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Abstract. Modern and fossil pollen data are widely used in paleoenvironmental research to characterise past environmental

changes in a given location. However, their discrete and discontinuous nature can limit the inferences that can be made from

them. In contrasts, deriving continuous spatial maps of the pollen presence from point-based datasets would enable more robust

regional characterization of such past changes. To address this problem, we propose a comprehensive collection of European

pollen presence maps including 194 pollen taxa derived from the interpolation of pollen data from the Eurasian Modern5

Pollen Database (EMPD v2) restricted to the Euro-Mediterranean Basin. To do so, we developed an automatic Kriging-based

interpolation workflow to select an optimal geostatistical model describing the spatial variability for each taxon. The output of

the interpolation model consists in a series of multivariate predictive maps of Europe at 25-km scale, showing the occurrence

probability of pollen taxa, the predicted presence based on diverse probability thresholds, and the interpolation uncertainty

for each taxon. Visual inspections of the maps and systematic cross-validation tests showed that the ensemble of predictions10

is reliable even in data-scarce regions, with a relatively low uncertainty, and robust to complex and non-stationary pollen

distributions. The maps, freely distributed as GeoTIFF files, are proposed as a ready-to-use tool for spatial paleoenvironmental

characterization. Since the interpolation model only uses the coordinates of the observation to spatialise the data, similar maps

could also be derived for fossil pollen records, thus enabling the spatial characterization of past changes, and possibly, their

subsequent use for quantitative paleoclimate reconstructions.15

1 Introduction

Fossil pollen data are commonly used to document how vegetation responded to past global climate forcing. Continental-scale

studies of past land cover changes or biome data-model comparisons are particularly informative because they allow extracting

common trends from large datasets. Pollen data are also commonly employed to quantitatively reconstruct past climate using

statistical models built on pollen-climate relationships derived from modern pollen observations (Birks et al., 2010; Chevalier20

et al., 2020). These reconstructions have been instrumental to improving our understanding of past climate dynamics at various
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timescales (Kaufman et al., 2020; Herzschuh et al., 2019; Marsicek et al., 2018; Routson et al., 2019) and to evaluate Earth

System Model (ESM) simulations over land (Liu et al., 2014; Mauri et al., 2014; Weitzel et al., 2019).

Despite the recent accumulation of thousands of fossil pollen records in public repositories (Herzschuh et al., 2022; Williams

et al., 2018), most pollen-based analyses remain performed at the site level. Each pollen sample is analysed in isolation from25

the others, and the results (e.g. land cover estimates or climate reconstructions) are then merged together to extract a region-

al/continental signal (Marsicek et al., 2018; Mauri et al., 2015; Herzschuh et al., 2022). This approach is imperfect because

it generates coarse spatial representations with abrupt local transitions relative to the regional grouping of the samples. More-

over, it generally does not take into account the local data density and variability, and assessing the spatial uncertainty of the

estimations is generally not possible.30

Advanced geostatistical techniques allow drawing spatial information based on data density, presence, and spatial variations.

However, these techniques require a minimum density and quality in the studied data to produce reliable estimates. The recent

growth of harmonised modern (Davis et al., 2020; Whitmore et al., 2005) and fossil (Williams et al., 2018) pollen data now

allow for the use of such techniques, which represent, as such, an interesting step forward in the analysis of large scale

compilations of pollen data. In particular, the spatial covariance, a fundamental function of geostatistics, can be robustly35

estimated from pollen data in Europe or North America where hundreds of records are available. While the quantity of pollen

grain observed for a given pollen taxon is affected by many processes (see for instance Chevalier et al. (2020)) and is, therefore,

heterogeneous over space, its presence (i.e. the observation of one or more grains at any location) is subject to lower complexity.

As such, binary presence data can be interpolated into space more robustly, irrespective of the characteristics of the sampling

environment.40

However, estimating the complex distribution maps of pollen occurrence probability across large regions and for many

taxa is difficult. While the commonly used polynomial interpolation techniques could be an obvious solution, imposing an

arbitrary spatial model (e.g. linear, quadratic, or cubic) and ignoring the uneven spatial distribution of the pollen samples

would certainly limit the accuracy and reliability of such interpolations. Therefore, we developed a model based on Kriging

(Matheron, 1963; Chiles and Delfiner, 2009) to spatialize our point-based observations and estimate occurrence probability45

maps. Kriging was preferred over other types of spatial interpolation techniques because it is based on a spatial model inferred

from the observations and it minimizes the local bias and error variance. To enable its use over a large number of taxa, we

embedded it in an automatic framework that preprocesses the pollen data, chooses the best type of spatial model for each

pollen taxon, and generates the interpolated maps.

The goal of the present study is thus to realize, for the first time to our knowledge, a collection of raster maps representing50

the probability of occurrence of 194 pollen taxa observed across the Euro-Mediterranean Basin, compiled in an atlas called

EUPollMap. For every taxon considered in EUPollMap, the output consists of a raster file with three layers showing: 1)

the pollen occurrence probability, 2) the discrete occurrence based on probability thresholds, and 3) the uncertainty of the

predictions. The paper is organized along two main axes with section 2 that describes the automatised Kriging methodology we

developed, and section 3 that introduces the cartographic product of the atlas with visual examples and reliability assessment.55

We contextualise the value of the research in section 4.

2

https://doi.org/10.5194/essd-2022-364
Preprint. Discussion started: 8 February 2023
c© Author(s) 2023. CC BY 4.0 License.



2 Methods: Spatial interpolation of pollen-presence data

2.1 The Indicator Kriging method

Kriging is a standard geostatistical interpolation technique that was first formalized in the early ’60s (Matheron, 1963) and used

since in various fields of geosciences such as e.g. mineral resources (Goovaerts et al., 1997; Sadeghi et al., 2015), hydrogeology60

(Varouchakis and Hristopulos, 2013), or soil properties (Emery and Ortiz, 2007; Minasny and McBratney, 2016). Several

comparative studies have shown that Kriging produces robust and regionally-smooth interpolations, while minimizing the

error variance and bias at the interpolated locations (see e.g. Zimmerman et al., 1999; Wagner et al., 2012; Oriani et al., 2020).

Kriging interpolates discrete data Z by estimating the target variable at any location of a pre-defined region of interest as a

weighted mean of nearby data values, with the weights being computed by the resolution of a system of equations based on a65

variogram function γ.

The variogram, which is at the core of the Kriging algorithm, is a function that quantifies the spatial variability of the

observed data as a response to the distance among them. Given the spatial variable Z(x), defined at coordinates x, with the

hypothesis of stationarity (i.e. assuming that the statistical properties of Z are uniform in space), the experimental variogram

for Z is estimated from the observed data as γ̂(h) = E[(Z(x)−Z(x+h))2]/2, where Z(x) and Z(x+h) are any known values70

of Z at distance h and E[·] is the average operator among all pairs of points with a similar h, grouped in discrete h intervals

(lags).

Then, a parametric variogram model γ is chosen among a family of pre-determined positive-definite functions and fitted to

the experimental variogram γ̂ using a least-square approach. Different types of models are possible depending on the structure

of the data and, usually, the model that fits the best with the experimental variogram, either by manual fit or by minimizing75

the error, is used in the Kriging system. Here, we consider the five most common variogram models that are suitable for

most situations: linear, power, exponential, spherical, and Gaussian (for more details see e.g. Cressie, 1985). Examples of

experimental and fitted variogram models are shown in the panels b of Figures 1, 2, and 3.

Once fitted, the variogram model can be interpreted as follow. If the modelled curve intersects the origin of the axes,

it indicates on average a smooth variation among adjacent data (zero lag), while intersecting the y-axis at positive values80

indicates discontinuities in adjacent data, a phenomenon called the nugget effect. The shape of the model curve along the

x-axis (increasing lag) describes the variability over larger distances, where a steep slope indicates sharp variations. Often the

model curve reaches a plateau, whose corresponding lag value, called the range, indicates the average correlation length of

the spatial structure. Above the range, the variable values are on average not correlated. In addition, since long lags are not

represented by many pairs of data points, it is common practice to limit the model fitting to the data below a fixed maximum85

lag threshold. In the atlas presented in this paper, this threshold is set to 3100 km, which corresponds to the 80-th percentile of

the distribution of all pairwise distances between the observations.

Two types of Kriging are considered here: Ordinary Kriging (OK), which assumes Z to be stationary with no regional trend,

and Universal Kriging with external drift (UK), implying the existence of a regional trend, given or estimated. In this study, we

performed preliminary tests comparing OK with UK using elevation as external drift for different taxa datasets (supplemental90
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material 3). No sensible differences in the resulting interpolations were observed. In addition OK allowed including all data

points while containing the computational burden, thus it was preferred over UK.

Finally, the observation data for Z (in this study) are binary and can only take two values: the pollen taxon is observed

(Z = 1) or not observed (Z = 0). OK is therefore applied as an Indicator Kriging interpolation. This way, the first Kriging

output map for Z is the expected value, varying continuously in space between 0 and 1, which can be interpreted as the95

probability of occurrence of the pollen taxon. Occasionally, the interpolated value can lie just outside this interval (e.g. it is

expected in situations where the Kriging weights are negative). In such cases, the values are bounded to either 0 or 1. The

second output map is the Kriging variance and indicates the uncertainty in space of the estimated probability. This quantity

depends on the data density, their variability, and the variogram model chosen. Generally, the variance is lowest around data

points and increases with distance. In this study, the Kriging system is solved for every pollen taxon separately, using the100

python package PyKrige (https://pypi.org/project/PyKrige/).

2.2 Automatic interpolation workflow

The Kriging technique is usually employed in a supervised context, where the variogram model and its parameters are adjusted

by examining the variogram plot and the interpolation results in a trial-and-error approach. This is necessary to avoid over-

fitting the model variogram to the data, which can lead to unrealistic interpolations. However, when many dataset have to be105

interpolated (e.g. with the European pollen taxa), supervising the model setup for each taxon and different possible variogram

models in a fair and consistent way is not feasible.

For this reason, following previous contributions (Desassis and Renard, 2013), we developed an automatic interpolation

workflow, implemented in python, for the choice and optimization of the variogram model. The model choice and variogram

fitting was based on having well represented lags, at least until a prescribed maximum lag threshold (here defined as 3100km,110

see section 2.1). The parameters were constrained to impose flat or monotonic-positive model functions (e.g. the slope of a

linear variogram model cannot be negative), enabling a fitting of the model that is consistent with the nature of the data. The

probability maps were generated for each pollen taxon with the following steps:

1. If the dataset presents all-0 (i.e. the taxon is not observed in the study area) or all-1 (i.e. the taxon is observed at every

sampling location) data, generate a 0/1 field on the defined grid as output Kriging mean and a 0 field as output Kriging115

variance, then go to step 5.

2. Compute the experimental variogram and find the best variogram model from our five model options (see section 2.1).

3. Solve the Kriging system with the optimised model parameters at every location of the interpolation grid to obtain the

mean and variance maps. A mask based on the coastal perimeter is used to exclude large water bodies.

4. Generate a discrete occurrence map by applying a series of fixed thresholds (0.2, 0.4, 0.5, 0.6, 0.8) on the mean map.120

5. Export an ESRI GeoTIFF file of the georeferenced output maps (see the metadata, Table 1).

6. Export the pollen presence/absence dataset as an ESRI Shapefile.
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2.3 Validation strategy

In addition to visually inspecting the interpolated probability surfaces and their variances with the original observations, we

assessed the reliability of the interpolations with reliability plots (Murphy and Winkler, 1977), which are common quantitative125

and graphical representations in geo- and atmospheric sciences (Bröcker and Smith, 2007; Allard et al., 2012). A reliability

plot is generated by removing part of the data for validation and comparing the probability of occurrence predicted by the

model with the occurrence frequency observed in the validation data. For example, for grid cells with a predicted probability of

occurrence around 0.2, the occurrence frequency observed from the validation data should be close to 0.2 for the prediction to

be reliable. The predicted probability range [0-1] is divided in ten discrete bins to group the validation locations and co-located130

occurrence data. Then the sample occurrence probability values are plotted against the observed frequency. If the plot points

lie along the bisector (i.e. the 1:1 line), the predictions can be considered reliable.

In some cases, the predictions do not cover uniformly the [0-1] range so that the plot cannot be representative (Jolliffe and

Stephenson, 2012). Therefore, for this type of validation, we randomly removed 50% of the data to ensure that the plot attained

stable statistical values.135

3 Application: The European atlas of modern pollen distributions

3.1 Definition of the study area

Distances between grid points are central to Kriging. As such, we used the spatial CRS EPSG:3034 that better respects dis-

tances than the standard CRS WGS84 that severely distorts distances when large latitudinal ranges are covered. Note that the

coordinates are expressed in metres from the CRS origin.140

The dataset is limited to data located inside and near the spatial interpolation grid chosen to define the maps (see metadata

in Table 1). The distance limits for data outside the grid, for both the E-W and N-S borders, is defined as 5% of the total

longitudinal length of the map (approximately 242 Km). This ensures that the borders of the grid are surrounded by data,

where possible, to limit extrapolation biases near the edges of the studied domain.

3.2 Source data145

3.2.1 Modern pollen data

The pollen-presence point data used in this study belong to the Eurasian Modern Pollen Database (EMPD) v.2 (Chevalier et al.,

2019; Davis et al., 2020), a community-based, open-source database including 8134 pollen samples from all over Eurasia and

parts of North Africa. To develop and test the interpolation workflow, we restricted this dataset to Europe, where data density

is the highest. The dataset is composed of a mix of sample types, including surface layers of lake and bog sediments, moss150

polsters, peat, and other data sources in very low proportions. To avoid redundancy and simplify the classification, the name of
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the pollen types from EMPD2 were grouped into a lower taxonomic resolution level and aligned to the globally harmonised

pollen taxonomy of Herzschuh et al. (2022). The data were preprocessed as follows:

– The data coordinates are transformed from the coordinate reference system (CRS) EPSG:4326 "WGS84", used for global

data, to EPSG:3034 "ETRS89-extended / LCC Europe", used for European data, to reduce the local deformation for the155

studied domain. Records with missing or invalid coordinates are discarded.

– Only taxa categorised as one of the standard plant categories are considered. These include dwarf shrubs (DWAR), herbs

(HERB), liana (LIAN), palms (PALM), succulents (SUCC), trees and shrubs (TRSH), and uplands herbs (UPHE).

– The pollen counts are transformed to a binary variable indicating the presence (1) or absence (0) at every location. Based

on the hypothesis that all the pollen types in a sample have been detected, we assume that any sample location where a160

taxon has not been observed corresponds to an absence datum for that taxon. This results in a consistent point dataset for

all taxa.

– Samples with identical coordinates are merged. In such case, a taxon is considered present if it is observed in at least one

of the samples, and absent if not.

– Following Herzschuh et al. (2022), the taxa are grouped into 194 consolidated pollen taxa names (see the taxa list in165

supplemental material 1). This includes pollen types which present redundant naming or are not distinguishable in the

count. This allows a more consistent point-presence distribution.

3.2.2 Reference plant dataset

To evaluate our probabilistic forecasts of the pollen presence, we also assess how the spatialized pollen data compare with the

modern atlas of European tree distributions of Mauri et al. (2017). For the most part, the tree presence data are derived from170

national forest-monitoring surveys and interpolated over 1-km regular grids. Unfortunately, the spatial extent of this dataset is

more limited than the pollen one as it only covers western and central Europe. In addition, there are differences among the two

datasets that pertain to both the nature of the data (plant vs pollen) and the type of data collections (intensive forest inventories

vs discrete field sampling to collect pollen samples). Therefore, this pollen-plant distribution comparison only serves as a broad

visual assessment of the ability of the model to capture the main vegetation distribution.175

3.3 Structure of the EUPollMap atlas

The atlas is a collection of 194 multivariate maps representing the interpolated pollen presence probability across a geographic

domain that covers Europe and its main islands, as well as the northern edge of Africa at a 25-km resolution (see Fig. 1). This

resolution is a tradeoff between the data density and our goal to provide a spatialised representation of the pollen observations.

For each taxon, the output data is a set of raster maps exported as a GeoTIFF file that includes 1) the pollen occurrence180

probability map, corresponding to the Kriging interpolation mean, 2) a map with the discrete probability of occurrence, and 3)
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Table 1. Main metadata of the pollen presence maps.

Raster maps

Name <taxon name>

CRS EPSG:3034 - ETRS89-extended / LCC Europe

Extent 1993992.0, 449652.0 : 6843992.0, 5224652.0

Unit meters

Width 194

Height 191

Pixel size 25000, -25000

Data type Float32

GDAL Driver Description GTiff

File format GeoTIFF

Band count 3

Band 1 Occurrence probability (Kriging mean)

Band 2 Occurrence map (<= probability thresholds)

Band 3 Occurrence uncertainty (Kriging variance)

Table 2. Main metadata of the pollen presence point datasets.

Point data

Name <taxon name>

File format ESRI Shapefile

Geometry Point (Point)

CRS EPSG:3034 - ETRS89-extended / LCC Europe

Unit meters

Feature count 5362

Attribute Count 1

POLLEN_PRE String (T=True, F=False)

the occurrence uncertainty map (Kriging variance) (see Table 1 and the examples below). Each map file is complemented with

a georeferenced shapefile containing the preprocessed source dataset (Table 2) that can be imported in any GIS software. The

shapefile includes 5362 data points that document the presence or absence status of the taxon with the attribute POLLEN_PRE.

Every taxa folder of the atlas also contains a summary pdf file with the output maps, point data, and variogram model plot185

(similar to Figs. 1–3).
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Figure 1. Output maps for Abies: a) Pollen occurrence probability map, b) Variogram model, c) Occurrence map based on probability

thresholds, d) Uncertainty map based on the Kriging variance. Red dots in panel c indicate the plant-presence data (see section 3.2.2).

3.4 How to read the maps

In this section, we illustrate the results of the interpolation framework by introducing the atlas figure content with three common

European trees, which are representative of the map diversity of the atlas. Figure 1 shows the results for the taxon Abies, which

is mainly observed in western and central Europe, around the Black Sea region and in northwestern Russia. The source dataset190

plotted over the occurrence probability map (Figure 1 a) indicates that the observations match well the high (yellow) and low

(blue) probability areas. Interpolated areas from presence to absence data, or where the two types are densely mixed, present

an intermediate probability of pollen occurrence and are accordingly represented by light blue/green shades.
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Figure 1 b shows the Gaussian variogram model chosen by the automatic setup and used in the Kriging interpolation to

estimate the occurrence probability map. The variogram range is approximately 1000 km, corresponding to the variogram195

range and representing the average correlation distance of the data. By imposing thresholds to the probability map, a discrete

occurrence map is obtained (Figure 1 c), delimiting zones related to discrete probability intervals. This version of the probability

map is proposed as a ready-to-use tool for practitioners who want to quantify discrete areas of pollen presence. Depending on

the application and taxa abundance, different thresholds may be considered.

Frequent Abies pollen presence is represented by yellow and green patches covering large parts of the Mediterranean coun-200

tries, central and eastern Europe, and northwestern Russia. This distribution partly matches the plant distribution data from

the external dataset (red dots in Figure 1 c). The high presence of Abies in the UK and Denmark, as suggested by the plant

distribution data, is not represented in the pollen and is consequently not present in the Kriging interpolation. These plant

observations generally constitute introduced trees and might have been excluded from the pollen analysts who generated the

data on the basis that they are anthropogenic indicators. The apparent mismatches in northwestern Russia and the Black Sea205

region are the result of the limited eastward extension of the plant dataset.

Finally, Fig. 1 d shows the Kriging variance map that provides information on the uncertainty of the interpolation. This

indicates the possible variability of the interpolation determined by the distance from the available data, their variability, and

the chosen variogram model. At the bottom of the map, the lack of data sensibly increases the uncertainty of the pollen presence

probability estimates. This is inherent to the data location and common to all taxa of the atlas (See Fig. 4 a).210

The second example showcases the pollen distribution of Betula (birch, Figure 2), a tree commonly observed north of 45°N.

The variogram model selected and parameterized by the automatic workflow is a power function tending to linear, which fits

well with the experimental variogram (red stars) in the lower-lag portion used for calibration (below 3100 km, see section 2.1).

Compared to the previous example (Figure 1), the variogram model for Betula does not show a finite range, i.e. the variance

keeps increasing for larger lags. This allows infinite correlation structures, necessary to model the extensive pollen presence215

across Europe (Figure 2 a, c), in agreement with the plant distribution data (red dots, Figure 2 c). In the central-eastern part,

the lower density of data moderately increases the model uncertainty as seen by the Kriging variance map (Figure 2 d).

The third example is based on the distribution of the pollen of Olea (the olive tree, Figure 3), which is commonly observed

across most of the Mediterranean region and disappears rapidly with increasing distance from it. The Gaussian model for the

variogram present a large range (3000 km), which accounts for long correlated east-west structures covering the southern sector220

of the map, where the pollen presence is highly probable (Figure 3 a). Towards central Europe, the density of detected pollen

points decreases progressively until total absence. Since the spatial structure of the occurrence probability follows a simple

north-south gradient, the uncertainty of this map (Figure 3 d) is low and uniform, except at the southernmost edge of the map

and in Iceland, where the lack of data increases the uncertainty.

3.5 Ensemble reliability assessment225

To asses the overall uncertainty of the predictive maps ensemble, we derived the average Kriging variance map, here defined

as the mean of all taxa variance maps (Band 3 in Table 1). With the variance theoretically ranging in this case between 0
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Figure 2. Output maps for Betula: a) Pollen occurrence probability map, b) Variogram model, c) Occurrence map based on probability

thresholds, d) Uncertainty map based on the Kriging variance. Red areas in panel c indicate the plant-presence data (see section 3.2.2).

and 1, the map presents low values in the order of 10e-2 (Figure 4 a), with no zones of high uncertainty over the European

continent and its variability controlled by the distance from the data. This confirms that the selected data provide a statistically

accurate information on the pollen distribution over the study zone. The poorly constrained regions unsurprisingly lie in data230

poor regions.

To assess the reliability of the probabilistic predictions, we generated reliability plots, which are realized by removing 50%

of the data and then plotting the predicted probability of pollen occurrence for these locations with the observed frequency from

the removed data (details in section 2.3). While the amount of removed data is rather high and may penalize the prediction

performance, it is necessary to select enough pollen occurrences for all predicted probability classes. The reliability values are235
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Figure 3. Output maps for Olea: a) Pollen occurrence probability map, b) Variogram model, c) Occurrence map based on probability

thresholds, d) Uncertainty map based on the Kriging variance. Red areas in panel c indicate the plant-presence data (see section 3.2.2).

displayed in both form of an ensemble graph (Fig. 4 b) and a table containing the same reliability indicator for each taxon

individually (supplemental 1). The latter allows identifying the taxa that do not show reliable predictions for any probability

class.

In the ensemble reliability plot (Figure 4 b), the taxa distribution mainly aligns with the bisector (.25-.75 quantile envelope

of the ensemble), meaning that the predicted occurrence probability matches well the observed frequency. Nevertheless, for240

some taxa, the interpolation has a tendency to overestimate the pollen occurrence, as seen from the 0.1 ensemble boundary

below the bisector (Figure 4 b). These cases can be identified in the table presented in the supplemental material 1, where

the observed occurrence probability in each class is shown for each taxon separately, with the biased values marked in bold.
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Figure 4. Ensemble statistical indicators for the generated maps: a) Average Kriging Variance map and b) Reliability plot obtained from

the cross-validation test removing 50% of the data. The latter included the observed occurrence probability (y axis) for all taxa shows as a

distribution for every predicted probability class (x axis).

These biased values mainly correspond to taxa with poorly represented local pollen variability, where isolated pollen presence

data are surrounded by non-detection points (e.g. Myrica, supplemental material 2), or conversely, single non-detection points245

surrounded by presence points (e.g. Quercus, supplemental material 2). Conversely, the model is generally reliable, even for

rarely observed taxa (i.e. the ones with only the lowest-probability column filled in supplemental material 1).

4 Conclusions and Perspectives

The presented atlas constitutes a systematic cartographic product offering both a discrete and probabilistic estimation for pollen

presence in Europe. A primary application are paleoclimate and paleoenvironmental reconstructions, where these maps can be250

used as contemporary analogs, but also biodiversity and environmental studies requiring spatially continuous pollen maps as

input.

The performed cross-validation test (section 3.5) with 50% of the data removed shows that the interpolation approach is

overall reliable and accurate for complex but well represented spatial pollen distributions. The results suggest this is also true

for rarely detected taxa. Nevertheless, the data should be sufficient to represent complex local variability or sporadic pollen255

detections in order to lead to a robust interpolation.

One possibility to relax this requirement could be to integrate auxiliary variables to guide the interpolation, especially for

zones where the point data are scarce, e.g. by applying the Universal Kriging with external drift. If the auxiliary variable is
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informative enough, it increases the predictive power of the model, but at the cost of increased computational burden, especially

in regional studies like the one presented here, with large interpolation grids. However, the improvement of the model by adding260

this additional information layer is not guaranteed. Indeed, our preliminary attempt to incorporate the elevation variable over

the whole interpolation grid as external drift did not lead to any significant improvement in the interpolation. This can be

explained by the fact that, at this regional scale, this auxiliary variable does not have a simple statistical relationship with the

target one, so it cannot serve as an optimal explanatory variable. Nevertheless it may be the case in sub-regional contexts, when

a clear and causal correlation between elevation and the target variable can be observed. For this reason, an accurate correlation265

study would be necessary to set up multivariate interpolations and improve our model.

The developed workflow is adaptive to large datasets so it is suitable for regional gridded interpolations. In particular, it

should perform equally well with fossil pollen records to produce continuous pollen/vegetation maps during key periods of the

past, provided that the data density remains sufficient.
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