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Abstract. Motivated by the lack of long-term global soil moisture products with both high spatial and 

temporal resolutions, a global 1-km daily spatiotemporally continuous soil moisture product (GLASS SM) 

was generated from 2000 to 2020 using an ensemble learning model (eXtreme Gradient Boosting—

XGBoost). The model was developed by integrating multiple datasets, including albedo, land surface 15 

temperature, and leaf area index products from the Global Land Surface Satellite (GLASS) product suite, as 

well as the European reanalysis (ERA5-Land) soil moisture product, in situ soil moisture dataset from the 

International Soil Moisture Network (ISMN), and auxiliary datasets (Multi-Error-Removed Improved-

Terrain DEM and SoilGrids). Given the relatively large scale differences between point-scale in situ 

measurements and other datasets, the triple collocation (TC) method was adopted to select the representative 20 

soil moisture stations and their measurements for creating the training samples. To fully evaluate the model 

performance, three validation strategies were explored: random, site-independent, and year-independent. 

Results showed that although the XGBoost model achieved the highest accuracy on the random test samples, 

it was clearly a result of model overfitting. Meanwhile, training the model with representative stations 

selected by the TC method could considerably improve its performance for site- or year-independent test 25 

samples. The overall validation accuracy of the model trained using representative stations on the site-

independent test samples, which was least likely to be overfitted, was a correlation coefficient (R) of 0.715 

and root mean square error (RMSE) of 0.079 m3 m-3. Moreover, compared to the model developed without 

station filtering, the validation accuracies of the model trained with representative stations improved 
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significantly on most station, with the median R and unbiased RMSE (ubRMSE) of the model for each station 30 

increasing from 0.64 to 0.74, and decreasing from 0.055 to 0.052 m3 m-3, respectively. Further validation of 

the GLASS SM product across four independent soil moisture networks revealed its ability to capture the 

temporal dynamics of measured soil moisture (R = 0.69–0.89; ubRMSE = 0.033–0.048 m3 m-3). Lastly, the 

inter-comparison between the GLASS SM product and two global microwave soil moisture datasets—the 1-

km Soil Moisture Active Passive/Sentinel-1 L2 Radiometer/Radar soil moisture product and the European 35 

Space Agency Climate Change Initiative combined soil moisture product at 0.25°—indicated that the derived 

product maintained a more complete spatial coverage, and exhibited high spatiotemporal consistency with 

those two soil moisture products. The annual average GLASS SM dataset from 2000 to 2020 can be freely 

downloaded from https://doi.org/10.5281/zenodo.7172664 (Zhang et al., 2022a), and the complete product 

at daily scale is available at http://glass.umd.edu/soil_moisture/. 40 

1 Introduction 

Soil moisture typically refers to the water content of the unsaturated soil zone (Liang and Wang, 2020). As 

an essential climate variable specified by the Global Climate Observing System, it plays a critical role in 

terrestrial water, energy, and carbon cycles (Dorigo et al., 2017; Humphrey et al., 2021). Over recent decades, 

soil moisture datasets have been used across a wide range of earth system applications, including climate-45 

related research (Berg and Sheffield, 2018), hydrological modeling (Brocca et al., 2017), rainfall estimating 

(Brocca et al., 2019), disaster forecasting (Kim et al., 2019), as well as agriculture and ecosystem monitoring 

(Liu et al., 2020; Holzman et al., 2014), mainly attributed to the progress in remotely sensed soil moisture 

algorithms. However, substantial gaps remain between the currently released soil moisture products and the 

growing requirements of various applications, especially at regional and local scales (Peng et al., 2021). 50 

Global soil moisture products can generally be obtained through model simulations or remote sensing, 

mostly at spatial resolutions of tens of kilometers. The advantages of simulated or reanalysis soil moisture 

datasets, such as the land component of the European ReAnalysis V5 (ERA5-Land) and the Global Land 

Data Assimilation System (GLDAS) soil moisture products (Rodell et al., 2004; Muñoz-Sabater et al., 2021), 

are their spatiotemporal continuity and availability of root-zone estimates; however, their corresponding 55 

errors can be rather large when the quality of forcing datasets or model performance are relatively poor 

(Sheffield et al., 2004). Alternatively, microwave remote sensing has been regarded as the most promising 

technique to acquire surface soil moisture estimates at global scale, because of its high sensitivity to soil 

water content dynamics and its capacity for all-weather monitoring (Babaeian et al., 2019; Shi et al., 2019). 
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Currently, several global soil moisture products have been operationally generated from microwave 60 

scatterometers and radiometers, including the Advanced Scatterometer (ASCAT), Advanced Microwave 

Scanning Radiometer for Earth Observing System (AMSR-E), in addition to instruments on-board the Soil 

Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites (Chan et al., 2016; 

Wagner et al., 2013; Njoku et al., 2003; Kerr et al., 2016), typically with a grid spacing of 9–50 km, and a 

revisit cycle of 1–3 days. 65 

Motivated by the lack of high spatial resolution soil moisture products capable of benefiting numerous 

regional-scale applications (Peng et al., 2021), various algorithms have been proposed to downscale the more 

coarse global soil moisture products mentioned above (Peng et al., 2017), some of which have been used to 

derive global or regional soil moisture products at fine scales in recent years. For example, by combing 

Sentinel-1 synthetic aperture radar (SAR) dataset with the SMAP radiometer dataset, Das et al. (2019) 70 

generated global soil moisture products at 3 km and 1 km resolutions. Song et al. (2022) downscaled the 

AMSR-E/AMSR-2 soil moisture products using optical reflectance from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and gap-filled land surface temperature (LST) datasets, producing a 1-km daily 

soil moisture product over China under all-weather conditions. Elsewhere, Naz et al. (2020) generated a daily 

soil moisture reanalysis dataset (ESSMRA) at 3 km resolution over Europe by assimilating the European 75 

Space Agency (ESA) Climate Change Initiative (CCI) product into a community land model via an ensemble 

Kalman filter method. Additionally, Vergopolan et al. (2021) recently released a 30 m sub-daily soil moisture 

dataset across the conterminous United States (CONUS), which was retrieved using the merged 30-m 

brightness temperatures obtained by combining a hyper-resolution land surface model (HydroBlocks), a 

radiative transfer model, and the SMAP Enhanced Level 3 brightness temperatures at 9 km. Apart from these 80 

downscaled high-resolution datasets, several studies have directly derived the 1-km operational soil moisture 

products over Europe from multi-temporal Sentinel-1 SAR images using change detection algorithms, 

showing potential for global coverage (Balenzano et al., 2021; Bauer-Marschallinger et al., 2019). 

Table 1 lists the spatial and temporal coverages, temporal resolution and grid spacing (i.e., pixel size, which 

may be finer than the actual spatial resolution) of several representative and publicly available soil moisture 85 

products. Accordingly, there remains a lack of long-term global soil moisture products at both high spatial 

and temporal resolutions. Although the SMAP/Sentinel-1 L2 Radiometer/Radar soil moisture dataset 

(SPL2SMAP_S) has global coverage and a spatial resolution up to 1 km, its temporal resolution degrades to 

12 days over most regions owing to the relatively long revisit cycle of Sentinel-1 SAR satellites. Recently, 
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Zheng et al. (2023) developed a global seamless soil moisture dataset by downscaling the 0.25° ESA CCI 90 

product using random forest model, achieving an R of 0.89 and ubRMSE of 0.045 m3 m-3, but they only 

adopted a random cross-validation strategy which is likely to be affected by model overfitting. Other 

downscaled soil moisture datasets generally maintain regional or continental coverage, limited by the lack of 

high-resolution seamless input datasets or model applicability. Optical and thermal remote sensing techniques 

can provide long-term observations with high spatiotemporal resolutions, which have been widely used to 95 

derive soil moisture or relevant indices (Yue et al., 2019; Ghulam et al., 2007; Rahimzadeh-Bajgiran et al., 

2013). However, optical and thermal satellite datasets can be detrimentally affected by cloud coverage, 

hindering their use in soil moisture retrieval or downscaling across a global scale. To address this issue, the 

latest versions of Global Land Surface Satellite (GLASS) products (Liang et al., 2021) were used here, 

including the spatiotemporally continuous surface albedo, leaf area index (LAI), and land surface temperature 100 

(LST), which were produced with reliable accuracies primarily based on MODIS observations. In the present 

study, these fine-scale GLASS products were integrated with auxiliary datasets (terrain and soil texture) and 

the seamless ERA5-Land reanalysis soil moisture product at a coarse scale using an ensemble machine-

learning model to estimate daily soil moisture at 1 km resolution. This framework was adapted from Zhang 

et al. (2022b), where models were trained using Landsat 8 observations and multi-source datasets as inputs, 105 

and the International Soil Moisture Network (ISMN) measurements as the target. To produce a seamless 

global soil moisture product, Landsat datasets prone to cloud interference were replaced with 

spatiotemporally continuous GLASS products. Considering the larger scale difference between GLASS 

products and in situ soil moisture compared to Landsat datasets, the triple collocation (TC) technique 

(Stoffelen, 1998; McColl et al., 2014) was adopted to select the representative soil moisture stations prior to 110 

model training for mitigating the influence of scale mismatch on prediction accuracy. 

Specifically, the aim of this research was to provide a long-term (2000–2020) global soil moisture dataset 

(GLASS SM) with high spatiotemporal resolutions (1 km, daily) and reliable accuracy. To achieve this goal, 

an ensemble learning model, eXtreme Gradient Boosting (XGBoost) (Friedman, 2001; Chen and Guestrin, 

2016), was developed by integrating multi-source datasets. The model was then applied to generate the global 115 

1-km GLASS SM product, which was further evaluated against four independent soil moisture networks. 

Lastly, an inter-comparison was made between the derived product and two global microwave soil moisture 

products to investigate their spatiotemporal consistency. 
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Table 1 Main characteristics of several representative and publicly available soil moisture products. 120 

Category 
Soil moisture 

products 

Grid 

spacing 

Spatial 

coverage 

Temporal 

resolution 

Temporal 

coverage 
References Data link Notes 

Downscaled 

products 

SPL2SMAP_S 1/3 km Global 6–12 days 2015–present Das et al. (2019) https://nsidc.org/data/spl2sma

p_s 

- 

Downscaled 

ESA-CCI SSM 

1 km Global Daily 2000–2020 Zheng et al. 

(2023) 

https://doi.org/10.11888/Rem

oteSen.tpdc.272760 

Seamless 

Downscaled 

AMSR SM 

1 km China Daily 2003–2019 Song et al. 

(2022) 

http://dx.doi.org/10.11888/Hy

dro.tpdc.271762 

- 

Downscaled 

ASCAT SM 

1 km Europe 1.5 days 2007–present Wagner et al. 

(2008) 

https://hsaf.meteoam.it/ - 

ESSMRA 3 km Europe Daily 2000–2015 Naz et al. 

(2020) 

https://doi.org/10.1594/PANG

AEA.907036 

Seamless 

SMAP-

HydroBlocks 

30 m CONUS 6 hours 2015–2019 Vergopolan et 

al. (2021) 

https://doi.org/10.5281/zenod

o.5206725 

- 

Microwave 

remote 

sensing 

products 

Sentinel-1 1 km Southern 

Italy 

6–12 days 2015–2018 Balenzano et al. 

(2021) 

https://doi.org/10.5281/zenod

o.5006307 

- 

CGLS Sentinel-

1 SSM 

1 km Europe 1.5–8 days 2014–present Bauer-

Marschallinger 

et al. (2019) 

https://land.copernicus.eu/glo

bal/products/ssm 

- 

ASCAT 12.5/25 

km 

Global Daily 2007–present Bartalis et al. 

(2007) 

https://hsaf.meteoam.it/ - 

AMSR-E 

/AMSR2 

25 km 

10/25 km 

Global Daily 2002–2011 

2012–present 

Owe et al. 

(2008) 

https://search.earthdata.nasa.g

ov/search 

- 

Fengyun-3 25km Global Daily 2011–2020 Yang et al. 

(2012) 

http://satellite.nsmc.org.cn/ - 

SMAP-L3 36 km Global Daily 2015–present O'Neill et al. 

(2021) 

https://nsidc.org/data/SPL3S

MP/versions/8 

- 

SMAP-IB 36 km Global Daily 2015–2021 Li et al. (2022) https://ib.remote-

sensing.inrae.fr/ 

- 

SMOS CATDS 

Level 3 

25 km Global Daily 2010–present Al Bitar et al. 

(2017) 

https://www.catds.fr/sipad/ - 

SMOS-IC 25 km Global Daily 2010–2021 Wigneron et al. 

(2021) 

https://ib.remote-

sensing.inrae.fr/ 

- 

SGD-SM 0.25° Global Daily 2013–2019 Zhang et al. 

(2021) 

https://doi.org/10.5281/zenod

o.4417458 

Seamless 

MCCA-AMSR 

MCCA-SMAP 

0.25° 

36 km 

Global Daily 2002–2021 

2015–2022 

Zhao et al. 

(2021) 

https://doi.org/10.11888/Terre

.tpdc.272907 

https://doi.org/10.11888/Terre

.tpdc.272088 

- 

ESA CCI 0.25° Global Daily 1978–2021 Gruber et al. 

(2019) 

https://esa-soilmoisture-

cci.org/data 

- 

Reanalysis 

products 

GLDAS-Noah 0.25° Global 3 hours 2000–2021 Beaudoing and 

Rodell (2020) 

https://hydro1.gesdisc.eosdis.

nasa.gov/data/GLDAS/GLDA

S_NOAH025_3H.2.1/ 

Seamless 

ERA5-Land 0.1° Global Hourly 1950–present Muñoz-Sabater 

(2019, 2021) 

https://cds.climate.copernicus.

eu/cdsapp#!/dataset/reanalysis

-era5-land 

Seamless 

Present 

study 

GLASS SM 1 km Global Daily 2000–2020 - http://glass.umd.edu/soil_moi

sture/ 

Seamless 

2 Datasets 

The multi-source datasets used to generate the global high-resolution soil moisture product here can be 

grouped into four categories (Table 2). Namely, remotely sensed variables derived from the three GLASS 

products, reanalysis surface soil moisture from ERA5-Land dataset, and auxiliary variables extracted from 

the Multi-Error-Removed Improved-Terrain (MERIT) DEM and SoilGrids products were used to train an 125 

XGBoost model for estimating the global soil moisture product; whereas globally distributed in situ soil 
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moisture measurements from ISMN stations were used as targets for model training. In addition, four 

independent in situ soil moisture datasets, and two microwave soil moisture products were used to validate 

and compare the derived global product. 

Table 2 Multi-source datasets used to generate the global high-resolution soil moisture product. 130 

Category Dataset Spatial resolution Temporal resolution 

Satellite products GLASS albedo 

GLASS LST 

GLASS LAI 

500 m 

1 km 

500 m 

4-day 

Daily 

8-day 

Reanalysis product ERA5-Land SSM 0.1° Hourly 

Auxiliary datasets MERIT DEM 

SoilGrids 2.0 

90 m 

250 m 

- 

- 

Ground-based data ISMN SSM Point scale Hourly 

2.1 Remotely sensed datasets 

The GLASS product suite has been employed in various applications owing to its long-term coverage, 

spatial continuity, high spatial resolution, and accuracy (Liang et al., 2021). Here, the latest version of GLASS 

albedo, LST, and LAI products served as the primary inputs to the ensemble learning model. Specifically, the 

GLASS V6 LAI product (500 m resolution) was generated from six MODIS 8-day surface reflectance bands 135 

of MOD09A1 using a bidirectional long short-term memory deep learning model (www.glass.umd.edu) (Ma 

and Liang, 2022). Notably, this product is relatively more accurate than the 250 m GLASS LAI estimated 

from two bands of MOD09Q1. The all-sky 1-km GLASS LST was produced by integrating multiple datasets 

from MODIS, reanalysis, and in situ LST measurements using a random forest model (Li et al., 2021). Daily 

global LSTs averaged from instantaneous GLASS LST products were used here, which can be downloaded 140 

soon from www.glass.umd.edu. The gap-free GLASS albedo products were generated using a combination 

of a direct-estimation algorithm (Qu et al., 2014), and a spatiotemporal filtering scheme (Liu et al., 2013). 

Namely, the black-sky visible, near-infrared, and shortwave albedo extracted from the GLASS V42 albedo 

products were used in the present study (www.glass.umd.edu). 

2.2 ERA5-Land reanalysis soil moisture product 145 

ERA5 provides a range of global atmospheric, terrestrial, and oceanic variables from 1950 to present at 31 

km spatial resolution (Hersbach et al., 2020). Specifically, ERA5-Land is an enhanced global land reanalysis 

dataset obtained by downscaling the atmospheric forcing derived from the reanalysis of ERA5 to a native 

resolution of approximately 9 km (Muñoz-Sabater et al., 2021). ERA5-Land includes hourly estimates of 

volumetric soil moisture at four soil layers, and a grid spacing of 0.1° (https://cds.climate.copernicus.eu/). In 150 

http://www.glass.umd.edu/
http://www.glass.umd.edu/
http://www.glass.umd.edu/
https://cds.climate.copernicus.eu/
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the present study, the top layer (0–7 cm) of ERA5-Land soil moisture were used to match the shallow 

observation depths of optical satellites. The daily average soil moisture was calculated and resampled to 1 

km before being used as an input variable of the ensemble learning model. 

2.3 Static terrain and soil texture datasets 

Topography and soil properties, which can be treated as static variables due to their relatively slow rate of 155 

change over the short term, have an important influence on the spatial variations of soil moisture at finer 

scales. The global terrain dataset used in the study here was the high-accuracy MERIT DEM with a spatial 

resolution of 3 arc seconds (~90 m at the equator). The MERIT DEM integrates several spaceborne DEMs 

after eliminating their inherent primary error components, including speckle noise, stripe noise, absolute bias, 

and tree height bias (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/) (Yamazaki et al., 2017). After 160 

deriving the elevation, aspect, and slope from the MERIT DEM, these topographic variables were resampled 

to 1 km, and used as input features for the model. Alternatively, soil texture was derived from the SoilGrids 

V2.0 product at 250 m resolution (https://www.isric.org/explore/soilgrids). SoilGrids uses > 240,000 soil 

profile measurements, and > 400 environmental covariates worldwide to train machine learning models, and 

produce global soil property maps across six depth intervals (Poggio et al., 2021). Recent studies have shown 165 

that the SoilGrids product has both higher resolution and enhanced accuracy compared to other soil datasets 

at global scale (Dai et al., 2019), in addition to the ability of soil texture data to improve the bias and root 

mean square error (RMSE) of downscaled soil moisture products (Das et al., 2019). Accordingly, the mean 

contents of sand, silt, and clay were extracted for the first soil layer (0–5 cm) from the SoilGrids database, 

and resampled to 1 km. 170 

2.4 Ground-based soil moisture training dataset 

The ISMN aims to establish and maintain a global database of in situ soil moisture measurements for the 

validation and improvement of satellite-based and modelled soil moisture products. Currently, it consists of 

73 networks with over 2800 soil moisture stations worldwide, providing quality-controlled and harmonized 

datasets collected from monitoring networks and field experiments (Dorigo et al., 2021). Here, data for the 175 

period from 2000–2018 were obtained (https://ismn.earth/), and only stations with a sensing depth of < 5 cm 

were selected to match the observation depth of remotely sensed datasets. Soil moisture records were then 

screened according to the quality flags provided with the ISMN dataset (Dorigo et al., 2013), before being 

used as the training target for the machine learning model. The spatial distribution of the representative ISMN 

soil moisture stations selected using the TC method described in Sect. 3.2 is displayed in Fig. 1. The number 180 

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/
https://www.isric.org/explore/soilgrids
https://ismn.earth/
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and percentage of representative stations for each land cover type and climate class, which are calculated by 

using the 500-m MODIS land cover type product (Friedl and Sulla-Menashe, 2019) and the 1-km Köppen–

Geiger climate classification dataset (Cui et al., 2021), respectively, are also shown in Table 3. 

 

Figure 1 Spatial distribution of the 715 representative ISMN soil moisture stations used for training the 185 

model and four independent soil moisture networks used for validation, with the MODIS land cover type 

product (MCD12Q1) for 2016 displayed in the background. 

Table 3 The number and percentage of representative ISMN soil moisture stations for each climate class and 

land cover type. 

Climate class Num % Land cover type Num % 

Tropical 8 1.1  Forests 35 4.9 

Arid 135 18.9  Shrublands 16 2.2 

Temperate, dry summer 125 17.5  Savannas 185 25.9 

Temperate, dry winter 2 0.3  Grasslands 327 45.7 

Temperate, no dry season 194 27.1  Urban 12 1.7 

Cold, dry summer 36 5.0  Croplands 130 18.2 

Cold, dry winter 6 0.8  Barren 10 1.4 

Cold, no dry season 176 24.6     

Polar 33 4.6     

2.5 Independent in situ validation datasets 190 

Four soil moisture monitoring networks that were not included in the ISMN database were used to assess 
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the model’s ability to capture temporal variations in soil moisture over unknown area (Fig. 1). The YA and 

YB subnetworks are both part of the Yanco soil moisture network, located in a semi-arid agricultural region 

of the Murrumbidgee River Basin, Australia, with a flat topography, and elevation spanning 117–150 m (Yee 

et al., 2017). There are 13 and 11 stations in the YA and YB subnetworks, respectively, distributed across two 195 

9 × 9 km areas, and soil moisture observations from these stations can be downloaded from the Oznet 

Hydrological Monitoring website (http://www.oznet.org.au) (Smith et al., 2012). Two other micronets (Fort 

Cobb and Little Washita) are located in southwestern Oklahoma, USA, and are characterized by a humid 

subtropical climate (Starks et al., 2014). The primary land cover types are cropland and rangeland, and the 

topography is moderately rolling (Bindlish et al., 2009). Currently, there are 15 and 20 operational stations 200 

in the Fort Cobb and Little Washita networks, respectively, for which soil moisture datasets can be accessed 

through the Grazinglands Research Laboratory (https://ars.mesonet.org/). These four dense soil moisture 

networks have been used extensively to either validate or calibrate satellite soil moisture products (Ma et al., 

2021; Colliander et al., 2017; Chan et al., 2018). 

2.6 Microwave soil moisture product 205 

To further validate the spatiotemporal performance of the derived 1-km soil moisture product here, two 

additional microwave-based products were selected for comparison. The first product is the high resolution 

SMAP/Sentinel-1 SPL2SMAP_S dataset, which contains the first global 1-km soil moisture product that was 

publicly released in the past (Table 1). It has a temporal resolution of 6–12 days and can be downloaded from 

the National Snow and Ice Data Center at 1 km and 3 km resolutions (https://nsidc.org/data/spl2smap_s). 210 

According to Das et al. (2019), the average unbiased RMSE (ubRMSE) values achieved by both the 1-km 

and 3-km SPL2SMAP_S products over sparse soil moisture networks were approximately 0.05 m3 m-3. 

Considering that the SPL2SMAP_S baseline algorithm generally shows higher validation accuracy than the 

optional algorithm (directly disaggregating the SMAP 9-km soil moisture product), and the AM (descending 

orbits combination) soil moisture retrievals are more accurate than their APM equivalents (descending or 215 

ascending orbits combination) (Xu, 2020), the baseline AM soil moisture field “disagg_soil_moisture_1km” 

were extracted from the SPL2SMAP_S 1-km data group, and used for comparison. The second product is 

the CCI global soil moisture dataset released by the ESA, with a grid spacing of 0.25° and daily temporal 

resolution, which combines various passive and active microwave soil moisture products into a harmonized 

record with improved spatiotemporal coverages and has been fully validated across numerous global 220 

applications (Gruber et al., 2019; Dorigo et al., 2017). Specifically, the combined (active and passive) soil 

http://www.oznet.org.au/
https://ars.mesonet.org/
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moisture product from CCI V6.1 was used here (https://esa-soilmoisture-cci.org/data). 

3 Methods 

3.1 Overall framework 

Soil moisture is characterized by high spatiotemporal variability and its distribution is influenced by a 225 

range of environmental factors across different scales, such as climate, geographical conditions, soil 

properties, and surface coverage (Crow et al., 2012; Luo et al., 2022). Here, high-accuracy, spatiotemporally 

continuous GLASS products, including LST, albedo, and LAI, were used to provide surface temperature, 

spectral information on soil and vegetation, as well as information related to vegetation type and density. 

Considering the impact of topography and soil properties on soil moisture, topographic and soil texture 230 

fraction variables were extracted from the MERIT DEM and SoilGrids products, respectively. Additionally, 

the 0.1° ERA5-Land reanalysis soil moisture product was used to provide background soil moisture 

information. By utilizing an ensemble machine learning model, various variables extracted from these multi-

source datasets were integrated so that different environmental factors affecting soil moisture could be 

accounted for, and then soil moisture at fine scales could be estimated. 235 

Figure 2 shows a flowchart of the proposed 1-km, spatiotemporally continuous soil moisture estimation 

framework. Prior to the training phase, the TC method and the other two long-term soil moisture datasets 

(ERA5-Land reanalysis and ESA CCI soil moisture products) were adopted for selecting the representative 

soil moisture stations, considering the scale difference between point-scale soil moisture measurements 

collected by ISMN stations and GLASS products (the detailed selection procedure is presented in Sect. 3.2). 240 

Then, multiple variables were extracted from the corresponding input datasets, and spatiotemporally 

collocated with the in situ soil moisture measurements from the representative stations between 2000 and 

2018. Specifically. the black-sky visible, near-infrared, shortwave albedo, LAI, and LST were extracted from 

the three GLASS products, based on the geographic locations of stations. Each of these variables, together 

with topographic and soil texture fraction variables, and the coarse-scale reanalysis soil moisture were put 245 

into the XGBoost model, which was chosen to simulate the non-linear relationship between multiple input 

features and in situ soil moisture (the target variable). Lastly, those multi-source input datasets were 

resampled to 1 km, and then put into the developed XGBoost model for predicting the global 1-km 

spatiotemporally continuous soil moisture product (GLASS SM). Moreover, the GLASS SM product was 

evaluated against four independent soil moisture datasets, and then compared the SPL2SMAP_S and CCI 250 

soil moisture products for spatiotemporal consistency analyses. 

https://esa-soilmoisture-cci.org/data
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Figure 2 Flowchart of the proposed 1-km spatiotemporally continuous soil moisture estimation framework. 

3.2 Triple collocation-based station selection 

 As mentioned above, in situ soil moisture data from the ISMN stations were employed as the target 255 

variable to train the XGBoost model, which was then used to predict soil moisture product at 1 km resolution. 

The underlying assumption was that the measured soil moisture at these point-scale stations is representative 

of the average moisture status of the corresponding 1-km pixel; however, because of the high spatiotemporal 

variability of soil moisture, this assumption is not always upheld. Accordingly, the TC method, which has 

been widely applied to analysis the coarse-scale spatial representativeness of in situ soil moisture dataset 260 

(Gruber et al., 2013; Molero et al., 2018), was adopted here to select the most representative stations. 

Specifically, TC is an error analysis method proposed by Stoffelen (1998) employing three collocated datasets 

to address large uncertainties in wind speed measurements. TC has also been widely used in the evaluation 

of satellite soil moisture products given the limited number of core validation sites at the satellite footprint 

scale (Zheng et al., 2022). The commonly used error model for TC analysis is defined in Eq. (1): 265 

𝑋𝑖 =  𝛼𝑖 +  𝛽𝑖𝜃 +  𝜀𝑖 (1) 

where 𝑋𝑖 refers to the three collocated soil moisture observations; 𝜃 refers to the unknown true value of 

soil moisture; 𝛼𝑖  and  𝛽𝑖  are the additive and multiplicative biases of 𝑋𝑖  relative to the true value, 

respectively; and 𝜀𝑖 is the random additive noise with zero mean. The assumptions underlying this error 

model and detailed derivation process for the error variance of each dataset can be found in Gruber et al. 
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(2016). Notably, the assumptions made for TC analysis are similar to those made for the correlation 270 

coefficient (R) and RMSE (Gruber et al., 2016). To fulfill the independent error requirement of the TC 

analysis across the three datasets, the ISMN in situ soil moisture, model-based ERA5-Land soil moisture, 

and CCI combined microwave soil moisture were selected to construct the triplets. Among them, the CCI 

soil moisture product was selected here rather than other microwave soil moisture products, as it maintains a 

sufficiently long timescale to cover that of the training samples. The error variance of the ISMN soil moisture 275 

dataset, 𝜎𝜀
2 , was then calculated according to Eq. (2): 

𝜎𝜀
2 =  𝜎𝑖𝑠𝑚𝑛

2 − 
𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑒𝑟𝑎)𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑐𝑐𝑖)

𝐶𝑜𝑣(𝑋𝑒𝑟𝑎, 𝑋𝑐𝑐𝑖)
 (2) 

where 𝜎𝑖𝑠𝑚𝑛
2  is the variance of the ISMN in situ soil moisture; 𝐶𝑜𝑣 is the covariance operator; and 

𝑋𝑖𝑠𝑚𝑛, 𝑋𝑒𝑟𝑎, and 𝑋𝑐𝑐𝑖 denote the collocated ISMN, ERA5-Land, and CCI soil moisture observations, 

respectively. Based on TC analysis, McColl et al. (2014) proposed a method called extended triple collocation 

(ETC) to estimate the correlation coefficient between each dataset and the unknown target variable. 280 

Specifically, the ETC correlation coefficient of the ISMN soil moisture dataset, 𝑅𝐸𝑇𝐶, can be calculated via 

Eq. (3): 

𝑅𝐸𝑇𝐶 =  𝑠𝑖𝑔𝑛(±)√
𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑒𝑟𝑎)𝐶𝑜𝑣(𝑋𝑖𝑠𝑚𝑛, 𝑋𝑐𝑐𝑖)

𝜎𝑖𝑠𝑚𝑛
2 𝐶𝑜𝑣(𝑋𝑒𝑟𝑎, 𝑋𝑐𝑐𝑖)

 (3) 

where the sign of 𝑅𝐸𝑇𝐶  was corrected to positive. It is a scaled, unbiased signal-to-noise ratio metric 

complementary to 𝜎𝜀
2. Using the above TC-based metrics, and referring to previous studies (Yuan et al., 

2020; Anderson et al., 2012), several strict conditions were established to select the most representative ISMN 285 

stations: (1) > 500 triplets were available at the station during the period 2000–2018, (2) the R between any 

two soil moisture datasets in the triplets was > 0.2, (3) the square root of the 𝜎𝜀
2 calculated for the ISMN 

soil moisture dataset was < 0.06 m3 m-3, and (4) the 𝑅𝐸𝑇𝐶  between the ISMN soil moisture and the unknown 

soil moisture true values was > 0.7. A total of 715 representative ISMN soil moisture stations were finally 

selected, as shown in Fig. 1. 290 

3.3 XGBoost model 

Ensemble machine learning models can be roughly classified into two categories based on how the 

individual learners are generated: bagging and boosting, (Zhou, 2021). For bagging models, the individual 

learners are constructed independently; whereas for boosting models, learners are constructed iteratively, 

increasing the weights for the incorrectly classified samples during each round of training. As a representative 295 
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bagging algorithm, random forest has gained considerable attention in the fields of remote sensing 

classification and regression over recent decades (Belgiu and Drăguţ, 2016); however, it may suffer from a 

large prediction bias, especially when the observations are too large or small (Song, 2015). In contrast, 

boosting models have been shown to reduce both variance and bias and are robust to multicollinearity among 

predictors (Gislason et al., 2006; Karthikeyan and Mishra, 2021). Accordingly, the present study employed 300 

the XGBoost model implemented by Chen and Guestrin (2016) based on a gradient boosting framework 

(Friedman, 2001). The XGBoost model is advantageous for its scalability, efficiency, and decreased 

vulnerability to overfitting. Here, the open-source xgboost and Scikit-learn Python packages were used 

together for model training and hyperparameters tuning, with the grid search method being adopted to 

determine the optimal parameters. Here, the key hyperparameters of the XGBoost models were finally set to 305 

n_estimators (the number of the boosting rounds) = 1000, learning_rate = 0.1, and max_depth (maximum 

tree depth) = 8. 

3.4 Evaluation strategies and performance metrics 

While most previous soil moisture estimation studies based on machine learning have only used the 

random validation approach, this study used the three complementary validation strategies to fully evaluate 310 

the model performance: random, site-independent, and year-independent. For the random validation, samples 

from all soil moisture stations during 2000–2018 were randomly divided into five folds, among which three 

folds were used for training, one as the validation dataset to tune the hyperparameters of the model, and one 

as the test dataset to evaluate the model performance. Thus, the samples in the random test dataset may have 

been from the same station or year as the training or validation datasets. For site-independent validation, all 315 

soil moisture stations were again randomly divided into five folds, and samples from one fold were used as 

the test dataset to evaluate the accuracy of models trained with samples from the other folds, which were 

used for training and validation. Thus, the location of the samples in the site-independent test dataset is 

unknown to the model. Similarly, for the year-independent validation, samples from all stations between 

2015 and 2018 were selected as the test dataset to evaluate the accuracy of the model trained using samples 320 

between 2000 and 2014, to ensure that the observation year was unknown to the model. 

In addition to model evaluation, the accuracy of the GLASS SM product generated by the developed model 

was evaluated. This 1-km soil moisture product was first validated against four independent dense soil 

moisture networks, and then compared with the 1-km SPL2SMAP_S and 0.25° CCI soil moisture products 

for spatiotemporal consistency analyses. Four widely used performance metrics in soil moisture related 325 
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researches—the R, bias, RMSE, and ubRMSE (Entekhabi et al., 2010) are used to evaluate both the models 

and products against in situ dataset, which can be calculated according to Eqs.( 4–7): 

𝑅 =  
𝐸[(𝜃𝑒𝑠𝑡 − 𝐸[𝜃𝑒𝑠𝑡])(𝜃𝑡𝑟𝑢𝑒 − 𝐸[𝜃𝑡𝑟𝑢𝑒])]

𝜎𝑒𝑠𝑡𝜎𝑡𝑟𝑢𝑒
 (4) 

𝑏𝑖𝑎𝑠 =  𝐸[𝜃𝑒𝑠𝑡] −  𝐸[𝜃𝑡𝑟𝑢𝑒] (5) 

𝑅𝑀𝑆𝐸 =  √𝐸[(𝜃𝑒𝑠𝑡 − 𝜃𝑡𝑟𝑢𝑒)2] (6) 

𝑢𝑏𝑅𝑀𝑆𝐸 =  √𝐸{[(𝜃𝑒𝑠𝑡 − 𝐸[𝜃𝑒𝑠𝑡]) −  (𝜃𝑡𝑟𝑢𝑒 − 𝐸[𝜃𝑡𝑟𝑢𝑒])]2} 
(7) 

where 𝐸[. ]  denotes the mean operator; 𝜃𝑡𝑟𝑢𝑒  and 𝜃𝑒𝑠𝑡  represent the in situ soil moisture and 

corresponding estimated soil moisture; whereas 𝜎𝑡𝑟𝑢𝑒 and 𝜎𝑒𝑠𝑡 refer to the standard deviation of the in 

situ and estimated soil moisture values, respectively. Note that, while comparing two soil moisture products 330 

with similar spatial resolution in Sect. 4,4, the term “root mean square difference (RMSD)” is used, despite 

that it is also calculated using Eq. (6). Besides, when large-scale soil moisture product is validated against 

point-scale in situ soil moisture dataset, bias often exist between the two datasets because of scale differences, 

and then R and ubRMSE are typically more informative than RMSE. 

4 Results 335 

In Sect. 4.1, the overall performance of the XGBoost models trained using different groups of stations was 

first evaluated using random test samples. Then, the performance of the models was evaluated on the site- or 

year-independent test samples in Sect. 4.2, where the permutation feature importance results of the models 

and the importance of each type of input variables were examined, followed by an analysis of the model 

performance metrics at each station and over each land cover type. Sect. 4.3 shows the time-series validation 340 

results of the GLASS SM product generated using the developed model on four independent soil moisture 

networks; whereas Sect. 4.4 compares the global 1-km GLASS SM product with two global microwave soil 

moisture products for spatiotemporal consistency analyses. 

4.1 Model performance on the random test samples 

Figure 3 shows the overall performance of the XGBoost models developed using all input variables on the 345 

random test samples. To analyze the effect of screening soil moisture stations, the accuracies of models 

developed using all ISMN stations, the representative stations selected using the TC method, and the stations 

excluded using the TC method (not included in the representative stations) were compared via scatterplots. 

In general, the random validation accuracy of all three XGBoost models was high, with the bias between the 

model-predicted and target soil moisture values being close to zero. The accuracy of the models developed 350 
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using all ISMN stations or the TC-excluded stations were similar for the test samples, with R values of 0.917 

and 0.918, and RMSE values of 0.047 m3 m-3 and 0.049 m3 m-3, respectively. In contrast, the accuracy of the 

model developed with the representative stations selected using the TC method was significantly improved 

for the test samples, with R and RMSE values of 0.941 and 0.038 m3 m-3, respectively. Compared with the 

other two models, the soil moisture estimates of the XGBoost model developed using representative stations 355 

were more concentrated along the 1:1 line. Notably, most of the soil moisture measurements that were nearly 

saturated (> 0.5 m3 m-3) were excluded after the station screening process (Fig. 3), likely because those high 

soil moisture samples at point-scales were typically under-representative of the mean soil moisture conditions 

at satellite footprint-scales. Meanwhile, the validation accuracy of the ERA5-Land surface soil moisture 

product was also calculated for all soil moisture samples, as well as those selected by the TC method for 360 

comparison. After station screening, the overall R between ERA5-Land reanalysis and in situ soil moisture 

increased from 0.56 to 0.64, while the RMSE decreased slightly from 0.138 to 0.129 m3 m-3 and the bias 

remained unchanged at 0.08 m3 m-3. Above performance metrics indicated that representative stations can be 

effectively selected by using the TC method, and training the XGBoost model with representative stations 

can significantly improve its validation accuracy on the random test samples. 365 

 

Figure 3 Scatterplots of measured and predicted soil moisture from the XGBoost models developed using 

(a) all ISMN stations, (b) representative stations selected using the TC method, and (c) stations excluded 

using the TC method. Point colors indicate the probability density. Red dotted line displays the linear 

regression, and the black solid line is the 1:1 line. 370 

4.2 Model performance on site/year independent samples 

As can be seen from Table 4, regardless of the type of soil moisture station used during training, model 

performance on the year-independent test samples (2015 to 2018) decreased significantly compared to that 

on the random test samples. Among them, the R values of the models trained using all stations and TC-

excluded stations were 0.8 and 0.734 for the year-independent test samples, respectively, while the 375 
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corresponding RMSE increased to 0.07 and 0.084 m3 m-3, respectively. In contrast, the XGBoost model 

trained using representative stations selected by the TC method achieved the highest accuracy on the year-

independent test samples, with R and RMSE values of 0.873 and 0.054 m3 m-3, respectively. Likewise, the 

performance of the models trained using three different types of stations on the site-independent test samples 

(randomly selected one-fifth of the total stations) further decreased compared to that of the year-independent 380 

test samples. The RMSE of the models trained using all and excluded stations further increased to 0.093 and 

0.106 m3 m-3, respectively, for the site-independent test samples. Alternatively, the XGBoost model trained 

using representative stations achieved the highest accuracy for the site-independent test samples, with R and 

RMSE values of 0.715 and 0.079 m3 m-3, respectively. These results suggest that the good performance of 

the models on the random or year-independent test samples is clearly a result of model overfitting, and their 385 

accuracies may degrade significantly when the stations or observation years of the test samples are unknown 

to them. While the relatively lower accuracy achieved by the model on site-independent test samples is least 

likely to be overfitted and can be regarded as the model’s true accuracy. Besides, it appears that increasing 

the number of stations in the training dataset to account for spatial heterogeneity is more important for 

improving the models’ performance than extending the duration of the measurements to account for temporal 390 

dynamics, as also found in previous study (Zappa et al., 2019). Moreover, training the model with 

representative stations selected by the TC method can also considerably improve its performance on site- or 

year-independent test samples, that is, model performance over unknown time and space. 

Table 4 Validation accuracy of the XGBoost models trained using three different types of soil moisture 

stations on three types of test samples. 395 

Validation 

strategies 

All stations Representative stations Excluded stations 

R 
RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 
R 

RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 
R 

RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 

Random 0.917 0.047 0.047 0.941 0.038 0.038 0.918 0.049 0.049 

Year-independent 0.800 0.070 0.070 0.873 0.054 0.054 0.734 0.084 0.084 

Site-independent 0.630 0.093 0.093 0.715 0.079 0.079 0.564 0.106 0.106 

Figure 4 shows the permutation feature importance results of the XGBoost models trained using 

representative soil moisture stations, which were calculated separately for the three different types of test 

samples. The permutation importance of an input feature is commonly measured by the degradation of model 

accuracy when the feature is randomly shuffled (Breiman, 2001), can be calculated multiple times across a 

test dataset and is less likely to be biased towards high-cardinality features. Notably, permutation importance 400 

does not reflect a feature’s intrinsic predictive value, but rather its relative importance to a particular model. 
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For all three types of test samples, ERA5-Land surface soil moisture (SM_era) achieved the highest 

importance score, indicating that this coarse-scale reanalysis soil moisture product can indeed provide 

reliable soil moisture background information for the 1-km soil moisture estimation model. Specifically, for 

both the random and year-independent test samples (Fig. 4 (a), (b)), the importance of elevation and soil 405 

texture variables (sand, silt, and clay) ranked relatively high, showing that soil properties and topographic 

factors are important for accurate model predictions when the sample locations are known. In addition, the 

three GLASS black-sky albedo bands (ABD_vis, ABD_nir, and ABD_short) also achieved relatively high 

importance scores for both types of samples, likely because surface albedo can reflect the surface energy flux 

and land cover conditions, which are further correlated to the spatial variation in soil moisture (Long et al., 410 

2019). Meanwhile, the importance scores of GLASS LAI and LST were relatively low for the two sample 

types, which may be partly attributed to their correlation with some high-ranking variables (e.g., ABD_vis, 

SM_era). For example, after removing ERA5-Land soil moisture from the models, the importance scores of 

both GLASS LST and LAI increased significantly. In contrast, for the site-independent test samples (Fig. 4 

(c)), the importance of ERA5-Land surface soil moisture (SM_era) further increased relative to other 415 

variables. In addition, the importance ranking of GLASS albedo and LST increased remarkably; whereas that 

of terrain and soil texture-related variables dropped dramatically, suggesting that when the location of the 

test samples is unknown to the model, variables such as coarse-scale soil moisture, albedo, and LST appear 

to be more important for accurately predicting soil moisture. Note that the final model was developed using 

all the representative ISMN stations, and its feature importance results over unknown regions could refer to 420 

those calculated on the site-independent test samples. 

 

Figure 4 Permutation feature importance results of the XGBoost models trained using the representative 

stations, and calculated using the (a) Random, (b) Year-independent, and (c) Site-independent test samples. 

Features from different input datasets are divided into four groups with different colors. 425 

To further investigate the importance of different types of input variables for the 1-km soil moisture 
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estimation model over unknown space, the validation accuracy of the XGBoost models developed using 

different combinations of input datasets on the site-independent test samples were also compared. The 

XGBoost model trained with all input datasets achieved the highest accuracy (Table 5), with R and RMSE 

values of 0.715 and 0.079 m3 m-3, respectively. After the ERA5-Land soil moisture product was excluded, 430 

the model accuracy for the test dataset decreased significantly, with the RMSE value increasing to 0.086 m3 

m-3, further reflecting the relatively high importance of the coarse-scale soil moisture background information 

for the 1-km estimation model derived here. Similarly, after excluding GLASS albedo, LAI, and LST from 

the input variables, the model trained with the remaining variables showed a marked decrease in accuracy 

for the test dataset, with R and RMSE values of 0.694 and 0.083 m3 m-3, respectively. This indicates that the 435 

information on soil and vegetation reflective properties, surface temperature, as well as vegetation types and 

densities provided by GLASS products are also important for the 1-km soil moisture estimation model. 

Further, the exclusion of terrain or soil texture datasets showed a similar effect on model accuracy, with 

RMSE values decreasing to 0.082 and 0.083 m3 m-3, respectively, again suggesting the pertinent contribution 

of these variables to improving the performance of the soil moisture estimation model. Besides, as shown in 440 

Table 2, the spatial resolution of most input datasets was within 1 km, except for the ERA5-Land product 

which had a relatively low spatial resolution (0.1°). Therefore, the integration of multi-source input datasets 

using a machine learning model can improve not only the model accuracy, but the spatial details of the soil 

moisture product as well. Because the XGBoost model trained with all input datasets performed best on the 

test dataset, all datasets were included in model training during the subsequent experiments. 445 

Table 5 Performance metrics of the XGBoost model developed using different combinations of input datasets 

on the site-independent test samples. 

Input datasets R 
RMSE  

(m3 m-3) 

ubRMSE 

(m3 m-3) 

All datasets included 0.715 0.079 0.079 

Coarse SM (ERA5-Land) excluded 0.646 0.086 0.086 

Albedo, LAI & LST (GLASS) excluded 0.694 0.083 0.082 

Terrain (MERIT) excluded 0.700 0.082 0.082 

Soil texture (SoilGrids) excluded 0.684 0.083 0.083 

To explore the causes of decreased 1-km soil moisture estimation model accuracies over unknown time 

and space, performance metrics of the models were calculated for each station, which were trained using all 

ISMN or representative soil moisture stations selected by the TC method. To obtain the validation accuracy 450 

for each station, a 5-fold cross-validation method was adopted, where the stations were randomly divided 
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into five folds, with samples from four folds used to develop the model, and the accuracy metrics were 

derived for the remaining fold. This process was repeated five times, until the accuracies of all stations were 

evaluated. The distribution of performance metrics for the XGBoost model developed using all stations was 

dispersed across stations, with R values ranging from -1 to 1, and RMSE values ranging from 0.005 to 0.397 455 

m3 m-3 (Fig. 5, Table 6). Although the median of the bias between model predicted and measured soil moisture 

was 0, the model exhibited a large prediction bias for most stations (from -0.39 to 0.34 m3 m-3), partly 

contributing to the large RMSE observed at these stations. After removing the prediction bias for each station, 

the median ubRMSE of the model decreased to 0.055 m3 m-3, compared to the median RMSE of 0.075 m3 

m-3. As a comparison, the performance metrics of the ERA5-Land soil moisture product at each ISMN station 460 

were also calculated and displayed in Fig. 5. The coarse-scale soil moisture product showed similar R values 

to those of the XGBoost model developed using all stations, and it also yielded large bias and dispersed 

RMSE and ubRMSE values at most stations. 

After filtering the stations using the TC method, the accuracies of the ERA5-Land soil moisture product 

at those representative stations improved significantly. Similarly, the validation accuracies of the model 465 

developed using the representative stations also improved significantly, with the distribution of its 

performance metrics being more concentrated across stations, compared to the model developed without 

station filtering. In particular, the median R of the model at each station increased from 0.64 to 0.74, median 

RMSE decreased from 0.075 to 0.068 m3 m-3, and ubRMSE decreased from 0.055 to 0.052 m3 m-3. Over 

most of the representative stations, the XGBoost model obtained similar or even larger R values compared 470 

to the ERA5-Land soil moisture product. However, there were also several stations where the model achieved 

relatively lower R values, yet this degradation in temporal metrics with respect to the original coarse-scale 

products can be found in many soil moisture downscaling studies (Gruber et al., 2020). 

On the other hand, the model developed using the representative stations still exhibited a large bias at most 

stations, ranging from -0.21 to 0.21 m3 m-3, although the median bias of the model was 0. Therefore, the 475 

decreased overall accuracies of the model over unknown spaces can be attributed to these large site-specific 

biases, which may be caused by the high spatiotemporal variability of surface soil moisture, and the scale 

differences between the target point-scale soil moisture and 1-km model predicted soil moisture. Specifically, 

in random and year-independent validation strategies, part of the site-specific information is known to the 

models; whereas in the site-independent validation method, this information is entirely unknown to the model. 480 

By adopting the TC method, it is possible to select soil moisture stations that are representative of the average 
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soil moisture on a larger scale, thereby alleviating the scale difference issue to some extent. However, there 

may still be large biases between measurements from these point-scale representative soil moisture stations 

and footprint-scale average soil moisture values. As these biases are site-specific, can be positive or negative, 

and have a median value for all samples near 0, the overall ubRMSE that the model achieved on the site- or 485 

year-independent test samples can still be large when these biases are unknown to the model. Nevertheless, 

training the model with representative soil moisture stations not only improved the model’s overall 

performance over unknown spatiotemporal locations (Table 4), but also improved the performance metrics 

of the model at each station (Fig. 5). 

 490 

Figure 5 Boxplots of the (a) R, (b) bias, (c) RMSE, and (d) ubRMSE achieved by the XGBoost models (blue) 

developed using all stations and the representative stations selected by the TC method, respectively, in 

comparison with those of the ERA5-Land soil moisture product (orange). 

In addition to the performance metrics of the two XGBoost models at each station, Table 6 shows the 

validation accuracies of the model developed using the representative stations over different land cover types. 495 

Affected by a series of practical factors, the distribution of ISMN soil moisture stations is uneven in space, 

with the majority of the stations located in the CONUS. After screening stations via the TC method, the 
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spatial distribution of representative stations remained uneven, with the resulting number of stations for each 

land cover type also varying significantly (Fig. 1). Overall, the performance of the model developed using 

the representative stations for most land cover types showed an improvement compared with the model 500 

developed using all stations, as indicated by larger median R values, and smaller median RMSE and ubRMSE 

values. However, the median ubRMSE of the model achieved for forests was larger than that for other land 

cover types, likely a result of soil moisture maintaining at high levels in forested areas. Additionally, among 

the seven land cover types, the model achieved the lowest median R values for shrublands and barren lands, 

likely due to the limited number of stations present across these two types. However, the model also achieved 505 

the lowest median ubRMSE values for these two types, which can be partly attributed to the fact that despite 

the low sample percentages, the number of samples for these land cover types was sufficient for the models 

to learn, and in part due to the relatively small soil moisture dynamics of these two types. Although the 

median bias of the model for each land cover type was near 0, the model exhibited a large prediction bias for 

most stations across each land cover type (Table 6). After removing the prediction bias at each station, the 510 

median ubRMSE of the model for the seven land cover types ranged from 0.031 to 0.061 m3 m-3, marking a 

dramatic decrease over the corresponding median RMSE. Given that a large prediction bias existed in each 

land cover type, and that the model performance did not vary significantly across different types, it was 

suggested that the uneven distribution of land cover types across samples was not the major cause of the 

decreased overall model accuracy over unknown spaces. 515 

Table 6 Performance metric statistics for the XGBoost models developed using all stations and representative 

stations, and those achieved by the latter model over each land cover type. 

Types Num 
R Bias (m3 m-3) RMSE (m3 m-3) ubRMSE (m3 m-3) 

med min max med min max med min max med min max 

All stations 1145 0.64 -1.0 1.0 0.00 -0.39 0.34 0.075 0.005 0.397 0.055 0.000 0.188 

Selected stations 715 0.74 0.11 0.99 0.00 -0.21 0.21 0.068 0.019 0.220 0.052 0.017 0.132 

Forests 35 0.73 0.11 0.85 0.02 -0.14 0.18 0.079 0.041 0.185 0.061 0.026 0.091 

Shrublands 16 0.61 0.46 0.79 -0.01 -0.07 0.10 0.043 0.027 0.116 0.031 0.022 0.056 

Savannas 185 0.77 0.24 0.97 0.01 -0.17 0.18 0.070 0.019 0.194 0.051 0.017 0.132 

Grassland 327 0.75 0.26 0.99 0.00 -0.21 0.21 0.067 0.019 0.220 0.053 0.018 0.083 

Urban 12 0.68 0.34 0.87 0.00 -0.15 0.13 0.068 0.027 0.152 0.050 0.025 0.067 

Croplands 130 0.73 0.29 0.89 0.00 -0.20 0.21 0.065 0.030 0.214 0.049 0.026 0.106 

Barren 10 0.57 0.27 0.82 -0.03 -0.07 0.08 0.050 0.028 0.090 0.034 0.025 0.056 

4.3 Validation of the GLASS SM product on independent networks 

Using the XGBoost model developed above, a global 1-km spatiotemporally continuous soil moisture 
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product (GLASS SM) was generated. To intuitively demonstrate the ability of this product for capturing the 520 

temporal variations in soil moisture over an unknown space, four independent networks under different 

climatic and environmental conditions were selected, and the time-series curves of the GLASS and measured 

soil moisture for these networks were compared. Considering the high spatiotemporal variability of surface 

soil moisture and the scale differences between point-scale observations and the 1-km GLASS SM product, 

the mean measured soil moisture curve was first calculated by averaging soil moisture curves from all stations 525 

within a network, and then compared with the mean predicted soil moisture curve calculated using all 

corresponding pixels of the GLASS SM product within that network. Moreover, as an input variable of the 

1-km soil moisture estimation model, the time-series curves of the ERA5-Land reanalysis soil moisture 

product over the four independent networks were also extracted as a reference.  

In most cases, the GLASS soil moisture curves were much closer to the measured values than the time-530 

series curves of the ERA5-Land reanalysis soil moisture product in both the YA and YB soil moisture 

networks (Fig. 6 (a), (b)). The R values between the GLASS and measured soil moisture for these two 

networks were 0.84 and 0.89, respectively, which were slightly higher than the ERA5-Land soil moisture 

(0.80 and 0.84); whereas the ubRMSE values were 0.048 and 0.034 m3 m-3, respectively, slightly lower than 

the ERA5-Land soil moisture product (0.052 and 0.044 m3 m-3). Accordingly, over these two relatively dense 535 

soil moisture networks, the 1-km GLASS SM product can basically capture the dynamics of measured soil 

moisture. However, underestimates occurred at some high-value intervals on the measured soil moisture 

curves, which may be caused by nearby irrigation at some stations within agricultural regions, where the 

GLASS SM product may not be able to capture such patterns, given that irrigation is usually not uniformly 

distributed in space. 540 

For the Fort Cobb and Little Washita soil moisture networks, both the GLASS and ERA5-Land soil 

moisture estimates basically captured the dynamics of measured soil moisture (Fig. 6 (c), (d)). Specifically, 

the R values between the mean GLASS and measured soil moisture for these two networks were 0.69 and 

0.76, respectively, slightly lower than the ERA5-Land soil moisture product (0.74 and 0.77). However, both 

the GLASS and ERA5-Land reanalysis soil moisture products showed a large positive bias throughout most 545 

of the observation period, particularly in the Little Washita network. This is likely because these two soil 

moisture networks cover a relatively large watershed containing only a few stations. Nevertheless, the 

ubRMSE values between the mean GLASS and measured soil moisture values for these two networks were 

0.037 and 0.033 m3 m-3, respectively, which were significantly lower than those for the ERA5-Land soil 
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moisture (0.047 and 0.046 m3 m-3). Overall, above results suggested that the derived product can accurately 550 

capture the temporal variations of in situ soil moisture under different climatic conditions. Further, the 

GLASS SM product achieved similar R values as the ERA5-Land product across these networks, with the R 

values ranging from 0.69 to 0.89 and ubRMSE values ranging from 0.033 to 0.048 m3 m-3. 

 

Figure 6 Time-series plots of the mean in situ, ERA5-Land, and GLASS soil moisture for four independent 555 

soil moisture networks. 

4.4 Comparison with existing global soil moisture products 

After producing the global 1-km spatiotemporally continuous GLASS SM product, it was compared with 
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two global microwave soil moisture products for spatiotemporal consistency. The first product selected for 

comparison was SPL2SMAP_S, the first publicly released global soil moisture product at a spatial resolution 560 

of 1 km. Because the SPL2SMAP_S 1-km product has a temporal resolution of 12 days over most global 

areas and it has many spatial gaps at the daily scale, spatial synthesis of the SPL2SMAP_S was conducted 

during a 12-day period with relatively high spatial coverage before comparison. Figure 7 shows the spatial 

distribution of the SPL2SMAP_S 1-km soil moisture product, synthesized from 3 to 15 October 2016, 

alongside the 1-km spatiotemporally continuous GLASS SM map for 9 October 2016. Here, it can be seen 565 

that the 12-day synthetic SPL2SMAP_S soil moisture product still has large spatial gaps (e.g., the western 

continental United States, western China, and southwestern Australia); whereas the GLASS SM product has 

a substantially more complete spatial coverage (except for the high-latitude regions during the cold seasons). 

With regards to the spatial distribution characteristics, both soil moisture products with 1 km resolutions 

exhibits a high level of consistency, with higher soil moisture levels found in the tropics, eastern U.S., and 570 

southeastern China, and lower levels observed in deserts (e.g., Sahara) and other semi-arid regions.  

 

Figure 7 (a) 12-day synthetic SPL2SMAP_S 1-km soil moisture map from 3 to 15 October 2016, and (b) the 
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1-km spatiotemporally continuous GLASS SM map on 9 October 2016. 

To quantitatively investigate the spatial consistency between these two 1-km soil moisture products, spatial 575 

R and RMSD between them were calculated for each 12-day of 2016 using collocated pixels, after removing 

soil moisture estimates larger than 0.6 m3 m-3 from the SPL2SMAP_S product. As displayed in Fig. 8 (a), the 

spatial R (orange line) between the GLASS and SPL2SMAP_S products ranges from 0.61 to 0.67, with a 

median value of 0.62, partially affected by the discontinuous spatial coverage of the SPL2SMAP_S product. 

The spatial RMSD (orange dots) between the two 1-km products in 2016 ranges from 0.098 to 0.106 m3 m-580 

3, and the relatively large RMSD values may be attributed to the greater spatial heterogeneity (e.g. terrain 

and soil texture) at fine scales which could cause large disparities in soil moisture estimates from different 

algorithms. Overall, both qualitative and quantitative comparisons suggested a good and stable spatial 

consistency between the 1-km GLASS and SPL2SMAP_S microwave soil moisture products. 

 585 

Figure 8 Time-series plots of the spatial R (lines) and RMSD (dots) calculated between (a) the GLASS and 

SPL2SMAP_S soil moisture products at 1 km resolution and (b) the ESA CCI and three resampled soil 

moisture products (ERA5-Land, GLASS, and SPL2SMAP_S) at 0.25° resolution in 2016. 

The second global product selected for comparison was the widely used ESA CCI combined soil moisture 

dataset with a spatial resolution of 0.25°. Because the CCI soil moisture product has a daily temporal 590 

resolution and more complete spatial coverage, more quantitative analyses can be conducted when comparing 

with the 1-km spatiotemporally continuous GLASS SM product. Figure 9 shows the spatial distribution of 

the CCI active–passive microwave combined soil moisture and GLASS SM resampled to 0.25° for four days 

from different seasons in 2016, as well as the corresponding scatterplots of these two soil moisture products. 

The high spatial consistency between the CCI soil moisture product and resampled GLASS SM product on 595 

different dates is readily apparent, as both products display lower soil moisture values in arid regions, 

including the western U.S., northern and southern Africa, Middle East, central and western Asia, and Austria, 
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and higher soil moisture values in tropical and temperate regions, such as central Africa, southern Asia, the 

eastern U.S., and southeastern China. Although CCI estimates incorporate a variety of active and passive 

microwave soil moisture products, its spatial coverage remains incomplete partly due to observation gaps of 600 

the sensors, and the physical limitations of microwave soil moisture retrieval algorithms (Dorigo et al., 2017), 

such as failing to provide accurate soil moisture predictions on densely vegetated land surfaces (e.g., the 

Amazon River and Congo basins). In contrast, the GLASS SM product shows greater spatial integrity, except 

at high latitudes in cold seasons due to low temperatures and frozen soils.  

 605 

Figure 9 (a–d) ESA CCI combined soil moisture maps at 0.25°, (e–h) the corresponding spatiotemporally 

continuous GLASS SM maps resampled to 0.25°, and (i–l) scatterplots of the two products for four Julian 

dates (90, 180, 270, 360) selected from different seasons of 2016. 

As shown in Fig. 8 (b), the daily spatial R between the resampled GLASS and ESA CCI soil moisture 

products at 0.25° resolution in 2016 ranges from 0.72 to 0.86, with a median value of 0.82, indicating that 610 

the two products exhibit high spatial consistency across the seasons. As a comparison, the spatial R and 

RMSD between the CCI and two other resampled soil moisture products (ERA5-Land and SPL2SMAP_S) 

were also calculated and plotted. It’s clear that the spatial R curves of the resampled ERA5-Land (blue) and 

GLASS (orange) at 0.25° only differ slightly, which is to be expected given that the coarse-scale ERA5-Land 
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soil moisture was used to provide background soil moisture information for our model and it achieved the 615 

highest importance score among all the input variables. Both curves exhibit significant seasonal variation, 

with higher spatial R values in spring and winter than in summer or autumn, possibly related to the larger 

differences between the two resampled products (GLASS and ERA5-Land) and CCI over high latitudes. 

However, the spatial RMSD curves of the ERA5-Land and GLASS differ significantly. While the blue dotted 

line (RMSD between CCI and ERA5-Land) exhibits an opposite seasonal pattern to the R curves, with RMSD 620 

ranging widely from 0.086 to 0.12 m3 m-3, the orange dotted line (RMSD between CCI and GLASS) is more 

stable, with RMSD ranging from 0.068 to 0.087 m3 m-3. Besides, as also shown in Fig. 8 (b), although the 

resampled SPL2SMAP_S soil moisture product has the most stable spatial R and RMSD curves (gray), it 

achieves relatively lower spatial R values and larger spatial RMSD values than those of the resampled 

GLASS product 0.25°, suggesting its relatively lower level of spatial consistency with the CCI product. This 625 

is to our surprise considering that both the SPL2SMAP_S and CCI soil moisture products were derived from 

microwave satellite observations, and a possible cause for this could be the discontinuous spatial coverage 

of the SPL2SMAP_S product. 

Note that the GLASS SM product displays a general underestimation relative to the CCI combined soil 

moisture (Fig. 9 (i–l)). Although the overestimation of the CCI soil moisture product has been reported in 630 

previous study, particularly for Equatorial (Savanna) regions (Al-Yaari et al., 2019), the GLASS SM product 

may also contain some biases, which jointly contribute to the RMSD between them. Figure 10 shows a 

zoomed-in comparison between the 1-km GLASS and 0.25° ESA CCI microwave soil moisture product in 

western China on 28 June 2016, with the corresponding 0.1° ERA5-Land reanalysis soil moisture product, 

which is one of the main inputs to the XGBoost model, also shown as a reference. In general, the GLASS 635 

product exhibits spatial consistency with both coarse-scale soil moisture products, with lower soil moisture 

levels in the Junggar Basin, Tarim Basin, Qaidam Basin, and western part of the Tibetan Plateau, and higher 

soil moisture levels in the Tianshan Mountains, Ili River Valley, and southeastern part of the plateau where 

the vegetation is also much denser. Specifically, in the southeastern Tibetan Plateau, the GLASS and CCI 

soil moisture products show higher consistency, while the ERA5-Land soil moisture product is suspected to 640 

be underestimated. Moreover, it is clear that the 1-km GLASS SM product is not only spatially complete, but 

also contains more spatial details which can well reflect the distribution patterns of terrain and vegetation. 
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Figure 10 Zoomed-in comparison of the (a) 1-km GLASS, (b) 0.25° ESA CCI, and (c) 0.1° ERA5-Land soil 

moisture products in western China on 28 June 2016 (the 180th day). 645 

In addition to the spatial consistency analysis described above, the temporal consistency between the CCI 

and spatiotemporally continuous GLASS SM product was also explored. Specifically, for each pixel of these 

two products with > 30 days of concurrent predictions, the R and RMSD between the time-series soil moisture 

predictions were calculated separately for 2016, and the spatial distribution of these two metrics is shown in 

Fig. 11. The correlation between two products was high in most areas, except the Sahara Desert, high latitudes, 650 

and some localized regions. The relatively low or even negative R values between the two products in the 

Sahara Desert is likely due to that soil moisture in this region is close to zero, and a small difference in 

temporal variation may lead to poor correlation. It can also be seen from Fig. 11 (b) that the RMSD values 

between the two products in the Sahara Desert were rather small. The relatively low R values between the 

two products at high latitudes may be attributed to the irregular prediction frequency of the CCI product at 655 

high latitudes, and the rapid change in soil moisture during the freeze–thaw transition period in this region, 

which possibly cause larger errors in both products and thus increased temporal inconsistency. Greater 

differences between soil moisture products at high latitudes have also been found elsewhere (Wang et al., 

2021). Further, no obvious patterns were revealed regarding the distribution of RMSD between the two soil 

moisture products, as the regions with relatively large RMSD values were rather scattered. 660 
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Figure 11 The spatial distribution of (a) R and (b) RMSD between the ESA CCI combined soil moisture 

product and the spatiotemporally continuous GLASS SM product in 2016. 

5 Discussion 

To address the lack of high-resolution, spatiotemporally continuous global soil moisture products, this 665 

study developed a global 1-km soil moisture estimation framework which integrated multi-source datasets 

using an XGBoost model. This framework was adapted from the 30 m soil moisture estimation framework 

proposed by zhang et al. (2022b), in which the Landsat 8 surface reflectance and thermal observations were 

replaced with the spatiotemporally continuous GLASS albedo, LST, and LAI products, to mitigate the 

influence of clouds on the spatial continuity and temporal resolution of soil moisture product. Meanwhile, 670 

the relatively high temporal resolution of GLASS products allows for much more collocated training samples, 

which are supposed to alleviate the underestimation of the original 30 m model at high soil moisture levels. 

In addition, considering the relatively large scale differences between point-scale in situ soil moisture datasets 

and GLASS products compared to Landsat datasets, the TC method was adopted to select the representative 

soil moisture stations and their measurements were used as the training target of the model. Results showed 675 
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that the 1-km soil moisture estimation model achieved satisfactory overall accuracy and training the model 

with representative stations selected by the TC method can considerably improve its performance over 

unknown time and space. 

Most of previous machine learning-based studies aimed at soil moisture estimation have divided the 

samples from all observation locations and times randomly into training and test datasets. In this case, 680 

model’s accuracy on the random test samples may seem rather high as a result of model overfitting, because 

these test samples may not be spatially or temporally independent of those in the training dataset and part of 

the site-specific information is disclosed to the model. Therefore, model performance must also be fully 

evaluated using samples from unknown time or space. Senyurek et al.’s (2020) trained a random forest model 

using the Cyclone Global Navigation Satellite System observations, as well as the ISMN in situ soil moisture 685 

and other geophysical datasets, which was then fully evaluated using a 5-fold cross-validation, site-

independent, and year-based techniques. Before the model training process, several critical screening 

conditions were applied to select 106 stations from the 234 ISMN soil moisture stations over the CONUS, 

and the 5-fold cross-validation R and RMSE of the random forest model were 0.89 and 0.052 m3 m-3, 

respectively; whereas the site-independent cross-validation R and RMSE values were 0.64 and 0.088 m3 m-690 

3, respectively. Similarly, the overall R and RMSE of the 1-km GLASS SM model for the random and site-

independent test samples were 0.941, 0.038 m3 m-3, and 0.715, 0.079 m3 m-3, respectively. Notably, Senyurek 

et al. (2020) attributed the relatively lower site-independent validation accuracy to the fact that different soil 

moisture stations have distinct climatology, which is difficult for the machine learning model to capture 

without bias. Instead, we argue that the high validation accuracy achieved by the machine learning models 695 

on the random test samples is mostly likely a result of overfitting, while the relatively lower site-independent 

validation accuracy is much more realistic. The authors further suggested that model performance could be 

improved by increasing the representativeness of various land surface conditions within training datasets. 

Although a representative training dataset is essential for data-driven machine learning models, it was found 

here that a large prediction bias existed across all land cover types and the resulting model performance did 700 

not vary significantly among them. Therefore, it was concluded here that the site-specific biases induced by 

scale differences rather than the uneven distribution of land cover types among samples are the major cause 

of the decreased overall accuracy of the model over unknown time and space. 

As emphasized in Gruber et al. (2020), despite that downscaled soil moisture products usually provide 

more spatial details visually, they may not reflect real soil moisture variations, and it is thus necessary to 705 
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estimate the spatial R for the downscaled products, in addition to temporal analyses. Then, Crow et al. (2022) 

defined the success of a downscaling algorithm as either achieving better temporal accuracy or spatial skill 

than the original coarse-scale product that is interpolated onto the fine-scale spatial grid. As can be seen from 

Fig. 5 (a), the temporal R values achieved by the XGBoost model at representative stations are similar to 

those of the coarse-scale ERA5-Land soil moisture product, and Fig. 8 (b) shows that the GLASS and ERA5-710 

Land products achieved similar Spatial R values when they are both resampled to 0.25° resolution. Therefore, 

to identify whether the 1-km GLASS SM product actually have added value with respect to the 0.1° ERA5-

Land product, we also calculated the spatial R for the XGBoost model on a daily basis using soil moisture 

measurements from representative stations, and then compared it with that of the ERA5-Land product 

interpolated onto the 1 km grid. To make the comparison more rigorous, soil moisture estimated using the 5-715 

fold cross-validation method from the model was adopted to calculated the spatial R, instead of the final 

GLASS SM product (yielding even better results). As displayed in Fig. 12, the spatial R values achieved by 

the XGBoost model at representative stations improve significantly compared to those of the ERA5-Land 

product, with the median spatial R increasing from 0.60 to 0.66, and in most cases, the difference in spatial 

R (R_diff) between the XGBoost model and ERA5-Land product is positive, with a median value of 0.06. 720 

Accordingly, it is reasonable to believe that the 1-km GLASS SM product does provide more spatial 

information which reflect fine-scale soil moisture variations, rather than just adding ineffective details. 

 

Figure 12 Boxplot of the spatial R calculated for the XGBoost model on a daily basis using soil moisture 

measurements from representative stations, in comparison with those of the ERA5-Land product. The 725 

difference in spatial R between the XGBoost model and ERA5-Land product is denoted as R_diff. 
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To date, several studies have attempted to further improve the accuracy of machine learning based soil 

moisture estimation models through different strategies. Abbaszadeh et al. (2019) classified in situ soil 

moisture stations within the CONUS according to soil texture class, developing 12 distinct random forest 

models to downscale the SMAP 36-km soil moisture product using atmospheric, geophysical and in situ soil 730 

moisture datasets. Their downscaled 1-km soil moisture product achieved good overall validation accuracy 

on both core validation sites and 300 sparse soil moisture stations, with the proposed downscaling approach 

outperforming the uniform downscaling approach. Similarly, Karthikeyan and Mishra (2021) clustered 

CONUS into 11 homogeneous regions using a k-means algorithm based on a range of climate and landscape 

variables, before training an XGBoost model for each region and soil layer to downscale the SMAP Level 4 735 

soil moisture product. Validation at 79 independent soil moisture stations showed that the downscaled product 

successfully captured temporal variations of measured soil moisture. We also have attempted to classify the 

ISMN stations based on their soil texture classes, or climatic and environmental properties prior to separately 

developing the models, however, the overall prediction accuracy did not seem to improve significantly. 

Moreover, to mitigate the impacts of scale differences and improve the prediction accuracy, we also trained 740 

a distinct XGBoost model (Model 2) using the average soil moisture of all 30-m pixels within a 1-km pixel 

where the station was located as the target variable, which was calculated using the 30-m soil moisture 

estimation model developed by Zhang et al. (2022b). The overall accuracies of Model 2 and the previously 

developed model trained directly using in situ soil moisture (Model 1) on the YA and YB networks were then 

compared (Fig. 13). Here, it was found that Model 1 achieved good overall prediction accuracy for both 745 

networks; but as also shown in Fig. 6, Model 1 showed slight underestimation at higher soil moisture levels, 

especially in the YA region. In contrast, while Model 2 obtained similar R values as Model 1, it exhibited 

much more sever underestimation at higher soil moisture levels in both the YA and YB networks. This may 

be attributed to the lack of high soil moisture samples in the original 30 m soil moisture estimation model, 

which were even scarcer after averaging to 1 km. To further improve Model 2 accuracy, uniform global 750 

sampling can be performed to generate a large number of 1-km averaged soil moisture samples, but this 

would be rather labor intensive. Alternatively, the global 1-km GLASS SM product generated using Model 

1 accurately captured the temporal variations of the in situ soil moisture, and exhibited high spatiotemporal 

consistency with microwave soil moisture products, although some site-specific biases may exist while 

validating the product against sparse soil moisture stations. Future studies could focus on mitigating the 755 

impacts of scale differences on the machine learning models, either by deploying more dense soil moisture 
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monitoring networks, or by further improving the accuracy of high resolution (e.g., 30 m) but often 

spatiotemporally discontinuous soil moisture products, and then training the 1-km spatiotemporally 

continuous GLASS SM model directly using the higher resolution soil moisture products. 

 760 

Figure 13 Scatterplots of mean measured and predicted soil moisture from different models on the: (a–b) YA, 

and (c–d) YB soil moisture networks. Point colors indicate the probability density; whereas the red dashed 

line is the linear regression, and the black solid line is the 1:1 relationship. 

6 Data availability 

The global daily 1-km spatiotemporally continuous soil moisture product (GLASS SM) from 2000 to 2020 765 

is freely available at http://glass.umd.edu/soil_moisture/. In addition, for user’s convenience, the annual 

average global soil moisture dataset at 1 km resolution was also generated, which can be downloaded from 

https://doi.org/10.5281/zenodo.7172664 (Zhang et al., 2022a). Note that this product represents the 

volumetric water content in the uppermost soil layer (0–5 cm). Files are stored in the Sinusoidal projection 

and “GeoTIFF” format. 770 

7 Conclusions 

A global 1-km spatiotemporally continuous soil moisture product (GLASS SM) was derived here using an 

https://doi.org/10.5281/zenodo.7172664
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XGBoost ensemble learning model that integrated multi-source datasets, including remotely sensed GLASS 

products, ERA5-Land reanalysis products, as well as ground-based ISMN soil moisture, and static auxiliary 

datasets. Validation of the XGBoost model was conducted using three complementary validation strategies 775 

and the GLASS SM product was also evaluated across four independent networks, demonstrating the 

product’s strong capacity to capture temporal dynamics of measured soil moisture. This global 1-km soil 

moisture product also exhibited high spatiotemporal consistency with two global microwave soil moisture 

products. Overall, the main findings of the study can be summarized as follows: 

(1) When the samples from all stations and years were randomly divided into training and test datasets, the 780 

XGBoost model achieved a high accuracy on the random test samples. By using the TC method to select 

representative stations, the validation accuracy of the model was further improved significantly, with an 

overall R and RMSE of 0.941 and 0.038 m3 m-3, respectively. Nevertheless, such high accuracy achieved by 

the model on the random test sample is clearly a result of overfitting, 

(2) Training the model with representative stations selected by the TC method also considerably improved 785 

its performance for site- or year-independent samples (i.e., over unknown time and space). The overall 

validation accuracy of the model trained using representative stations on the site-independent test samples, 

which was least likely to be overfitted, was an R of 0.715 and RMSE of 0.079 m3 m-3. Compared to the model 

developed without station filtering, the accuracies of the model trained using representative stations improved 

significantly on most stations, with the median R and ubRMSE of the model for each station increasing from 790 

0.64 to 0.74, and decreasing from 0.055 to 0.052 m3 m-3, respectively. 

(3) The time-series validation results of the 1-km GLASS SM product over four independent networks 

indicated that the product can accurately capture temporal variations in measured soil moisture under 

different climatic conditions. The GLASS SM product achieved similar R values as the ERA5-Land product, 

with the R values ranging from 0.69 to 0.89 and ubRMSE values range from 0.033 to 0.048 m3 m-3. 795 

(4) Compared with the 1-km SMAP/Sentinel-1 SPL2SMAP_S soil moisture product and the ESA CCI 

active–passive microwave combined soil moisture product at 0.25°, the global 1-km spatiotemporally 

continuous soil moisture product generated here had a more complete spatial coverage, and exhibited high 

spatiotemporal consistency with these two products. 

The long-term (2000–2020) global GLASS SM product with high spatiotemporal resolution (1 km, daily) 800 

and reliable accuracy generated here can benefit climate change studies, hydrological modeling, and 

agricultural applications at regional and global scales. It is also a valuable complement to currently released 
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global microwave and model-simulated soil moisture datasets. Future studies could consider further 

improving and fully evaluating the accuracy of the GLASS SM product. 
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