifically for high values of rsds. 

5.1 Air temperatures 

The downscaling of the different air temperatures (tas, tasmax, tasmin) works best in topographically 10 

heterogeneous terrain, while its effect in flat terrain is much lower. This mainly comes from the relatively simple 

procedure applied that uses atmospheric temperature lapse rates, B-spline interpolations, and high-resolution 

orography alone to downscale air temperatures without any incorporation of, e.g., radiation budgets or air 

movements. Downscaling additionally improves the representation of temperature extremes, with absolute bias 

reductions exceeding those for mean temperatures. 15 

The temperature downscaling does not use a full physical scheme as usually used in dynamical downscaling 

routines. Although the inclusion of additional effects other than the atmospheric lapse rate correction in a 

downscaling procedure would give more physically realistic estimates of air temperatures, the differences from 

such increase in complexity at very high resolutions are minimal in this case, as shown by the comparison with 

the numerically downscaled WRF data over North America. Dynamical downscaling however, comes at a large 20 

computational cost that makes it infeasible for global kilometre-scale application yet (Schär et al., 2019; Ban et 

al., 2021). 

While overall, the performance of W5E5 and CHELSA-W5E5 is already high (r >= 0.9), the W5E5 data shows a 

lower fit with observations from GHCN-D during the spring and summer period. There are also limitation of the 

downscaling using mean daily lapse rates, especially for minimum 2m daily air-temperatures. The evaluation 25 

shows that downscaling tasmin with a mean daily temperature lapse rate as applied here can actually also increase 

the bias. In North America, this seems to happen especially in the high plateaus of the Rocky Mountains (Fig. 3), 

where minimum temperatures are usually caused during conditions of nocturnal inversions (Whiteman, 1982), 

causing positive temperature lapse rates with elevation. In this case the use of a mean daily temperature lapse rate 

is not representative. Since the application of a different lapse rate for minimum daily 2m air-temperature and 30 

maximum daily 2m air-temperature could lead to higher minimum than maximum temperatures, this problem 

cannot be solved by running the CHELSA algorithm on a daily resolution, but only by increasing the temporal 

resolution and derive daily maximum- and minimum daily 2m air-temperatures from hourly downscaled air-

temperatures 

 35 

5.2 Precipitation  

Downscaling also increases the correlation of precipitation with observations, although not to such a large degree 

as in the case of air temperatures. The coarse W5E5 data already has a high (r>0.9) correlation with observations, 
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which is globally not much improved by the downscaling. However, the global comparison might be misleading 

here as the downscaling mainly affects precipitation rates at a very local scale where it has been shown to lead to 

large improvements (Karger et al. 2021). Topographic downscaling using the CHELSA v2.1 algorithm for 

precipitation rates has been shown to create long-term mean spatial patterns of precipitation rates that are 

extremely similar to those produced with dynamical downscaling using WRF over topographically complex 5 

terrain (Karger et al. 2021). A disadvantage of the presented precipitation downscaling is clearly that it cannot 

resolve convective precipitation, as only orographic effects are accounted for. While the mean bias in precipitation 

rates is generally decreased by the downscaling, the bias is larger during extreme precipitation events in 

topographically homogeneous terrain. These events are better captured by dynamically data using a dynamic 

model such as WRF at convection permitting resolutions. 10 

5.3 Surface downwelling shortwave solar radiation 

Surface downwelling shortwave solar radiation under clear-sky conditions is the only variable that is not directly 

downscaled but is fully mechanistically derived from terrain attributes. The algorithm for clear-sky solar radiation 

applied here captures terrain effects on solar radiation at very high spatial resolutions and has been shown to be 

effective in topographically complex terrain (Böhner and Antonic, 2009). Interpolations and direct downscaling 15 

are done on atmospheric cloud cover that is used to account for the amount of radiation which is absorbed and 

reflected by clouds. The high-resolution total cloud cover estimated by the algorithm has been shown to have 

monthly normals which correlate well with observations from GHCN-D (r=0.84, Brun et. al. 2022) even though 

the algorithm does not include convective cloud formation at kilometre-scale resolutions. While the bias is 

substantially reduced in the mid-range of rsds values, extreme high solar radiation shows stronger deviations from 20 

observations. This might be due to the relatively simple correction applied for rsds using cloud cover, or 

overestimates in the atmospheric scatter estimated with a bulk value of 80%. While it is unclear which part of the 

downscaling is responsible for the deviation at high rsds values, it shows where future developments of the 

downscaling should focus on and where clear limitations are visible. 

5.4 Implications for applications 25 

While the topographic downscaling increases the accuracy of the data, it most likely violates certain physical 

relationships, both due to the simplicity of the downscaling algorithm and since the five variables are downscaled 

independent from each other. These limitations are often encountered in univariate downscaling or bias correction 

procedures (Zscheischler et al., 2019) and should be kept in mind when applying the output data of the 

downscaling in further analysis. Additionally, extreme values of rsds should be used with care and tasmin can 30 

show large deviations in areas with cold air pooling. 

The data provided is additionally cropped by a land-sea mask that has been designed to include all 30 arcsec grid 

cells that overlap with a land mask, plus a buffer to account for potential spatial inaccuracies. This practically 

excludes all ocean surface areas. However, the algorithms applied here are solely forced by topography and if no 

topography is present, the downscaling is only done by a B-spline interpolation. Since this does not add 35 

information, we excluded all areas without topography to decrease the amount of data that needs to be stored.  
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6. Applications for impact modelling within ISIMIP 

To test whether the improvements achieved by the downscaling, here shown as improved correlations and reduced 

biases compared to observed climate, also matter for impact modelling, the data will be further tested within the 

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). To this end, a range of impact models from 

different sectors (e.g. hydrological models, forest model or agricultural models) will be used to run at 1km and 5 

0.5° resolution (and essentially a range of resolutions in between produced using the same approach as presented 

here for 1km) and compared to typical observational evaluation data for these impact models such as with 

ecosystem productivity data from eddy-covariance towers (Reyer et al., 2020) for forest models or discharge data 

for hydrological models (Huang et al., 2017; Liersch et al., 2020). Moreover, the CHELSA-W5E5 dataset will be 

employed to bias-adjust future climate projections in the upcoming ISIMIP phase 3 at high resolution to also allow 10 

regional applications at high spatial resolution that are still consistent with the wider ISIMIP framework. 

7. Data Availability 

The output of the CHELSA-W5E5 model is freely available under a CC0 1.0 Universal Public Domain Dedication 

(CC0 1.0) license. Dirk N. Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Niklaus E. Zimmermann 

(2022): CHELSA-W5E5 v1.0: W5E5 v1.0 downscaled with CHELSA v2.0. 15 

(https://doi.org/10.48364/ISIMIP.836809.3, Karger et al., 2022) 

 

8. Code Availability 

Source codes of the CHELSA model used for the downscaling are available here: 

https://gitlabext.wsl.ch/karger/chelsa_isimip3b_ba_1km.git 20 

Source codes of the evaluation are available here: 

https://gitlabext.wsl.ch/harichan/chelsa_w5e5-validation  
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