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Abstract. Motivated by the lack of long-term global soil moisture products with both high spatial and 

temporal resolutions, a global 1-km daily spatiotemporally continuous soil moisture product (GLASS SM) 

was generated from 2000 to 2020 using an ensemble learning model (eXtreme Gradient Boosting—

XGBoost). The model was developed by integrating multiple datasets, including albedo, land surface 15 

temperature, and leaf area index products from the Global Land Surface Satellite (GLASS) product suite, as 

well as the European reanalysis (ERA5-Land) soil moisture product, in situ soil moisture dataset from the 

International Soil Moisture Network (ISMN), and auxiliary datasets (Multi-Error-Removed Improved-

Terrain DEM and SoilGrids). Given the relatively large scale differences between point-scale in situ 

measurements and other datasets, the triple collocation (TC) method was adopted to select the representative 20 

soil moisture stations and their measurements for creating the training samples. To fully evaluate the model 

performance, three validation strategies were explored: random, site-independent, and year-independent. 

Results showed that for the random test samples, the XGBoost model trained with representative stations 

selected by the TC method achieved the highest accuracy, with an overall correlation coefficient (R) of 0.941 

and root mean square error (RMSE) of 0.038 m3 m-3; whereas for both the site- and year-independent test 25 

samples, although the overall model performance was comparatively lower, training the model with 

representative stations could still considerably improve its overall accuracy. Meanwhile, compared to the 

model developed without station filtering, the validation accuracies of the model trained with representative 

stations improved significantly on most station, with the median R and unbiased RMSE (ubRMSE) of the 
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model for each station increasing from 0.64 to 0.74, and decreasing from 0.055 to 0.052 m3 m-3, respectively. 30 

Further validation of the GLASS SM product across four independent soil moisture networks revealed its 

ability to capture the temporal dynamics of measured soil moisture (R = 0.69–0.89; ubRMSE = 0.033–0.048 

m3 m-3). Lastly, the inter-comparison between the GLASS SM product and two global microwave soil 

moisture datasets—the 1-km Soil Moisture Active Passive/Sentinel-1 L2 Radiometer/Radar soil moisture 

product and the European Space Agency Climate Change Initiative combined soil moisture product at 35 

0.25°—indicated that the derived product maintained a more complete spatial coverage, and exhibited high 

spatiotemporal consistency with those two soil moisture products. The annual average GLASS SM dataset 

from 2000 to 2020 can be freely downloaded from https://doi.org/10.5281/zenodo.7172664 (Zhang et al., 

2022a), and the complete product at daily scale is available at http://glass.umd.edu/soil_moisture/. 

 40 

1 Introduction 

Soil moisture typically refers to the water content of the unsaturated soil zone (Liang and Wang, 2020). As 

an essential climate variable specified by the Global Climate Observing System, it plays a critical role in 

terrestrial water, energy, and carbon cycles (Dorigo et al., 2017; Humphrey et al., 2021). Over recent decades, 

soil moisture datasets have been used across a wide range of earth system applications, including climate-45 

related research (Berg and Sheffield, 2018), hydrological modeling (Brocca et al., 2017), rainfall estimating 

(Brocca et al., 2019), disaster forecasting (Kim et al., 2019), as well as agriculture and ecosystem monitoring 

(Liu et al., 2020; Holzman et al., 2014), mainly attributed to the progress in remotely sensed soil moisture 

algorithms. However, substantial gaps remain between the currently released soil moisture products and the 

growing requirements of various applications, especially at regional and local scales (Peng et al., 2021). 50 

Global soil moisture products can generally be obtained through model simulations or remote sensing, 

mostly at spatial resolutions of tens of kilometers. The advantages of simulated or reanalysis soil moisture 

datasets, such as the land component of the European ReAnalysis V5 (ERA5-Land) and the Global Land 

Data Assimilation System (GLDAS) soil moisture products (Rodell et al., 2004; Muñoz-Sabater et al., 2021), 

are their spatiotemporal continuity and availability of root-zone estimates; however, their corresponding 55 

errors can be rather large when the quality of forcing datasets or model performance are relatively poor 

(Sheffield et al., 2004). Alternatively, microwave remote sensing has been regarded as the most promising 

technique to acquire surface soil moisture estimates at global scale, because of its high sensitivity to soil 

water content dynamics and its capacity for all-weather monitoring (Babaeian et al., 2019; Shi et al., 2019). 
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Currently, several global soil moisture products have been operationally generated from microwave 60 

scatterometers and radiometers, including the Advanced Scatterometer (ASCAT), Advanced Microwave 

Scanning Radiometer for Earth Observing System (AMSR-E), in addition to instruments on-board the Soil 

Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites (Chan et al., 2016; 

Wagner et al., 2013; Njoku et al., 2003; Kerr et al., 2016), typically with a grid spacing of 9–50 km, and a 

revisit cycle of 1–3 days. Although these products have been fully evaluated against ground-based soil 65 

moisture observations, they show relatively poor accuracy or continuous data deficiency over densely 

vegetated areas (Kim et al., 2020). 

Motivated by the lack of high spatial resolution soil moisture products capable of benefiting numerous 

regional-scale applications, various algorithms have been proposed over recent years to downscale the more 

coarse global soil moisture products mentioned above (Peng et al., 2017), some of which have been used to 70 

derive global or regional soil moisture products at fine scales. For example, by combing Sentinel-1 synthetic 

aperture radar (SAR) dataset, Das et al. (2019) disaggregated the 9-km SMAP Enhanced Level 2 brightness 

temperature, producing global soil moisture datasets at 3 km and 1 km resolutions. Song et al. (2022) 

downscaled the AMSR-E/AMSR-2 soil moisture products using optical reflectance from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and gap-filled land surface temperature (LST) datasets, 75 

producing a 1-km daily soil moisture product over China under all-weather conditions. Elsewhere, Naz et al. 

(2020) generated a daily soil moisture reanalysis dataset (ESSMRA) at 3 km resolution over Europe by 

assimilating the European Space Agency (ESA) Climate Change Initiative (CCI) product into a community 

land model via an ensemble Kalman filter method. Additionally, Vergopolan et al. (2021) recently released a 

30 m sub-daily soil moisture dataset across the conterminous United States (CONUS), which was retrieved 80 

using the merged 30-m brightness temperatures obtained by combining a hyper-resolution land surface model 

(HydroBlocks), a radiative transfer model, and the SMAP Enhanced Level 3 brightness temperatures at 9 km. 

Apart from these downscaled high-resolution datasets, Balenzano et al. (2021) directly derived a 1-km soil 

moisture product over Southern Italy from multi-temporal Sentinel-1 SAR images using a change detection 

algorithm, revealing its potential global applicability. 85 

Table 1 lists the spatial and temporal coverages, temporal resolution and grid spacing (i.e., pixel size, 

which may be finer than the actual spatial resolution) of several representative and publicly available soil 

moisture products. Accordingly, there remains a lack of long-term global soil moisture products at both high 

spatial and temporal resolutions. Although the SMAP/Sentinel-1 L2 Radiometer/Radar soil moisture dataset 
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(SPL2SMAP_S) has global coverage and a spatial resolution up to 1 km, its temporal resolution degrades to 90 

12 days over most regions owing to the relatively long revisit cycle of Sentinel-1 SAR satellites. Other 

downscaled high-resolution soil moisture datasets generally maintain regional or continental coverage, 

limited by the lack of high-resolution seamless input datasets or model applicability. Optical and thermal 

remote sensing techniques can provide long-term observations with high spatiotemporal resolutions, which 

have been widely used to derive soil moisture or relevant indices (Yue et al., 2019; Ghulam et al., 2007; 95 

Rahimzadeh-Bajgiran et al., 2013). However, optical and thermal satellite datasets can be detrimentally 

affected by cloud coverage, hindering their use in soil moisture retrieval or downscaling across a global scale. 

To address this issue, the latest versions of several Global Land Surface Satellite (GLASS) products (Liang 

et al., 2021) were used here, including the spatiotemporally continuous surface albedo, leaf area index (LAI), 

and land surface temperature (LST), which were produced with reliable accuracies primarily based on 100 

MODIS observations. In the present study, these fine-scale GLASS products were integrated with auxiliary 

datasets (terrain and soil texture) and the seamless ERA5-Land reanalysis soil moisture product at a coarse 

scale using an ensemble machine-learning model to estimate daily soil moisture at 1 km resolution. This 

framework was adapted from Zhang et al. (2022b), where models were trained using Landsat 8 observations 

and multi-source datasets as inputs, and the International Soil Moisture Network (ISMN) measurements as 105 

the target. To produce a seamless global soil moisture product, Landsat datasets prone to cloud interference 

were replaced with spatiotemporally continuous GLASS products. Considering the larger scale difference 

between GLASS products and in situ soil moisture compared to Landsat datasets, the triple collocation (TC) 

technique was adopted to select the representative soil moisture stations prior to model training for mitigating 

the influence of scale mismatch on prediction accuracy. 110 

Specifically, the aim of this research was to provide a long-term (2000–2020) global soil moisture dataset 

(GLASS SM) with high spatiotemporal resolutions (1 km, daily) and reliable accuracy. To achieve this goal, 

an ensemble learning model (eXtreme Gradient Boosting, XGBoost) was developed by integrating multi-

source datasets. The model was then applied to generate the global 1-km GLASS SM product, which was 

further evaluated against four independent soil moisture networks. Lastly, an inter-comparison was made 115 

between the derived product and two global microwave soil moisture products to investigate their 

spatiotemporal consistency. 
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Table 1. Main characteristics of several representative and publicly available soil moisture products. 

Category 
Soil moisture 

products 

Grid 

spacing 

Spatial 

coverage 

Temporal 

resolution 

Temporal 

coverage 
References Data link Notes 

Downscaled 

products 

SPL2SMAP_S 1/3 km Global 6–12 days 2015–present Das et al. 

(2019) 

https://nsidc.org/data/

spl2smap_s 

- 

Downscaled 

AMSR product 

1 km China Daily 2003–2019 Song et al. 

(2022) 

http://dx.doi.org/10.1

1888/Hydro.tpdc.271

762 

- 

ESSMRA 3 km Europe Daily 2000–2015 Naz et al. 

(2020) 

https://doi.org/10.159

4/PANGAEA.907036 

Seamless 

SMAP-

HydroBlocks 

30 m CONUS 6 hours 2015–2019 Vergopolan 

et al. (2021) 

https://doi.org/10.528

1/zenodo.5206725 

- 

Microwave 

remote 

sensing 

products 

Sentinel-1 1 km Southern 

Italy 

6–12 days 2015–2018 Balenzano et 

al. (2021) 

https://doi.org/10.528

1/zenodo.5006307 

- 

SMAP-L3 36 km Global Daily 2015–present O'Neill et al. 

(2021) 

https://nsidc.org/data/

SPL3SMP/versions/8 

- 

SMAP-IB 36 km Global Daily 2015–2021 Li et al. 

(2022) 

https://ib.remote-

sensing.inrae.fr/ 

- 

SMOS CATDS 

Level 3 

25 km Global Daily 2010–present Al Bitar et 

al. (2017) 

https://www.catds.fr/s

ipad/ 

- 

SMOS-IC 25 km Global Daily 2010–2021 Wigneron et 

al. (2021) 

https://ib.remote-

sensing.inrae.fr/ 

- 

SGD-SM 0.25° Global Daily 2013–2019 Zhang et al. 

(2021) 

https://doi.org/10.528

1/zenodo.4417458 

Seamless 

ESA CCI 0.25° Global Daily 1978–2021 Gruber et al. 

(2019) 

https://esa-

soilmoisture-

cci.org/data 

- 

Reanalysis 

products 

GLDAS-Noah 0.25° Global 3 hours 2000–2021 Beaudoing 

and Rodell 

(2020) 

https://hydro1.gesdisc

.eosdis.nasa.gov/data/

GLDAS/GLDAS_N

OAH025_3H.2.1/ 

Seamless 

ERA5-Land 0.1° Global Hourly 1950–present Muñoz-

Sabater 

(2019, 2021) 

https://cds.climate.co

pernicus.eu/cdsapp#!/

dataset/reanalysis-

era5-land 

Seamless 

Present study GLASS SM 1 km Global Daily 2000–2020 - http://glass.umd.edu/s

oil_moisture/ 

Seamless 

 120 

2 Datasets 

The multi-source datasets used to generate the global high-resolution soil moisture product here can be 

grouped into four categories (Table 2). Namely, remotely sensed variables derived from the three GLASS 

products, reanalysis surface soil moisture from ERA5-Land dataset, and auxiliary variables extracted from 

the Multi-Error-Removed Improved-Terrain (MERIT) DEM and SoilGrids products were used to train an 125 

XGBoost model for estimating the global soil moisture product; whereas globally distributed in situ soil 

moisture measurements from ISMN stations were used as targets for model training. In addition, four 

independent in situ soil moisture datasets, and two microwave soil moisture products were used to validate 

and compare the derived global product. 

 130 
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Table 2. Multi-source datasets used to generate the global high-resolution soil moisture product. 

Category Dataset Spatial resolution Temporal resolution 

Satellite products GLASS albedo 

GLASS LST 

GLASS LAI 

500 m 

1 km 

500 m 

4-day 

Daily 

8-day 

Reanalysis product ERA5-Land SSM 0.1° Hourly 

Auxiliary datasets MERIT DEM 

SoilGrids 2.0 

90 m 

250 m 

- 

- 

Ground-based data ISMN SSM Point scale Hourly 

2.1 Remotely sensed datasets 

The GLASS product suite has been employed in various applications owing to its long-term coverage, 

spatial continuity, high spatial resolution, and accuracy (Liang et al., 2021). Here, the latest version of GLASS 

albedo, LST, and LAI products served as the primary inputs to the ensemble learning model. Specifically, the 135 

GLASS V6 LAI product (500 m resolution) was generated from six MODIS 8-day surface reflectance bands 

of MOD09A1 using a bidirectional long short-term memory deep learning model (www.glass.umd.edu) (Ma 

and Liang, 2022). Notably, this product is relatively more accurate than the 250 m GLASS LAI estimated 

from two bands of MOD09Q1. The all-sky 1-km GLASS LST was produced by integrating multiple datasets 

from MODIS, reanalysis, and in situ LST measurements using a random forest model (Li et al., 2021). Daily 140 

global LSTs averaged from instantaneous GLASS LST products were used here, which can be downloaded 

soon from www.glass.umd.edu. The gap-free GLASS albedo products were generated using a combination 

of a direct-estimation algorithm (Qu et al., 2014), and a spatiotemporal filtering scheme (Liu et al., 2013). 

Namely, the black-sky visible, near-infrared, and shortwave albedo extracted from the GLASS V42 albedo 

products were used in the present study(www.glass.umd.edu). 145 

2.2 ERA5-Land reanalysis soil moisture product 

ERA5 provides a range of global atmospheric, terrestrial, and oceanic variables from 1950 to present at 31 

km spatial resolution (Hersbach et al., 2020). Specifically, ERA5-Land is an enhanced global land reanalysis 

dataset obtained by downscaling the atmospheric forcing derived from the reanalysis of EAR5 to a native 

resolution of approximately 9 km (Muñoz-Sabater et al., 2021). ERA5-Land includes hourly estimates of 150 

volumetric soil moisture at four soil layers, and a grid spacing of 0.1° (https://cds.climate.copernicus.eu/). In 

the present study, the top layer (0–7 cm) of ERA5-Land soil moisture were used to match the shallow 

observation depths of optical satellites. The daily average soil moisture was calculated and resampled to 1 

km before being used as an input variable of the ensemble learning model. 
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2.3 Static terrain and soil texture datasets 155 

Topography and soil properties, which can be treated as static variables due to their relatively slow rate of 

change over the short term, have an important influence on the spatial variations of soil moisture at finer 

scales. The global terrain dataset used in the study here was the high-accuracy MERIT DEM with a spatial 

resolution of 3 arc seconds (~90 m at the equator). The MERIT DEM integrates several spaceborne DEMs 

after eliminating their inherent primary error components, including speckle noise, stripe noise, absolute bias, 160 

and tree height bias (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/) (Yamazaki et al., 2017). After 

deriving the elevation, aspect, and slope from the MERIT DEM, these topographic variables were resampled 

to 1 km, and used as input features for the model. Alternatively, soil texture was derived from the SoilGrids 

V2.0 product at 250 m resolution (https://www.isric.org/explore/soilgrids). SoilGrids uses > 240,000 soil 

profile measurements, and > 400 environmental covariates worldwide to train machine learning models, and 165 

produce global soil property maps across six depth intervals (Poggio et al., 2021). Recent studies have shown 

that the SoilGrids product has both higher resolution and enhanced accuracy compared to other soil datasets 

at global scale (Dai et al., 2019), in addition to the ability of soil texture data to improve the bias and root 

mean square error (RMSE) of downscaled soil moisture products (Das et al., 2019). Accordingly, the mean 

contents of sand, silt, and clay were extracted for the first soil layer (0–5 cm) from the SoilGrids database, 170 

and resampled to 1 km. 

2.4 Ground-based soil moisture training dataset 

The ISMN aims to establish and maintain a global database of in situ soil moisture measurements for the 

validation and improvement of satellite-based and modelled soil moisture products. Currently, it consists of 

73 networks with over 2800 soil moisture stations worldwide, providing quality-controlled and harmonized 175 

datasets collected from monitoring networks and field experiments (Dorigo et al., 2011). Here, data for the 

period from 2000–2018 were obtained (https://ismn.geo.tuwien.ac.at/en/), and only stations with an 

observation depth of < 5 cm were selected to match the remote sensing datasets depth used in this study. Soil 

moisture records were then screened according to the quality flags provided with the ISMN dataset (Dorigo 

et al., 2013), before being used as the training target for the machine learning model. 180 

2.5 Independent in situ validation datasets 

Four soil moisture monitoring networks that were not included in the ISMN dataset were used to assess 

the model’s ability to capture temporal variations in soil moisture over unknown area. The YA and YB 

subnetworks are both part of the Yanco soil moisture network, located in a semi-arid agricultural region of 
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the Murrumbidgee River Basin, Australia, with a flat topography, and elevation spanning 117–150 m (Yee et 185 

al., 2017). There are 13 and 11 stations in the YA and YB subnetworks, respectively, distributed across two 9 

× 9 km areas, for which soil moisture observations from these stations can be downloaded from the Oznet 

Hydrological Monitoring website (http://www.oznet.org.au) (Smith et al., 2012). Two other micronets (Fort 

Cobb and Little Washita) are located in southwestern Oklahoma, USA, and are characterized by a humid 

subtropical climate (Starks et al., 2014). The primary land cover types are cropland and rangeland, and the 190 

topography is moderately rolling (Bindlish et al., 2009). Currently, there are 15 and 20 operational stations 

in the Fort Cobb and Little Washita networks, respectively, for which station data can be accessed through 

the Grazinglands Research Laboratory (https://ars.mesonet.org/). These four dense soil moisture networks 

have been used extensively to either validate or calibrate satellite soil moisture products (Ma et al., 2021; 

Colliander et al., 2017; Chan et al., 2018). 195 

2.6 Microwave soil moisture product 

To further validate the spatiotemporal performance of the derived 1-km soil moisture product here, two 

additional microwave-based products were selected for comparison. The first product is the high resolution 

SMAP/Sentinel-1 SPL2SMAP_S dataset, which contains the only global 1-km soil moisture product that 

was publicly released in the past (Table 1), and can be downloaded from the National Snow and Ice Data 200 

Center at 1 km and 3 km resolutions (https://nsidc.org/data/spl2smap_s). According to Das et al. (2019), the 

average unbiased RMSE (ubRMSE) values achieved by both the 1-km and 3-km SPL2SMAP_S products 

over sparse soil moisture networks were approximately 0.05 m3 m-3. Considering that the SPL2SMAP_S 

baseline algorithm generally shows higher validation accuracy than the optional algorithm (directly 

disaggregating the SMAP 9-km soil moisture product), and the AM (descending orbits combination) soil 205 

moisture retrievals are more accurate than their APM equivalents (descending or ascending orbits 

combination) (Xu, 2020), the baseline AM soil moisture field “disagg_soil_moisture_1km” were extracted 

from the SPL2SMAP_S 1-km data group, and used for comparison. The second product is the CCI global 

soil moisture dataset released by the ESA, with a grid spacing of 0.25° and daily temporal resolution, which 

combines various passive and active microwave soil moisture products into a harmonized record with 210 

improved spatiotemporal coverages and has been fully validated across numerous global applications (Dorigo 

et al., 2017). Specifically, the combined (active and passive) soil moisture product from CCI V6.1 was used 

here (https://esa-soilmoisture-cci.org/data). 
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3 Methods 215 

3.1 Overall framework 

Soil moisture is characterized by high spatiotemporal variability and its distribution is influenced by a 

range of environmental factors across different scales, such as climate, geographical conditions, soil 

properties, and surface coverage (Crow et al., 2012; Luo et al., 2022). Here, high-accuracy, spatiotemporally 

continuous GLASS products, including LST, albedo, and LAI, were used to provide surface temperature, 220 

spectral information on soil and vegetation, as well as information related to vegetation type and density. 

Considering the impact of topography and soil properties on soil moisture, topographic and soil texture 

fraction variables were extracted from the MERIT DEM and SoilGrids products, respectively. Additionally, 

the 0.1° ERA5-Land reanalysis soil moisture product was used to provide background soil moisture 

information. By utilizing an ensemble machine learning method, various variables extracted from these 225 

multi-source datasets were integrated so that different environmental factors affecting soil moisture could be 

accounted for, and soil moisture at fine scales could be estimated. 

Figure 1 shows a flowchart of the proposed 1-km, spatiotemporally continuous soil moisture estimation 

framework. Prior to the training phase, the TC method and the other two long-term soil moisture datasets 

(ERA5-Land reanalysis and ESA CCI soil moisture products) were adopted for selecting the representative 230 

soil moisture stations, considering the scale difference between point-scale soil moisture measurements 

collected by ISMN stations and GLASS products (the detailed selection procedure is presented in Sect. 3.2). 

Then, multiple variables were extracted from the corresponding input datasets, and spatiotemporally 

collocated with the in situ soil moisture measurements from the representative stations between 2000 and 

2018. Specifically. the black-sky visible, near-infrared, shortwave albedo, LAI, and LST were extracted from 235 

the three GLASS products, based on the geographic station locations. Each of these variables, together with 

topographic and soil texture fraction variables, and the coarse-scale reanalysis soil moisture were put into the 

XGBoost model, which was chosen to simulate the non-linear relationship between multiple input features 

and in situ soil moisture (the target variable). Lastly, those multi-source input datasets were resampled to 1 

km, and then put into the developed XGBoost model for predicting the global 1-km spatiotemporally 240 

continuous soil moisture product (GLASS SM). Moreover, the GLASS SM product was evaluated against 

four independent soil moisture datasets, and then compared the SPL2SMAP_S and CCI soil moisture 

products for spatiotemporal consistency analyses. 
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Figure 1. Flowchart of the proposed 1-km spatiotemporally continuous soil moisture estimation framework. 245 

3.2 Triple collocation-based station selection 

 As mentioned above, in situ soil moisture data from the ISMN stations were employed as the target 

variable to train the XGBoost model, which was then used to predict soil moisture product at 1 km resolution. 

The underlying assumption was that the measured soil moisture at these point-scale stations is representative 

of the average moisture status of the corresponding 1-km pixel; however, because of the high spatiotemporal 250 

variability of soil moisture, this assumption is not always upheld. Accordingly, the TC was adapted to select 

the most representative stations. Specifically, TC is an error analysis method proposed by Stoffelen (1998) 

employing three collocated datasets to address large uncertainties in wind speed measurements. TC has been 

widely used in the evaluation of satellite soil moisture products given the limited number of core validation 

sites at the satellite footprint scale (Zheng et al., 2022). The commonly used error model for TC analysis is 255 

defined in Eq. (1): 

𝑋𝑖 =  𝛼𝑖 +  𝛽𝑖𝜃 +  𝜀𝑖 (1) 

where 𝑋𝑖 refers to the three collocated soil moisture observations; 𝜃 refers to the unknown true value of 

soil moisture; 𝛼𝑖  and  𝛽𝑖  are the additive and multiplicative biases of 𝑋𝑖  relative to the true value, 

respectively; and 𝜀𝑖 is the random additive noise with zero mean. The assumptions underlying this error 

model and detailed derivation process for the error variance of each dataset can be found in Gruber et al. 260 

(2016). Notably, the assumptions made for TC analysis are similar to those made for the correlation 
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coefficient (R) and RMSE (Gruber et al., 2016). To fulfill the independent error requirement of the TC 

analysis across the three datasets, the ISMN in situ soil moisture, model-based ERA5-Land soil moisture, 

and CCI combined microwave soil moisture were selected to construct the triplets. Among them, the CCI 

soil moisture product was selected here rather than other microwave soil moisture products, as it maintains a 265 

sufficiently long timescale to cover the time period of training samples. The error variance of the ISMN soil 

moisture dataset, 𝜎𝜀
2 , was then calculated according to Eq. (2): 

𝜎𝜀
2 =  𝜎𝑖𝑠𝑚𝑛

2 − 
𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑒𝑟𝑎)𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑐𝑐𝑖)

𝐶𝑜𝑣(𝑋𝑒𝑟𝑎, 𝑋𝑐𝑐𝑖)
 (2) 

where 𝜎𝑖𝑠𝑚𝑛
2  is the variance of the ISMN in situ soil moisture; 𝐶𝑜𝑣 is the covariance operator; and 

𝑋𝑖𝑠𝑚𝑛, 𝑋𝑒𝑟𝑎, and 𝑋𝑐𝑐𝑖 denote the collocated ISMN, ERA5-Land, and CCI soil moisture observations, 

respectively. Based on TC analysis, McColl et al. (2014) proposed a method called extended triple collocation 270 

(ETC) to estimate the correlation coefficient between each dataset and the unknown target variable. 

Specifically, the ETC correlation coefficient of the ISMN soil moisture dataset, 𝑅𝐸𝑇𝐶, can be calculated via 

Eq. (3): 

𝑅𝐸𝑇𝐶 =  𝑠𝑖𝑔𝑛(±)√
𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑒𝑟𝑎)𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑐𝑐𝑖)

𝜎𝑖𝑠𝑚𝑛
2 𝐶𝑜𝑣(𝑋𝑒𝑟𝑎, 𝑋𝑐𝑐𝑖)

 (3) 

where the sign of 𝑅𝐸𝑇𝐶  was corrected to positive. It is a scaled, unbiased signal-to-noise ratio metric 

complementary to 𝜎𝜀
2. Using the above TC-based metrics, and referring to previous studies (Yuan et al., 275 

2020; Anderson et al., 2012), several strict conditions were established to select the most representative ISMN 

stations: (1) > 500 triplets were available at the station during the period 2000–2018, (2) the R between any 

two soil moisture datasets in the triplets was > 0.2, (3) the square root of the 𝜎𝜀
2 calculated for the ISMN 

soil moisture dataset was < 0.06, and (4) the 𝑅𝐸𝑇𝐶  between the ISMN soil moisture and the unknown soil 

moisture true values was > 0.7. A total of 715 representative ISMN soil moisture stations were screened, and 280 

the spatial distribution of these stations is displayed in Fig. 2, with the number of stations for each land cover 

types shown in the legend. 
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Figure 2. Spatial distribution of representative ISMN soil moisture stations selected by the TC method, with 

MODIS land cover type product (MCD12Q1) for 2016 displayed in the background. 285 

3.3 XGBoost model 

Ensemble machine learning models can be roughly classified into two categories based on how the 

individual learners are generated: bagging and boosting, (Zhou, 2021). For bagging models, the individual 

learners are constructed independently; whereas for boosting models, learners are constructed iteratively, 

increasing the weights for the incorrectly classified samples during each round of training. As a representative 290 

bagging algorithm, random forest has gained considerable attention in the fields of remote sensing 

classification and regression over recent decades (Belgiu and Drăguţ, 2016); however, it may suffer from a 

large prediction bias, especially when the observations are too large or small (Song, 2015). In contrast, 

boosting models have been shown to reduce both variance and bias and are robust to multicollinearity among 

predictors (Gislason et al., 2006; Karthikeyan and Mishra, 2021). Accordingly, the present study employed 295 

the XGBoost model implemented by Chen and Guestrin (2016) based on a gradient boosting framework 

(Friedman, 2001). The XGBoost model is advantageous for its scalability, efficiency, and decreased 

vulnerability to overfitting. Here, the open-source xgboost and Scikit-learn Python packages were used 

together for model training and the tuning of several hyperparameters, including the number of the boosting 

rounds, learning rate, and maximum tree depth, with the grid search method being adopted to determine the 300 

optimal parameters. 

3.4 Evaluation strategies and performance metrics 

While most previous soil moisture estimation studies based on machine learning have only used the 
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random validation approach, this study used the three complementary validation strategies to fully evaluate 

the model performance: random, site-independent, and year-independent. For the random validation, samples 305 

from all soil moisture stations during 2000–2018 were randomly divided into five folds, among which three 

folds were used for training, one as the validation dataset to tune the hyperparameters of the model, and one 

as the test dataset to evaluate the trained model performance. Thus, the samples in the random test dataset 

may have been from the same station or year as the training or validation datasets. For site-independent 

validation, all soil moisture stations were again randomly divided into five folds, and samples from one fold 310 

were used as the test dataset to evaluate the accuracy of models trained with samples from the other folds, 

which were used for training and validation. Thus, the location of the samples in the site-independent test 

dataset is unknown to the model. Similarly, for the year-independent validation, samples from all stations 

between 2015 and 2018 were selected as the test dataset to evaluate the accuracy of the model trained using 

samples between 2000 and 2014, to ensure that the observation year was unknown to the model.  315 

In addition to model evaluation, the accuracy of the GLASS SM product generated by the developed model 

was evaluated. This 1-km soil moisture product was first validated against four independent dense soil 

moisture networks, and then compared with the 1-km SPL2SMAP_S and 0.25° CCI soil moisture products 

for spatiotemporal consistency analyses. Four widely used performance metrics in soil moisture related 

research—the R, bias, RMSE, and ubRMSE (Entekhabi et al., 2010) were used to evaluate both the models 320 

and products, and calculated according to Eqs.( 4–7): 

𝑅 =  
𝐸[(𝜃𝑒𝑠𝑡 − 𝐸[𝜃𝑒𝑠𝑡])(𝜃𝑡𝑟𝑢𝑒 − 𝐸[𝜃𝑡𝑟𝑢𝑒])]

𝜎𝑒𝑠𝑡𝜎𝑡𝑟𝑢𝑒
 (4) 

𝑏𝑖𝑎𝑠 =  𝐸[𝜃𝑒𝑠𝑡] −  𝐸[𝜃𝑡𝑟𝑢𝑒] (5) 

𝑅𝑀𝑆𝐸 =  √𝐸[(𝜃𝑒𝑠𝑡 − 𝜃𝑡𝑟𝑢𝑒)2] (6) 

𝑢𝑏𝑅𝑀𝑆𝐸 =  √𝐸{[(𝜃𝑒𝑠𝑡 − 𝐸[𝜃𝑒𝑠𝑡]) −  (𝜃𝑡𝑟𝑢𝑒 − 𝐸[𝜃𝑡𝑟𝑢𝑒])]2} 
(7) 

where 𝐸[. ]  denotes the mean operator; 𝜃𝑡𝑟𝑢𝑒  and 𝜃𝑒𝑠𝑡  represent the in situ soil moisture and 

corresponding estimated soil moisture; whereas 𝜎𝑡𝑟𝑢𝑒 and 𝜎𝑒𝑠𝑡 refer to the standard deviation of the in 

situ and estimated soil moisture values, respectively. 

4 Results 325 

In Sect. 4.1, the overall performance of the XGBoost models trained using different groups of stations was 

first evaluated using random test samples. Then, the performance of the models was evaluated on the site- or 

year-independent test samples in Sect. 4.2, where the permutation feature importance results of the models 
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and the importance of each type of input variables were examined, followed by an analysis of the model 

performance metrics at each station and over each land cover type. Section 4.3 shows the time-series 330 

validation results of the GLASS SM product generated using the developed model on four independent soil 

moisture networks; whereas Sect. 4.4 compares the global 1-km GLASS SM product with two global 

microwave soil moisture products for spatiotemporal consistency analyses. 

4.1 Model performance on the random test samples 

Figure 3 shows the overall performance of the XGBoost models developed using all input variables on 335 

the random test samples. To analyze the effect of screening soil moisture stations, the accuracies of models 

developed using all ISMN stations, the representative stations selected using the TC method, and the stations 

excluded using the TC method were compared via scatterplots. In general, the random validation accuracy 

of all three XGBoost models was high, with the bias between the model-predicted and target soil moisture 

values being close to zero. The accuracy of the models developed using all ISMN stations or the TC-excluded 340 

stations were similar for the test samples, with R values of 0.917 and 0.918, and RMSE values of 0.047 m3 

m-3 and 0.049 m3 m-3, respectively. In contrast, the accuracy of the model developed with the representative 

stations selected using the TC method was significantly improved for the test samples, with R and RMSE 

values of 0.941 and 0.038 m3 m-3, respectively. Compared with the other two models, the soil moisture 

estimates of the XGBoost model developed using representative stations were more concentrated along the 345 

1:1 line. Notably, most of the soil moisture measurements that were nearly saturated (> 0.5 m3 m-3) were 

excluded after the station screening process (Fig. 3), likely because those high soil moisture samples at point-

scales were typically under-representative of the mean soil moisture conditions at satellite footprint-scales. 

In addition, the validation accuracy of the ERA5-Land surface soil moisture product was calculated for all 

soil moisture samples, as well as those selected by the TC method for comparison. After station screening, 350 

the overall R between ERA5-Land reanalysis and in situ soil moisture increased from 0.56 to 0.64, while the 

RMSE decreased slightly from 0.138 to 0.129 m3 m-3; whereas the bias remained unchanged at 0.08 m3 m-3. 

The above performance metrics indicated that the validation accuracy achieved by the XGBoost models on 

the random samples improved significantly compared with the ERA5-Land soil moisture, and that these 

models can effectively reduce the large overall bias contained in the reanalysis soil moisture product to near 355 

zero. Moreover, by using the TC method to select representative stations, the validation accuracy of the model 

can be significantly improved. 
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Figure 3. Scatterplots of measured and predicted soil moisture from the XGBoost models developed using 

(a) all ISMN stations, (b) representative stations selected using the TC method, and (c) stations excluded 360 

using the TC method. Point colors indicate the probability density. Red dotted line displays the linear 

regression, and the black solid line is the 1:1 line. 

4.2 Model performance on site/year independent samples 

As can be seen from Table 3, regardless of the type of soil moisture station used during training, model 

performance on the year-independent test samples (2015 to 2018) decreased significantly compared to that 365 

on the random test samples. Among them, the R values of the models trained using all stations and TC-

excluded stations were 0.8 and 0.734 for the year-independent test samples, respectively, while the 

corresponding RMSE increased to 0.07 and 0.084 m3 m-3, respectively. In contrast, the XGBoost model 

trained using representative stations selected by the TC method achieved the highest accuracy on the year-

independent test samples, with R and RMSE values of 0.873 and 0.054 m3 m-3, respectively. Likewise, the 370 

performance of the models trained using three different types of stations on the site-independent test samples 

(randomly selected one-fifth of the total stations) further decreased compared to that of the year-independent 

test samples. The RMSE of the models trained using all and excluded stations further increased to 0.093 and 

0.106 m3 m-3, respectively, for the site-independent test samples. Alternatively, the XGBoost model trained 

using representative stations achieved the highest accuracy for the site-independent test samples, with R and 375 

RMSE values of 0.715 and 0.079 m3 m-3, respectively. These results suggest that despite the good 

performance of the models on the random test samples, their accuracies may degrade significantly when the 

stations or observation years of the test samples are unknown to them. Nevertheless, training the model with 

representative stations selected by the TC method can considerably improve its performance on site- or year-

independent test samples, that is, model performance over unknown time and space. 380 

Table 3. Validation accuracy of the XGBoost models trained using three different types of soil moisture 

stations on three types of test samples. 
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Validation 

strategies 

All stations Representative stations Excluded stations 

R 
RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 
R 

RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 
R 

RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 

Random 0.917 0.047 0.047 0.941 0.038 0.038 0.918 0.049 0.049 

Year-independent 0.800 0.070 0.070 0.873 0.054 0.054 0.734 0.084 0.084 

Site-independent 0.630 0.093 0.093 0.715 0.079 0.079 0.564 0.106 0.106 

Figure 4 shows the permutation feature importance results of the XGBoost models trained using 

representative soil moisture stations, which were calculated separately for the three different types of test 

samples. The permutation importance of an input feature is commonly measured by the degradation of model 385 

accuracy when the feature is randomly shuffled (Breiman, 2001), can be calculated multiple times across a 

test dataset and is less likely to be biased towards high-cardinality features. Notably, permutation importance 

does not reflect a feature’s intrinsic predictive value, but rather its relative importance to a particular model. 

For all three types of test samples, ERA5-Land surface soil moisture (SM_era) achieved the highest 

importance score, indicating that this coarse-scale reanalysis soil moisture product can indeed provide 390 

reliable soil moisture background information for the 1-km soil moisture estimation model. Specifically, for 

both the random and year-independent test samples (Fig. 4 (a), (b)), the importance of elevation and soil 

texture variables (sand, silt, and clay) ranked relatively high, showing that soil properties and topographic 

factors are important for accurate model predictions when the sample locations are known. In addition, the 

three GLASS black-sky albedo bands (ABD_vis, ABD_nir, and ABD_short) also achieved relatively high 395 

importance scores for both types of samples, likely because surface albedo can reflect the surface energy flux 

and land cover conditions, which are further correlated to the spatial variation in soil moisture (Long et al., 

2019). Meanwhile, the importance scores of GLASS LAI and LST were relatively low for the two sample 

types, which may be partly attributed to their correlation with some high-ranking variables (e.g., ABD_vis, 

SM_era). For example, after removing ERA5-Land soil moisture from the models, the importance scores of 400 

both GLASS LST and LAI increased significantly. In contrast, in the site-independent test samples (Fig. 4 

(c)), the importance of ERA5-Land surface soil moisture (SM_era) further increased relative to other 

variables. In addition, the importance ranking of GLASS albedo and LST increased remarkably; whereas that 

of terrain and soil texture-related variables dropped dramatically, suggesting that when the location of the 

test samples is unknown to the model, variables such as coarse-scale soil moisture, albedo, and LST appear 405 

to be more important for accurately predicting soil moisture. 
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Figure 4. Permutation feature importance results of the XGBoost models trained using the representative 

stations, and calculated using the (a) Random, (b) Year-independent, and (c) Site-independent test samples. 

To further investigate the importance of different types of input variables for the 1-km soil moisture 410 

estimation model over unknown space, the validation accuracy of the XGBoost models developed using 

different combinations of input datasets on the site-independent test samples were also compared. The 

XGBoost model trained with all input datasets achieved the highest accuracy (Table 4), with R and RMSE 

values of 0.715 and 0.079 m3 m-3, respectively. After the ERA5-Land soil moisture product was excluded, 

the model accuracy for the test dataset decreased significantly, with the RMSE value increasing to 0.086 m3 415 

m-3, further reflecting the relatively high importance of the coarse-scale soil moisture background information 

for the 1-km estimation model derived here. Similarly, after excluding GLASS albedo, LAI, and LST from 

the input variables, the model trained with the remaining variables showed a marked decrease in accuracy 

for the test dataset, with R and RMSE values of 0.694 and 0.083 m3 m-3, respectively. This indicates that the 

information on soil and vegetation reflective properties, surface temperature, as well as vegetation types and 420 

densities provided by GLASS products are also important for the 1-km soil moisture estimation model. 

Further, the exclusion of terrain or soil texture datasets showed a similar effect on model accuracy, with 

RMSE values decreasing to 0.082 and 0.083 m3 m-3, respectively, again suggesting the pertinent contribution 

of these variables to improving the performance of the soil moisture estimation model. Besides, as shown in 

Table 2, the spatial resolution of most input datasets was within 1 km, except for the ERA5-Land product 425 

which had a relatively low spatial resolution (0.1°). Therefore, the integration of multi-source input datasets 

using a machine learning model can improve not only the model accuracy, but the spatial details of the soil 

moisture product as well. Because the XGBoost model trained with all input datasets performed best on the 

test dataset, all datasets were included in model training during the subsequent experiments. 

Table 4. Performance metrics of the XGBoost model developed using different combinations of input 430 

datasets on the site-independent test samples. 
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Input datasets R 
RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 

All datasets included 0.715 0.079 0.079 

Reanalysis product excluded 0.646 0.086 0.086 

GLASS products excluded 0.694 0.083 0.082 

Terrain datasets excluded 0.700 0.082 0.082 

Soil texture datasets excluded 0.684 0.083 0.083 

To explore the causes of decreased 1-km soil moisture estimation model accuracies over unknown time 

and space, performance metrics of the models were calculated for each station, which were trained using all 

ISMN or representative soil moisture stations selected by the TC method. To obtain the validation accuracy 

for each station, a 5-fold cross-validation method was adopted, where the stations were randomly divided 435 

into five folds, with samples from four folds used to develop the model, and the accuracy metrics were 

derived for the remaining fold. This process was repeated five times, until the accuracies of all stations were 

evaluated. The distribution of performance metrics for the model developed using all stations was dispersed 

across stations, with R values ranging from -1 to 1, and RMSE values ranging from 0.005 to 0.397 m3 m-3 

(Fig. 5, Table 5). Although the median of the bias between model predicted and measured soil moisture was 440 

0, the model exhibited a large prediction bias for most stations (from -0.39 to 0.34 m3 m-3), partly contributing 

to the large RMSE observed at these stations. After removing the prediction bias for each station, the median 

ubRMSE of the model decreased from 0.075 to 0.055 m3 m-3, compared to the median RMSE.  

After filtering the stations using the TC method, the validation accuracies of the model developed using 

the representative stations improved significantly for most stations, with the distribution of its performance 445 

metrics being more concentrated across stations, compared to the model developed without station filtering. 

In particular, the median R of the model at each station increased from 0.64 to 0.74, median RMSE decreased 

from 0.075 to 0.068 m3 m-3, and ubRMSE decreased from 0.055 to 0.052 m3 m-3. However, although the 

median bias of the model developed using the representative stations was 0, the model still exhibited a large 

prediction bias for most stations, ranging from -0.21 to 0.21 m3 m-3. Therefore, the decreased overall 450 

accuracies of the model over unknown spaces can be attributed to these large site-specific biases, which may 

be caused by the high spatiotemporal variability of surface soil moisture, and the scale differences between 

the target soil moisture observations and multi-source input datasets. Specifically, in random and year-

independent validation strategies, part of the site-specific information is known to the models; whereas in the 

site-independent validation method, this information is entirely unknown to the model. By adopting the TC 455 

method, it is possible to select soil moisture stations that are representative of the average soil moisture on a 
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larger scale, thereby alleviating the scale difference issue to some extent. However, there may still be large 

biases between measurements from these point-scale representative soil moisture stations and footprint-scale 

average soil moisture values. As these biases are site-specific, can be positive or negative, and have a median 

value for all samples near 0, the overall ubRMSE that the model achieved on the site- or year-independent 460 

test samples can still be large when these biases are unknown to the model. Nevertheless, training the model 

with representative soil moisture stations improved the model’s overall performance over unknown 

spatiotemporal locations (Table 3), while improving the performance metrics of the model at each station as 

well (Fig. 5). 

 465 

Figure 5. Boxplots of the performance metrics for the XGBoost models of each soil moisture station which 

were developed using (a) all and (b) representative stations. 

In addition to the performance metrics of the two XGBoost models at each station, Table 5 shows the 

validation accuracies of the model developed using the representative stations over different land cover types. 

Affected by a series of practical factors, the distribution of ISMN soil moisture stations is uneven in space, 470 

with the majority of the stations located in the CONUS. After screening stations via the TC method, the 

spatial distribution of representative stations remained uneven, with the resulting number of stations for each 

land cover type also varying significantly (Fig. 2). Overall, the performance of the model developed using 

the representative stations for most land cover types showed an improvement compared with the model 

developed using all stations, as indicated by larger median R values, and smaller median RMSE and ubRMSE 475 

values. However, the median ubRMSE of the model achieved for forests was larger than that for other land 

cover types, likely a result of soil moisture maintaining high levels in forested areas. Additionally, among the 

seven land cover types, the model achieved the lowest median R values for shrublands and barren lands, 

likely due to the limited number of stations present across these two types. However, the model also achieved 
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the lowest median ubRMSE values for these two types, which can be partly attributed to the fact that despite 480 

the low sample percentages, the number of samples for these land cover types was sufficient for the models 

to learn, and in part due to the relatively small soil moisture dynamics of these two types. Although the 

median bias of the model for each land cover type was near 0, the model exhibited a large prediction bias for 

most stations across each land cover type (Table 5). After removing the prediction bias at each station, the 

median ubRMSE of the model for the seven land cover types ranged from 0.031 to 0.061 m3 m-3, marking a 485 

dramatic decrease over the corresponding median RMSE. Given that a large prediction bias existed in each 

land cover type, and that the model performance did not vary significantly across different types, it was 

suggested that the uneven distribution of land cover types across samples was not the major cause of the 

decreased overall model accuracy over unknown spaces. 

Table 5. Performance metric statistics for the XGBoost model developed using all stations, representative 490 

stations, and those of the latter model over each land cover type. 

Types 
R Bias (m3 m-3) RMSE (m3 m-3) ubRMSE (m3 m-3) 

med min max med min max med min max med min max 

All stations 0.64 -1.0 1.0 0.00 -0.39 0.34 0.075 0.005 0.397 0.055 0.000 0.188 

Selected stations 0.74 0.11 0.99 0.00 -0.21 0.21 0.068 0.019 0.220 0.052 0.017 0.132 

Forests 0.73 0.11 0.85 0.02 -0.14 0.18 0.079 0.041 0.185 0.061 0.026 0.091 

Shrublands 0.61 0.46 0.79 -0.01 -0.07 0.10 0.043 0.027 0.116 0.031 0.022 0.056 

Savannas 0.77 0.24 0.97 0.01 -0.17 0.18 0.070 0.019 0.194 0.051 0.017 0.132 

Grassland 0.75 0.26 0.99 0.00 -0.21 0.21 0.067 0.019 0.220 0.053 0.018 0.083 

Urban 0.68 0.34 0.87 0.00 -0.15 0.13 0.068 0.027 0.152 0.050 0.025 0.067 

Croplands 0.73 0.29 0.89 0.00 -0.20 0.21 0.065 0.030 0.214 0.049 0.026 0.106 

Barren 0.57 0.27 0.82 -0.03 -0.07 0.08 0.050 0.028 0.090 0.034 0.025 0.056 

4.3 Validation of the GLASS SM product on independent networks 

Using the XGBoost model developed above, a global 1-km spatiotemporally continuous soil moisture 

product (GLASS SM) was generated. To intuitively demonstrate the ability of this product for capturing the 

temporal variations in soil moisture over an unknown space, four independent networks under different 495 

climatic and environmental conditions were selected, and the time-series curves of the GLASS and measured 

soil moisture for these networks were compared. Considering the high spatiotemporal variability of surface 

soil moisture, and the scale differences between point-scale observations and the 1-km GLASS SM product, 

the mean measured soil moisture curve was calculated by averaging soil moisture curves from all stations 

within a network, and compared with the mean predicted soil moisture curve calculated using all 500 

corresponding pixels of the GLASS SM product within that network. Moreover, as an input variable of the 
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1-km soil moisture estimation model, the time-series curves of the ERA5-Land reanalysis soil moisture 

product over the four independent networks were also extracted as a reference.  

In most cases, the GLASS soil moisture curves were much closer to the measured values than the time-

series curves of the ERA5-Land reanalysis soil moisture product in both the YA and YB soil moisture 505 

networks (Fig. 6 (a), (b)). The R values between the GLASS and measured soil moisture for these two 

networks were 0.84 and 0.89, respectively, which were slightly higher than the ERA5-Land soil moisture 

(0.80 and 0.84); whereas the ubRMSE values were 0.048 and 0.034 m3 m-3, respectively, slightly lower than 

the ERA5-Land soil moisture product (0.052 and 0.044 m3 m-3). Accordingly, over these two relatively dense 

soil moisture networks, the 1-km GLASS SM product can basically capture the dynamics of measured soil 510 

moisture. However, underestimates occurred at some high-value intervals on the measured soil moisture 

curves, which may be caused by nearby irrigation at some stations within agricultural regions, where the 

GLASS SM product may not be able to capture such patterns, given that irrigation is usually not uniformly 

distributed in space. In contrast, large biases were found in the ERA5-Land soil moisture product in both the 

YA and YB networks over the entire period, with mean biases of 0.037 and 0.086 m3 m-3, respectively. 515 

For the Fort Cobb and Little Washita soil moisture networks, both the GLASS and ERA5-Land soil 

moisture estimates basically captured the dynamics of measured soil moisture (Fig. 6 (c), (d)). Specifically, 

the R values between the mean GLASS and measured soil moisture for these two networks were 0.69 and 

0.76, respectively, slightly lower than the ERA5-Land soil moisture product (0.74 and 0.77). However, both 

the GLASS and ERA5-Land reanalysis soil moisture products showed a large positive bias throughout most 520 

of the observation period, particularly in the Little Washita network. This is likely because these two soil 

moisture networks cover a relatively large watershed containing only a few stations. Nevertheless, the mean 

biases of the 1-km GLASS SM product were largely reduced compared with those of the ERA5-Land soil 

moisture product. In addition, the ubRMSE values between the mean GLASS and measured soil moisture 

values for these two networks were 0.037 and 0.033 m3 m-3, respectively, which were significantly lower 525 

than those for the ERA5-Land soil moisture (0.047 and 0.046 m3 m-3). Overall, above results suggested that 

the derived product can accurately capture the temporal variations of in situ soil moisture under different 

climatic conditions. Further, the GLASS SM product achieved similar R values as the ERA5-Land product 

across these networks, while significantly reducing the bias and ubRMSE values (< 0.05 m3 m-3). 
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 530 

Figure 6. Time-series plots of the mean in situ, ERA5-Land, and GLASS soil moisture for four independent 

soil moisture networks. 

4.4 Comparison with existing global soil moisture products 

After producing the global 1-km spatiotemporally continuous GLASS SM product, it was compared with 

two global microwave soil moisture products for spatiotemporal consistency. The first product selected for 535 

comparison was SPL2SMAP_S, currently the only publicly available global soil moisture product at a spatial 

resolution of 1 km. Because the SPL2SMAP_S 1-km product has a temporal resolution of 12 days over most 
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global areas and it has many spatial gaps at the daily scale, spatial synthesis of the SPL2SMAP_S was 

conducted during a 12-day period with relatively high spatial coverage before comparison. Figure 7 shows 

the spatial distribution of the SPL2SMAP_S 1-km soil moisture product, synthesized from 3 to 15 October 540 

2016, alongside the 1-km spatiotemporally continuous GLASS SM map for 9 October 2016. Here, it can be 

seen that the 12-day synthetic SPL2SMAP_S soil moisture product has large spatial gaps (e.g., the western 

continental United States, western China, and southwestern Australia); whereas the GLASS SM product has 

a substantially more complete spatial coverage (except for the high-latitude regions during the cold seasons). 

With regards to the spatial distribution characteristics, both soil moisture products with 1 km resolutions 545 

exhibited high levels of consistency, with higher soil moisture levels found in the tropics, eastern U.S., and 

southeastern China, and lower levels observed in deserts (e.g., Sahara) and other semi-arid regions. 

 

Figure 7. (a) 12-day synthetic SPL2SMAP_S 1-km soil moisture map from 3 to 15 October 2016, and (b) 

the 1-km spatiotemporally continuous GLASS SM map on 9 October 2016. 550 

The second global product selected for comparison was the widely used ESA CCI combined soil moisture 

dataset with a spatial resolution of 0.25°. Because the CCI soil moisture product has a daily temporal 

https://doi.org/10.5194/essd-2022-348
Preprint. Discussion started: 13 January 2023
c© Author(s) 2023. CC BY 4.0 License.



24 
 

resolution and more complete spatial coverage, some quantitative analyses can be conducted when comparing 

with the 1-km spatiotemporally continuous GLASS SM product. Figure 8 shows the spatial distribution of 

the CCI active–passive microwave combined soil moisture and GLASS SM resampled to 0.25° for four days 555 

from different seasons in 2016, as well as the corresponding scatterplots of these two soil moisture products. 

The high spatial consistency between the CCI soil moisture product and resampled GLASS SM product on 

different dates is readily apparent, as both products display lower soil moisture values in arid regions, 

including the western U.S., northern and southern Africa, Middle East, central and western Asia, and Austria, 

and higher soil moisture values in tropical and temperate regions, such as central Africa, southern Asia, the 560 

eastern U.S., and southeastern China. Although CCI estimates incorporate a variety of active and passive 

microwave soil moisture products, its spatial coverage remains incomplete partly due to observation gaps of 

the sensors, and the physical limitations of microwave soil moisture retrieval algorithms (Dorigo et al., 2017), 

such as failing to provide accurate soil moisture predictions on densely vegetated land surfaces (e.g., the 

Amazon River and Congo basins). In contrast, the GLASS SM product shows greater spatial integrity, except 565 

at high latitudes in cold seasons due to low temperatures and frozen soils. The R values between the two 

products on the four dates ranged from 0.753 to 0.840, with higher correlations in the spring and winter than 

in the summer or autumn (Fig. 8 (i–l)), possibly related to the larger differences of the two products over 

high latitudes. However, the GLASS SM product displayed a general underestimation relative to the CCI 

combined soil moisture. Although the overestimation of the CCI soil moisture product has been reported in 570 

previous study, particularly for Equatorial (Savanna) regions (Al-Yaari et al., 2019), the GLASS SM product 

may also contain some biases, which jointly result in a relatively high root mean square difference (RMSD) 

between them (0.071–0.084 m3 m-3). Nevertheless, these two soil moisture products exhibited high and stable 

spatial consistency across the seasons. 
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 575 

Figure 8. (a–d) e ESA CCI combined soil moisture maps at 0.25°, (e–h) the corresponding spatiotemporally 

continuous GLASS SM maps resampled to 0.25°, and (i–l) scatterplots of the two products for four Julian 

dates (90, 180, 270, 360) selected from different seasons of 2016. 

In addition to the spatial consistency analysis described above, the temporal consistency between the CCI 

combined soil moisture product and spatiotemporally continuous GLASS SM product was explored as well. 580 

Specifically, for each pixel of these two soil moisture products with > 30 days of concurrent predictions, the 

R and RMSD between the time-series soil moisture predictions were calculated separately for 2016, and the 

spatial distribution of results is shown in Fig. 9. The correlation between two products was high in most 

global areas, except the Sahara Desert, high latitudes, and some localized regions. The relatively low or even 

negative R values between the two products in the Sahara Desert likely result from the soil moisture in this 585 

region being near zero, and a small difference in temporal variation may lead to poor correlation. It can also 

be seen from Fig. 9 (b) that the RMSD values between the two products in the Sahara Desert were rather 

small. The relatively low R values between the two products at high latitudes may be attributed to the irregular 

prediction frequency of the CCI product at high latitudes, and the rapid change in soil moisture during the 

freeze–thaw transition period in this region, possibly causing larger errors in both products, and thus 590 

increased temporal inconsistency. Greater differences between soil moisture products at high latitudes have 
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similarly been found elsewhere (Wang et al., 2021). Further, no obvious patterns were revealed regarding the 

RMSD distribution between the two soil moisture products, as the regions with relatively large RMSD values 

were rather scattered. 

 595 

Figure 9. The spatial distribution of (a) R and (b) RMSD between the ESA CCI combined soil moisture 

product, and the spatiotemporally continuous GLASS SM product in 2016. 

5 Discussion 

To address the lack of high-resolution, spatiotemporally continuous global soil moisture products, this 

study developed a global 1-km soil moisture estimation framework which integrated multi-source datasets 600 

using an XGBoost model. This framework was adapted from the 30 m soil moisture estimation framework 

proposed by zhang et al. (2022b), in which the Landsat 8 surface reflectance and thermal observations were 

replaced with the spatiotemporally continuous GLASS albedo, LST, and LAI products, to mitigate the 

influence of clouds on the spatial continuity and temporal resolution of soil moisture product. Meanwhile, 

the relatively high temporal resolution of GLASS products allows for much more collocated training samples, 605 

which are supposed to alleviate the underestimation of the original 30 m model at high soil moisture levels. 
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In addition, considering the relatively large scale differences between point-scale in situ soil moisture datasets 

and GLASS products compared to Landsat datasets, the TC method was adopted to select the representative 

soil moisture stations and their measurements were used as the training target of the model. Results showed 

that the 1-km soil moisture estimation model achieved satisfactory overall accuracy and training the model 610 

with representative stations selected by the TC method can considerably improve its performance over 

unknown time and space. 

Most of previous machine learning-based studies aimed at soil moisture estimation have divided the 

samples from all observation locations and times randomly into training and test datasets. As a result, model 

accuracy for the test dataset may seem sufficient, but these samples may not be spatially or temporally 615 

independent of those in the training dataset. Accordingly, model performance over unknown time or space 

must be fully evaluated against multiple stations. Senyurek et al.’s (2020) trained a random forest model 

using the Cyclone Global Navigation Satellite System observations, as well as the ISMN in situ soil moisture 

and other geophysical datasets, which was then fully evaluated using a 5-fold cross-validation, site-

independent, and year-based techniques. Before the model training process, several critical screening 620 

conditions were applied to select 106 stations from the 234 ISMN soil moisture stations over the CONUS, 

and the 5-fold cross-validation R and RMSE of the random forest model were 0.89 and 0.052 m3 m-3, 

respectively; whereas the site-independent cross-validation R and RMSE values were 0.64 and 0.088 m3 m-

3, respectively. Similarly, the overall R and RMSE of the 1-km GLASS SM model for the random and site-

independent test samples were 0.941, 0.038 m3 m-3, and 0.715, 0.079 m3 m-3, respectively. Notably, Senyurek 625 

et al. (2020) attributed the relatively lower site-independent validation accuracy to the fact that different soil 

moisture stations have distinct climatology, which is difficult for the machine learning model to capture 

without bias. The authors further suggested that model performance could be improved by increasing the 

representativeness of various land surface conditions within training datasets. Although a representative 

training dataset is essential for data-driven machine learning models, it was found here that a large prediction 630 

bias existed across all land cover types and the resulting model performance did not vary significantly among 

them. Therefore, it was concluded here that the site-specific biases induced by scale differences rather than 

the uneven distribution of land cover types among samples are the major cause of the decreased overall 

accuracy of the model over unknown time and space. 

To date, several studies have attempted to further improve the accuracy of machine learning based soil 635 

moisture estimation models through different strategies. Abbaszadeh et al. (2019) classified in situ soil 
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moisture stations within the CONUS according to soil texture class, developing 12 distinct random forest 

models to downscale the SMAP 36-km soil moisture product using atmospheric, geophysical and in situ soil 

moisture datasets. Although their downscaled 1-km soil moisture product achieved good overall validation 

accuracy, site-specific biases between the product and measured soil moisture data remained for most stations 640 

of the two independent soil moisture networks. Similarly, Karthikeyan and Mishra (2021) clustered CONUS 

into 11 homogeneous regions using a k-means algorithm based on a range of climate and landscape variables, 

before training an XGBoost model for each region and soil layer to downscale the SMAP Level 4 soil 

moisture product. While validation at 79 independent soil moisture stations showed that the downscaled 

product successfully captured temporal variations of measured soil moisture, site-specific biases were present 645 

at these stations. We also have attempted to classify the ISMN stations based on their soil texture classes, or 

climatic and environmental properties prior to separately developing the models, however, the overall 

prediction accuracy did not seem to improve significantly. 

Moreover, a distinct XGBoost model (Model 2) was also trained using the average soil moisture of all 30 

m pixels within a 1-km pixel where the station was located as the target variable, which was calculated using 650 

the 30 m soil moisture estimation model developed by Zhang et al. (2022b). The overall accuracies of Model 

2 and the previously developed model trained directly using in situ soil moisture (Model 1) on the YA and 

YB networks were then compared (Fig. 10). Here, it can be seen that Model 1 achieved good overall 

prediction accuracy for both networks; but, as also shown in Fig. 6, Model 1 showed slight underestimation 

at higher soil moisture levels, especially in the YA region. In contrast, while Model 2 obtained similar R 655 

values as Model 1, it exhibited much more sever underestimation at higher soil moisture levels in both the 

YA and YB networks. This may be attributed to the lack of high soil moisture samples in the original 30 m 

soil moisture estimation model, which were even further reduced after averaging to 1 km. To further improve 

Model 2 accuracy, uniform global sampling can be performed to generate a large number of 1-km averaged 

soil moisture samples, but this would be rather labor intensive. Alternatively, the global 1-km GLASS SM 660 

product generated using Model 1 accurately captured the temporal variations of the in situ soil moisture, and 

exhibited high spatiotemporal consistency with microwave soil moisture products, although some site-

specific biases may exist while validating the product against sparse soil moisture stations. Future studies 

should focus on reducing such biases and mitigating the impacts of scale differences on the machine learning 

models, either by deploying more dense soil moisture monitoring networks, or by further improving the 665 

accuracy of soil moisture products at much higher resolutions (e.g., 30 m), and then training the 1-km 
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spatiotemporally continuous GLASS SM model directly using the higher resolution soil moisture products. 

 

Figure 10. Scatterplots of mean measured and predicted soil moisture from different models on the: (a–b) 

YA, and (c–d) YB soil moisture networks. Point colors indicate the probability density; whereas the red 670 

dashed line is the linear regression, and the black solid line is the 1:1 relationship. 

6 Data availability 

The global daily 1-km spatiotemporally continuous soil moisture product (GLASS SM) from 2000 to 2020 

is freely available at http://glass.umd.edu/soil_moisture/. In addition, for user’s convenience, the annual 

average global soil moisture dataset at 1 km resolution was also generated, which can be downloaded from 675 

https://doi.org/10.5281/zenodo.7172664 (Zhang et al., 2022a). Note that this product represents the 

volumetric water content in the uppermost soil layer (0–5 cm). Files are stored in the Sinusoidal projection 

and “GeoTIFF” format. 

7 Conclusions 

A global 1-km spatiotemporally continuous soil moisture product (GLASS SM) was derived here using an 680 
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XGBoost machine learning model that integrated multi-source datasets, including remotely sensed GLASS 

products, ERA5-Land reanalysis products, as well as ground-based ISMN soil moisture, and static auxiliary 

datasets. Validation of the GLASS SM product was conducted across four independent networks, and 

highlighted the product’s strong capacity to capture temporal dynamics of measured soil moisture. This 

global 1-km soil moisture product also exhibited high spatiotemporal consistency with two global microwave 685 

soil moisture products. Overall, the main findings of the study can be summarized as follows: 

(1) When the samples from all stations and years were randomly divided into training and test datasets, the 

XGBoost model achieved a high accuracy on the random test samples. By using the TC method to select 

representative stations, the validation accuracy of the model was further improved significantly, with an 

overall R and RMSE of 0.941 and 0.038 m3 m-3, respectively. 690 

(2) Training the model with representative stations selected by the TC method also considerably improved 

its performance for site- or year-independent samples (i.e., over unknown time and space). Compared to the 

model developed without station filtering, the distribution of performance metrics of the model trained using 

representative stations was more concentrated across all stations, with the median R and ubRMSE of the 

model for each station increasing from 0.64 to 0.74, and decreasing from 0.055 to 0.052 m3 m-3, respectively. 695 

(3) The time-series validation results of the 1-km GLASS SM product of the four independent networks 

indicated that the product can accurately capture temporal variations in measured soil moisture under 

different climatic conditions. The model achieved similar R values as the ERA5-Land soil moisture product, 

while significantly reducing the biases and ubRMSE values (<0.05 m3 m-3) across all networks. 

(4) Compared with the 1-km SMAP/Sentinel-1 SPL2SMAP_S soil moisture product and the ESA CCI 700 

active–passive microwave combined soil moisture product at 0.25°, the global 1-km spatiotemporally 

continuous soil moisture product generated here had a more complete spatial coverage, and exhibited high 

spatiotemporal consistency with these two products. 

The long-term (2000–2020) global GLASS SM product with high spatiotemporal resolution (1 km, daily) 

and reliable accuracy generated here can benefit the climate change studies, hydrological modeling, and 705 

agricultural applications at regional and global scales. It is also a valuable complement to currently released 

global microwave and model-simulated soil moisture datasets. Future studies should consider improving 

upon the accuracy of the GLASS SM product by reducing prediction biases of machine learning models. 
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