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Abstract: 13 

Multiple landslide events occur often across the world which have the potential to cause 14 
significant harm to both human life and property. Although a substantial amount of research 15 
has been conducted to address mapping of landslides using Earth Observation (EO) data, 16 
several gaps and uncertainties remain when developing models to be operational at the global 17 
scale. The lack of a high resolution globally distributed and event-diverse dataset for landslide 18 
segmentation poses a challenge in developing machine learning models that can accurately 19 
and robustly detect landslides in various regions, as the limited representation of landslide and 20 
background classes can result in poor generalization performance of the models. To address 21 
this issue, we present the high-resolution global landslide detector database (HR-GLDD), a 22 
high resolution (HR) dataset for landslide mapping composed of landslide instances from ten 23 
different physiographical regions globally: South and South-East Asia, East Asia, South 24 
America, and Central America. The dataset contains five rainfall triggered and five earthquake-25 
triggered multiple landslide events that occurred in varying geomorphological and 26 
topographical regions. HR-GLDD is one of the first dataset for landslide detection generated 27 
by high resolution satellite imagery which can be useful for applications in artificial intelligence 28 
for landslide segmentation and detection studies. Five state of the art deep learning models 29 
were used to test the transferability and robustness of the HR-GLDD. Moreover, two recent 30 
landslide events were used for testing the performance and usability of the dataset to comment 31 
on the detection of newly occurring significant landslide events. The deep learning models 32 
showed similar results for testing the HR-GLDD in individual test sites thereby indicating the 33 
robustness of the dataset for such purposes. The HR-GLDD can be accessed open access 34 
and it has the potential to calibrate and develop models to produce reliable inventories using 35 
high resolution satellite imagery after the occurrence of new significant landslide events. The 36 
HR-GLDD will be updated regularly by integrating data from new landslide events. 37 
 38 
 39 

1. Introduction 40 

With the increasing impacts of climate change, increased urbanization, and anthropogenic 41 
pressure in recent years, the risk from hazards to population, infrastructure, and essential life 42 
services has exacerbated. Landslides are quite ubiquitous and account for approximately 43 
4.9% of all the natural disasters and 1.3% of the fatalities in the world (EM-DAT, 2018)(EM-44 
DAT, 2018). Induced by natural (earthquakes, volcanic eruptions, meteorological events) and 45 
anthropogenic triggers (slope modifications, mining, landscape engineering), the increase in 46 
the stress of slope materials causes landslides, which can harm numerous elements at risk. 47 
Landslides occur heterogeneously in many parts of the world including the Central and South 48 
Americas, the Caribbean islands, Asia, Turkey, European Alps, and East Africa (Froude & 49 
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Petley, 2018)(Froude & Petley, 2018). In the past 15 years, we have seen a high number of 50 
events that have inadvertently led to the failure of thousands of slopes and causing damage 51 
to essential linear infrastructures and population. Some recent examples are Wenchuan, 52 
China (2008), Kedarnath, India (2013), Kaikoura, New Zealand (2016), Jiuzhaigou, China 53 
(2017), Dominica (2017), Porgera, Papua New Guinea (2018), Hokkaido, Japan (2018), 54 
Belluno, Italy (2018), Haiti (2021), Sumatra, Indonesia (2022).  55 

These examples indicate that landslide occurrences will probably continue to increase in the 56 
short and medium term; therefore, an effective capability of rapid mapping is required to map 57 
future event-based landslides and reduce  losses. In recent years, state-of-the-art research 58 
has been conducted to better understand the impact of natural hazards such as landslides 59 
and the cascading effects on the elements-at-risk. A critical understanding of these complex 60 
processes begins with the onset of mapping slope failures. This information about the failed 61 
slopes is attributed as records and is documented in a “landslide inventory”. Landslide 62 
inventories include information on the spatial location and extent of the landslides and, if 63 
available, also crucial information about 1) the time of occurrence, 2) the triggering event that 64 
led slopes to fail, 3) the typology of the landslides based on the accepted standard 65 
classifications like (Cruden & Varnes, 1996)(Cruden & Varnes, 1996) and (Hungr et al., 66 
2014)(Hungr et al., 2014), and 4) the volume of the failure. However, regarding rapid mapping 67 
of recently occurred landslides, information about the spatial location, distribution, and 68 
intersection with affected elements-at-risk are important. , and 4) the volume of the failure. 69 
However, regarding rapid mapping of recently occurred landslides, information about the 70 
spatial location, distribution, and intersection with affected elements-at-risk are important.  71 

When it comes to detecting and mapping landslides over remotely sensed images, it is safe 72 
to say that a lot of the current literature in the past couple of years has devised and spent time 73 
employing artificial intelligence (AI) models to map landslides automatically, arguably, with 74 
good results. These AI models can classify remote sensing images to denote where the 75 
landslides are present in the analysed images. However, the core prerequisite for employing 76 
AI models is a reliable dataset to be used for training. Recent studies have only focused on 77 
mapping landslides with AI but at scales that are small or regional while also claiming that the 78 
proposed models can cater towards rapid mapping of landslides at any given time, location 79 
and scale (Liu et al., 2022; Meena et al., 2022a; Nava, Bhuyan, et al., 2022; Nava, Monserrat, 80 
et al., 2022; Soares et al., 2022a; Tang et al., 2022; Yang et al., 2022; Yang & Xu, 2022)(Liu 81 
et al., 2022; Meena et al., 2022a; Nava, Bhuyan, et al., 2022; Nava, Monserrat, et al., 2022; 82 
Soares et al., 2022a; Tang et al., 2022; Yang et al., 2022; Yang & Xu, 2022). However, seldom 83 
has been the case where truly an approach has been taken to map landslides outside the 84 
regions where the models are initially trained on, and also towards actually applying the 85 
proposed models in capturing and mapping event-based landslides that has recently occurred. 86 
Some recent other works at collectively detecting and mapping landslides of different countries 87 
have been attempted by (Prakash et al., 2021)(Prakash et al., 2021) and (Ghorbanzadeh et 88 
al., 2022)(Ghorbanzadeh et al., 2022), which showcases the power of employing AI at 89 
mapping landslides. Recently, Bhuyan et al. (2023) made some strides at mapping landslides 90 
at larger spatiotemporal scales to provide multi-temporal inventories of some famous events 91 
but more experiments in to explore other geographical contexts are required. HoweverT, the 92 
core of these mentioned studies also heavily relies on the availability of quantity and quality 93 
data for training an AI model. The accessibility of such data can 1) allow a model to identify 94 
landslides that were caused by different types of triggers (logically leading to the detection of 95 
different types of landslides), 2) to map landslides in different parts of the world that vary 96 
geomorphologically, and 3) the applicability of the model at mapping newly occurring 97 
landslides triggered by events in recent times. The contemporary works of the current literature 98 
brings about a critical discussion about the availability and accessibility of comprehensive and 99 
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adequate data to effectively train models to detect landslides. Both (Prakash et al., 100 
2021)(Prakash et al., 2021) and (Ghorbanzadeh et al., 2022)(Ghorbanzadeh et al., 2022) have 101 
used open-source Sentinel-2 imageries for multi-site landslide detection however, considering 102 
the fact that the spatial resolution is 10 metres, a lot of small landslides are missed out or not 103 
accurately captured (Meena et al., 2022b)(Meena et al., 2022b). The latter is created by 104 
samplinged data from 4 different areas/events Sentinel-2 imageryattempted to design a 105 
benchmark data set for landslide model training using moderate resolution sentinel-2 data 106 
(four bands at 10 meters spatial resolution, six at 20, and three at 60) and combined it with 107 
DEM derived data from ALOS-PALSAR. The dataset we propose, instead, is sampled from 108 
10 different areas/events and uses 3 meters spatial resolution imagery. Sampling from more 109 
areas can provide a more diverse representation of both landslide and background classes, 110 
which can improve the robustness of the model when applied to different regions. Moreover, 111 
a dataset with more diversity is likely to generalize better to new unseen data than one with 112 
limited diversity, making it more suitable for real-world deployment. Sampling from 10 areas 113 
also provides better coverage of the geographical region, reducing the risk of missing 114 
important features or patterns. Higher spatial resolution imagery captures more detail, allowing 115 
for more accurate identification and segmentation of landslide features. It also allows to 116 
obtaining a more detailed view, which can be useful to identify small landslides or details that 117 
may be difficult to see in lower resolution imagery. Moreover, it can provide more context for 118 
the location, helping to better understand the environment and the relationships between 119 
different objects and features. Therefore, the increased detail can result in improved accuracy 120 
when classifying features and objects, reducing the risk of misclassification.However, they 121 
only considered four study areas while training the model on 25% of area and testing the 122 
model performances in the remaining 75% area. Furthermore, they had varying non-uniform 123 
results for each of the models trained on the dataset. This showcases that a quality dataset is 124 
still not available where different models can give consistent results across the board. 125 

To effectively and rapidly map landslides after an event, it is required first to determine the 126 
spatial extent of the affected areas. Collecting this data is frequently hazardous since it 127 
involves individuals on the ground investigating landslides first hand during or immediately 128 
after the event. With the increased availability of satellite imagery, this task has the potential 129 
to be completed not only remotely but also automatically through the use of powerful deep 130 
learning algorithms. Currently, adequate high-resolution satellite imagery of landslides is not 131 
widely available. To depict the complex and dynamic nature of the landslides, significant 132 
amounts of images must be provided. To that this purpose, we present high-resolution global 133 
landslide detector database (HR-GLDD)High resolution Global landslide dataset (HR-GLDD), 134 
a large-scale satellite image dataset with produced assembled landslide inventories. The 135 
database currently houses 10 geographical areas and 3 recently transpired events (see Figure 136 
1), and we plan to constantly update this database with newer events.  137 

 138 

2. Study areas 139 

The study areas were chosen based on the variety of triggering events that resulted in the 140 
occurrence of the landslides. Because of the availability of VHR archived Planet Scope 141 
imageries after 2016, the most significant landslide events were considered. The 142 
geomorphological diversity of the study sites results in a collection of complex landslide 143 
phenomenon. We selected the imageries based on the availability of cloud-free conditions in 144 
the areas and examined globally archived satellite remote sensing imageries from Planet 145 
Scope from the years between 2017 and 2022 (Table 1). We selected 8 study sites across the 146 
globe to assemble the database (see figure1). To further test the generalization capabilities of 147 
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the models trained on the proposed dataset, we choose two three recently occurred events: 148 
co-seismic landslides in Haiti (August,  2021) and rainfall-induced landslides in Indonesia 149 
(February, 2022) and Democratic Republic of Congo (April, 2020). 150 

 151 

Figure 1: Collection of Rrainfall- and earthquake -induced landslide events present in the HR-152 
GLDD. 153 

2.1. Study areas 154 

2.1.1.2.1. Papua New Guinea 155 

Papua New Guinea (PNG) is located on the Australian continent and is the eastern half sector 156 
of the New Guinea island. The region is characterized by active volcanos, earthquakes, 157 
elevations up to ~4.400 m.a.s.l., steep slopes and is part of the ‘Ring of Fire’ in the Pacific 158 
Ocean. Regarding the tectonic and geological elements, the island can be divided into four 159 
tectonic belts: Stable platform, Fold Belt, Mobile Belt, and Papuan Fold and Thrust Belt 160 
(Tanyaş et al. 2022). The east sector, where PNG is located has the presence of accreted 161 
Paleozoic structure of Tasman Orogen (Hill and Hall, 2003). Due to these conditions, the area 162 
is frequently affected by landslides associated with the occurrence of earthquakes (Tanyaş et 163 
al. 2022). On February 25, 2018, in the southern area of the Papuan Fold and Thrust belt 164 
(central highlands of PNG), a severe earthquake occurred, the magnitude hit Mw 7.5. The 165 
event was responsible for damage to buildings, and energy structures besides triggering a 166 
high number of landslides (Wang et al. 2020). Around 11,600 landslide scars were registered, 167 
and more than half had 50,000 m² (Tanyaş et al. 2022), according to Wang et al. 2020, the 168 
earthquake hit the highest magnitude in the region in the past 100 years. 169 

2.1.2.2.2. Kodagu, India 170 
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Kodagu district is located in the Karnataka state, Western Ghats, India. The area is 171 
characterized by elevations approximately between 50 and 1.750 m a.s.l., metamorphic 172 
rocks (e.g., amphibolite, gneiss, and schist), steep slopes, high annual precipitation of about 173 
4000 mm, and the presence of croplands (e.g., coffee, rice, and spices) (Jennifer and 174 
Saravan, 2020; Meena et al. 2021). In August 2018, a rainfall-induced high magnitude mass 175 
movement event occurred in Kodagu, the primary landslide type triggered was debris flow 176 
(Meena et al. 2021). A total of 343 landslides were recorded, including mudflows, rock falls, 177 
and debris flows (Meena et al. 2021). The event resulted in several damages to land 178 
resources, properties, and loss of human lives (Martha et al. 2018; Jennifer and Saravan, 179 
2020). 180 

 181 

   182 
2.1.3.2.3. Rolante, Brazil 183 

The Rolante river catchment study area is located in the Rio Grande do Sul state, southern 184 
Brazil. The region being part of the Serra Geral geomorphological unit, has elevations up to 185 
~1.000 m.a.s.l. (Uehara et al. 2020). Moreover, is characterized by the presence of basaltic 186 
rocks and sandstones, and annual precipitation thresholds between 1700 and 2000 mm 187 
(Uehara et al. 2020, Soares et al. 2022). On 5 January 2017, a high magnitude rainfall-induced 188 
mass movement event was triggered, and 308 landslides were registered (Gameiro et al. 189 
2019; Quevedo et al. 2019), resulting in several damages to the Rolante municipality. 190 

2.1.4.2.4. Tiburon Peninsula, Haiti 191 

The Tiburon Peninsula study area is located in the western part of the Hispaniola island (Haiti) 192 
with elevation up to 2300 m. a.s.l. Tiburon Peninsula, mainly consists of volcanic rocks such 193 
as basalts and sedimentary rocks, namely limestones (Harp et al., 2016)(Harp et al., 2016). 194 
The annual precipitation of the area is more than 1600 mm (Alpert, 1942; USAID, 2014)(Alpert, 195 
1942; USAID, 2014). On 14 August 2021, Tiburon Peninsula was struck by a Mw 7.2 196 
earthquake, which was followed by several aftershocks. The strongest one (Mw 5.7) occurred 197 
on 15 August 2021. Two days after the mainshock the area was hit by the intense Tropical 198 
Cyclone Grace. The combination of the two events triggered thousands of landslides (Martinez 199 
et al., 2021)(Martinez et al., 2021) in the Pic Macaya National Park located in western part of 200 
the peninsula. 201 

2.1.5.2.5. Rasuwa, Nepal 202 

The study area is located in the Rasuwa district (central Nepal) in the higher Himalayas with 203 
altitudes ranging from 904 to 3267 m. a.s.l and annual average precipitation of 1800-2000 mm 204 
(Karki et al., 2016)(Karki et al., 2016),The geology includes Proterozoic metamorphic rocks 205 
such as amphibolite, gneiss, and schist (Tiwari et al., 2017)(Tiwari et al., 2017). The area was 206 
struck by the Mw 7.8 Gorkha earthquake on 25 April 2015. The intense seismic sequence 207 
produced at least 25,000 landslides (Roback et al., 2018)(Roback et al., 2018). 208 

2.1.6.2.6. Hokkaido, Japan 209 

The Hokkaido study area is in northern Japan and has a high presence of croplands. The area 210 
is characterized by elevations between 50 and 500 m a.s.l., the geology is composed of 211 
Neogene sedimentary rocks, formed by the accumulation of numerous layers formed by 212 
materials ejected by the Tarumai volcano from several events over the years (Yamagishi and 213 
Yamazaki, 2018; Zhao et al. 2020; Koi et al. 2022). A severe earthquake hit the Hokkaido 214 
Iburi-Tobu area in Japan on September 6th, 2018. The earthquake registered a magnitude of 215 
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6.7 according to the Japan Meteorological Agency (JMA) and its epicenter was at 42.72° North 216 
and 142.0° East (Yamagishi and Yamazaki, 2018), located along the southern frontier of 217 
Hokkaido. The event triggered thousands of landslides (~7059) in a concentrated area of 466 218 
km² (Zhao et al. 2020) and was responsible for 36 deaths (Yamagishi and Yamazaki, 2018).  219 

2.1.7.2.7. Wenchuan, China 220 

The study area is in the Longmenshan region at the eastern margin of the Tibetan Plateau, 221 
China. The location is characterized by high elevations up to 7.500 m a.s.l., the geology 222 
consists of lithological units from the Mesozoic, Jurassic, Cretaceous, Paleozoic, Precambrian 223 
formations and three types of Quaternary sedimentary units (Qi et al. 2010; Gorum et al. 224 
2011). The area is constantly affected by earthquake-induced landslides over the years (e.g., 225 
2017, 2018, 2019, 2021). The 2008 Wenchuan event is one of the most destructive events of 226 
mass movements related to earthquakes in the region (Fan et al. 2018). The Wenchuan 227 
earthquake hit a magnitude of Mw 7.9. It was responsible for triggering nearly 200.000 228 
landslides (Xu et al. 2014), besides missing, injured, and thousands of human fatalities in a 229 
total area of 31,686.12 km² (Qi et al. 2010).  230 

 231 

2.1.8.2.8. Sumatra, Indonesia 232 

The investigated area is Mount Talamau (2912 m) which is a compound volcano located in 233 
West Pasaman Regency, West Sumatra Province, Indonesia. Geologically, the volcano 234 
consists of andesite and basalt rocks belonging to Pleistocene-Holocene age (Fadhilah & 235 
Prabowo, 2020; Zulkarnain, 2016)(Fadhilah & Prabowo, 2020; Zulkarnain, 2016). The climate 236 
of the area is humid and tropical and the mean annual precipitation in West Pasaman area is 237 
between 3500 and 4500 mm/year (Wilis, 2019)(Wilis, 2019). The Mw 6.1 earthquake hit West 238 
Sumatra on 25 February 2022. This event triggered several landslides in an area of 6 km2, 239 
along the eastern and north-eastern flank of Talamau volcano. 240 

2.1.9.2.9. Longchuan, China 241 

The study area is located in the vicinity of Mibei village in Longchuan County, Guangdong 242 
Province, China with elevations between 180 and 600 m. The area has a subtropical monsoon 243 
climate, affected by frequent typhoons and rainstorms from May to October. The average 244 
annual precipitation ranges from 1300 to 2500 mm (Bai et al., 2021)(Bai et al., 2021). The 245 
area is composed of Paleozoic completely weathered granite and Quaternary granite residual 246 
soil (Bai et al., 2021)(Bai et al., 2021). Between 10 and 13 June 2019, an intense rainfall event, 247 
which was characterized by cumulative rainfall of 270 mm, triggered 327 shallow landslides 248 
between 300 and 400 m of altitudes and slopes ranging from 35 to 45° (Feng et al., 2022)(Feng 249 
et al., 2022). 250 

2.1.10.2.10.  Hpa-An, Myanmar 251 

The study area is located in Hpa-An district (central Kayin State, South Myanmar) in a tropical 252 
and monsoon area with a mean annual precipitation between 4500 and 5000 mm (Win Zin & 253 
Rutten, 2017)(Win Zin & Rutten, 2017) and elevations up to 1300 meters. The area is part of 254 
the Shan Plateau sequence, which includes low grade metamorphosed Precambian, Palezoic 255 
and Mesozoic sedimentary rocks (Jain & Banerjee, 2020)(Jain & Banerjee, 2020). On 28–30 256 
July 2018, Myanmar was hit by an extreme rainfall event which caused a flood along Bago 257 
river basin and triggered 992 landslides only in Kayin State (Amatya et al., 2022)(Amatya et 258 
al., 2022). 259 

2.11. Porgera, Papua New Guinea 260 
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The 2018 Papua New Guinea earthquake triggered over 200 landslides across the affected 261 
region, resulting in fatalities and severe infrastructure damage. The landslides were primarily 262 
caused by strong ground shaking and the steep topography of the region. Factors such as soil 263 
characteristics, rainfall, and vegetation cover also played a role. Understanding these factors 264 
can improve landslide hazard assessments and reduce future risk. Characteristics of the 265 
landslides included high relief, steep slopes, and weak lithology. Effective strategies for 266 
managing landslide hazards in high-risk areas should be developed. (Dang et al., 2020; Xu et 267 
al., 2020). 268 

2.12. Kaikoura, New Zealand 269 

The 2016 Kaikoura earthquake triggered more than 10,000 landslides in New Zealand, 270 
causing extensive damage and disrupting transportation routes. The landslides were complex 271 
and involved multiple failure mechanisms, including rockfalls, rock avalanches, and debris 272 
flows. The intense shaking and steep topography of the region contributed to the landslides. 273 
To reduce the potential impact of future earthquakes, it is crucial to improve understanding of 274 
landslide mechanisms and develop effective early warning systems (Goda et al., 2020; 275 
Massey et al., 2020; Wang et al., 2020). 276 

 277 

2.13. Uvira, Democratic Republic of Congo 278 

The city of Uvira in the Democratic Republic of Congo experienced devastating landslides in 279 
2020 due to heavy rainfall, poor land management practices, and the steep topography of the 280 
region. These landslides caused significant damage to infrastructure and displaced thousands 281 
of people. Landslides are a recurring hazard in the DRC, with an average of 100 occurring 282 
annually, and climate change is expected to exacerbate the problem. Efforts to mitigate the 283 
risk of landslides can include improved land use practices, early warning systems, and 284 
infrastructure designed to withstand landslides. Taking a comprehensive approach is key to 285 
minimizing the impact of landslides and protecting at-risk communities. (Mwene-Mbeja et al., 286 
2020; Kervyn et al., 2020; United Nations Office for Disaster Risk Reduction, 2020) 287 

1.3. escription High-rResolution gGlobal llGandslide dDetector dDatabase (HR-GLDD) 288 
 289 
3.1.  Data set description: 290 

The dataset created in this study consists of images acquired from the PlanetScope satellites 291 
(see table 1) and landslide inventories collected from the literature. For some all the events, 292 
landslides were manually delineated due to unavailability of existing inventories at high 293 
reolution. PlanetScope is a constellation of approximately 130 satellites that acquire images 294 
of the Earth daily with 3 meters of spatial resolution. The sensors acquire the images with 8  295 
spectral bands: coastal blue (431 - 552 nm), blue (465 - 515 nm), green (547 - 583 nm), yellow 296 
(600 - 620 nm), red (650 - 680 nm), red-edge (697 - 713 nm) and NIR (845 - 885 nm) (Planet 297 
Team, 2019).(Planet Team, 2019)(Planet Team, 2019)(Planet Team, 2019)(Planet Team, 298 
2019)(Planet Team, 2019)(Planet Team, 2019)(Planet Team, 2019)(Planet Team, 2019). 299 
PlanetScope imagery consists of surface reflectance values and 16 bits images. The images 300 
from both sensors are orthorectified and radiometrically corrected by the providers.  301 

The dataset was prepared using only the red, green, blue, and NIR bands. The pre-processing 302 
phase was based on three steps: generation of binary masks, data sampling, and tiles 303 
patching. First, the interpreted landslides polygons from each area were rasterized using the 304 
Rasterio Python library into a binary mask, where “1” represents the landslides and “0” the 305 
background. The satellite imagery, along with the mask was then sampled and patched into a 306 
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regular grid that yields patches of dimension 128 x 128 pixels, which correspond to 14.7 km2 307 
per patch. Since the imbalance between background area and landslides is strong, the images 308 
that did not have any landslides pixel labelled were removed. The proportions for the positive 309 
samples of landslides against the non-landslides are 9.96% and 90.04%, respectively. Table 310 
1 shows the number of tiles created for each area.  311 
 312 
Table 1 - Number of tiles, satellite information and landslide statistics for each study area. 313 

Study Area Satellite Number 
of tiles 

Study 
Area in 

km2 

Number 
of 

landslides 

Minimum 
Landslide 
area (m2) 

Maximum 
Landslide 
area (m2) 

Total 
Landslide 

area 
(km2) 

Kodagu 
(India) 
2018 

PlanetScope 530 4033.62 343 276.23 581342.19 5.67 

Rolante 
(Brazil) 
2017 

PlanetScope 33 24.62 113 381.76 81277.53 0.67 

Tiburon 
Peninsula, 
(Haiti) 2021 

PlanetScope 461 130.85 1394 200.74 473696 8.24 

Rasuwa 
(Nepal) 
2017 

PlanetScope 222 114.68 184 676.85 115567.96 2.45 

Hokkaido 
(Japan) 
2018 

PlanetScope 159 50.17 715 237.76 48524.72 5.29 

Wenchuan 
(China) 
2017 

PlanetScope 284 58.25 1415 23.78 98467.96 3.19 

Wenchuan 
(China) 
2018 

PlanetScope 263 58.25 546 110.18 1289210.19 5.54 

Sumatra, 
(Indonesia) 
2022 

PlanetScope 403 22.56 584 302.26 6206089.32 9.73 

Longchuan, 
(China) 
2019 

PlanetScope 1106 32.22 228 235.21 61163.17 0.73 

Hpa-An, 
(Myanmar) 
2018 

PlanetScope 1018 28.38 540 101.23 88044.20 0.97 

Papua New 
Guinea 

PlanetScope 56725 304.94 491 262.65 259392.71 5.48 
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 314 

1.1.3.2. Design of High-Resolution Global Landslide Detector Database (HR-GLDD ) 315 
design 316 

The performance evaluation of the study sites was carried out using metrics and trained using 317 
five state-of-the-art U-nNet like models, showcasing the capability and applicability of the High-318 
Resolution Global Landslide Detector Database (HR-GLDD). We used a total of ten 319 
geographically distinct study sites distributed globally, where landslide events were chosen 320 
including different triggering mechanisms such as five earthquakes- induced and five rainfall-  321 
landslides-, we separately divide the patches into 60% for training, 20% for validation, and 322 
20% for testing the model capabilities. All the sets are then mixed to create a unique dataset 323 
composed ofby equal percentages of patches. 324 

We designed three scenarios to train, predict, and evaluate model performances in order to 325 
assess the robustness and applicability of the HR-GLDD. Primarily, we evaluate the model 326 
performances on the individual test sets. Secondly, we evaluate the performances of the 327 
models on the HR-GLDD test set. Moreover, finally, we test on two completely unseen recently 328 
occurred landslide events in Haiti 2021 and Indonesia 2022 (see figure 2).   329 

 330 

Figure 2: Schematic representation of the division of different components of HR-GLDD. 331 
Collection 1 refers to the test and validation data separated from the HR-GLDD. Collection 2 332 
refers to the test dataset of individual sites. Collection 3 refers to the data from threewo recent 333 
data events set for testing purposes. 334 

 335 

New 
Zealand 

PlanetScope 287 150.75 246 676.67 165943.82 3.50 

Democratic 
Republic of 
the Congo 

PlanetScope 247 38.64 394 500.25 106094.52 1.61 
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1.4. Methodology 336 
 337 
 338 
1.2.4.1. Model Architectures 339 

The proposed dataset is evaluated through several state-of-the-art U-Net like Deep Learning 340 
segmentation models. In the past years, the U-Net (Abderrahim et al., 2020) has been used 341 
in several landslide detection applications which yield generally the most reliable results 342 
(Bhuyan et al., 2022; Meena et al., 2022c; Nava, Bhuyan, et al., 2022). Therefore, we decided 343 
to use it as a benchmark model when training on the proposed dataset. Moreover, several 344 
improved versions of the same are evaluated. We systematically trained the model using a 345 
variety of combinations of the hyper-parameters batch size (8, 16, 32, 64), learning rate (5e-346 
4, 10e-4, 5e-5, 10e-5) and the number of filters of the first convolutional layer (8, 16, 32, 64). 347 
A description of the employed architectures is given in this section. 348 

U-Net: This architecture has been utilized in various semantic segmentation applications, 349 
yielding generally outstanding results (Abderrahim et al., 2020). U-Net was employed initially 350 
in biomedical picture segmentation (Ronneberger et al., 2015). Low-level representations are 351 
captured by a contracting path (encoder), whereas a decoding path captures high-level 352 
representations. The encoding path consists of successive convolution blocks and is 353 
equivalent to a traditional CNN structure. Two convolutional layers with a 3 x 3 kernel size and 354 
a 2 x 2 max-pooling layer are present within every convolutional block. The rectified linear unit 355 
(ReLU) activation function is used to activate each convolutional layer (Agarap, 2018). A 2 x 356 
2 max-pooling layer is added to the convolutional block's end in the encoder route to conduct 357 
non-linear downsampling, whereas, in the decoder path, a 2 x 2 upsampling layer takes its 358 
place. The upsampling layer is positioned right after a 3x3 convolutional layer (see figure S1). 359 
We refer to this combination as learnable upconvolution.S1). We refer to this combination as 360 
learnable upconvolution. 361 

Residual U-Net (Res U-Net): Res U-Net (Diakogiannis et al., 2020) follows the same U shape 362 
as U-Net, whereas here the above-explained convolutional blocks are replaced by residual 363 
blocks. This architecture’s goal is to improve the learning capacities of the conventional U-Net 364 
as well as mitigate the gradient vanishing effect, especially when dealing with deep neural 365 
networks (such as U-Net) (see figure S2).  366 

Attention U-Net and Attention Res U-Net: In the conventional U-Net as well as in the Res U-367 
Net, cascading convolutions have been shown to provide false alerts for tiny objects with high 368 
form variability (Oktay et al., 2018). To select pertinent spatial information from low-level maps 369 
and therefore alleviate the problem, soft attention gates (AGs) are added (see figure S3, S4 ). 370 
The attention gates are built on skip connections, which actively inhibit activations in 371 
unnecessary areas, lowering the number of duplicated features (Abraham & Mefraz Khan, 372 
2018). 373 

2.2. Attention Deep Supervision Multi-Scale (ADSMS) U-Net: This architecture adopts the 374 
Attention U-Net structure, while, in addition, multi-scale image pyramid inputs are fed 375 
to the model, and a deep supervision strategy is applied (Abraham & Mefraz Khan, 376 
2018). In practice, multi-scale inputs enable the model to gather that class data, which 377 
is more readily available at various sizes. This holds true for both background features 378 
and landslides. Lastly, where training data are few and networks are relatively shallow, 379 
deep supervision conducts a potent "regularization". More details about the deep 380 
supervision strategy used are available in the following section (see figure S5).The 381 
proposed dataset is evaluated through several state-of-the-art U-Net like Deep 382 
Learning segmentation models. In the past years, the U-Net (Abderrahim et al., 383 
2020)(Abderrahim et al., 2020) has been used in several landslide detection 384 
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applications which yield generally the most reliable results (Bhuyan et al., 2022; 385 
Meena et al., 2022c; Nava, Bhuyan, et al., 2022)(Bhuyan et al., 2022; Meena et al., 386 
2022c; Nava, Bhuyan, et al., 2022). Therefore, we decided to use it as a benchmark 387 
model when training on the proposed dataset. Moreover, several improved versions 388 
of the same are evaluated. We systematically trained the model using a variety of 389 
combinations of the hyper-parameters batch size (8, 16, 32, 64), learning rate (5e-4, 390 
10e-4, 5e-5, 10e-5) and the number of filters of the first convolutional layer (8, 16, 32, 391 
64). A description of the employed architectures is given in this section. 392 

 393 
2.2.1. U-Net: 394 

 This architecture  395 

U-Net has been utilized in various semantic segmentation applications, yielding generally 396 
outstanding results (Abderrahim et al., 2020)(Abderrahim et al., 2020). U-Net was employed 397 
initially in biomedical picture segmentation (Ronneberger et al., 2015)(Ronneberger et al., 398 
2015). Low-level representations are captured by a contracting path (encoder), whereas a 399 
decoding path captures high-level representations. The encoding path consists of successive 400 
convolution blocks and is equivalent to a traditional CNN structure. Two convolutional layers 401 
with a 3 x 3 kernel size and a 2 x 2 max-pooling layer are present within every convolutional 402 
block. The rectified linear unit (ReLU) activation function is used to activate each convolutional 403 
layer  (Agarap, 2018)(Fred Agarap, n.d.). A 2 x 2 max-pooling layer is added to the 404 
convolutional block's end in the encoder route to conduct non-linear downsampling, whereas, 405 
in the decoder path, a 2 x 2 upsampling layer takes its place. The upsampling layer is 406 
positioned right after a 3x3 convolutional layer (see figure 3). We refer to this combination as 407 
learnable upconvolution.3). We refer to this combination as learnable upconvolution. 408 
 409 

 410 
 411 
Figure 3: Model architecture of U-Net. 412 
 413 
2.2.2. Residual U-Net (Res U-Net): 414 

  415 

Res U-Net (Diakogiannis et al., 2020)(Diakogiannis et al., 2020) follows the same U shape as 416 
U-Net, whereas here the above-explained convolutional blocks are replaced by residual 417 
blocks. This architecture’s goal is to improve the learning capacities of the conventional U-Net 418 
as well as mitigate the gradient vanishing effect, especially when dealing with deep neural 419 
networks (such as U-Net) (see figure 4).  420 
 421 
 422 
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 423 
Figure 4: Model architecture of the Res U-Net. 424 
 425 
 426 
2.2.3. Attention U-Net and Attention Res U-Net:   427 
 428 
In the conventional U-Net as well as in the Res U-Net, cascading convolutions have been 429 
shown to provide false alerts for tiny objects with high form variability (Oktay et al., 2018) 430 
(Oktay et al., n.d.). To select pertinent spatial information from low-level maps and therefore 431 
alleviate the problem, soft attention gates (AGs) are added (see figure 5). The attention gates 432 
are built on skip connections, which actively inhibit activations in unnecessary areas, lowering 433 
the number of duplicated features (Abraham & Mefraz Khan, 2018)(Abraham & Mefraz Khan, 434 
2018). 435 
 436 
 437 
 438 
 439 

440 

 441 
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Figure 5: Model architecture of the (a) Attention U-Net and (b) Attention Res U-Net. 442 
 443 
 444 
2.2.4. Attention Deep Supervision Multi-Scale (ADSMS) U-Net:  445 
This architecture adopts the Attention U-Net structure, while, in addition, multi-scale image 446 
pyramid inputs are fed to the model, and a deep supervision strategy is applied (Abraham & 447 
Mefraz Khan, 2018)(Abraham & Mefraz Khan, 2018). In practice, multi-scale inputs enable the 448 
model to gather that class data, which is more readily available at various sizes. This holds 449 
true for both background features and landslides. Lastly, where training data are few and 450 
networks are relatively shallow, deep supervision conducts a potent "regularization". More 451 
details about the deep supervision strategy used are available in the following section (see 452 
figure 6). 453 
 454 

 455 
 456 
Figure 6: Model architecture of the Attention Deep Supervision Multi-Scale U-Net. 457 
 458 

1.3.4.2. Models training 459 
 460 
To train the DL models, we utilized Dice Loss (Milletari et al., 2016)(Milletari et al., n.d.) as the 461 
loss function: 462 
 463 
Dice Loss =c1Ni=1picgic+Ni=1pic+gic 464 
 465 
Equation (1) illustrates a two-class Dice score coefficient (DSC) variation for class c, where 466 
gic [0, 1] and pic [0, 1] are the ground truth and predicted labels, respectively. Furthermore, 467 
the numerical stability is assured by avoiding division by zero, while N specifies the total 468 
number of picture pixels. As an exception, in the ADSMS U-Net model, every high-dimensional 469 
feature representation is regulated by Focal Tversky Loss to avoid loss over-suppression, 470 
while the final output is controlled by the conventional Tversky Loss. This deep supervision 471 
strategy, described in  Lee et al., (2015)(Lee et al., n.d.), requires intermediate layers to be 472 
semantically discriminative at all scales. Furthermore, it contributes to ensuring that the 473 
attention unit has the power to change responses to a wide variety of visual foreground 474 
material. This strategy is adopted from (Abraham & Mefraz Khan, 2018)(Abraham & Mefraz 475 
Khan, 2018), who propose it along with the ADSMS U-Net architecture. As the loss function 476 
optimizer, for all the models, we used a stochastic gradient descent strategy based on an 477 
adaptive estimate of first- and second-order moments (Adam), which is useful in problems 478 
with uncertain data and sparse gradients  (Kingma & Ba, 2015)(Kingma & Lei Ba, n.d.). The 479 
precision, recall, F1-score, and Intersection Over Union (IOU) score, the most common 480 
accuracy evaluation measures for segmentation models, all of which have been utilized in 481 
several landslide detection studies, were used to measure how well the applied DL models 482 
performed in detecting landslides. The appropriate combinations of hyper-parameters must 483 
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be used while training such DL models in order to optimize the model and, therefore, output 484 
the best results.  485 
 486 
 487 
 488 
2.5. Results 489 

 490 
2.1.5.1. HR-GLDD evaluation results 491 

The robustness and applicability of the HR-GLDD was tested using the best model weight. 492 
We train and calibrate the models using the HR-GLDD. The best weighs for each model are 493 
selected based on the model performances on the mixed test set of the HR-GLDD dataset. 494 
After running the models on test dataset, batch size of 164 and Adam optimiser with learning 495 
rate 5.00E-04 1e-3 resulted in best model weight. To further evaluate the efficiency and 496 
generalization capabilities of the models, we use the model on two three unseen datasets to 497 
map landslides in the two different geomorphological areas that were recently affected by 498 
multiple landslide events. We chose the most recent events one occurred after Uvira, 499 
Democratic Republic of Congo (DRC) heavy rainfall event of April 2020. Haiti earthquake in 500 
August 2021,  and another one in Sumatra, Indonesia after a heavy rainfall event of February 501 
2022. A total of 247, 461 and 403 unseen image patches were evaluated for DRC, Haiti and 502 
Indonesia, respectively.   503 

Experimental results for landslide detection by utilising the HR-GLDD are presented in Table 504 
2. Overall, all the models performed consistently in collections 2 and 3. The F1-score 505 
evaluation results for each test case of all the models demonstrate the applicability of the HR-506 
GLDD training dataset for landslide detection results, especially with employing only the 507 
optical bands. The average F1-score for HR-GLDD test dataset (collection 1) across all the 508 
models was around 72%0.7045, which is relatively uniform. Furthermore, the same was 509 
observed in the individual test sites in collection 2. We also notice that the Recall and Precision 510 
and  areRecall are pretty well balanced ranging between 0.72.156346%-0.76.61% and 511 
0.68.13672%-0.75.478121%, respectively, indicating stable model predictions (see figure 512 
7figure 3). In collection 3, the metrics reveal positive outcomes in terms of mapping the 513 
landslides following the respective events, with an average F1-score of 0.5562 80% for DRC, 514 
0.7947 for Haiti and 0.860386% for Indonesia. The recall values are higher than precision 515 
values for all the models which have a difference of about 3.32% resulting in average F1-score 516 
of 72.54%0.7045 (see table 2) (see figure 7figure 3). Higher values of recall in all models 517 
means that the models were able to identify landslide labelled pixels. However due to the use 518 
of only the optical bands, the spectral signatures of other similar features (such as riverbeds 519 
and flat barren areas) were labelled as landslides which result in false predictions, thereby, 520 
accounting for lower precision. 521 

In figure 8figure 43 we chose a single image patch to showcase the predictions of the various 522 
models within respect to the referenced ground truth. Despite the differences in the spectral 523 
fingerprints of the satellite images for each study site and the events initiated by an earthquake 524 
or rainfall, the models were still capable of recognizing landslide features (see figure 9figure 525 
54, 5  and 106). Particularly, we were able to map the recent events in DRC (2020), Haiti 526 
(2021) and , Indonesia (2022)., and DRC (2020). 527 

 528 

 529 

 530 
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Table 2: F1 scores of different DL models across sites and HR-GLDD test dataset along 531 
with two three unseen test sites. 532 

Study sites U-NET Res-U-NET Attn-U-
NET 

Attn-
res-
Unet 

Collection 1 (HR-GLDD Test) 70.52 72.54 72.33 72.52 72.18 

     

India 75.89 77.77 76.62 77.CIA
O15 

74.21 

Brazil 64.88 71.73 66.19 67.18 

Nepal 82.65 84.56 81.99 83.15 81.78 

Japan 76.19 76.78 77.5 76.71 

China2017 60.46 60.13 61.04 60.98 62.37 

China2018 75.04 75.33 75.97 74.44 

China2019 67.9 70.62 69.93 73.17 70.26 

Myanmar 74.49 76.67 75.96 75.7      

Collection 3      

Indonesia 88.4 87.86 87.75 85.96 

Haiti 78.55 82.86 80.28 81.61 

Study sites U-
NET 

Res-
U-
NET 

Attn-
U-
NET 

Attn-
res-
Unet 

ADSMS-U-
NET 

Collection 1 (HR-
GLDD Test) 

0.7904 0.6825 0.7446 0.6477 0.6576 

      

India 0.7674 0.6980 0.7628 0.6664 0.6796 

Brazil 0.7739 0.6913 0.6539 0.6830 0.6726 

Nepal 0.8972 0.8149 0.8419 0.7695 0.7976 

Japan 0.8159 0.7479 0.8124 0.7317 0.7552 

Wenchuan 
(China2017) 

0.7781 0.6507 0.6981 0.6162 0.6739 

Wenchuan 
(China2018) 

0.8077 0.6886 0.7295 0.6704 0.6557 

Longchuan 
(China2019) 

0.6842 0.5076 0.5422 0.4829 0.4398 

Myanmar 0.8415 0.7861 0.7826 0.7405 0.7709 

Papua New Guinea 0.7515 0.6150 0.7568 0.6572 0.6261 

New Zealand 0.7496 0.5456 0.7335 0.4922 0.6494 

Collection 3      

Indonesia 0.8832 0.8810 0.8232 0.8534 0.8608 

Haiti 0.8357 0.8055 0.7869 0.7648 0.7808 

Democratic 
Republic of the 

Congo 

0.5937 0.5366 0.5682 0.5008 0.5819 

 533 

 534 
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 535 

Figure 7: Radar charts visualising the quantitative performance metrics for the DL models on 536 
the three test set collections. 537 

 538 
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 539 

Figure 8Figure 34: Landslide predictions made by the different DL models against the ground 540 
truth. The base image is shown as a false colour composite (FCC) to better visualize the scars 541 
of the landslides.  542 
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 543 

Figure 9Figure 54: Comparison of ground truth landslides with predictions from the DL models 544 
for the unseen dataset of Haiti.  545 

 546 

Figure 10Figure 65: Comparison of ground truth landslides with predictions from the DL 547 
models for the unseen dataset of Indonesia. 548 
 549 

 550 
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Figure 76: Comparison of ground truth landslides with predictions from the DL models for the 551 
unseen dataset of DRC. 552 
 553 
 554 

 555 
3.6. Discussions 556 

3.1.6.1. Advantages of using HR images 557 

The spatial resolution of Planet Scope imagery enables the detection of small size landslides 558 
that open access satellite missions like Sentinel and Landsat frequently miss due to their 559 
spatial and temporal resolution (Meena et al., 2021b)(Meena et al., 2021b). Moreover, even 560 
though Sentinel-2 has additional spectral bands, the lack of improved spatial resolution inhibits 561 
precise boundary delineation and landslide localisation (Meena et al., 2022d)(Meena et al., 562 
2022d). The most prominent features of Planet Scope imagery, in addition to its competitive 563 
spatial resolution, are its daily temporal resolution and global coverage. Since the satellites 564 
have identical sensors, the imageriesy are orthorectified and image pre-processing are 565 
simplified and more accurate. Because Planet imagery provide global coverage, we may 566 
extend our study sites to new locations for generating more quality datasets that allow for a 567 
better model generalization. 568 

3.2.6.2. Quality of HR-GLDD 569 

The quality of any ML/DL model depends on the data that it is trained on, and the GLDD aims 570 
to meet this fundamental requirement. To our knowledge, no other quality data sets exist that 571 
can accommodate the wide range of landslide-triggering events and topographical diversity 572 
needed for efficient model training. As the GLDD is a strong collection of various landslide 573 
events caused both by rainfall and earthquakes. The GLDD is designed to calibrate models 574 
able to map new events that will occur in the future. The models investigated in our study gave 575 
promising and consistent results for two unseen datasets generated by completely different 576 
events, indicating a well-prepared, dependable, and resilient dataset. However, there are clear 577 
limitations with the GLDD that must be considered. These problems primarily stem from issues 578 
with manually delineated polygons and various uncertainties caused by satellite imagery. A 579 
number of different variables, including the mapping scale, the date, and the quality of the 580 
satellite imagery, affect how accurate an inventory is. The radiometric resolution and cloud 581 
coverage are additional variables that affect the generation of manual inventories. Additionally, 582 
haze effect caused by instrument errors hinders model performances. Subjectivity in the 583 
landslide polygon boundaries results from the amalgamation problem, which is caused by 584 
elements like the investigators' level of experience and the goal of the study. 585 

3.3.6.3. Significance of the HR-GLDD  586 

A thorough hazard and risk framework is made possible by quality landslide inventories 587 
however, the generating such inventories at large scales takes ample amount of time and 588 
resources. This is where such automatic pipelines can truly shine at creating inventories which 589 
can be used for the successive phases of a hazard and risk. Local, regional, and national 590 
stakeholders may include such inventories into their risk reduction efforts thanks to the 591 
availability of inventories produced automatically. Furthermore, this information may serve as 592 
the foundation for a legal framework that implements landslide risk. A landslide risk reduction 593 
plan is now more crucial than ever given the anticipated rise in worldwide landslide activity 594 
brought on by climate change. Higher landslide activity is expected in the future due to a 595 
number of factors, including an increase in the frequency and intensity of seismic events, 596 
anthropogenic events, heavy precipitation events, rising ground water levels, storm surges, 597 
and a general rise in relative sea level. Therefore, it is essential to comprehend the underlying 598 
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mechanisms of landslides better and create practical risk reduction techniques to save 599 
people's lives and property. 600 

3.4.6.4. Automated pipeline for HR-GLDD 601 

At the moment, automated techniques are the only viable solution for mapping vast regions 602 
with accuracy appropriate for operational objectives. Nonetheless, reliable, reproducible, and 603 
accurate processes for automating landslide detection across huge data stacks are still 604 
absent. As a result, many landslide-affected regions remain unmapped because 1) they are 605 
challenging to map using standard methods, and 2) using high-resolution imagery is costly 606 
and labour-intensive, with a substantial part of the mapping process dependent on human 607 
judgment. By overcoming these challenges, automated pipelines that address these issues 608 
can considerably reduce the requirement for human involvement and pave the way for the 609 
development of reliable real-time mapping and monitoring of natural hazards at the continental 610 
and global scales. Based on the quality of GLDD, reliability of automated pipelines and rapidly 611 
growing availability of HR satellite imagery, we can realistically envision mapping of landslide 612 
instances and contribute towards generating and updating landslide inventories at large-613 
scales, spatially and potentially, also temporally (Bhuyan et al., 2023)(Bhuyan et al., 2023). 614 

Providing an expert-based, high-quality, and scientifically validated landslide inventory to 615 
scientific communities is essential for frameworks of modelling, landslide prediction, machine 616 
learning, and deep learning research. The GLDD dataset has been verified, which increases 617 
the availability of much-needed training datasets for automated mapping algorithms. The 618 
consistently long time taken to compile landslide inventories manually contrasts with the rise 619 
in data accessible for landslide mapping. The development of technologies to successfully 620 
automate the procedure is the future direction in landslide inventory mapping. The precedence 621 
of quality dataset is noted in where they commented that the need for quality datasets will 622 
provide a valuable resource for training and developing algorithms.  623 

The current dataset is an excellent resource for training and developing future algorithms for 624 
this purpose. Automated mapping methods, particularly when combined with publicly available 625 
elevation models, can potentially improve our results in future investigations. 626 

4.7. Conclusions 627 

Mapping landslides through space is a challenging endeavour. Automated efforts for the same 628 
have been explored to some extent, but a transferrable method based on a robust dataset has 629 
not yet been investigated.  In this paper, we propose a reliable dataset which can be employed 630 
by deep learning algorithms to detect new landslides accurately. The predictive capabilities 631 
demonstrate the usefulness and application of the dataset to map landslides at large scales. 632 
However, the model's predictability must be investigated further in order to identify particular 633 
problems to enhance the findings and predictive capabilities for more complicated landscapes. 634 
Overall, despite the limitations, the findings are promising, since it is the first time such a HR 635 
dataset has been created that caters to a transferable approach of mapping landslides at so 636 
many different geomorphological and geographical locations.  637 

Data availability 638 

The data, working codes and a document with metadata are freely available at 639 
https://github.com/kushanavbhuyan/HR-GLDD-A-Global-Landslide-Mapping-Data-640 
Repository where data in the format of arrays and model configurations in the framework of 641 
TensorFlow as can be displayed and used for reproducibility of our results. We also submit 642 
the generated landslide inventories in the form of an Environmental Systems Research 643 
Institute (ESRI) shapefile. Modules for deep learning can be found at 644 
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https://www.tensorflow.org/ and original satellite imageries can be found at 645 
https://www.planet.com/. 646 
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tables, can be accessed at https://github.com/kushanavbhuyan/HR-GLDD-A-Global-649 
Landslide-Mapping-Data-Repository 650 

Author contribution 651 

All the authors contributed to equally to preparation of manuscript from data curation to review 652 
of final manuscript. 653 

Competing interests 654 

 The authors declare that they have no conflict of interest. 655 

References 656 

Abderrahim, N. Y. Q., Abderrahim, S., & Rida, A. (2020). Road Segmentation using U-Net 657 
architecture. 2020 IEEE International Conference of Moroccan Geomatics (Morgeo), 1–4. 658 
https://doi.org/10.1109/Morgeo49228.2020.9121887 659 

Abraham, N., & Mefraz Khan, N. (2018). A NOVEL FOCAL TVERSKY LOSS FUNCTION 660 
WITH IMPROVED ATTENTION U-NET FOR LESION SEGMENTATION. 661 
https://github.com/nabsabraham/focal-tversky-unet 662 

Alpert, L. (1942). Rainfall map of Hispaniola. Bulletin of the American Meteorological Society, 663 
23, 423–431. 664 

Amatya, P., Kirschbaum, D., & Stanley, T. (2022). Rainfall‐induced landslide inventories for 665 

Lower Mekong based on Planet imagery and semi-automatic mapping method. Geoscience 666 
Data Journal, 00, 1–13. https://doi.org/10.1002/gdj3.145 667 

Bai, H., Feng, W., Yi, X., Fang, H., Wu, Y., Deng, P., Dai, H., & Hu, R. (2021). Group-occurring 668 
landslides and debris flows caused by the continuous heavy rainfall in June 2019 in Mibei 669 
Village, Longchuan County, Guangdong Province, China. Natural Hazards, 108(3), 3181–670 
3201. https://doi.org/10.1007/s11069-021-04819-1 671 

Bhuyan, K., Tanyaş, H., Nava, L. et al. Generating multi-temporal landslide inventories through 672 
a general deep transfer learning strategy using HR EO data. Sci Rep 13, 162 (2023). 673 
https://doi.org/10.1038/s41598-022-27352-y 674 

Bhuyan, K., Meena, S. R., Nava, L., van Westen, C. J., Floris, M., & Catani, F. (2022). Mapping 675 
landslides through a temporal lens: An insight towards multi-temporal landslide mapping using 676 
the U-Net deep learning model. Earth Arxiv. https://doi.org/https://doi.org/10.31223/X5DM0B 677 

Cruden, D. M., & Varnes, D. (1996). LANDSLIDE TYPES AND PROCESSES. In National 678 
Research Council, Transportation Research Board. 679 

Dang, K. T., Wang, G., Su, Y., Xu, Q., & Chen, W. (2020). Landslides triggered by the 2018 680 
M7.5 earthquake in Papua New Guinea. Natural Hazards and Earth System Sciences, 20(6), 681 
1647-1660. 682 

Diakogiannis, F. I., Waldner, F., Caccetta, P., & Wu, C. (2020). ResUNet-a: A deep learning 683 
framework for semantic segmentation of remotely sensed data. ISPRS Journal of 684 

https://doi.org/10.1007/s11069-021-04819-1


   

 

22 
 

Photogrammetry and Remote Sensing, 162, 94–114. 685 
https://doi.org/10.1016/j.isprsjprs.2020.01.013 686 

EM-DAT. (2018). The emergency events database—Universit´ e catholique de Louvain 687 
(UCL)—CRED, D Guha-Sapir. 688 

Fadhilah, & Prabowo, H. (2020). Genes and physical properties of iron sand from Kinali 689 
Pasaman. Journal of Physics: Conference Series, 1481(1). https://doi.org/10.1088/1742-690 
6596/1481/1/012015 691 

Fan, X., Scaringi, G., Domènech, G., Yang, F., Guo, X., Dai, L., He, C., Xu, Q., & Huang, R. 692 
(2019). Two multi-temporal datasets that track the enhanced landsliding after the 2008 693 
Wenchuan earthquake. Earth System Science Data, 11(1), 35–55. 694 
https://doi.org/10.5194/essd-11-35-2019 695 

Feng, W., Bai, H., Lan, B., Wu, Y., Wu, Z., Yan, L., & Ma, X. (2022). Spatial–temporal 696 
distribution and failure mechanism of group-occurring landslides in Mibei village, Longchuan 697 
County, Guangdong, China. Landslides, May. https://doi.org/10.1007/s10346-022-01904-9 698 

Fred Agarap, A. M. (n.d.). Deep Learning using Rectified Linear Units (ReLU). Retrieved 699 
August 15, 2022, from https://github.com/AFAgarap/relu-classifier. 700 

Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. 701 
Natural Hazards and Earth System Sciences, 18(8), 2161–2181. 702 
https://doi.org/10.5194/nhess-18-2161-2018 703 

Ghorbanzadeh, O., Xu, Y., Ghamisi, P., Kopp, M., & Kreil, D. (2022). Landslide4Sense: 704 
Reference Benchmark Data and Deep Learning Models for Landslide Detection. 705 
https://doi.org/10.48550/arxiv.2206.00515 706 

Goda, K., Ren, J., & Anderson, N. (2020). Landslides induced by the 2016 Kaikoura 707 
earthquake, New Zealand: characteristics, distribution, and correlations. Landslides, 17(4), 708 
825-839. 709 

Harp, E. L., Jibson, R. W., & Schmitt, R. G. (2016). Map of landslides triggered by the January 710 
12, 2010, Haiti earthquake. https://doi.org/10.3133/sim3353 711 

Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an 712 
update. In Landslides (Vol. 11, Issue 2, pp. 167–194). Springer Verlag. 713 
https://doi.org/10.1007/s10346-013-0436-y 714 

Jain, A. K., & Banerjee, D. M. (2020). The Indian Subcontinent: Its tectonics. In Proceedings 715 
of the Indian National Science Academy (Vol. 86, Issue 1). 716 
https://doi.org/10.16943/ptinsa/2020/49834 717 

Karki, R., Talchabhadel, R., Aalto, J., & Baidya, S. K. (2016). New climatic classification of 718 
Nepal. Theoretical and Applied Climatology, 125(3–4), 799–808. 719 
https://doi.org/10.1007/s00704-015-1549-0 720 

Kervyn, M., Jacobs, L., Sumbwe, J., Maki Mateso, J. C., Kervyn, F., Sebagenzi, S. N., & 721 
Havenith, H. B. (2020). Landslide hazard and risk assessment in the Democratic Republic of 722 
Congo. Landslides, 17(8), 1901-1916. 723 

Kingma, D. P., & Lei Ba, J. (n.d.). ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION. 724 

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (n.d.). Deeply-Supervised Nets. 725 

https://doi.org/10.48550/arxiv.2206.00515
https://doi.org/10.1007/s00704-015-1549-0


   

 

23 
 

Liu, Y. ;, Yao, X. ;, Gu, Z. ;, Zhou, Z. ;, Liu, X. ;, Chen, X. ;, Wei, S., Liu, Y., Yao, X., Gu, Z., 726 
Zhou, Z., Liu, X., Chen, X., & Wei, S. (2022). Study of the Automatic Recognition of Landslides 727 
by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau. 728 
Remote Sensing 2022, Vol. 14, Page 3362, 14(14), 3362. 729 
https://doi.org/10.3390/RS14143362 730 

Martinez, S. N., Allstadt, K. E., Slaughter, S. L., Schmitt, R. G., Collins, E., Schaefer, L. N., & 731 
Ellison, S. (2021). Landslides triggered by the August 14, 2021, magnitude 7.2 Nippes, Haiti, 732 
earthquake. Open-File Report. 733 

Massey, C. I., Hancox, G. T., & Van Dissen, R. J. (2020). The 2016 Kaikoura, New Zealand, 734 
Earthquake: A Complex Multihazard and Multirisk Event. Annual Review of Earth and 735 
Planetary Sciences, 48, 235-259. 736 

Meena, S. R., Ghorbanzadeh, O., van Westen, C. J., Nachappa, T. G., Blaschke, T., Singh, 737 
R. P., & Sarkar, R. (2021). Rapid mapping of landslides in the Western Ghats (India) triggered 738 
by 2018 extreme monsoon rainfall using a deep learning approach. Landslides, 18(5). 739 
https://doi.org/10.1007/s10346-020-01602-4 740 

Meena, S. R., Soares, L. P., Grohmann, C. H., van Westen, C., Bhuyan, K., Singh, R. P., 741 
Floris, M., & Catani, F. (2022). Landslide detection in the Himalayas using machine learning 742 
algorithms and U-Net. Landslides, 19(5), 1209–1229. https://doi.org/10.1007/s10346-022-743 
01861-3 744 

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-Net: Fully Convolutional Neural Networks 745 
for Volumetric Medical Image Segmentation. In Proceedings of the Fourth International 746 
Conference on 3D Vision (3DV), 565-571. doi: 10.1109/3DV.2016.79. 747 

Mwene-Mbeja, M., Mugaruka, J. P., Bisimwa, B., & Tchicaya, L. (2020). Landslide hazard and 748 
risk assessment in Uvira city, Democratic Republic of Congo. Environmental Hazards, 19(3), 749 
263-278. 750 

Nava, L., Bhuyan, K., Meena, S. R., Monserrat, O., & Catani, F. (2022). Rapid Mapping of 751 
Landslides on SAR Data by Attention U-Net. Remote Sensing 2022, Vol. 14, Page 1449, 752 
14(6), 1449. https://doi.org/10.3390/RS14061449 753 

Nava, L., Monserrat, O., & Catani, F. (2022). Improving Landslide Detection on SAR Data 754 
Through Deep Learning. IEEE Geoscience and Remote Sensing Letters, 19. 755 
https://doi.org/10.1109/LGRS.2021.3127073 756 

Oktay, O., Schlemper, J., le Folgoc, L., Lee, M., Heinrich, M., Misawa, K., Mori, K., Mcdonagh, 757 
S., Hammerla, N. Y., Kainz, B., Glocker, B., & Rueckert, D. (n.d.). Attention U-Net: Learning 758 
Where to Look for the Pancreas. 759 

Planet Team. (2019). Planet Imagery Product Specifications August 2019. 97. 760 

Prakash, N., Manconi, A., & Loew, S. (2021). A new strategy to map landslides with a 761 
generalized convolutional neural network. Scientific Reports, 11(1), 1–15. 762 
https://doi.org/10.1038/s41598-021-89015-8 763 

Roback, K., Clark, M. K., West, A. J., Zekkos, D., Li, G., Gallen, S. F., Chamlagain, D., & Godt, 764 
J. W. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 765 
Gorkha earthquake, Nepal. Geomorphology, 301, 121–138. 766 
https://doi.org/10.1016/j.geomorph.2017.01.030 767 



   

 

24 
 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical 768 
Image Segmentation (pp. 234–241). https://doi.org/10.1007/978-3-319-24574-4_28 769 

Soares, L. P., Dias, H. C., Garcia, G. P. B., & Grohmann, C. H. (2022a). Landslide 770 
Segmentation with Deep Learning: Evaluating Model Generalization in Rainfall-Induced 771 
Landslides in Brazil. Remote Sensing, 14(9), 2237. https://doi.org/10.3390/rs14092237 772 

Tang, X., Tu, Z., Wang, Y., Liu, M., Li, D., & Fan, X. (2022). Automatic Detection of Coseismic 773 
Landslides Using a New Transformer Method. Remote Sensing, 14(12), 2884. 774 
https://doi.org/10.3390/rs14122884 775 

Tiwari, B., Ajmera, B., & Dhital, S. (2017). Characteristics of moderate- to large-scale 776 
landslides triggered by the Mw 7.8 2015 Gorkha earthquake and its aftershocks. Landslides, 777 
14(4), 1297–1318. https://doi.org/10.1007/s10346-016-0789-0 778 

United Nations Office for Disaster Risk Reduction. (2020). Landslide risk reduction in the Great 779 
Lakes Region. Retrieved from https://www.undrr.org/publication/landslide-risk-reduction-780 
great-lakes-region 781 

USAID. (2014). Haiti Securite Alimentaire en Bref. 782 

Wang, F., Fan, X., Yunus, A. P., Siva Subramanian, S., Alonso-Rodriguez, A., Dai, L., Xu, Q., 783 
& Huang, R. (2019). Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), 784 
earthquake: spatial distribution, controlling factors, and possible failure mechanism. 785 
Landslides, 16(8), 1551–1566. https://doi.org/10.1007/s10346-019-01187-7 786 

Wang, T., Liu, C., Saito, H., Nishimura, Y., & Wang, G. (2020). Landslide susceptibility 787 
mapping following the 2016 Kaikoura earthquake, New Zealand. Landslides, 17(11), 2617-788 
2630. 789 

Wilis, R. (2019). Impact Variability of Rainfall Intensity to Horticulture Productivity at West 790 
Pasaman Regency , Province of West Sumatera , Indonesia. Core.Ac.Uk, 7(10), 138–145. 791 

Win Zin, W., & Rutten, M. (2017). Long-term Changes in Annual Precipitation and Monsoon 792 
Seasonal Characteristics in Myanmar. Hydrology: Current Research, 08(02). 793 
https://doi.org/10.4172/2157-7587.1000271 794 

Xu, Q., Dang, K. T., Su, Y., Chen, W., & Wang, G. (2020). Characteristics of landslides 795 
triggered by the 2018 M7.5 earthquake in Papua New Guinea. Landslides, 17(1), 145-157. 796 

Yang, Z., & Xu, C. (2022). Efficient Detection of Earthquake−Triggered Landslides Based on 797 
U−Net++: An Example of the 2018 Hokkaido Eastern Iburi (Japan) Mw = 6.6 Earthquake. 798 
Remote Sensing, 14(12), 2826. https://doi.org/10.3390/rs14122826 799 

Yang, Z., Xu, C., & Li, L. (2022). Landslide Detection Based on ResU-Net with Transformer 800 
and CBAM Embedded: Two Examples with Geologically Different Environments. Remote 801 
Sensing, 14(12), 2885. https://doi.org/10.3390/rs14122885 802 

Zulkarnain, I. (2016). Sumatra is not a homogeneous segment of Gondwana derived continel 803 
blocks: A New Sight based on Geochemical Signatures of Pasaman Volcanic in West 804 
Sumatera. Jurnal RISET Geologi Dan Pertambangan, 26(1), 1. 805 
https://doi.org/10.14203/risetgeotam2016.v26.271 806 

 807 

 808 

https://www.undrr.org/publication/landslide-risk-reduction-great-lakes-region
https://www.undrr.org/publication/landslide-risk-reduction-great-lakes-region
https://doi.org/10.1007/s10346-019-01187-7
https://doi.org/10.4172/2157-7587.1000271


   

 

25 
 

 809 

ISUPPLEMENTARY MATERIALS 810 

 811 
 812 
Figure S13: Model architecture of the conventional U-Net. 813 
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Figure S24: Model architecture of the Res U-Net. 816 
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Figure S3: Model architecture of the Attention U-Net. 819 
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Figure S45: Model architecture of the (a) Attention U-Net and (b) Attention Res U-Net. 823 
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Figure S56: Model architecture of the Attention Deep Supervision Multi-Scale U-Net. 827 
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