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Abstract 

Alpine ecosystems are experiencing rapid change, as a result of warming temperatures and changes in the quantity, timing and 

phase of precipitation. This in turn impacts patterns and processes of ecohydrologic connectivity, vegetation productivity, and 

water provision to downstream regions. The fine scale heterogeneous nature of these environments makes them challenging 15 

areas to measure with traditional instrumentation, and spatiotemporally coarse satellite imagery. This paper describes the data 

collection, processing, accuracy assessment, and availability, of a series of ~weekly interval uncrewed aerial system (UAS) 

surveys, flown over the Niwot Ridge Long Term Ecological Research site during the 2017 summer snowmelt season. Visible, 

near infrared, and thermal infrared imagery were collected. This unique series of 5-25 cm resolution multispectral and thermal 

orthomosaics provide a unique snapshot of seasonal transitions in a high alpine catchment. Weekly radiometrically calibrated 20 

Normalized Difference Vegetation Index maps can be used to track vegetation health at the pixel scale through time. Thermal 

imagery can be used to map the movement of snow melt across and within the near subsurface, as well as identify locations 

where groundwater is discharging to the surface. A 10 cm resolution digital surface model and dense point cloud (146 

points/m2) are also provided for topographic analysis of the snow free surface. Data summaries, citations, and DOIs are 

provided in the Data Availability section. These datasets augment ongoing data collection within this heavily studied and 25 

important alpine site; they are made publicly available to facilitate wider use by the research community.  

1 Introduction 

The complex topography of mountain regions drives patterns of precipitation, wind, energy availability, and snow cover  

(Beniston, 2006; Trujillo et al., 2007; Erickson et al., 2005; Grünewald et al., 2010; Ives et al., 1997) which create high degrees 

of spatiotemporal heterogeneity in geologic, environmental, ecologic and hydrologic processes (Wieder et al., 2017; Trujillo 30 

et al., 2012; Bueno de Mesquita et al., 2018; Litaor et al., 2008; Christensen, L. et al., 2008; Fagre et al., 2003). A significant 

limitation to research in mountain regions is data availability at an appropriate spatial resolution to resolve key processes. Field 

measurements are often limited in quantity, quality, and distribution. Furthermore, the high degree of spatiotemporal 

heterogeneity over short distances makes the extrapolation and interpolation of point data to larger regions particularly 

problematic (Pape et al., 2009). Meanwhile, satellite data are often spatially and/or temporally too coarse to provide meaningful 35 

insight on fine scale processes. Rapid return sensors (e.g. Moderate Resolution Imaging Spectroradiometer - MODIS) have 

low spatial resolution, where a single 500m pixel may include considerable topographic variation and land surface features in 

heterogeneous mountain regions. Medium resolution sensors (e.g. Landsat) are often too coarse to differentiate surface 

hydrologic features (stream, ponds, springs), and observations may be too far apart in time. High resolution satellites (e.g. 
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Pleiades, Digital Globe/Maxar) and crewed aircraft can provide high spatial and temporal resolution imagery but at usually 40 

significant financial cost. In mountainous regions cloud cover is also a considerable challenge for air- and space-borne data 

collection. Uncrewed aerial systems (UAS) can address many of these limitations by facilitating the collection of very high-

resolution imagery (centimetre scale) and digital surface models (DSMs) on demand, without cloud cover and at low cost 

(Colomina and Molina, 2014; Fonstad et al., 2013). However, their spatial extent and the radiometric quality of the datasets is 

generally lower than for traditional earth observing systems (Zhang and Kovacs, 2012). Observations from UAS can bridge 45 

the gap between point and pixel, affording the exploration of new ecohydrological questions in mountain ecosystems (Vivoni 

et al., 2014; Watts et al., 2012).  

 

Here we present a novel UAS-borne elevation, multispectral, and thermal imagery dataset that was collected over a ~40 ha 

alpine subcatchment of the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rockies, USA. 50 

This study site has been an area of active alpine research and data collection for the last ~70 years, and is one of the most 

intensively studied alpine ecosystems in the world (Bjarke et al., 2021). The datasets were collected approximately weekly 

from late-June 2017 through mid-August 2017, comprising the period of summer snowmelt and vegetation growth. As such 

this dataset provides a unique snapshot of a critical ecohydrologic transition within a high alpine catchment. Full 

documentation for the datasets is provided here to facilitate wider use by other researchers and ease use and integration with 55 

the array of existing collocated instrumentation within this important study site.  

2 Study Site 

The NWT LTER is located in the headwaters of the Boulder Creek watershed (Figure 1), comprises a range of altitudinal 

environments and includes a number of different focussed study sites within it (Bjarke et al., 2021). Niwot Ridge is one of the 

most extensively studied alpine systems in the world and was a UNESCO Biosphere Reserve from 1979-2017, in addition to 60 

currently being a United States Forest Service (USFS) experimental ecology reserve, and a National Ecological Observatory 

Network (NEON) study site. Here we focus on the upper reaches of the NWT LTER in the ‘saddle catchment’ (40°03’09.42” 

N, 105°35’29.62” W) which has an elevation range of ~3420-3620 m asl. The saddle catchment is a roughly 40ha alpine 

subcatchment of Boulder Creek. The lower reaches (3420 – 3450 m asl) are densely forested primarily with Limber Pine (Pinus 

flexilis) and Lodgepole Pine (Pinus contorta). This gives way to Engelmann Spruce (Picea engelmannii) and Subalpine Fir 65 

(Abies lasiocarpa) at higher elevation; here, krummholz are deformed by the strong winds, and function as points of localised 

snow accumulation on the leeward side. Alpine tundra extends above this treeline transition zone, and includes a variety of 

low shrubs, cushion plants, grasses, sedges, mosses, and lichens (Walker et al., 2001). This region can be separated into five 

broad communities; dry meadow, moist meadow, wet meadow, rocky fellfields, and snow bed (May and Webber, 1982; Walker 

et al., 2001). The saddle catchment has become a recent focus of the NWT LTER’s research activities, coinciding with the 70 

installation of a dense network of soil moisture/temperature and precipitation sensors in 2017, and the establishment of long-

term snow manipulation studies in 2018 (Bjarke et al., 2021). These activities complement ongoing observations of plant 

community composition at the plot level, and meteorologic data collection that have been made at the study site for the past 

decades. The saddle catchment lies within a NEON site (NIWO), established in 2015. NEON conducts annual airborne surveys 

(LiDAR and multispectral) of the site, and maintains a network of meteorological, ecological, and hydrological measurements 75 

and instrumentation nearby.  
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3 Data Collection  

3.1 UAS Platforms 

We used two different multirotor UAS platforms; a hexacopter and a quadcopter (Figure 2a). The multirotor platforms were 

custom designed for operation in high elevation mountain environments (4000-6000 m asl) (Wigmore et al., 2015; Wigmore 80 

and Mark, 2017; Wigmore et al., 2019). For this study we retuned the platforms to operate at 3500 m asl and to handle higher 

winds (~10-22 ms-1) which requires faster speeds and motor response time. Both platforms are constructed of carbon fibre to 

reduce weight and improve rigidity. Total weight of the systems excluding sensor payloads is 2.8 kg (hexacopter) and 2.4 kg 

(quadcopter); at the study site elevation they are capable of around 15-20 minutes of flight (depending on wind speed) using a 

4S 10,000 mAh lithium polymer battery. They are equipped with the Pixhawk V1 flight controller and are capable of fully 85 

autonomous flight, including waypoint navigation and survey grids. The UAS can be manually controlled with a 2.4 GHz 

remote control link; an RFD900+ 915 MHz telemetry downlink provides direct communication with the ground control station, 

from where survey progress and flight information (ground speed, altitude, attitude etc.) can be observed. Surveys are planned 

and managed through the Ardupilot Mission Planner ground control system, running on a Windows based field tablet.  

The platforms were fitted with visible red/green/blue (RBG) (Canon S110), red/near infrared (RNIR) (MAPIR Survey 2), and 90 

thermal infrared (TIR) (FLIR Vue Pro R 320) cameras, providing a total of six spectral bands (dual red bands). The RNIR 

camera has a measured band wavelength interval from ~630-690 nm (peak at 660 nm) and ~810-900 nm (peak at 850 nm), 

while for the RGB camera, the exact band wavelengths are unknown. For both the RGB and RNIR camera settings (shutter 

speed, ISO, f-stop, etc) were kept constant for each survey, to main consistent camera response to surface reflectance. The 

RGB and RNIR cameras can be flown simultaneously (as the have a similar field of view), and were mounted on a vibration 95 

reducing plate (but no gimbal). The TIR camera was flown separately as it requires a three-axis gimbal for image stabilisation 

and closer spaced flight lines due to its much narrower field of view. All image capture is triggered by camera intervalometers 

(i.e. no position triggering by flight controller, which minimises potential points of failure). The RNIR and TIR cameras have 

this intervalometer feature built in. For the Canon S110, we installed the Canon hack development kit (CHDK) and loaded the 

KAP_UAV.lua script (CHDK, 2016), which allows automated control of numerous camera functions. The TIR camera is 100 

connected to the autopilot and geotags images with position and orientation information at the time of image capture, RGB 

and RNIR images can be geotagged after the fact by time stamp matching (but for this study were not).  

3.2 Ground Control 

In late May 2017 we permanently installed 15 visible ground control points (GCPs) in snow free regions of the study area 

(Figure 3). Targets were 30 cm sheets of fluorescent coroplast plastic, with a duct tape cross marking the centre (Figure 2b). 105 

We also installed and surveyed 9 thermal targets (Wigmore et al., 2019), however unfortunately these were not clearly visible 

in the imagery and were therefore not used as GCPs. To minimise propagation of errors in the structure from motion (SfM) 

photogrammetric processing and limit model ‘doming’ (James and Robson, 2014; Tonkin and Midgley, 2016) we ensured 

targets were installed at the survey perimeter, and at the topographic high and low points of the survey area. However, this 

was constrained by snow cover, limiting the number of GCPs in the NW region. To mitigate this an additional 22 natural 110 

feature GCPs (e.g. isolated flat boulders ~50-100 cm in diameter) were progressively surveyed as the snow melted to provide 

better GCP distribution over these areas (Figure 3). Furthermore, an additional 48 co-registration markers were identified in 

the 14 August orthomosaic; their position and elevation was extracted from the DSM, and these were then used as extra markers 

for the earlier surveys when visible (Figure 3). Not all GCP’s and co-registration markers were used for each date due to some 

being obscured by snow, not imaged by the survey, poor visibility, and high error estimates. Details of which GCP’s and 115 

markers were used for each survey are provided in their respective processing reports. A further 100 positions (Figure 3) were 

surveyed during the field season for other projects occurring at the site  (Hermes et al., 2020), and are used as vertical check 
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points for accuracy assessment of the 14 August DSM. These positions were not specifically surveyed for the purposes of error 

assessment and thus do not have an ideal spatial distribution and may lie in areas of fine scale topographic heterogeneity (local 

high/low points). The 9 thermal GCPs were also used as vertical check points.  120 

All GCPs and vertical check points were surveyed with a dual frequency L1/L2 Altus APS3 global navigation satellite system 

(GNSS) receiver, using a stop/go post processed kinematic (PPK) methodology (Figure 2b). Each position was occupied for 3 

mins at 1 Hz interval. Base station observations were collected from a permanent UNAVCO operated base station (station 

code: NWOT) (Larson, 2009) (Trimble NetR9 receiver with Trimble Zephyr Geodetic antenna) located near the tundra lab at 

NWT (max baseline >1.5 km), and five National Geodetic Survey (NGS) continuous reference stations (CORS) from the 125 

surrounding area (station codes: STBT, TMGO, P041, EC01, COFC); 1 Hz L1/L2 GPS/GLONASS observations were used in 

all cases. Rover positions were post processed against the base station network using Topcon Magnet Tools to an accuracy 

threshold of 2 cm horizontal and 5 cm vertical, mean standard deviation of point solutions were < 1 cm (horizontal and vertical) 

for ground target GCPs and < 2 cm (horizontal and vertical) for natural feature GCPs.  

3.3 UAS Survey Flights 130 

Seven survey flights over the saddle catchment were completed from 21 June to 14 August (Table 1). Due to high, gusty winds 

and unstable weather (afternoon thunderstorms) we were unable to fly the exact same extent for each survey date. Flying 

around the crest of the ridge was particularly difficult in high winds (>18 ms-1) due to unstable eddies and downdrafts. We 

were unable to capture thermal imagery on 27 June and 5 July, due to rapidly deteriorating weather conditions and approaching 

thunderstorms. Flight lines and image capture intervals (every 3 seconds RGB and RNIR, every 1 second TIR) were selected 135 

to produce >85 % front lap and >65 % side lap. For each date we captured ~400 RGB and ~400 RNIR frames, and ~3000 TIR 

frames, ~20,000 frames in total, around 200GB of raw data. The UAS are capable of terrain following, either from Google 

Earth base data (typically SRTM), or from custom DEMs. In this case we used a 1 m LiDAR DEM of the study site, which 

helps to maintain consistent ground sampling distance during the survey and minimises the possibility of DEM terrain errors 

impacting automated return to launch procedures when flying downhill from the launch site. An above ground level (AGL) 140 

flight altitude of 120m was selected to maximise area coverage (and minimise flight time) and remain within the legal limits 

of our Certificate of Authorisation (COA# 2015-WSA-75-COA). This resulted in a ground resolution of approximately 4 cm 

for RGB and RNIR photo frames. RGB images were stored as .jpg. RNIR images were captured as raw 14 bit .tif (to enable 

later reflectance calibration with sufficient radiometric resolution). Thermal data were collected at roughly 25 cm ground 

resolution, in 14 bit raw .tif format (as opposed to FLIR’s proprietary RJPG), which makes the data easier to work with in the 145 

processing and analysis stages.  

4 Data Processing 

4.1 SfM Workflow 

All data were processed using the SfM workflow as implemented in Agisoft Photoscan Pro V1.4. This commercial software 

has been widely used within the academic community and numerous resources discuss its workflow in more detail (Verhoeven, 150 

2011; Wigmore and Mark, 2017, 2018; Agisoft, 2016). The core workflow used for this study is summarised below. Complete 

details for the processing settings for each date can be found in the respective processing reports.  

• Image tie point generation, alignment, and sparse point cloud creation utilising band 1 of all images (RGB/RNIR/TIR) 

simultaneously. Key point limit set to 120,000, tie point limit at 30,000, with alignment accuracy set to highest value.  

• Identification of surveyed GCP, and 14 August co-registration marker locations in each image they are visible. TIR 155 

images were not included in this step as RGB GCP’s were not visible in the TIR imagery. 
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• Optimisation of sparse cloud, i.e. forcing sparse cloud into real world coordinates of the GCPs. 

• Thinning of sparse point cloud to remove outlier points based on parameters of reprojection error (<1), reconstruction 

uncertainty (<50), and projection accuracy (<10).  

• Optimisation and sparse cloud thinning were done iteratively up to 3 times to bring error estimation under 1 pixel (3 160 

cm pixel) and >0.01 m combined positional error. 

• Dense cloud generation based on RGB imagery only, with high quality, and aggressive point cloud filtering settings.  

• Triangular irregular network (TIN) mesh generated from RGB dense cloud. 

• TIN mesh smoothed and orthomosaics produced for each imagery data set at both 5 cm (RGB, RNIR) and 25 cm 

(RNIR and TIR) pixel size.  165 

After SfM processing the RNIR geotif values were converted to surface reflectance in the red and near infrared bands using 

the MAPIR QGIS plugin in combination with images of the MAPIR surface reflectance calibration targets that were collected 

during the flight (Figure 2c). The near Lambertian calibration targets comprise three plates of varying reflectance: white (87 

% reflectance), grey (51 % reflectance), and black (23 % reflectance), with known surface reflectance between 350 nm and 

1100 nm. From these radiometrically calibrated red and near infrared image bands normalised difference vegetation index 170 

(NDVI) maps were calculated for each date. TIR imagery was converted to surface temperature (Ts) in °C using the FLIR 

factory conversion factor, Equation 1. 

Equation 1:  Ts °C = (TIR raw pixel value * 0.04 – 273.15). 

Thermal images were processed simultaneously with RGB/RNIR data for the respective survey date (workflow above). 

However, an additional step is included in the TIR data processing workflow to mitigate image vignetting. Thermal images 175 

captured with low cost uncooled microbolometers often suffer from image vignetting where temperatures measured at the 

edges of the frame are systematically lower than those closer to the image centre (Kelly et al., 2019). Built in non-uniformity 

correction (NUC) algorithms aim to mitigate these errors, but cooler measurements are often still returned from the image 

periphery. To mitigate this vignetting we applied a manually delineated ellipsoid vignette mask to each of the thermal images. 

This mask excludes data from the image edges from the final thermal orthomosaic.  180 

To assess the horizontal positional error of the RGB imagery we identified 101 stable image features (large rocks) that were 

relatively evenly distributed across the 14 August 5 cm RGB orthomosaic. These are referred to as Hz check points. We then 

measured the horizontal offset between the 14 August image and each orthomosaic date for which the Hz check points were 

visible. Some Hz check points were not visible in the earlier dates due to snow cover. Offset statistics (relative to 14 August 

position) for each date and the entire series were then calculated. Vertical DSM error was assessed by comparing the 14 August 185 

DSM against the 109 surveyed vertical check points (above).  

5 Results 

5.1 Processing Results 

Results of the processing accuracy, alignment errors, and GCP positioning accuracy are provided within the processing report 

pdf files for each survey date. Almost 19,000 individual images were collected and processed. The surveyed area ranged from 190 

0.58 to 0.80 km2 with a maximum ground sampling distance of 4.11 to 4.22 cm (RGB). Reprojection error ranged from 0.783 

to 1.1 pixels. Point cloud density for the 14 August survey was 146 pts/m2, which is sufficient for DSM resolutions as fine as 

~10 cm.  
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5.2 Multispectral and Thermal Mapping Data Overview 

Figure 4 displays a full stack of data collected on 11 July 2017, and includes RGB imagery, NDVI (from RNIR camera), and 195 

surface temperature from the TIR camera, draped on the 14 August DSM. Data available for each date is summarised in Table 

2. Figure 5 displays RGB, TIR, and NDVI orthomosaics draped over the 14th August DSM for a select number of the survey 

dates. Surface processes of snowmelt and vegetation green-up are clearly visible in the images. The high resolution of the RGB 

data facilitates the delineation of different vegetation types and landcover classes. Changes in snow extent can be readily 

delineated and quantified. The co-temporal TIR imagery provides an insight into the snowmelt fed surface and subsurface 200 

hydrologic pathways that are present, which are visible as cold streams across the landscape. The radiometrically calibrated 

NDVI image series facilitates quantitative assessment of changes in vegetation health and productivity (NDVI pixel value) 

over the survey period. Figure 6 is a close-up view of different areas on the 21 June survey date showing TIR, RGB, and NDVI 

orthomosaics. Clearly visible in the thermal imagery are linear features of colder surface temperatures, these are suggestive of 

overland flow associated with snowmelt from the snow drifts (Figure 6a/b). Wind redistribution and deposition of snow is 205 

evident, with areas of snow accumulation visible on the leeward side of trees and in topographic low points (Figure 6c). 

Meanwhile the eastern side of the catchment is snow free for all survey dates (Figure 5). Site visits during the winter 

accumulation months indicate that this eastern edge is a wind-scour zone and is regularly cleared of snow during the winter 

months. Using the TIR imagery we can also hypothesise the existence of subsurface hydrologic pathways. For example, the 

wet meadows and surface ponds in Figure 6d are not visibly connected to surface meltwater channels, however, they retain 210 

water late in the summer and maintain cold temperatures throughout the summer, suggesting these systems are potentially fed 

by ground water springs (Wigmore et al., 2019; Lee et al., 2016; Hoffmann et al., 2014; Eschbach et al., 2017).  

5.3 Positional Accuracy 

Horizontal accuracy for each survey date relative to the 14 August survey is shown in Figure 7, along with the combined 

(mean) offset for all dates. Mean offset for the Hz check points is 13.3 cm, with a median value of 9.4 cm, and an interquartile 215 

range of 6.2 to 15.7 cm. Figure 8 shows the spatial distribution of these errors. Here, circle size indicates magnitude of the 

mean horizontal offset, while circle colour indicates the relative standard deviation of the offset errors. Horizontal error is 

higher at the periphery of the survey area, where image overlap is lower and camera geometry is worse. Within the area 

overlapped by all survey dates (yellow boundary line), mean horizontal offset error is mostly less than 15 cm, with lower 

relative standard deviation. Therefore, limiting analysis to the area within the overlap boundary and working at pixel 220 

resolutions greater than 20 cm should minimise the impact of horizontal offset (co-registration) errors on results.  

Vertical accuracy for the 14 August DSM was assessed relative to GNSS surveyed positions. Figure 9 displays the ellipsoid 

height difference between the 14 August 10 cm DSM surface and the 109 surveyed GNSS vertical check points, as well as the 

37 GCP locations (including targets and natural features). DSM elevation was subtracted from GNSS ground elevation, 

therefore negative values indicate that the DSM elevation is greater than surveyed ground elevation. Mean GCP difference 225 

was -2.1 cm, with an interquartile range of -5.8 to 7.3 cm. As expected, this is very low as the SfM model is forced to fit these 

GCPs locations. For the vertical check points the median difference is -8.9 cm, with an interquartile range of -29.0 to 9.9 cm. 

Data are visibly skewed negative, i.e. DSM is higher than ground elevation, this is likely due to vegetation growth as has been 

reported previously (Wigmore and Mark, 2018; Li et al., 2020). Figure 10 shows the spatial distribution of the vertical errors. 

Three notable outliers (1.5 x interquartile range) are visible in the data (Figure 9) with errors around ~-100 cm; this is higher 230 

than expected. Inspection of Figure 10 shows that one of the outlier values is located at the NW edge of the survey area, and, 

is thus likely a result of doming in the DSM due to poor camera geometry (James and Robson, 2014). However, the other 

significant outliers are located around the middle of the survey area, where survey geometry is more robust. It is possible that 

in this case the errors are associated with the vertical check point data itself as these positions were not collected specifically 
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for this application and may not have been collected over stable and relatively uniform areas suitable for assessing the accuracy 235 

of the DSM (Wigmore and Mark, 2017).  

6 Data  

6.1 Data Availability  

All data are made available through the LTER Data Portal of the Environmental Data Initiative (EDI) (Table 3), and are made 

available under Creative Commons Attribution License, CC BY 4.0. Data are organised in six groups as follows: 1) 5 cm RGB 240 

orthomosaics (Wigmore, 2022b); 2) 5 cm and 25 cm RNIR orthomosaics (Wigmore, 2022a); 3) 5 cm multispectral 

orthomosaics (Wigmore and Niwot Ridge LTER, 2021a); 4) 25 cm TIR orthomosaics (Wigmore and Niwot Ridge LTER, 

2022b); 5) NDVI datasets (Wigmore and Niwot Ridge LTER, 2021b); 6) elevation datasets (14 August 2017) (Wigmore and 

Niwot Ridge LTER, 2022a). Full extent data includes 5 cm RGB, 5 cm RNIR, 25 cm RNIR, and, 25 cm TIR (where available) 

at the maximum survey coverage. Data along the survey periphery are likely to suffer from increased positional errors due to 245 

the reduced number of images (lower overlap) and relatively poor camera geometry over these regions; these areas should 

therefore be clipped prior to analytical use. Clipped multispectral data includes 5 cm RGB and RNIR imagery stacked in a 

single multiband .tif file that has been clipped to the maximum extent covered by all survey dates, including a buffer to mitigate 

low quality data at the periphery. Spectral bands are as follows: B1 Blue (uncalibrated), B2 Green (uncalibrated), B3 Red 

(uncalibrated), B4 Red (calibrated surface reflectance centred at 660 nm), B5 NIR (calibrated surface reflectance centred at 250 

850 nm). 25 cm TIR orthomosaics are all provided as a clipped version in which data have been clipped to the same boundary 

as above (though coverage may be lower for these TIR surveys), and, is provided as a 32 bit floating point raster with units of 

degrees Celsius. NDVI data compiles NDVI for each date into a single multiband stack where each band corresponds to a 

survey date in series; i.e. B1 NDVI 21 June, B2 NDVI 28 June, B3 NDVI 5 July, etc. Basic analytical layers derived from this 

stack are also provided, including the maximum/peak NDVI value from the NDVI stack, and the survey date on which this 255 

was measured, stored as a day of year integer value. Elevation data includes the 14th August DSM (as a .tif) and unclassified 

RGB coloured point cloud (in .laz). The DSM is derived from the unclassified point cloud, and can thus be considered 

representative of vegetation canopy surface elevation. For much of the study site vegetation is very short (<5 cm) or absent 

(bare ground), and for these areas the DSM is equivalent to ground elevation; this is not the case for forested areas in the 

southern section of the study area. For all raster datasets individual metadata is included as an .xml file in the ESRI ArcMap 260 

format and point cloud data are accompanied by a .txt readme metadata file. Unclipped RGB 5 cm datasets are also 

accompanied by the SfM processing report created by Agisoft Photoscan Pro software, which documents the processing 

parameters used and GCP error for each survey date. 

 

6.2 Data Caveats and Considerations 265 

Data are provided at both 5 cm (RGB, RNIR) and 25 cm (RNIR, TIR) spatial resolutions on aligned raster grids. Due to the 

lack of gimbal stabilisation (RGB and RNIR) and high winds at the site the 5 cm imagery suffers from localised areas of image 

blur. Additionally, at this highest resolution the impact of potential offsets between the RGB and RNIR bands and between 

dates is increased. Therefore, for analytical purposes it is recommended that the data are aggregated to a larger (>10 cm) spatial 

resolution. RGB data are uncalibrated and are likely unsuitable for analytical uses outside of mapping/classification. RNIR 270 

data are calibrated to surface reflectance for each date and thus can be used to calculate reliable NDVI values that are stable 

across the data series. Thermal data have not been calibrated with more accurate near-surface Ts measurements, and thus can 

be assumed to be accurate to, at best, +/-5 % or 5 °C per the manufacturer’s (FLIR) documentation. Relative Ts differences 

are much higher resolution, with 0.04 °C pixel sensitivity recorded by the sensor.  Thermal vignetting has been minimised 
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through the masking process (above). Trends in the thermal data can originate from both cooling/warming of the scene during 275 

the survey window (~1 hr), and from warming up of the thermal sensor. The latter was minimised by allowing the camera to 

warm up before image capture, however the former is not addressed. Consequently, some north-south striping in the thermal 

mosaics is visible for some dates (e.g. 21 July 2017), this is a result of brief temporal gaps in flying while changing batteries. 

This is a common trade-off with small format thermal imaging over large areas. Because of the lack of reliability in absolute 

Ts recovery for these datasets it is recommended that users of the Ts data rely on them primarily for mapping thermal anomalies 280 

and relative differences, as opposed to deriving insight from absolute Ts values. File naming conventions, spatial resolution, 

and spectral bands are summarised in Table 2.  

7 Challenges of Collecting Multitemporal UAS Data in Mountainous Environments 

The complex topography and high degree of spatiotemporal variation present in mountain environments makes them an ideal 

environment for the application of high resolution UAS-based remote sensing campaigns. Our mapping campaign leveraged 285 

both the high spatial (centimetre) and temporal (weekly surveys) resolution benefits of UAS, while also capturing quantitative 

multispectral imagery over a relatively large area. There were a number of challenges to completing such a demanding survey 

protocol in a relatively hard to reach mountainous environment. These challenges can be summarised as technical and 

environmental challenges.  

7.1 Technical Challenges 290 

Conversion of TIR to Ts for data collected from small microbolometer type thermal sensors is a significant technical challenge. 

These sensors are prone to vignetting (Kelly et al., 2019), and warm up rapidly which can bias measurements over time 

(Dugdale et al., 2019). Uniform emissivity corrections do not account for variations in land cover (and thus emissivity) within 

the scene (Aubry-Wake et al., 2015), and despite the relatively short distance to target (~120m AGL), there are often sufficient 

atmospheric effects to introduce measurement errors (FLIR, 2018; Torres-Rua, 2017). Furthermore, as the final image is a 295 

mosaic created from images collected over a ~1hr window, warming or cooling of the scene can result in thermal trends within 

the orthomosaics. A number of solutions have been suggested to remedy these issues. Orthomosaics are frequently calibrated 

to higher accuracy in-scene Ts measurements collected with non-contact infrared radiometers, temperature loggers, and higher 

quality thermal cameras (Kraaijenbrink et al., 2018; Torres-Rua, 2017; Wigmore et al., 2019). However, this bias correction 

doesn’t account for changes in the scene temperature during the survey, or drift errors induced by changes in the temperature 300 

of the camera. Individual frames can be calibrated prior to mosaicking, e.g. by correction to widespread surface features with 

stable Ts (e.g. melting snow at 0 °C) (Pestana et al., 2019), however this is difficult to implement for large image collections, 

especially if the thermally stable feature is not visible in all image frames. Orthomosaics and/or individual images can also be 

classified by landcover type, with different emissivity values applied as appropriate (Aubry-Wake et al., 2015). Perhaps, the 

most viable solution lies in technical innovations, for example the development of light weight heated external shutters, which 305 

may increase measurement accuracy by as much as 70 % (TeAx, 2019). For this study we were less concerned with the accurate 

measurement of absolute Ts, and more interested in mapping thermal anomalies and relative differences, for which 

microbolometer sensors are perfectly capable (Wigmore et al., 2019; Harvey et al., 2016; Dugdale et al., 2019; Poirier et al., 

2013). However, where accurate measurements of Ts are required these issues should be carefully considered and addressed 

in the planning stages. 310 

For the collection of reliable time series NDVI maps RNIR raw image digital numbers must be converted to surface reflectance. 

This calibration requires the imaging of known reflectance targets at the same time as the UAS survey and/or the collection of 

incident sunlight (scene illumination) through a secondary instrument (e.g. Parrot Sequoia and Micasense Red Edge 

multispectral cameras). For direct comparison of surface reflectance the latter method is preferable as each image can be 
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corrected individually (prior to orthomosaicking), thus accounting for temporary variations in illumination (e.g. passing 315 

clouds) during the survey flight period. However, when comparing ratio indices, such as NDVI, changing illumination is less 

of an issue and therefore surface reflectance calibration based on reflectance targets is a suitable method (Hunt and Daughtry, 

2018). It is important, however, that all camera settings, such as ISO, exposure length, and aperture, remain constant during 

the survey, that sufficient radiometric depth is available (i.e. shooting in 12 or 16-bit RAW format, as opposed to 8-bit jpg), 

and that camera settings do not allow any part of the scenes pixel values to saturate at the high or low end (over or underexpose). 320 

Overexposure is of particular concern for snow covered areas where reflectance is high (Bühler et al., 2016; vander Jagt et al., 

2015).  

7.2 Environmental Challenges 

Environmental challenges were primarily related to site-specific atmospheric conditions that are typical of mountainous 

environments, specifically, wind, and altitude. Wind speeds at ground level were often in excess of 10 ms-1, with regular gusts 325 

at flight altitude (120 m) of over 20 ms-1 which is at the upper limit of what many small UAS systems are designed to handle. 

A launch elevation of 3500 m asl is also sufficiently high to significantly reduce flight time due to lower air density. To deal 

with these two issues we overhauled our existing UAS platforms which were designed for higher elevation (>4500 m asl) but 

lower wind speeds in Peru’s Cordillera Blanca (Wigmore et al., 2019; Wigmore and Mark, 2017). Our system was able to 

operate reliably in wind gusts of up to ~22-24 ms-1. Live observations from the ground station telemetry stream and flight logs 330 

showed periods of wind-induced pitch and roll compensation of up to 45° (the programmed limit). Designing UAS that are 

both robust and powerful enough to handle these forces is critical for reliable and repeatable mountain operations in sub-

optimal conditions. The relatively lower elevation (3500 m asl as opposed to >4500 m asl in Peru), allowed us to add strength 

(and consequently weight) to the system.  In this context, we used thicker gauge carbon fibre tubes and CNC aluminium (as 

opposed to plastic) joint connectors, motor mounts etc.; while also seeing a ~25-30 % increase in flight time, which increased 335 

from ~14 mins to ~18 mins on a 4S 10,000 mAh LiPO battery. Flight time is the critical limit on maximum survey-able area. 

Multirotor systems are particularly limited in this respect (compared to fixed wing platforms), however multirotor systems are 

generally better at handling wind gusts. Long flight time multirotor systems are increasingly available, however, these are 

usually either very light weight and thus weaker or are powered by high-efficiency (low kilovolt, large propeller) power 

systems which have slower response times and often lower maximum flight speeds which limits their ability to deal with strong 340 

winds. Furthermore, these high efficiency systems are usually larger and heavier which limits their ability to be easily 

transported into the backcountry.  

8 Conclusion 

We presented the data acquisition and processing methodology for a unique high spatiotemporal resolution series of UAS 

derived datasets that includes cm-scale resolution RGB, RNIR and TIR imagery over a ~40 ha study area in the Colorado 345 

Rockies collected ~weekly over a summer snowmelt season. These data are spatially coincident with the recently heavily 

instrumented NWT LTER saddle catchment. Over 20,000 individual image frames were collected. These were processed using 

a SfM photogrammetric workflow and tied to absolute coordinates with a network of GNSS surveyed GCPs. Horizontal co-

registration errors were assessed by comparing offset from the final (snow free) survey and had a mean error of less than 20 

cm for all dates. Mean vertical accuracy of the DSM was 8.9 cm higher than GNSS surveyed position. A series of 5 cm (RGB, 350 

RNIR) and 25 cm (RNIR, TIR) orthomosaics are provided for each date, along with a stack of 25 cm NDVI orthomosaics and 

NDVI summary data (peak NDVI and peak NDVI day of year). Elevation data for the snow free (14 August 2017) survey 

include a DSM and high-density point cloud. Together these datasets provide a unique snapshot of summer snowpack, 

snowmelt, surface temperature, and vegetation growth in a high alpine environment and facilitate the mapping and 
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quantification of environmental variables and ecohydrologic processes at unprecedented spatial resolution. Potential 355 

applications for these data are many, but include mapping of surface and subsurface hydrologic connectivity, tracking 

vegetation productivity and seasonal green-up, mapping ecosystem zonation, quantifying distribution and changes in snow 

cover, snow depth, and snowmelt. These data are made publicly available to facilitate broader use by the research community. 

These datasets leverage both the high spatial and temporal resolution of UAS data capture, while also collecting imagery across 

multiple spectral bands. As such these data may facilitate advances in our understanding of spatially and temporally dynamic 360 

ecohydrologic process and connectivity within alpine environments.  

Author Contributions  

Both authors planned the objectives of the study. O. Wigmore collected, processed, and prepared all datasets, and prepared the 

draft manuscript. Both authors contributed to the revision and editing of the final manuscript. 

Competing Interests 365 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We would like to thank members of the INSTAAR Mountain Hydrology Group, for assistance with field data collection (GNSS 

survey) and UAS operations. We would also like to thank member of the Niwot Ridge LTER programme and Mountain 

Research Station for logistical support and assistance. We would also like to thank the Editor (James Thornton) and two 370 

reviewers (Marc Adams and Paul Schattan) for their constructive reviews and suggestions for improvement of the manuscript.  

Funding  

O. Wigmore was supported in part through funding from the University of Colorado 2016 Innovative Seed Grant (awarded to 

N. Molotch), the University of Colorado Earth Lab Grand Challenge, and the Niwot Ridge LTER program (NSF DEB – 

1637686). Additional support in the form of GNSS equipment loan for the GNSS rover was provided by UNAVCO with 375 

support from the National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) under NSF 

Cooperative Agreement [No. EAR-0735156]. Logistical support for this research was provided by the Niwot Ridge LTER 

program (NSF DEB – 1637686).  

 

  380 



11 

 

References 

Agisoft: Agisoft PhotoScan User Manual Standard Edition, Version 1.2, St. Petersburg: Agisoft LLC, 2016. 

Aubry-Wake, C., Baraer, M., McKenzie, J. M., Mark, B. G., Wigmore, O., Hellström, R. Å., Lautz, L., and Somers, L.: 

Measuring glacier surface temperatures with ground-based thermal infrared imaging, Geophys Res Lett, 42, 

https://doi.org/10.1002/2015GL065321, 2015. 385 

Beniston, M.: Mountain weather and climate: a general overview and a focus on climatic change in the Alps, Hydrobiologia, 

562, 3–16, https://doi.org/10.1007/s10750-005-1802-0, 2006. 

Bjarke, N. R., Livneh, B., Elmendorf, S. C., Molotch, N. P., Hinckley, E.-L. S., Emery, N. C., Johnson, P. T. J., and Suding, 

K. N.: Catchment-scale observations at the Niwot Ridge Long-Term Ecological Research site, Hydrol Process, e14320, 

https://doi.org/10.1002/HYP.14320, 2021. 390 

Bueno de Mesquita, C. P., Tillmann, L. S., Bernard, C. D., Rosemond, K. C., Molotch, N. P., and Suding, K. N.: 

Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain 

landscape, Niwot Ridge, Colorado, Arct Antarct Alp Res, 50, e1504492, 

https://doi.org/10.1080/15230430.2018.1504492, 2018. 

Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems 395 

(UASs): potential and limitations, Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. 

CHDK: KAP UAV Exposure Control Script, https://chdk.wikia.com/wiki/KAP_UAV_Exposure_Control_Script, 2019. 

Christensen, L., Tague, C., and Baron, J. S.: Spatial patterns of transpiration response to climate variability in a snow-

dominated mountain ecosystem, Hydrol Process, 22, 3576–3588, 2008. 

Colomina, I. and Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing: A review, ISPRS Journal of 400 

Photogrammetry and Remote Sensing, 92, 79–97, https://doi.org/10.1016/j.isprsjprs.2014.02.013, 2014. 

Dugdale, S. J., Kelleher, C. A., Malcolm, I. A., Caldwell, S., and Hannah, D. M.: Assessing the potential of drone‐based 

thermal infrared imagery for quantifying river temperature heterogeneity, Hydrol Process, 33, 1152–1163, 

https://doi.org/10.1002/hyp.13395, 2019. 

Erickson, T. A., Williams, M. W., and Winstral, A.: Persistence of topographic controls on the spatial distribution of snow in 405 

rugged mountain terrain, Colorado, United States, Water Resour Res, 41, 1–17, https://doi.org/10.1029/2003WR002973, 

2005. 

Eschbach, D., Piasny, G., Schmitt, L., Pfister, L., Grussenmeyer, P., Koehl, M., Skupinski, G., and Serradj, A.: Thermal-

infrared remote sensing of surface water-groundwater exchanges in a restored anastomosing channel (Upper Rhine River, 

France), Hydrol Process, 31, 1113–1124, https://doi.org/10.1002/hyp.11100, 2017. 410 

Fagre, D. B., Peterson, D. L., and Hessl, A. E.: Taking the pulse of mountains: Ecosystem responses to climatic variability, 

in: Climatic Change, vol. 59, Springer, 263–282, https://doi.org/10.1023/A:1024427803359, 2003. 

FLIR: Tech Note: Radiometric Temperature Measurements Surface Characteristics and Atmospheric Compensation.: 

https://www.flir.com/globalassets/guidebooks/suas-radiometric-tech-note-en.pdf, 2018. 

Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., and Carbonneau, P. E.: Topographic structure from motion: a 415 

new development in photogrammetric measurement, Earth Surf Process Landf, 38, 421–430, 

https://doi.org/10.1002/esp.3366, 2013. 

Grünewald, T., Schirmer, M., Mott, R., and Lehning, M.: Spatial and temporal variability of snow depth and ablation rates in 

a small mountain catchment, Cryosphere, 4, 215–225, https://doi.org/10.5194/tc-4-215-2010, 2010. 

Harvey, M. C., Rowland, J. V., and Luketina, K. M.: Drone with thermal infrared camera provides high resolution 420 

georeferenced imagery of the Waikite geothermal area, New Zealand, Journal of Volcanology and Geothermal Research, 

325, 61–69, https://doi.org/10.1016/J.JVOLGEORES.2016.06.014, 2016. 

https://www.flir.com/globalassets/guidebooks/suas-radiometric-tech-note-en.pdf


12 

 

Hermes, A. L., Wainwright, H. M., Wigmore, O. H., Falco, N., Molotch, N., and Hinckley, E.-L. S.: From patch to 

catchment: A statistical framework to identify and map soil moisture patterns across complex alpine terrain, Frontiers in 

Water, 2, 48, https://doi.org/10.3389/FRWA.2020.578602, 2020. 425 

Hoffmann, H., Müller, S., and Friborg, T.: Using an unmanned aerial vehicle (UAV) and a thermal infrared camera to 

estimate temperature differences on a lake surface, revealing incoming groundwater seepage., in: EGU General 

Assembly Conference Abstracts, 6234, https://doi.org/10.13140/RG.2.1.4596.1840, 2014. 

Hunt, E. R. and Daughtry, C. S. T.: What good are unmanned aircraft systems for agricultural remote sensing and precision 

agriculture?, Int J Remote Sens, 39, 5345–5376, https://doi.org/10.1080/01431161.2017.1410300, 2018. 430 

Ives, J. D., Messerli, B., and Spiess, E.: Mountains of the world: A global priority, in: Mountains of the World: A Global 

Priority, edited by: Messerli, B. and Ives, J. D., The Parthenon Publishing Group Inc., Pearl River, New York, 1-, 1997. 

vander Jagt, B., Lucieer, A., Wallace, L., Turner, D., and Durand, M.: Snow Depth Retrieval with UAS Using 

Photogrammetric Techniques, Geosciences (Basel), 5, 264–285, https://doi.org/10.3390/geosciences5030264, 2015. 

James, M. R. and Robson, S.: Mitigating systematic error in topographic models derived from UAV and ground-based image 435 

networks, Earth Surf Process Landf, 39, 1413–1420, https://doi.org/10.1002/esp.3609, 2014. 

Kelly, J., Kljun, N., Olsson, P.-O., Mihai, L., Liljeblad, B., Weslien, P., Klemedtsson, L., and Eklundh, L.: Challenges and 

Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera, Remote Sens 

(Basel), 11, 567, https://doi.org/10.3390/rs11050567, 2019. 

Kraaijenbrink, P., Shea, J. M., Litt, M., Steiner, J. F., Treichler, D., Koch, I., and Immerzeel, W. W.: Mapping surface 440 

temperatures on a debris-covered glacier with an unmanned aerial vehicle, Front Earth Sci (Lausanne), 

https://doi.org/https://doi.org/10.3389/feart.2018.00064, 2018. 

Larson, K.: GPS Soil Moisture Network - NWOT-Niwot Ridge P.S., https://doi.org/10.7283/T5VQ30RT, 2009.  

Lee, E., Yoon, H., Hyun, S. P., Burnett, W. C., Koh, D.-C., Ha, K., Kim, D., Kim, Y., and Kang, K.: Unmanned aerial 

vehicles (UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the 445 

coastal zone, Limnol Oceanogr Methods, 14, 725–735, https://doi.org/10.1002/lom3.10132, 2016. 

Li, D., Wigmore, O., Durand, M. M. T., Vander-Jagt, B., Margulis, S. A. S. A., Molotch, N. P. N., and Bales, R. R. C.: 

Potential of balloon photogrammetry for spatially continuous snow depth measurements, IEEE Geoscience and Remote 

Sensing Letters, 17, https://doi.org/10.1109/LGRS.2019.2953481, 2020. 

Litaor, M. I., Williams, M., and Seastedt, T. R.: Topographic controls on snow distribution, soil moisture, and species 450 

diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado, J Geophys Res Biogeosci, 113, 2008, 

https://doi.org/10.1029/2007JG000419, 2008. 

May, D. E. and Webber, P. J.: Spatial and temporal variation of the vegetation and its productivity, Niwot Ridge, Colorado., 

1982. 

Pape, R., Wundram, D., and Löffler, J.: Modelling near-surface temperature conditions in high mountain environments: an 455 

appraisal, Clim Res, 39, 99–109, https://doi.org/10.3354/cr00795, 2009. 

Pestana, S., Chickadel, C. C., Harpold, A., Kostadinov, T. S., Pai, H., Tyler, S., Webster, C., and Lundquist, J. D.: Bias 

Correction of Airborne Thermal Infrared Observations Over Forests Using Melting Snow, Water Resour Res, 55, 11331–

11343, https://doi.org/10.1029/2019WR025699, 2019. 

Poirier, N., Hautefeuille, F., and Calastrenc, C.: Low altitude thermal survey by means of an automated unmanned aerial 460 

vehicle for the detection of archaeological buried structures, Archaeol Prospect, 20, 303–307, 

https://doi.org/10.1002/arp.1454, 2013. 

TeAx: Extended Value: External Shutter for FLIR Vue Pro R – Increased temperature accuracy by up to 70%,  

https://thermalcapture.com/extended-value-external-shutter-for-flir-vue-pro-r/, last access: 10 December 2019, 2019.  

https://doi.org/10.7283/T5VQ30RT


13 

 

Tonkin, T. N. and Midgley, N. G.: Ground-control networks for image based surface reconstruction: An investigation of 465 

optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry, Remote Sens (Basel), 

8, 16–19, https://doi.org/10.3390/rs8090786, 2016. 

Torres-Rua, A.: Vicarious calibration of sUAS microbolometer temperature imagery for estimation of radiometric land 

surface temperature, Sensors (Switzerland), 17, https://doi.org/10.3390/s17071499, 2017. 

Trujillo, E., Ramírez, J. A., and Elder, K. J.: Topographic, meteorologic, and canopy controls on the scaling characteristics 470 

of the spatial distribution of snow depth fields, Water Resour Res, 43, https://doi.org/10.1029/2006WR005317, 2007. 

Trujillo, E., Molotch, N. P., Goulden, M. L., Kelly, A. E., and Bales, R. C.: Elevation-dependent influence of snow 

accumulation on forest greening, Nat Geosci, 5, 705–709, https://doi.org/10.1038/ngeo1571, 2012. 

Verhoeven, G.: Taking computer vision aloft - archaeological three-dimensional reconstructions from aerial photographs 

with photoscan, https://doi.org/10.1002/arp.399, 2011. 475 

Vivoni, E. R., Rango, A., Anderson, C. A., Pierini, N. A., Schreiner-McGraw, A. P., Saripalli, S., and Laliberte, A. S.: 

Ecohydrology with unmanned aerial vehicles, Ecosphere, 5, art130, https://doi.org/10.1890/ES14-00217.1, 2014. 

Walker, M. D., Walker, D. A., Theodose, T. A., and Webber, P. J.: The vegetation: hierarchical species-environment 

relationships, in: Alpine Ecosystem : Niwot Ridge, Colorado, edited by: Bowman, W. D. and Seastedt, T. R., Oxford 

University Press, Incorporated, 99–127, 2001. 480 

Watts, A. C., Ambrosia, V. G., and Hinkley, E. A.: Unmanned aircraft systems in remote sensing and scientific research: 

Classification and considerations of use, Remote Sens (Basel), 4, 1671–1692, https://doi.org/10.3390/rs4061671, 2012. 

Wieder, W. R., Knowles, J. F., Blanken, P. D., Swenson, S. C., and Suding, K. N.: Ecosystem function in complex mountain 

terrain: Combining models and long-term observations to advance process-based understanding, J Geophys Res 

Biogeosci, 122, 825–845, https://doi.org/10.1002/2016JG003704, 2017. 485 

Wigmore, O.: Calibrated Red/Near Infrared orthomosaic imagery from UAV campaign at Niwot Ridge, 2017. ver 1., 

Environmental Data Initiative, https://doi.org/https://doi.org/10.6073/pasta/dadd5c2e4a65c781c2371643f7ff9dc4, 2022a. 

Wigmore, O.: Uncalibrated RGB orthomosaic imagery from UAV campaign at Niwot Ridge, 2017. ver 1., Environmental 

Data Initiative, https://doi.org/https://doi.org/10.6073/pasta/073a5a67ddba08ba3a24fe85c5154da7, 2022b. 

Wigmore, O. and Mark, B.: Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial 490 

vehicle photogrammetry, Cordillera Blanca, Peru, Cryosphere, 11, 2463–2480, https://doi.org/10.5194/tc-11-2463-2017, 

2017. 

Wigmore, O. and Mark, B.: High altitude kite mapping: evaluation of kite aerial photography (KAP) and structure from 

motion digital elevation models in the Peruvian Andes, Int J Remote Sens, 39, 4995–5015, 

https://doi.org/10.1080/01431161.2017.1387312, 2018. 495 

Wigmore, O. and Niwot Ridge LTER: 5cm multispectral imagery from UAV campaign at Niwot Ridge, 2017 ver 1., 

Environmental Data Initiative, https://doi.org/https://doi.org/10.6073/pasta/a4f57c82ad274aa2640e0a79649290ca, 2021a. 

Wigmore, O. and Niwot Ridge LTER: 25cm NDVI data from UAV campaign at Niwot Ridge Saddle Catchment, 2017 ver 

1., Environmental Data Initiative, https://doi.org/https://doi.org/10.6073/pasta/444a7923deebc4b660436e76ffa3130c, 

2021b. 500 

Wigmore, O. and Niwot Ridge LTER: Point Cloud lidar DSM from UAV campaign at Niwot Ridge, 2017. ver 1., 

Environmental Data Initiative, https://doi.org/https://doi.org/10.6073/pasta/2c43d15a50e56f35c4812b026f17e741, 2022a. 

Wigmore, O. and Niwot Ridge LTER: Surface temperature mapped from thermal infrared survey from UAV campaign at 

Niwot Ridge, 2017. ver 2., Environmental Data Initiative, 

https://doi.org/https://doi.org/10.6073/pasta/70518d55a8d6ec95f04f2d8a0920b7b8, 2022b. 505 

Wigmore, O., Mark, B., and Crumley, R.: Development and deployment of a multispectral mapping UAV at 5000m in the 

Cordillera Blanca, Peru, in: Association of American Geographers Annual Meeting, 2015. 



14 

 

Wigmore, O., Mark, B., McKenzie, J., Baraer, M., and Lautz, L.: Sub-metre mapping of surface soil moisture in proglacial 

valleys of the tropical Andes using a multispectral unmanned aerial vehicle, Remote Sens Environ, 222, 104–118, 

https://doi.org/10.1016/j.rse.2018.12.024, 2019. 510 

Zhang, C. and Kovacs, J. M.: The application of small unmanned aerial systems for precision agriculture: A review, Precis 

Agric, 13, 693–712, https://doi.org/10.1007/s11119-012-9274-5, 2012. 

  

  



15 

 

Tables:  515 

 

Survey Date Imagery Collected 

21-Jun-17 RGB, RNIR, TIR 

27-Jun-17 RGB, RNIR 

5-Jul-17 RGB, RNIR 

11-Jul-17 RGB, RNIR, TIR 

18-Jul-17 RGB, RNIR, TIR 

25-Jul-17 RGB, RNIR, TIR 

14-Aug-17 RGB, RNIR, TIR 

 

Table 1: List of all survey flight dates and imagery collected. TIR imagery were not collected on 27 June and 5 July due to 

deteriorating weather conditions and early thunderstorms.  

 520 

File Name Extension Type Bands/Description 
Spatial 

Resolution 

*_RGB5cm_FullExtent.tif1 Unclipped RGB  B1-R, B2-G, B3-B  5cm  

*_NIR5cm_CALIBRATED_FullExtent.tif2 Unclipped RNIR  B1-Rcal, B2-NIRcal 5cm  

*_NIR25cm_CALIBRATED_FullExtent.tif2 Unclipped RNIR  B1-Rcal, B2-NIRcal 25cm  

*_TIR25cm_FullExtent.tif3 Unclipped TIR  B1-Ts in °C 25cm  

*_MultiB_RGBNIR.tif4 Clipped Multispectral  B1-B, B2-G, B3-R, B4-Rcal, B5-NIRcal  5cm  

*_TIR25cm_CropRGB.tif3 Clipped TIR  B1-Ts in °C 25cm  

NDVI25cm_Stack.tif5 NDVI  NDVI stacked by survey date order 25cm  

NDVI25cm_Max.tif5 NDVI Maximum NDVI from all surveys 25cm 

NDVI25cm_PeakDOY.tif5 NDVI DOY maximum NDVI measured 25cm 

 20170814_DSM10cm.tif6 DSM  Elevation (Ellipsoid Height m) 10cm 

 20170814_pointcloud.laz6 Point Cloud Coloured with RGB (Ellipsoid Height m) >100pts/m2 

1(Wigmore, 2022b) ; 2(Wigmore, 2022a) ; 3(Wigmore and Niwot Ridge LTER, 2022b) ; 4(Wigmore and Niwot Ridge LTER, 2021a) ; 
5(Wigmore and Niwot Ridge LTER, 2021b) ; 6(Wigmore and Niwot Ridge LTER, 2022a) 

Table 2: Summary of available datasets and filename extensions as provided on EDI portal.   

 

Data Set Citation DOI 

5 cm RGB 

Orthomosaics 

Wigmore, O. 2022. Uncalibrated RGB orthomosaic imagery from 
UAV campaign at Niwot Ridge, 2017. ver 1. Environmental Data 

Initiative.  

https://doi.org/10.6073/pasta/073a

5a67ddba08ba3a24fe85c5154da7  

5 cm and 25 cm 

R/NIR 
Orthomosaics 

Wigmore, O. 2022. Calibrated red/near infrared orthomosaic 

imagery from UAV campaign at Niwot Ridge, 2017. ver 1. 
Environmental Data Initiative. 

https://doi.org/10.6073/pasta/dadd

5c2e4a65c781c2371643f7ff9dc4  

5 cm Multiband 
Multispectral 
Orthomosaics 

Wigmore, O. and Niwot Ridge LTER. 2021. 5cm multispectral 
imagery from UAV campaign at Niwot Ridge, 2017 ver 1. 
Environmental Data Initiative.  

https://doi.org/10.6073/pasta/a4f57
c82ad274aa2640e0a79649290ca  

25 cm NDVI 
datasets 

Wigmore, O. and Niwot Ridge LTER. 2021. 25cm NDVI data 

from UAV campaign at Niwot Ridge Saddle Catchment, 2017 ver 
1. Environmental Data Initiative.  

https://doi.org/10.6073/pasta/444a
7923deebc4b660436e76ffa3130c  

25 cm Thermal 

Infrared 
Orthomosaics 

Wigmore, O. and Niwot Ridge LTER. 2022. Surface temperature 

mapped from thermal infrared survey from UAV campaign at 
Niwot Ridge, 2017. ver 2. Environmental Data Initiative.  

https://doi.org/10.6073/pasta/7051
8d55a8d6ec95f04f2d8a0920b7b8  

Elevation 
datasets (14 

August 2017) 

Wigmore, O. and Niwot Ridge LTER. 2022. Photogrammetric 
point cloud and DSM from UAV campaign at Niwot Ridge, 2017. 

ver 2. Environmental Data Initiative. 

https://doi.org/10.6073/pasta/1289
b3b41a46284d2a1c42f1b08b3807 

Table 3: Data availability, citations and DOIs.   525 

https://doi.org/10.6073/pasta/073a5a67ddba08ba3a24fe85c5154da7
https://doi.org/10.6073/pasta/073a5a67ddba08ba3a24fe85c5154da7
https://doi.org/10.6073/pasta/dadd5c2e4a65c781c2371643f7ff9dc4
https://doi.org/10.6073/pasta/dadd5c2e4a65c781c2371643f7ff9dc4
https://doi.org/10.6073/pasta/a4f57c82ad274aa2640e0a79649290ca
https://doi.org/10.6073/pasta/a4f57c82ad274aa2640e0a79649290ca
https://doi.org/10.6073/pasta/444a7923deebc4b660436e76ffa3130c
https://doi.org/10.6073/pasta/444a7923deebc4b660436e76ffa3130c
https://doi.org/10.6073/pasta/70518d55a8d6ec95f04f2d8a0920b7b8
https://doi.org/10.6073/pasta/70518d55a8d6ec95f04f2d8a0920b7b8
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Figures: 

 

Figure 1: Study site at Niwot Ridge (white arrows on photos indicate north). a) oblique aerial image of the study site looking down 

slope (south) from the northern edge, b) study site location and relevant boundaries, c) terrestrial view of the study site from the 

eastern edge of the study site looking west. Base imagery in 1b) sourced from public access USA National Agricultural Imagery 530 
Program (NAIP) 2005.  

 

 

Figure 2: Quadcopter UAS fitted with thermal camera (a), installation and survey of GCPs (b), NIR/Red image of surface reflectance 

calibration plate.   535 

 

Figure 3: Location of local base station, all GCPs, and check points used in SfM processing and error assessment.  
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Figure 4: Full data stack collected on 11 July 2017. Showing: RGB (top), NDVI (middle), and TIR (Ts) (bottom), draped over 14 

August 2017 DSM.  540 

 

 

Figure 5: 3D views of selected RGB orthomosaics (5cm), Ts maps (from TIR) (25cm), and NDVI (25cm) draped on 14 August 10cm 

DSM.  
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 545 

Figure 6: Close up of TIR (Ts) (top row) (25cm), RGB (middle row) (5cm), and NDVI (bottom row) (5cm) image pairs for 21 June 

2017. (a) snow melt pathways through wet meadow; (b) snow melt feeding wet meadow; (c) snow accumulation in the forest zone; 

(d) surface ponds fed by subsurface hydrologic pathways. 

 

Figure 7: Horizontal offset at check point locations for each survey dates RGB 5cm orthomosaic, relative to 14 August position. 550 
Mean horizontal offset is shown on right violin plot. Mean and median values labelled accordingly. Curve represents kernel 

smoothed frequency distribution of offsets.   
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Figure 8: Spatial distribution of horizontal offset errors, compared to 14 August position.  555 

 

Figure 9: Difference between GNSS ellipsoid height and 14 August DSM ellipsoid height for 109 check points and 37 GCPs. Negative 

values indicate DSM elevation is greater than GNSS surveyed elevation. Mean difference (cm) is shown on plot. Curve represents 

kernel smoothed frequency distribution of vertical differences.   

 560 

 

 

Figure 10: Spatial distribution of vertical errors for 14 August DSM (GNSS ellipsoid height at surveyed check points minus DSM 

ellipsoid height). Negative values indicate DSM elevation is greater than GNSS surveyed elevation.  


