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Abstract. Modern and fossil pollen data are widely used in paleoenvironmental research to characterise past environmental

changes in a given location. However, their discrete and discontinuous nature can limit the inferences that can be made from

them. In contrasts, deriving
:::::::
Deriving continuous spatial maps of the pollen presence from point-based datasets would enable

more robust regional characterization of such past changes. To address this problem, we propose a comprehensive collection

of European pollen presence maps including 194 pollen taxa derived from the interpolation of pollen data from the Eurasian5

Modern Pollen Database (EMPD v2) restricted to the Euro-Mediterranean Basin. To do so, we developed an automatic Kriging-

based interpolation workflow to select an optimal geostatistical model describing the spatial variability for each taxon. The

output of the interpolation model consists in a series of multivariate predictive maps of Europe at 25-km scale, showing the

occurrence probability of pollen taxa, the predicted presence based on diverse probability thresholds, and the interpolation

uncertainty for each taxon. Visual
::::::::
Combined

::::::
visual

:
inspections of the maps and systematic cross-validation tests showed10

:::::::::::
demonstrated that the ensemble of predictions is reliable even in data-scarce regions, with a relatively low uncertainty, and

robust to complex and non-stationary pollen distributions. The maps, freely distributed as GeoTIFF files, are proposed as a

ready-to-use tool for spatial paleoenvironmental characterization. Since the interpolation model only uses the coordinates of

the observation to spatialise the data, similar maps could also be derived for
::
the

::::::
model

:::
can

::::
also

::
be

::::::::
employed

::::
with

:
fossil pollen

records
::
(or

:::::
other

::::::::::::::
presence/absence

:::::::::
indicators), thus enabling the spatial characterization of past changes, and possibly, their15

subsequent use for quantitative paleoclimate reconstructions.

1 Introduction

Fossil pollen data are commonly used to document how vegetation
:::::::
different

::::::::::::
environments responded to past global climate

forcing . Continental-scale
:::
and

::::::
events

::::::::::::::::::::::::::::::::
(Bartlein et al.; Dallmeyer et al., 2022).

::
In

:::::::::
particular,

::::::::::::::
continental-scale

:
studies of past

land cover changes or biome data-model comparisons are particularly informative because they allow extracting common trends20

from large datasets
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gaillard et al.; Trondman et al.; Zanon et al., 2018; Githumbi et al.). Pollen data are also commonly em-

ployed to quantitatively reconstruct past climate using statistical models built on pollen-climate relationships derived from mod-
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ern pollen observations (Birks et al., 2010; Chevalier et al., 2020). These reconstructions have been instrumental to improving

our understanding of past climate dynamics at various timescales (Kaufman et al., 2020; Herzschuh et al., 2019; Marsicek et al., 2018; Routson et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kaufman et al., 2020; Herzschuh et al., 2023a, b; Marsicek et al., 2018; Routson et al., 2019) and to evaluate Earth System Model25

(ESM) simulations over land (Liu et al., 2014; Mauri et al., 2014; Weitzel et al., 2019).

Despite the recent accumulation of thousands of fossil pollen records in public repositories (Herzschuh et al., 2022; Williams et al., 2018)

:::::::::::::::::::::::::::::::::::::
(Herzschuh et al., 2022; Williams et al., 2018), most pollen-based analyses remain performed at the site level. Each pollen

sample is analysed in isolation from the others, and the results (e.g. land cover estimates or climate reconstructions) are

then merged together to extract a regional/continental signal (Marsicek et al., 2018; Mauri et al., 2015; Herzschuh et al., 2022)30

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Marsicek et al., 2018; Mauri et al., 2015; Herzschuh et al., 2023b). This approach is imperfect because it generates coarse

spatial representations with abrupt local transitions relative to the regional grouping of the samples. Moreover, it generally

does not take into account the local data density and variability, and assessing the spatial uncertainty of the estimations is

generally not possible.

Advanced geostatistical techniques allow drawing spatial information based on data density, presence, and spatial varia-35

tions. However, these techniques require a minimum density and quality in the studied data to produce reliable estimates.

The recent growth of harmonised modern (Davis et al., 2020; Whitmore et al., 2005) and fossil (Williams et al., 2018)

:::::::::::::::::::::::::::::::::::::
(Williams et al., 2018; Herzschuh et al., 2022) pollen data now allow for the use of such techniques, which represent, as such,

an interesting step forward in the analysis of large scale compilations of pollen data. In particular, the spatial covariance, a

fundamental function of geostatistics, can be robustly estimated from pollen data in Europe or North America where hundreds40

of records are available. While the quantity of pollen grain observed for a given pollen taxon is affected by many processes

(see for instance Chevalier et al. (2020)) and is, therefore, heterogeneous over space, its presence (i.e. the observation of one or

more grains at any location) is subject to lower complexity. As such, binary presence data can be interpolated into space more

robustly, irrespective of the characteristics of the sampling environment.

However, estimating the complex distribution maps of pollen occurrence probability across large regions and for many taxa45

is difficult. While the commonly used polynomial interpolation techniques could be an obvious solution, imposing an arbitrary

spatial model (e.g. linear, quadratic, or cubic) and ignoring the uneven spatial distribution of the pollen samples would certainly

limit
:::::
limits the accuracy and reliability of such interpolations. Therefore, we developed a model based on Kriging (Matheron,

1963; Chiles and Delfiner, 2009) to spatialize our point-based observations and estimate occurrence probability maps. Kriging

was preferred over other types of spatial interpolation techniques because it is based on a spatial model inferred from the50

observations and it minimizes the local bias and error variance. To enable its use over a large number of taxa, we embedded it

in an automatic framework that preprocesses the pollen data, chooses the best type of spatial model for each pollen taxon, and

generates the interpolated maps.

The goal of the present study is thus to realize, for the first time to our knowledge, a collection of raster maps representing

the probability of occurrence of 194 pollen taxa observed across the Euro-Mediterranean Basin, compiled in an atlas called55

EUPollMap. For every taxon considered in EUPollMap, the output consists of a raster file with three layers showing: 1)

the pollen occurrence probability, 2) the discrete occurrence based on probability thresholds, and 3) the uncertainty of the
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predictions. The paper is organized along two main axes with section 2 that describes the automatised Kriging methodology

we developed, and section 3 that introduces the cartographic product
:::::::
products

:
of the atlas with visual examples and reliability

assessment
::::::::::
assessments. We contextualise the value of the research in section 4.60

2 Methods: Spatial interpolation of pollen-presence data

2.1 The Indicator Kriging method

Kriging is a standard geostatistical interpolation technique that was first formalized in the early ’60s (Matheron, 1963) and used

since in various fields of geosciences such as e.g. mineral resources (Goovaerts et al., 1997; Sadeghi et al., 2015), hydrogeology

(Varouchakis and Hristopulos, 2013), or soil properties (Emery and Ortiz, 2007; Minasny and McBratney, 2016). Several65

comparative studies have shown that Kriging produces robust and regionally-smooth interpolations, while minimizing the

error variance and bias at the interpolated locations (see e.g. Zimmerman et al., 1999; Wagner et al., 2012; Oriani et al., 2020).

Kriging interpolates discrete data Z by estimating the target variable at any location of a pre-defined region of interest as a

weighted mean of nearby data values, with the weights being computed by the resolution of a system of equations based on a

variogram
::
the

:::::::::::::
semivariogram function γ.70

The variogram
::::::::::::
semivariogram, which is at the core of the Kriging algorithm, is a function that quantifies the spatial variability

of the observed data as a response to the distance among them. Given the spatial variable Z(x), defined at coordinates
:::::
spatial

:::::::
locations

:
x, with the hypothesis of stationarity (i.e. assuming that the statistical properties of Z are uniform in space), the

experimental variogram
:::::::::::
semivariogram

:
for Z is estimated from the observed data as γ̂(h) = E[(Z(x)−Z(x+h))2]/2, where

Z(x) and Z(x+h) are any known values
:::
pair

::
of

:::::::::::
observations of Z at distance h and E[·] is the average operator among all75

pairs of points with a similar h, grouped in discrete h intervals (lags).

Then, a parametric variogram
::::::::::::
semivariogram model γ is chosen among a family of pre-determined positive-definite func-

tions and fitted to the experimental variogram
::::::::::::
semivariogram

:
γ̂

:::::
mostly

:
using a least-square approach. Different types of

models are possible depending on the structure of the data and, usually, the model that fits the best with the experimental

variogram
::::::::::::
semivariogram, either by manual fit or by minimizing the error, is used in the Kriging system. Here, we consider the80

five most common variogram models that are suitable for most situations: linear, power, exponential , spherical, and Gaussian

(for more details see e.g. Cressie, 1985)
:::::::::
exponential

::::::
model

::::::::::::::::::::::::::::::::
(see Isaaks and Srivastava, 1989, p.374)

:
:

γ̂(h) = 1− exp(
−3h

a
)

::::::::::::::::::

(1)

:::::
where

::
a

::
is

:::
the

:::::
range

::::::::
parameter

:::::::::
explained

:::::
below.

:::::::
Among

:::
the

::::::::
standard

::::::
models

::::
used

::
in
::::::::

Kriging,
:::
this

::::
one

::
is

::::::::::::
recommended

:::
for

:::::::
Indicator

:::::::
Kriging

::::::::::::::::::::::::::::::::::::::::
(p.102 Chiles and Delfiner, 2012; Dubrule, 2017)

:
,
:::::
which

::
is

:::
the

::::::::
modeling

:::::::
strategy

:::::::
adopted

::
in

:::
this

:::::
study

::::
(see85

:::::
below

::
in

:::
the

::::::
current

:::::::
section). Examples of experimental and fitted variogram

::::::::::::
semivariogram models are shown in the panels b

of Figures 1, 2, and 3.

Once fitted, the variogram
::::::::::::
semivariogram model can be interpreted as follow. If the modelled curve intersects the origin of

the axes, it indicates on average a smooth
:::
that

:::
the variation among adjacent data (zero lag)

::::::::::
observations

::::::
(h= 0)

::
is

::::
close

::
to

::::
zero,
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while intersecting the y-axis at positive values
:::::
values

:::::
larger

::::
than

::::
zero

:
indicates discontinuities in adjacent data, a phenomenon90

called the nugget effect. The shape of the model curve along the x-axis (increasing lag) describes the variability over larger

distances, where a steep slope indicates sharp variations. Often the model curve reaches a plateau, whose corresponding lag

:
h
:
value, called the range

:
(a

::
in
::::::::

equation
::
1), indicates the average correlation length of the spatial structure. Above the range,

the variable values are on average not correlated. In addition, since long lags are
::::::
usually

:
not represented by many pairs of data

points, it is common practice to limit the model fitting to the data below a fixed maximum lag threshold. In the atlas presented95

in this paper, this threshold is set to 3100 km, which corresponds to the 80-th percentile of the distribution of all pairwise

distances between the observations.

Two types of Kriging are considered here: Ordinary Kriging (OK), which assumes Z to be stationary with no regional trend,

and Universal Kriging with external drift (UK), implying the existence of a regional trend, given or estimated. In this study, we

performed preliminary tests comparing OK with UK using elevation as external drift for different taxa datasets (supplemental100

material 3). No sensible differences in the resulting interpolations were observed. In addition OK allowed including all data

points while containing the computational burden, thus it
:::
with

:::::::::
reasonable

:::::::::::
computation

::::
time,

:::::
while

::::
UK

:::::::
required

:::
an

::::::::
excessive

:::::::::::
computational

:::::::
burden.

:::::
Also,

::::::::
elevation

:::
did

:::
not

:::::::
correlate

::::
with

:::
the

::::::
pollen

:::::::
presence

:::
in

::
the

::::::::
analyzed

::::
data,

:::
so

:::
that

:::
its

::::::::
inclusion

:::
did

:::
not

:::::::
sensibly

:::::
affect

:::
the

::::::::
prediction

:::::
when

:::::
used

::
as

:::::::
external

::::
drift

::
in

:::
the

:::::::
Kriging

::::::
model.

:::
For

:::::
these

:::::::
reasons

:::
OK

:
was preferred over

UK.105

Finally, the observation data for Z (in this study) are binary and can only take two values: the pollen taxon is observed

(Z = 1) or not observed (Z = 0). OK is therefore applied as an Indicator Kriging interpolation. This way, the first Kriging

output map for Z is the expected value, varying continuously in space between 0 and 1, which can be interpreted as the

probability of occurrence of the pollen taxon. Occasionally, the interpolated value can lie just outside this interval (e.g. it is

expected in situations where the Kriging weights are negative). In such cases, the values are bounded to either 0 or 1. The110

second output map is the Kriging variance and indicates the uncertainty in space of the estimated probability. This quantity

depends
::
of

:::
the

:::::::::
prediction

::::::::
depending

:
on the data density, their variability

::::::
amount,

::::
their

::::::
spatial

::::::::::
distribution, and the variogram

model chosen
::::::::::::
semivariogram

::::::
model

:::::::::::::::::::::::::
(Goovaerts et al., 1997, p.179). Generally, the variance is lowest around data points and

increases with distance. In this study, the Kriging system is solved for every pollen taxon separately, using the python package

PyKrige (https://pypi.org/project/PyKrige/).115

2.2 Automatic interpolation workflow

The Kriging technique is usually employed in a supervised context, where the variogram
::::::::::::
semivariogram model and its parame-

ters are adjusted by examining the variogram
:::::::::::
experimental

::::::::::::
semivariogram

:
plot and the interpolation results in a trial-and-error

approach. This is necessary to avoid overfitting the model variogram
::::::::::::
semivariogram to the data, which can lead to unrealistic

interpolations. However, when many dataset
::::::
datasets have to be interpolated(e.g.

:
,
::
as

::
is

:::
the

:::
case

:
with the European pollen taxa),120

supervising the model setup for each taxon and different possible variogram models in a fair
::
in

:
a
::::::::
objective

:
and consistent way

is not feasible.

4

https://pypi.org/project/PyKrige/


For this reason, following previous contributions (Desassis and Renard, 2013), we developed an automatic interpolation

workflow, implemented in python,
:::::
python

:::::::::::
interpolation

::::::::
workflow for the choice and optimization of the variogram

::::::::::::
semivariogram

model. The model choice and variogram fitting was based on having well represented lags, at least until a prescribed maximum125

lag threshold (here defined as 3100km, see section 2.1). The parameters were constrained to impose flat or
:::::::::::
Monotonicity

:::
and

::
a

::::::
positive

:::::
slope

:::
are

:::::::
expected

::
in
::
a
::::::::::::
semivariogram

::::::
model,

:::
but

::
in

::::
case

::
of

:
a
:::::
noisy

:::::::::::
experimental

::::::::::::
semivariogram

::::::
(which

::
is
:::
the

::::
case

:::
for

::::
some

::
of

:::
the

::::::::
observed

:::::
pollen

:::::
taxa),

::::::::::::
unconstrained

:::::
fitting

::::
can

::::
lead

::
to

:
a
:::::::
negative

:::::
slope

::
in

:::
the

::::::
model.

:::
For

:::
this

:::::::
reason,

::
we

::::::::
imposed

:::
flat

::
or monotonic-positive model functions (e.g. the slope of a linear variogram modelcannot be negative), enabling a fitting of

the model that is consistent with the nature of the data.
:::::
model

:::::::::
functions.130

The probability maps were generated for each pollen taxon with the following steps:

1. If the dataset presents all-0 (i.e. the taxon is not observed in the study area) or all-1 (i.e. the taxon is observed at every

sampling location) data, generate a 0/1 field on the defined grid as output Kriging mean and a 0 field as output Kriging

variance, then go to step 5.

2. Compute the experimental variogram and find the best variogram model from our five model options
::::::::::::
semivariogram

::::
and135

:::::::
calibrate

::
its

::::::
model (see section 2.1).

::::
When

:::
the

::::
data

:::::
have

::::
little

::
to

:::
no

:::::
spatial

::::::::::
correlation,

:::
the

:::::
fitted

::::::::::::
semivariogram

::::::
model

::::
tends

::
to

:::::::
become

:
a
::::::::
constant

:::::::
function,

::::::
which

:::::::::::
subsequently

::::
leads

::
to

:::::::
constant

:::::::::
estimated

::::
mean

::::
and

:::::::
variance

:::::
fields.

:

3. Solve the Kriging system
::::::::
prediction

:
with the optimised model parameters at every location of the interpolation grid to

obtain the mean and variance maps. A mask based on the coastal perimeter is used to exclude large water bodies.

4. Generate a discrete occurrence map by applying a series of fixed thresholds (0.2, 0.4, 0.5, 0.6, 0.8) on the mean map.140

5. Export an ESRI GeoTIFF file of the georeferenced output maps (see the metadata, Table 1).

6. Export the pollen presence/absence dataset as an ESRI Shapefile.

2.3 Validation strategy

In addition to visually inspecting the
::
We

::::::::::
constituted

::
an

:::::::
example

::::::
dataset

:::
by

:::::::::
identifying

::
a

:::::
series

::
of

:::::::
common

:::::::
species

::
for

:::::::
Europe

::::
with

:::::::::::
characteristic

::::::
spatial

:::::::
features

::::
(e.g.,

:::::
broad

::::::
extent,

::::
rare

:::::::
species,

::::::::::::
discontinuous

:::::::::::
distributions).

::::
The

:
interpolated probability145

surfaces and their variances
::::
were

::::
then

:::::::
visually

::::::::
inspected

:::
and

:::::::::
compared with the original observations, we assessed .

:::::::::
Moreover,

the reliability of the interpolations
::
all

:::
the

:::::::
species

::::::::::::
interpolations

:::
was

::::::::
assessed

:
with reliability plots (Murphy and Winkler,

1977), which are common quantitative and graphical representations in geo- and atmospheric sciences (Bröcker and Smith,

2007; Allard et al., 2012). A reliability plot is generated by removing part of the data for validation and comparing
:::::::
splitting

:::
the

::::::
dataset

::
in

::::::
training

:::
and

:::::::::
validation

::::
data

:::
and the probability of occurrence predicted by the model

:
is
:::::::::
compared with the occurrence150

frequency observed in the validation data. For example, for grid cells with a predicted probability of occurrence around 0.2, the

occurrence frequency observed from the validation data should be close to 0.2 for the prediction to be reliable. The predicted

probability range [0-1] is divided in ten discrete bins to group the validation locations and co-located occurrence data. Then
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the sample occurrence probability values are plotted against the observed frequency. If the plot points lie along the bisector

(i.e. the 1:1 line), the predictions can be considered reliable.155

In some cases, the predictions do not cover uniformly the 0-1range so that the plot cannot be representative (Jolliffe and Stephenson, 2012)

. Therefore, for this type of validation
:::
The

::::
way

::::::
binary

::::::::::::::
presence/absence

:::::
data

::::::::
aggregate

::
in

::::::
space

:::::::::
determines

:::
the

:::::::::
estimated

:::::::::
probability

::
of

::::::::::
occurrence.

:::::
Some

::::::
values

:::
are

:::::
rarely

:::::
found

::
in

:::
the

::::::
output

:::::::::
probability

:::::
map,

::::::::
therefore

:
a
::::
high

:::::::
amount

::
of

:::::::::
validation

:::
data

::
is
::::::
needed

:::
for

:::
the

::::::::
reliability

::::
plot

::
to

::
be

::::::::::::
representative

::
of

:::
all

:::::::::
probability

::::
bins

::::::::::::::::::::::::::
(Jolliffe and Stephenson, 2012).

:::::::::
Moreover,

:::
the

:::::::
sampling

:::
for

:::::
these

::::
data

::::::
cannot

::
be

::::::::
stratified

::::::::
according

::
to
:::

the
::::::::

posterior
::::::::::
probability

::::::
values,

:::::
which

:::
are

:::
not

::::::::
available

::
a

:::::
priori.

:::
To160

::::
cope

::::
with

::::
this

::::::::
limitation, we randomly removed 50% of the data to ensure that the plot attained

:::::::
approach

:
stable statistical

values
::
for

::
all

::::
bins

::
of

:::
the

:::::::::
reliability

:::
plot.

3 Application: The European atlas of modern pollen distributions

3.1 Definition of the study area

Distances between grid points are central to Kriging. As such, we used the spatial CRS EPSG:3034 that better respects dis-165

tances than the standard CRS WGS84 that severely distorts distances when large latitudinal ranges are covered. Note that the

coordinates are expressed in metres from the CRS origin.

The dataset is limited to data located inside and near the spatial interpolation grid chosen to define the maps (see metadata

in Table 1). The distance limits for data outside the grid, for both the E-W and N-S borders, is defined as 5% of the total

longitudinal length of the map (approximately 242 Km). This ensures that the borders of the grid are surrounded by data,170

where possible, to limit extrapolation biases near the edges of the studied domain.

3.2 Source data

3.2.1 Modern pollen data

The pollen-presence point data used in this study belong to the Eurasian Modern Pollen Database (EMPD) v.2 (Chevalier et al.,

2019; Davis et al., 2020), a community-based, open-source database including 8134 pollen samples from all over Eurasia and175

parts of North Africa. To develop and test the interpolation workflow, we restricted this dataset to Europe, where data density

is the highest. The dataset is composed of a mix of sample types, including surface layers of lake and bog sediments, moss

polsters, peat, and other data sources in very low proportions. To avoid redundancy and simplify the classification, the name of

the pollen types from EMPD2 were grouped into a lower taxonomic resolution level and aligned to the globally harmonised

pollen taxonomy of Herzschuh et al. (2022).180

::::::::::
Determining

:::
the

::::::
proper

:::::::
absence

::
of

:
a
::::::
pollen

:::::
taxon

:::
can

::::
only

:::
be

::::
done

::::
with

::::::::
extensive

:::::::::
vegetation

:::::::
surveys,

:::::
which

::
is
::::::::::
unpractical

:
at
::::

the
::::::::
European

:::::
scale.

:::::::::
Moreover,

:::::
such

::::::
surveys

::::::
cannot

:::
be

:::::
done

:::
for

:::::
fossil

:::::::::::
observations.

:::::::::
Therefore,

:::
we

:::::
chose

:::
to

:::::::
analyze

:::
the

:::::::
EMPD2

::::::
dataset

::
as

:::
we

:::::
would

:::::::
analyze

:::
the

::::
fossil

:::::::
records.

:::
For

::::
taxa

::::
that

:::::::
produce

::::
large

::::::::
quantities

:::
of

:::::
pollen

:::::
grains

::::::::
(grasses,

::::::
pines),

:::
low

::::::::::
percentages

::::::
usually

::::::::
represent

::::::::::::
long-distance

:::::::
transport

:::
to

:::
the

:::::::::::
surroundings

::
of

:::
the

:::::::::
collection

:::
site,

:::::::
without

:::
the

::::::
actual

:::::
taxon
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:::::::
presence

:::::::::::::::::::
(Lisitsyna et al., 2011).

:::::::::
Assuming

:::
that

::::
their

::::::::::::::
non-observation

:
is
:::::
proof

::
of

:::::::
absence

::
is

::::::::
therefore

:::::::::
reasonable.

:::
On

:::
the

:::::
other185

::::
hand,

::::
rare

::::
taxa

::
or

:::::::::::::
low-pollinating

:::
taxa

:::
are

:::::
more

:::::::
difficult

::
to

::::::
observe

::
in

::::
both

:::::::
modern

:::
and

:::::
fossil

:::::::
settings.

::
It

::
is

:::::::
common

::
to

:::::::
observe

::::
them

::
in

::::
one

::::::
sample

:::
and

::::
not

::
in

:::
the

::::::::::
neighboring

::::
one.

:::::
Using

:::::::
Kriging

::
at
:::
the

::::::::
regional

:::::
target

::::
scale

:::
for

::::
this

:::::
study,

::::
this

:::::::
problem

::
is

::::::::
mitigated

::::
since

:::
the

::::::::
presence

::
is
::::::::
assessed

::
as

::
a

:::::::::
continuous

::::::::::
probability

:::::::
variable,

:::::::::
computed

::
as

::
a
::::::::
weighted

:::::
mean

::::
from

::::::::
multiple

:::::::
neighbor

::::::::::::::
presence/absence

:::::
data.

The data were preprocessed as follows:190

– The data coordinates are transformed from the coordinate reference system (CRS) EPSG:4326 "WGS84", used for global

data, to EPSG:3034 "ETRS89-extended / LCC Europe", used for European data, to reduce the local deformation for the

studied domain. Records with missing or invalid coordinates are discarded.

– Only taxa categorised as one of the standard plant categoriesare considered. These include
::::
The

:::::::::
considered

::::
taxa

::::::
belong

::
to

:::
the

::::::::
following

:::::::::
categories:

:
dwarf shrubs (DWAR), herbs (HERB), liana (LIAN), palms (PALM), succulents (SUCC),195

trees and shrubs (TRSH), and uplands herbs (UPHE).

– The pollen counts are transformed to a binary variable indicating
::::::::
binarized

::
to

:::::::
indicate

:
the presence (1) or absence (0)

at every location. Based on the hypothesis that all the pollen types in a sample have been detected, we assume that any

sample location where a taxon has not been observed corresponds to an absence datum for that taxon. This results in a

consistent point dataset for all taxa.200

– Samples with identical coordinates are merged. In such case, a taxon is considered present if it is observed in at least one

of the samples, and absent if not.

– Following Herzschuh et al. (2022), the taxa are grouped into 194 consolidated pollen taxa names (see the taxa list in

supplemental material 1). This includes pollen types which present redundant naming or are not distinguishable in the

count. This allows a more consistent point-presence distribution.205

3.2.2 Reference plant dataset

To evaluate our probabilistic forecasts of the pollen presence, we also assess how the spatialized pollen data compare with the

modern atlas of European tree distributions of Mauri et al. (2017). For the most part, the tree presence data are derived from

national forest-monitoring surveys and interpolated over 1-km regular grids. Unfortunately, the spatial extent of this dataset is

more limited than the pollen one as it only covers western and central Europe. In addition, there are differences among the two210

datasets that pertain to both the nature of the data (plant vs pollen) and the type of data collections (intensive forest inventories

vs discrete field sampling to collect pollen samples). Therefore, this pollen-plant distribution comparison only serves as a broad

visual assessment of the ability of the model to capture the main vegetation distribution.
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Table 1. Main metadata of the pollen presence maps.

Raster maps

Name <taxon name>

CRS EPSG:3034 - ETRS89-extended / LCC Europe

Extent 1993992.0, 449652.0 : 6843992.0, 5224652.0

Unit meters

Width 194

Height 191

Pixel size 25000, -25000

Data type Float32

GDAL Driver Description GTiff

File format GeoTIFF

Band count 3

Band 1 Occurrence probability (Kriging mean)

Band 2 Occurrence map (<= probability thresholds)

Band 3 Occurrence uncertainty (Kriging variance)

3.3 Structure of the EUPollMap atlas

The atlas is a collection of 194 multivariate maps representing the interpolated pollen presence probability across a geographic215

domain that covers Europe and its main islands, as well as the northern edge of Africa at a 25-km resolution (see Fig. 1). This

resolution is a tradeoff between the data density and our goal to provide a spatialised representation of the pollen observations.

For each taxon, the output data is a set of raster maps exported as a GeoTIFF file that includes 1) the pollen occurrence

probability map, corresponding to the Kriging interpolation mean, 2) a map with the discrete probability of occurrence, and 3)

the occurrence uncertainty map (Kriging variance) (see Table 1 and the examples below). Each map file is complemented with220

a georeferenced shapefile containing the preprocessed source dataset (Table 2) that can be imported in any GIS software. The

shapefile includes 5362 data points that document the presence or absence status of the taxon with the attribute POLLEN_PRE.

Every taxa folder of the atlas also contains a summary pdf file with the output maps, point data, and variogram
::::::::::::
semivariogram

model plot (similar to Figs. 1–3).

3.4 How to read the maps225

In this section, we illustrate the results of the interpolation framework by introducing the atlas figure content with three common

European trees, which are representative of the map diversity of the atlas. Figure 1 shows the results for the taxon Abies
:::
(fir),

which is mainly observed in western and central Europe, around the Black Sea region and in northwestern Russia. The source

dataset plotted over the occurrence probability map (Figure 1 a) indicates that the observations match well the high (yellow)

8



Table 2. Main metadata of the pollen presence point datasets.

Point data

Name <taxon name>

File format ESRI Shapefile

Geometry Point (Point)

CRS EPSG:3034 - ETRS89-extended / LCC Europe

Unit meters

Feature count 5362

Attribute Count 1

POLLEN_PRE String (T=True, F=False)

and low (blue) probability areas. Interpolated areas from presence to absence data, or where the two types are densely mixed,230

present an intermediate probability of pollen occurrence and are accordingly represented by light blue/green shades.

Figure 1 b shows the Gaussian variogram model chosen by
:::::::::
exponential

::::::::::::
semivariogram

::::::
model

::::::::
calibrated

::::
with

:
the automatic

setup and used in the Kriging interpolation to estimate the occurrence probability map. The variogram
::::::::::::
semivariogram range is

approximately 1000 km, corresponding to the variogram range and representing the average correlation distance of the data.

By imposing thresholds to the probability map, a discrete occurrence map is obtained (Figure 1 c), delimiting zones related to235

discrete probability intervals. This version of the probability map is proposed as a ready-to-use tool for practitioners who want

to quantify discrete areas of pollen presence. Depending on the application and taxa abundance, different thresholds may be

considered.

Frequent Abies pollen presence is represented by yellow and green patches covering large parts of the Mediterranean coun-

tries, central and eastern Europe, and northwestern Russia. This distribution partly matches the plant distribution data from240

the external dataset (red dots in Figure 1 c). The high presence of Abies in the UK and Denmark, as suggested by the plant

distribution data, is not represented in the pollen and is consequently not present in the Kriging interpolation. These plant

observations generally constitute introduced trees and might have been excluded from the pollen analysts who generated the

data on the basis that they are anthropogenic indicators. The apparent mismatches in northwestern Russia and the Black Sea

region are the result of the limited eastward extension of the plant dataset.245

Finally, Fig. 1 d shows the Kriging variance map that provides information on the uncertainty of the interpolation. This

indicates the possible variability of the interpolation determined by the distance from the available data, their variability, and

the chosen variogram
::::::::::::
semivariogram model. At the bottom of the map, the lack of data sensibly increases the uncertainty of

the pollen presence probability estimates. This is inherent to the data location and common to all taxa of the atlas (See Fig. 4

a).250

The second example showcases the pollen distribution of Betula (birch, Figure 2), a tree commonly observed north of 45°N.

The variogram model selected and parameterized by the automatic workflow is a power function tending to linear, which fits
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Figure 1. Output maps for Abies: a) Pollen occurrence probability map, b) Variogram
:::::::::::
Semivariogram model, c) Occurrence map based on

probability thresholds, d) Uncertainty map based on the Kriging variance. Red dots in panel c indicate the plant-presence data (see section

3.2.2).

well
::::::::::::
semivariogram

::::::
model

::
is

::::
fitted

:
with the experimental variogram

::::::::::::
semivariogram (red stars) in the lower-lag portion used

for calibration (below 3100 km, see section 2.1). Compared to the previous example (Figure 1), the variogram
::::::::::::
semivariogram

model for Betula does not show a finite range, i.e. the variance keeps increasing for larger lags
:::::
shows

:
a
:::::
larger

::::::
range

::::::
around255

::::
3000

:::
km. This allows infinite

:::::
longer correlation structures, necessary to model the extensive pollen presence across Europe

(Figure 2 a, c), in agreement with the plant distribution data (red dots, Figure 2 c). In the central-eastern part, the lower density

of data moderately increases the model uncertainty as seen by the Kriging variance map (Figure 2 d).
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Figure 2. Output maps for Betula: a) Pollen occurrence probability map, b) Variogram
:::::::::::
Semivariogram

:
model, c) Occurrence map based on

probability thresholds, d) Uncertainty map based on the Kriging variance. Red areas in panel c indicate the plant-presence data (see section

3.2.2).

The third example is based on the distribution of the pollen of Olea (the olive tree, Figure 3), which is commonly observed

across most of the Mediterranean region and disappears rapidly with increasing distance from it. The Gaussian model for260

the variogram present
::::::::
Similarly

::
to

:::
the

::::::
Betula

:::
case,

::::
the

:::::::::
exponential

:::::::::::::
semivariogram

::::::
model

:::::::
presents a large range (3000 km),

which accounts for long correlated east-west structures covering the southern sector of the map, where the pollen presence

is highly probable (Figure 3 a). Towards central
::
the

:::::::::::
mid-latitudes

::
of

:
Europe, the density of detected pollen points decreases

progressively until total absence. Since the spatial structure of the occurrence probability follows a simple north-south gradient,
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Figure 3. Output maps for Olea: a) Pollen occurrence probability map, b) Variogram
:::::::::::
Semivariogram model, c) Occurrence map based on

probability thresholds, d) Uncertainty map based on the Kriging variance. Red areas in panel c indicate the plant-presence data (see section

3.2.2).

the uncertainty of this map (Figure 3 d) is low and uniform, except at the southernmost edge of the map and in Iceland, where265

the lack of data increases the uncertainty.

3.5 Ensemble reliability assessment

To asses the overall uncertainty of the predictive maps ensemble, we derived
:
a
::::
map

::
of

:
the average Kriging variancemap, here

defined as the mean of all
:::
the taxa variance maps (Band 3 in Table 1). With the variance theoretically ranging in this case

between 0 and 1, the map presents low values in the order of 10e-2 (Figure 4 a), with no zones of high uncertainty over the270
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Figure 4. Ensemble statistical indicators for the generated maps: a) Average Kriging Variance map and b) Reliability plot obtained from

the cross-validation test removing 50% of the data. The latter included the observed occurrence probability (y axis) for all taxa shows as a

distribution for every predicted probability class (x axis).

European continent and its variability controlled by the distance from the data. This confirms that the selected data provide a

statistically accurate information on the pollen distribution over the study zone. The poorly constrained regions unsurprisingly

lie in data poor regions.

To assess the reliability of the probabilistic predictions, we generated reliability plots, which are realized by removing 50%

of the data and then plotting the predicted probability of pollen occurrence for these locations with the observed frequency from275

the removed data (details in section 2.3). While the amount of removed data is rather high and may penalize the prediction

performance, it is necessary to select enough pollen occurrences for all predicted probability classes
:::
(see

:::::::
section

:::
2.3). The

reliability values are displayed in both form of an ensemble graph (Fig. 4 b) and a table containing the same reliability indicator

for each taxon individually (supplemental 1). The latter allows identifying the taxa that do not show reliable predictions for

any probability class.280

In the ensemble reliability plot (Figure 4 b), the taxa distribution mainly aligns with the bisector (.25-.75 quantile envelope

of the ensemble), meaning that the predicted occurrence probability matches well the observed frequency. Nevertheless, for

some taxa, the interpolation has a tendency to overestimate
::::::::::
understimate the pollen occurrence, as seen from the 0.1 ensemble

boundary below the bisector (Figure 4 b). These cases
::::
This

:::::::
tendency

:
can be identified in the table presented in the supplemental

material 1, where the observed occurrence probability in each class is shown for each taxon separately, with the biased values285

marked in bold. These
:::
The

:
biased values mainly correspond to taxa with poorly represented local pollen variability, where

isolated pollen presence data are surrounded by non-detection points (e.g.
::
or

::::
vice

:::::
versa.

:::::::::
Examples

::
of

:::::
these

:::::
cases

:::::::
include
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Myrica
::::::::
Casuarina, supplemental material 2), or conversely, single non-detection points surrounded by presence points (e.g.

:::::::
Poaceae,

:::::::
Tamarix

:
,
:::
and

::::
taxa

:::::
which

:::
are

::::::
almost

:::::
totally

::::::
absent

::
as

:
Quercus

::::::::
Aizoaceae, supplemental material 2). Conversely

:::::
Styrax

:
,

:::::
Tsuga,

:::
or

::::
Vitex

:
.
::
In

::::::
general, the model is generally reliable, even for rarely observed

:::::::
reliable,

::::::::
including

:::
for

:::::
many

:::
rare

:
taxa (i.e.290

the ones with only the lowest-probability column filled in supplemental material 1).

4 Conclusions and Perspectives

The presented atlas constitutes a systematic cartographic product offering both a discrete and probabilistic estimation for pollen

presence in Europe. A primary application are paleoclimate and paleoenvironmental reconstructions, where these maps can be

used as contemporary analogs, but also biodiversity and environmental studies requiring spatially continuous pollen maps as295

input.

The performed cross-validation test (section 3.5) with 50% of the data removed shows that the interpolation approach is

overall reliable and accurate for complex but well represented spatial pollen distributions. The results suggest this is also true

for rarely detected taxa. Nevertheless, the data should be sufficient to represent complex local variability or sporadic pollen

detections
:::::::
presence in order to lead to a robust interpolation.300

One possibility to relax this requirement could be to integrate auxiliary variables to guide the interpolation, especially for

zones where the point data are scarce, e.g. by applying the Universal Kriging with external drift. If the auxiliary variable

is informative enough, it increases the predictive power of the model, but at the cost of increased computational burden,

especially in regional studies
::::
with

::::
large

:::::::::::
interpolation

::::
grids

:
like the one presented here, with large interpolation grids. However,

the improvement of the model by adding this additional information layer is not guaranteed. Indeed, our preliminary attempt to305

incorporate the elevation variable over the whole interpolation grid as external drift did not lead to any significant improvement

in the interpolation. This can be explained by the fact that, at this regional scale, this auxiliary variable does not have a simple

statistical relationship with the target one, so it cannot serve as an optimal explanatory variable. Nevertheless it may be the

case in sub-regional contexts, when a clear and causal correlation between elevation and the target variable can be observed.

For this reason, an accurate correlation study would be necessary to set up multivariate interpolations and improve our model.310

The developed workflow is adaptive to large datasets so it is suitable for regional gridded interpolations. In particular, it

should perform equally well with fossil pollen records to produce continuous pollen/vegetation maps during key periods of the

past, provided that the data density remains sufficient.

5 Code and data availability

Dataset name: EUPollMap Version: 1.1315

Release date: 10.2023

Developer: Fabio Oriani

Format: ESRI GeoTIFF, ERSI Shapefile
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