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Abstract. Despite their small spatial extent, fluvial ecosystems play a significant role in processing and transporting carbon in 

aquatic networks, which results in substantial emission of methane (CH4) to the atmosphere. For this reason, considerable 20 

effort has been put into identifying patterns and drivers of CH4 concentrations in streams and rivers and estimating fluxes to 

the atmosphere across broad spatial scales. Yet progress toward these ends has been slow because of pronounced spatial and 

temporal variability of lotic CH4 concentrations and fluxes and by limited data availability across diverse habitats and 

physicochemical conditions. To address these challenges, we present athe first comprehensive database of CH4 concentrations 

and fluxes for fluvial ecosystems along with broadly relevant and concurrent physical and chemical data. The Global River 25 

Methane database (GriMeDB; 

https://doi.org/10.6073/pasta/f48cdb77282598052349e969920356efhttps://doi.org/10.6073/pasta/b7d1fba4f9a3e365c9861ac

3b58b4a90) includes 24,024 records of CH4 concentration and 8,205 flux measurements from 5,029037 unique sites 

derivedthat were extracted from publications, reports, data repositories, unpublished data sets, and other outlets that became 

availablepublished between 1973 and 2021. Flux observations are reported as diffusive, ebullitive, and total CH4 fluxes, and 30 

GriMeDB also includes 17,655 and 8,409 concurrent measurements of concentrations and 4,444 and 1,521 of fluxes for CO2 

and nitrous oxide (N2O) respectively. Most observations are date-specific (i.e., not site averages) and many are supported by 

data for  1 or more of 12 physicochemical variables and 6 site variables. Site variables include codes to characterize marginal 

channel types (e.g., springs, ditches) and/or presence of human disturbance (e.g., point source inputs, upstream dams). Overall, 

observations in GRiMeDB encompass thea broad range of the climatic, biological, and physical conditions that occur among 35 

world river basins, although some geographic gaps remain (e.g., arid regions, tropical regions, high latitudes and altitude 

systems). The global median CH4 concentration (0.20 μmol L-1) and diffusive flux (0.44 mmol m-2 d-1) in GRiMeDB are lower 

than estimates from priorpast, site-averaged compilations, although ranges (0-456 μmol L-1 and -136-4057 mmol m-2 d-1) and 

standard deviations (10.69 and 86.4) are greater forfrom this larger and more temporally -resolved database. Available flux 

data are dominated by diffusive measurements despite the recognized importance of ebullitive and plant-mediated CH4 fluxes. 40 

NonethelessDespite these limitations, GriMeDB provides a comprehensive and cohesive resource for examining relationships 

between CH4 and environmental drivers, estimating the contribution of fluvial ecosystems to CH4 emissions, and 

contextualizingto contextualize site-based investigations. 

 

1 Introduction 45 

Despite their small areal extent, running-water (fluvial) ecosystems play a significant role in processing and transporting 

carbon (C) in and through aquatic networks, including the production, consumption, transport, and evasion of carbon dioxide 

(CO2) and methane (CH4). The profound planetary warming effects of CH4 in the atmosphere, its erratic but accelerating rate 

of increase over recent years (NOAA, 2022), the significant contributions of natural sources to the growing atmospheric pool 

(Turner et al., 2019), and improvements in gas measurement technologies have all contributed to a rapid increase in studies of 50 
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CH4 dynamics in aquatic environments in general, and fluvial ecosystems in particular. These studies reveal widespread 

supersaturation of CH4 in running waters that underlies their larger than expected contribution to the atmospheric pool (Stanley 

et al., 2016). 

Efforts to quantify fluvial CH4 dynamics at regional, continental, and global scales have been fraught with uncertainty, 

reflecting the inherent variability of this gas in surface waters combined with a notable limitation in data availability. Sources 55 

and sinks of CH4 are often unevenly distributed over space and time within drainage systems and, as a result, concentrations 

can vary over 1-3-4 orders of magnitude over short time periods (sub-daily to sub-weekly; e.g., Natchimuthu et al., 2017; 

Smith and Böhlke, 2019) or relatively small spatial extents (<10 - <100 m for small streams and large rivers; (e.g., Anthony et 

al., 2012; Crawford et al., 2017; Bretz et al., 2021; Robison et al., 2021). Similarly, several drivers or predictors of CH4 have 

been identified in the literature, and these properties also have variable spatial and temporal distributions. Thus, efforts to 60 

estimate the total emissions from world rivers have relied on relatively small data sets composed of site-specific values that 

have been averaged over time, and then usedhave employed upscaling strategies based on Monte Carlo techniques or 

extrapolations using predictor variables that have little or no significant statistical relationships with large-scale patterns of gas 

concentrations or fluxes (Hutchins et al. 2020). Consequently, current global scale estimates of riverine emissions are poorly 

constrained and highly uncertain (Saunois et al., 2020; Rosentreter et al., 2021).) 65 

The combination of rapidly increasing atmospheric concentrations of CH4, the significant role of fluvial systems in emitting 

this gas, and, critically, current difficulties in explaining or predicting concentrations and fluxes with reasonable certainty 

inspired the central goal of this paper: to assemble a comprehensive database of CH4 concentrations and fluxes for fluvial 

ecosystems that includes broadly relevant concurrent physical and chemical data. This effort expands upon a prior compilation 

of CH4 and CO2 data (MethDB; Stanley et al., 2015) that was constructed to emphasize among-site differences and included 70 

1,496 concentration records and 532 flux records from 1,080 sites. In this more comprehensive Global River Methane database 

(GRiMeDB), most data are date-specific (i.e., not averaged over time), the breadth of site types is expanded to include marginal 

fluvial habitats as well as disturbed and artificial waterways, and CH4 data are supported by a broad suite of site-specific 

physical and chemical attributes along with concurrent measurements of CO2 and N2O where available. Given the more finely 

resolved scale of the data and the growth of the field in the past decade, GRiMeDB represents a significant expansion beyond 75 

MethDB. Building GRiMeDB with greater detail and breadth of data was done with the intent of increasing opportunities to 

identify and predict spatial and temporal variation in CH4, to test hypotheses related to greenhouse gas dynamics, and to reduce 

uncertainty in future upscaled estimates of gas emissions. In this paper, we (1) provide a detailed description of the components 

of the database and its construction; (2) summarize some basic patterns of gas concentrations and fluxes from GRiMeDB; and 

(3) highlight critical data gaps and possible future research opportunities for improving current understanding of CH4 dynamics 80 

in streams and rivers.   
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2 Database components and assembly 

GRiMeDB is composed of four tables that contain information related to (1) data sources, (2) sites, (3) gas concentrations and 

supporting physicochemical data, and (4) gas fluxes. All tables are linked by unique data source identifiers, and all concentration 

and flux observations are also linked to unique site numbers (Fig. 1).. Data included in GRiMeDB were gathered from scientific 85 

journals, government reports, public data repositories, theses, dissertations, and unpublished data sets provided by individual 

investigators. Sources were discovered via searches of bibliographic databases and data repositories (Web of Science, Google 

Scholar, ProQuest Dissertations & Theses Global, China National Knowledge Infrastructure, Environmental Data Initiative, USGS 

ScienceBase, Natural Environment Research Council ( NERC) Environmental Information Data Centre, Arctic Data Center, and 

PANGAEA, Zenodo) using the keywords: methane and stream* or river* or ditch* or canal*, and searches were repeated numerous 90 

times prior to between 2018 and December 2021 for completeness. We also used informal ‘word of mouth’ approaches to discover 

additional, often unpublished data sets.  

 

Figure 1: General structure of the GRiMe database and connections between its four tables. Information flow began with entering 

information about each data source into the Sources Table and assigning a unique Source_ID. Site information for each site within a 95 
data source was then entered into the Sites table. The site was given a unique Site_ID and linked to its data source by the Source_ID.  

Source_IDs and Site_IDs were carried over to all concentration and flux observations in their respective tables. Methane (CH4) 

observations include site-date combinations with only concentration data (orange), only flux data (green), or both concentration and flux 

data (brown). Concentrations and available supporting data (described in Sect. 2.3) were entered into the Concentration Table, and each 

observation was given a unique observation (obs) name. For site-date combinations that had both concentration and flux observations, 100 
the Source_ID, Site_ID, observation name, and date information were copied to the Flux Table for data entry. Site-date combinations 

with flux data only were entered into the Flux Table and given a unique observation name. If a flux observation had associated supporting 

data, the Source_ID, Site_ID, observation name, and date information were copied to the Concentration Table for supporting data entry. 

However, if there were no supporting data, matching rows were not added to the Concentration Table. 

 105 

All potential data sources were first screened to determine their appropriateness for inclusion in GRiMeDB. Several criteria were 

established a priori to ensure the usability of the data and that it was derived from inland running water systems. Coastal sites with 
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>1 ppt salinity were considered estuarine and thus were excluded. Similarly, sites that were situated in reservoirs or immediately 

upstream of small dams, dam spillways, beaver ponds, or lake outlets or were subject to experimental manipulation were omitted. 

We did not enter fluxes derived from chambers attached to collars or inserted into sediments because we could not be certain that 110 

such measurements were capturing air-water fluxes. Sources that reported minimum and maximum gas concentrations or fluxes 

only as ranges (i.e., minimum and maximum values only) were not included. Finally, rates expressed on an annual basis were also 

excluded to avoid introducing uncertainty associated with different upscaling assumptions and methods. 

2.1 Sources Table  

The Sources Table contains the list of all sources used to build GRiMeDB, a unique identification number (Source_ID) for 115 

each CH4 data source, and basic bibliographic information for the data source (Title, Author, Source, publication year 

[Pub_year], and digital object identifiers [Paper_DOI or Data_DOI_primarty] or other persistent identifier; all column titles 

for this table are defined in Table A1). In several cases, data sources were supplemented with additional supporting information 

(e.g., associated physicochemical data) from separate sources (described further in Sect. 2.3) or additional or corrected 

information from authors (Fig. 21). In the latter case, we contacted authors if questions arose regarding their data (e.g., 120 

clarification regarding units) and/or to request supporting information or site- or date-specific concentrations or fluxes if 

published values were aggregated. Inclusion of additional unpublished data from authors is noted in the Sources Table along 

with a description of the addition or correction. If supporting data from separate published sources were used, the DOI or other 

persistent identifier for the secondary source was listed in a separate column [Data_DOI_supporting].. 

 125 

 

Figure 21: Workflow for entering data into the Sources Table of GRiMeDB. 

Formatted: Font: Italic



 

6 

 

 

2.2 SitesSite Table 

The Sites Table reports basic information on attributes for all sites where CH4 was sampled. Each site has a unique identification 130 

code (Site_ID) and name (usually taken directly from the data source) and is linked to the Sources Table via the Source_ID (see 

Table A2 for detailed descriptions of all columns in the Sites Table). What composes a ‘site’ (i.e., the spatial extent of data 

collection) variedsite varies among data sources and includes (1) discrete sampling points, (2) geomorphically distinct discrete 

study reaches, and aggregations of points and/or (3) reaches across larger channel sections, areas such as a drainage networks, or 

other geographic units. The second case typically corresponded to reaches such as riffles or pools basin. Because gas data for sites 135 

in small streams. In thethis third case, multiple points were often sampled within the ‘site’ and data were then presented ascategory 

are averages. The distance between sampling points  from locations that had been averaged varied widely, but were typically >1 

km, and in some cases exceeded 100 km. Because may vary with respect to land use, channel order, slope, etc., can vary 

substantially across such distances, we included fields to indicate if a site was an aggregation of widespread points 

(‘aggregated’),aggregated and if so, the number of locations in the aggregation (if available). We also limited the resolution of 140 

latitude and longitude for these sites to < 3 decimal places. At the opposite extreme, gas sampling at points very close to one another 

(a ‘high density site’ sensu Fig. 32) has the potential to create ambiguities for site delineation and data analysis. To avoid these 

pitfalls, we combined points with slightly different latitude-longitude values to represent a single site for three specific cases. First, 

multiple samples collected at different points and/or depths within a channel cross-section were averaged to form a single site. 

Second, some drainages or regions were surveyed repeatedly (particularly the Congo River basin and streams in Pennsylvania, 145 

USA) and it was not always clear if closely- situated (ca. 10-50 m) points from different surveys were intended to be a repeated 

sampling of the same location or sampling of discrete sites. Some judgment was involved in choosing between these two 

possibilities, and in a subset of cases, points in close proximity to one another that were sampled on separate dates were treated as 

a single site. What constituted ‘close proximity’ varied between small streams and large rivers but was always <100 m, and typically 

<50 m. Finally, three data sources had extremely high sampling densities within discrete reaches (50 - >20,000 samples per reach; 150 

Crawford et al., 2016; Call et al., 2018; Loken et al., 2018). Because closely adjacent gas samples can be spatially autocorrelated 

(Crawford et al., 2017) and including all individual values from these studies would have resulted in their over-representation in 

the database, individual point measurements were treated as within-reach replicates. 
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Figure 32: Workflow for entering and checking data for the GRiMeDB Sites Table. ‘Lat-Lon’ is an abbreviation for latitude and 155 

longitude. 

For a site used in multiple studies, the Site_ID was assigned to the earliest paper and a comment was added to the site entry 

noting its use in other data sources (Fig. 32). Latitude and longitude coordinates were available for most sites; however, in 

several cases, location information was acquired from authors or estimated from study site figures using Google Earth (© 

Google Earth 2020). All sitesSites were plotted on Google Earth and inspected (Fig. 32) to identify and correct data errors. If 160 

a site’s coordinates were immediately adjacent to, but not on a channel, the coordinates were adjusted to fall on the channel 
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and this modification was noted in the Comments field. If available, additional variables drawn from the data sources were 

entered to characterize the site, including stream name, basin or region name, elevation, channel slope, Strahler order, basin 

area, and codes denoting distinct channel or site types (described below). To supplement the available elevation data, weWe 

also estimated elevation for all sites except aggregated sites or sites with poorly-resolved coordinates (<(less than 3 decimal 165 

places for both latitude and longitude) after snapping coordinates to the nearest stream. To determine the adjusted within- 

channel coordinates, we firstusing the following procedure. First, we downloaded a digital elevation model (DEM) for each 

site using the function get_elev_raster() from the package “elevatr” (version 0.4.2; Hollister et al., 2021) for R statistical 

software (version 4.2, R Core Team 2021) at a resolution of 6-9 m depending on the location in the globe. Second, the DEM 

was processed for hydrological correctness using the package “whitebox” (version 1.2.0, Wu, 2020) by filling single cell pits 170 

(fill_single_cell_pits() function) and breaching depressions (breach_depressions() function) to obtain a flow direction model 

(d8_pointer() function). Finally, we calculated a flow accumulation model (d8_flow accumulation() function). If the 

coordinates reported in the data source had a flow accumulation <less than 10 cells (indicating that they were not located in a 

preferential flow path), the new coordinates were assigned to the cell with the highest flow accumulation within a 50 m radius. 

If the initial site had a high flow accumulation value (>10 cells), we assumed the site was in a stream channel. Typically, the 175 

snapping procedure resulted in very minor changes to a site’s location (median <3 m). 

 

Many studies of CH4 dynamics have been undertaken to determine if and how specific phenomena such as presence of upstream 

reservoirs, point source discharges, thermokarst features, or oil and gas extraction potentially affect fluvial CH4 (and other 

constituents), usually with an expectation of a net enhancement of concentrations and fluxes. Similarly, other studies have examined 180 

sites that may be expected to be enriched in CH4, but whose fluvial identity might be considered marginal or ambiguous (e.g., 

springs, floodplain backwaters, ditches, canals). Inclusion of such ‘methane hunting’ studies has the potential to bias the dataset 

toward higher values (Stanley et al., 2016). Nonetheless we included these studies in GRiMeDB because they provide an 

opportunity to investigate the consequences of human activity and gain a more comprehensive understanding of fluvial CH4 

dynamics. (e.g., see Alshboul et al., 2016; Peacock et al., 2021). However, to accommodate future analyses in which use of such 185 

data might be unsuitable, or alternatively, when these sites might be the sole focus of a study, we generated a set of channel codes 

to identify targeted site types (Table 1). Information about four of the codes was not consistently available among data sources and 

thus their assignment often involved judgment calls. The first case involved determining if the presence of an upstream dam (code 

DD) was or was not relevant for sites of varying distances downstream distances. We used a value of distance of 7 km as a cut-off 

for this category, although the zone of influence of small or large dams may be far shorter or extend far beyond this distance 190 

depending on dam size and operation (Kemenes et al., 2007), respectively. To provide some context for this code, a site’s distance 

from a dam was acquired from the data source or estimated in Google Earth using the Path tool and reported in the Comments field 

whenever possible. The second case involved straight, symmetrical channels that are common in many agricultural and urban areas. 

Frequently, it was not known if this unnatural geometry was due to channelization (straightening) of a stream (code CH) or creation 

of a new channel (ditches and canals; codes DIT and CAN). In the absence of specific information, straight channels were classified 195 
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as CH. Third, channels draining or passing through wetlands (WS) were often difficult to identify, particularly given seasonal 

variation in wetland appearance. in tropical systems with wet-dry climates. Finally, floodplain channels presented a distinct 

challenge because of the complex nature of these environments and their potential to be classified as either riverine or wetland 

systems. We used the FP code to indicate habitats that were described as, or appeared to be lentic (i.e., backwaters or connected 

floodplain lakes) but were persistently connected to the main river channel and thus were part of the fluvial system. Given these 200 

ambiguities, we recommend that these four codes be viewed and used with care.  

 

2.3 Concentration TableConcentrations and Flux Table Fluxes Tables 

The Concentration TableConcentrations and the Flux Table Fluxes Tables contain the primary gas data central to GRiMeDB, and 

the ConcentrationConcentrations Table also hosts physical and chemical variables associated with concentration and/or flux 205 

observations (see Tables A3 and A4 for the full list of columns Concentrations Table and Fluxes Table columns and their 

descriptions). The vast majority of concentration and flux data were extracted from tables within data sources, data repositories, or 

provided by authors. However, in some cases, values were acquired from figures using graphical digitizing software 

(WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/), GetData (http://getdata-graph-digitizer.com/), or DigitizeIt 

(https://www.digitizeit.xyz/)). Plots with log scales or that were difficult to interpret were not digitized. The accuracy and 210 

consistency of this method were evaluated by comparing data generated by different individuals digitizing a set of common figures 

and by comparing digitized results to known results. Agreement both between both comparisons was strong (average slope = 0.994, 

average R2 = 0.9996 for 5 comparisons between individuals digitizing the same dataset, and average slope = 0.998, average R2 

=0.997 for digitized versus actual data for 7 datasets; see Table S1 for further details), demonstrating the reliability of this method 

of data gathering.  215 

 

Whenever possible, concentrations and fluxes were entered as values for individual sites on individual days (i.e., not averaged 

across sites or days) (Fig. 43). Because 1 day represented the lowest level of temporal resolution in GRiMeDB, repeated 

measurements made on a sub-daily scale were averaged and expressed as a daily value and were not considered to be aggregated 

over time. If multiple replicates were collected at different times on the same day (e.g., a study of diurnal gas dynamics), this was 220 

noted in the Comments fields and measurements prior to and after 12:00 a.m. (local time) were entered as separate, consecutive 

days. Observations resolved to the daily scale can be identified using either a “No” in the Aggregated_Time field or by having the 

same reported starting (Date_start) and ending (Date_end) dates. If the specific start and end dates were not specified in the data 

source, we entered the day as the 15th of the month and noted this approximation in the Comments field. If available, we also 

reported minimum and maximum values and standard deviations (SD) for entries that were aggregated over space and/or time. 225 

SDs, but not minima and maxima were reported for replicates from non-aggregated sampling when available, except for reach-

averaged entries with multiple within-reach measurements and diel studies with multiple within-day values. In these cases, minima 

and maxima were also included.  
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 230 

Table 1. Codes denoting distinct site or channel attributes or presence of conditions that potentially affect methane (CH4) 

concentrations or fluxes. Assignment of codes to a site is based on information provided in the data source and/or physical appearance 

of a site and a site may have more than one code. Codes are reported in the Channel_type field of the Sites Table. 

Code Definition 

CAN Canal or other artificial channel with hardened channel boundaries 

CH Channelized; a channel that has long straight-line sections of uniform width and changes in channel direction are typically distinct 

angular features rather than curves 

DC Channel in a river delta 

DD Downstream (within 7 km) of a dam. Samples from spillways were excludednot included. 

DIT Ditch, typically for agricultural drainage, without channel hardening 

FP Site in a floodplain water body connected to the main channel that appears lentic or is described as a floodplain lake or backwater. 

This category does not include braided river side-channels within floodplains or tributary channels transecting a floodplain 

GT Site below the toe or terminus of a glacier 

IMP Presence of multiple and typically small impoundments in a site’s vicinity (e.g., various European rivers, Mississippi River) 

PI Permafrost influenced; this refers specifically to sites at or immediately below thermokarst outflows and not to sites in areas underlain 

with permafrost 

PS Immediately (<1 km) downstream of a point source discharge 

SP Spring channel; this does not include sites characterized as seeps (features with low flow volume adjacent to channels) 

TH Site receiving inputs of thermogenic CH4, either naturally or as a result of mining, fracking, oil extraction, and other related activities.  

WS Wetland stream; site is in a wetland or immediately downstream from the outlet of a wetland 

NORM Non-targeted site 

 

Dealing with concentration data reported as a negative value, zero, or below a detection limit (BDL) is problematic because of 

inconsistencies in detection limits and reporting practices, and any decision about handling these records introduces some bias 

(Stow et al., 2018). For example, using a non-numerical format such as BDL or <0.01 is likely to lead to the elimination of these 

entries during data analysis and thus would introduce a bias against low-value observations. Alternatively, converting any such 235 

Formatted Table
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value to zero would introduce a bias in the opposite direction. As a compromise solution, concentrations recorded as zero in the 

original data source were entered as zero in GRiMeDB and other below-detection values were entered as -999999. In this latter 

case, the original data entry format was noted in the Comments column. For fluxes, negative and zero values were entered without 

modification or comment.  

 240 

The FluxFluxes Table reports diffusive, ebullitive, and total CH4 fluxes along with CO2 and N2O diffusive fluxes. Given the diverse 

strategies for measuring each of the three CH4 flux pathways and potential biases associated with different approaches (Lorke et 

al., 2015; Chen et al., 2021), values are accompanied by brief categorical descriptions of methods used for each CH4 flux type as 

well as for CO2 fluxes and the gas exchange coefficient k. For a small number of entries, CH4 fluxes were not directly reported in 

the data source but information was available (dissolved gas concentration, temperature, and a corresponding gas exchange 245 

coefficient (k value))) that allowed us to calculate these fluxes. We also entered BDL values for flux for one data source in which 

fluxes had been calculated from concentration, but fluxes associated with BDL concentrations had been omitted from the results. 

Finally, a small number of observations listed diffusive and ebullitive but not total fluxes, so diffusion and ebullition were summed 

and entered as total flux. In all cases, the added calculations are noted in the Comments field. 

 250 

The GRiMeDB ConcentrationConcentrations Table includes physicochemical measurements in support of concentration and flux 

observations (Figs. 1, 4Fig. 3, Table A3). Availability of this supplemental information varied widely among data sources, and 

was limited to data collected concurrently with gas samples. For data sources with gas fluxes and physicochemical data but not 

gas concentrations, we created rows in the ConcentrationConcentrations Table to capture the supporting data. These records are 

identified by a “Yes” in the FluxYesNo column, SampleCount = 0, and NA in the CH4mean column. Finally, water temperature 255 

was estimated for entries if it was needed to convert gas units and entered in the WaterTemp_degC_estimated column. Estimates 

were typically based on values from the same or adjacent sites or the same site at a a similar timetimes (e.g., averages of 

temperature from the prior and subsequent dates, or from the same month in an adjacenta prior year). Error introduced from these 

estimates should be small; e.g., ca. <10% of the actual value if the estimated temperature is off by 3°C. 

 260 

Following completion of all data entry, gas and physicochemical variables were converted to ‘new’ standard units (Tables A3, 

A4). The identities of the new and original units are included in both the Concentration TableConcentrations and Flux TableFluxes 

Tables for clarity. Elevation was used to estimate atmospheric pressure if needed for unit conversions. We used Henry’s Law, 

water temperature, and atmospheric pressure to convert dissolved gas values reported in ppm, ppb, µatm, and % saturation (~13% 

of observations). For observations that reported gas values as percent saturation (<1% of all observations),%), we also used the 265 

global average CH4, CO2, and the N2O atmospheric concentrations from the NOAA Global Monitoring Laboratory 

(https://gml.noaa.gov/ccgg/) for the year 2013, which corresponds to median observation year in the database.  
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Figure 43: Workflow for entering and checking data for the GRiMeDB Concentration TableConcentrations and Flux 

TableFluxes Tables. 

 

2.4 Assessment of representativeness 275 

We assessed the representativeness of sites in GRiMeDB relative to the global distribution of biological, physical, and climatic 

properties following van den Hoogen et al. (2021). Briefly, we first assigned each site to a corresponding river reach in 
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HydroSHEDS (Linke et al., 2019), which is a global hydrological network database that contains spatial data for a wide array 

of hydrological, physiographical, climatic, land cover, geological, edaphic and anthropogenic variables for each river reach. 

HydroSHEDS thus provides a multidimensional characterization of global rivers that is well suited for assessing how 280 

representative GRiMeDB sites are in terms of key biophysical and anthropogenic features. After excluding non-numerical 

variables (e.g., biome) and variables with monthly values (e.g., monthly precipitation), we performed a principal component 

analysis (PCA) on all HydroSHEDS subcatchments using all possible combinations of the 54 remaining HydroSHEDS 

variables. From this, we selected all principal components (PCs) needed to explain 90% of the variance in the PCA, which 

corresponded to 28 PCs and 378 possible bivariate combinations of these PCs. For each unique PC pair, we computed the 285 

convex hull of all sampled sites to determine the distribution of these sites relative to all global river subcatchments for the 

specified PCs (Fig. 54). Each HydroSHEDS subcatchment was then assigned a value of 1 or 0 if it fell within or outside the 

convex hull, respectively. This process was repeated for each of the 378 possible PC combinations. To collapse this 

information, we calculated the fraction of cases that a given subcatchment fell within the convex hull for all PC combinations 

to obtain a dimensionless summary value ranging from 0 to 1. A subcatchment with a value of 1 for this index of 290 

“representativeness” means that it fell within the convex hull for 100% of the PC combinations, indicating that its overall 

characteristics are well captured in the database. It is important to note that this analysis only captures average catchment 

properties of relatively large river reaches (average subcatchment area: 130 km2). Given the strong local controls on CH4 

concentrations and fluxes, interpretations from this analysis should be made with some caution.  

 295 

 

 

Figure 54: Example of a representative principal components analysis (PCA) hexagon plot based on variability in HydroSHEDS river 

subcatchment attributes. Hexagon colour indicates the number of subcatchments per hexagon. Subcatchments hosting GRiMeDB sites 

are plotted in red and contained within the convex hull delineated by red lines. Subcatchments that fall within this polygon are assigned 300 
a value of 1 and those outside the perimeter are given a value of 0 to indicate the representativeness of sampled reaches for this pair of 

PC axes. See Sect. 2.4 for further explanation. 
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2.5 Data checking and data analysis    

Several approaches were taken to check the accuracy of data in GRiMeDB. This included evaluation of the reliability of digitized 305 

data (Sect. 2.3) along with several additional inspection steps. Entries were error checked by a co-author other than the individual 

who entered the data, including confirmation of site location information, validating units for all variables, and spot- or complete 

checking of entered gas data (independent units and data check in Fig. 43), depending on dataset length and if data were manually 

entered or imported directly from a file. Once values had been converted to standard units, all variables were plotted to identify 

outliers (outlier check; Fig. 43), and extreme values were checked against the original data source. In cases in which errors were 310 

present in the original data, if possible, authors were contacted for clarification. In the few rare cases in which issues could not be 

resolved, the data were excluded. These and all other calculations and analyses were performed in R (version 4.2, R Core Team 

2021), using the “dplyr” package (version 1.0.7, Wickham et al., 2021) and “data.table (Dowle and Srinivasin, 2021) for data 

analysis, “sf” package (version, 1.0, Pebesma, 2018) for spatial data processing, and “ggplot2” (version 3.3.5, Wickham, 2016) 

and patchwork (Pedersen, 2020) packages for visualization.  315 

 

3. RESULTS 

3.1 Overview of GRiMeDB data  

GRiMeDB includes 24,024 records of CH4 concentration and 8,205 CH4 flux values from 5,037 unique sites, along with 17,655 

and 8,409 concurrent measurements of concentration and 4,444 and 1,521 of flux forof CO2 and N2O, respectively (Table S2). 320 

Although the first concentration and flux values in GRiMeDB were published in 1973 (Lamontagne et al., 1973) and 1987 (de 

Angelis and Lilley, 1987), respectively, over 70% of all CH4 concentrations and 80% of flux observations became available 

after 2015 (the year of publication of MethDB; Fig. 6, Fig. S15). This growth in data availability has occurred predominantly 

along the spatial axis, as almost two thirds of all sites were added in or after 2015 and over half of all sites in the database have 

a single concentration and/or flux observation. Conversely, long timeseries are rare, with only 8% of the 5,037 sites having > 325 

10 concentration observations and 4% having >10 diffusive flux records (Fig. 6, 5Fig. S1). The longest concentration record 

includes 590 observations distributed over 28 years (Toolik Inlet, Site_ID 9025; Kling, 2019a;, 2022) while the longest flux 

record has 82 observations of diffusive flux over 4 years (Site_ID 3644; Aho et al. 2021). Further, among the 15 sites with 

time series > 5 years, 12 are situated in either the Toolik Lake region of Alaska, USA (Kling, 2019a;, 2019b;, 2022) or within 

the Krycklan watershed in Sweden (Wallin et al., 2018;, Wallin, 2021unpublished). 330 
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Figure 65: Distribution of the number of methane (CH4) observations per site. Brown bars indicate sites with both concentration 

(conc) and flux observations. Orange and green bars show sites with only concentration and only flux observations, respectively. 

Inset: Cumulative observations of CH4 concentration and flux data based on the year of publication of the data source. The vertical 335 
line (2015) indicates the year of MethDB (Stanley et al., 2015) publication. See Fig. S1 for data accumulation and length resolved by 

CH4 flux type. 
 

3.2 Spatial and temporal distribution of data 

Spatially, 40% of all sites and 52% of all CH4 concentration observations are in North America, followed by Europe (25% of 340 

all sites and 26% of all CH4 concentration valuesobservations; Table S2). Conversely, there are vast geographic areas with 

moderate to high channel densities with few or no observations, such as central Canada, Central America, South America 

beyond the Amazon mainstem area, most of Russia, central and western Asia, New Zealand, and the Malay Archipelago (Fig. 

7a). Geographic limitations in availability of flux data, particularly of ebullition, are pronounced given smaller number of 

observations and domination of diffusion measurements. Observations of ebullition are absent or limited to 1-2 studies for 345 
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Africa, Oceania, Central America, South America, and Russia (6aFig. S2). Despite these gaps, there is surprisingly good 

representation in terms of the range of hydrological, physiographical, climatic, land cover, geological, edaphic, and 

anthropogenic conditions that exist globally (Fig. 7b6b). Areas that are poorly represented are characterized by very low 

channel density associated with arid or polar climates as well as high altitude regions (Greenland, northern Canada, northern 

Africa, central Australia, Middle Eastern nations, western China, Mongolia, Chile, southern Argentina). Evaluating the 350 

distribution or representativeness of sites in terms of system size is difficult given the limited availability of relevant 

information such as Strahler stream order or basin area, which were reported for only 26% and -28%, respectively,% of all 

sites (Table S2). For sites with these data, counts of observations decline with increasing stream order (Fig. 87) in a log-linear 

fashion (R2 = 0.92 for concentration and 0.90 for flux; P <0.0005 for both regressions after excluding zero-order counts), 

consistent with Horton’s Law of Stream Numbers (Horton, 1945). Thus, other than the extreme under-representation of zero-355 

order channels, this predictable decline suggests reasonable representation by order. Nonetheless, , although this result should 

be interpreted with caution given the scarcity of relevant data. The distribution of counts by basin size follows a similar pattern 

of under-representation of sites draining very small basins and also indicates a potential over-representation of some large 

basin sizes (Fig. 7; e.g., basins of ca. 10,000 km2; Fig. 8).  

The distribution of observations among months illustrates seasonal sampling regimes dominated by summer sampling in 360 

northern (> 40˚) and southern (< -20˚) latitudes contrasted by even or erratic sampling at mid-latitudes (Fig. 98). Consistent 

with the lower representation of southern hemisphere rivers and streams, several months lack concentration and/or flux 

measurements south of -10˚ latitude, particularly during winter months. Beyond these gaps, the only months missing data in 

the northern hemisphere are fluxes in January and February at sites north of 60˚ latitude and several missing months north of 

70˚, presumably due to pervasive ice and snow cover. 365 
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Figure 76: (a) Global distribution of methane (CH4) observations in the database, colour coded for sites with concentration data 370 
only, flux data only, or both concentration and flux data. Top and right panels show, respectively, longitudinal and latitudinal 

patterns of the density of CH4 observations (grey bars) and the density of river area (blue bars). These bars have been aggregated 

at a 1 latitudinal or longitudinal degree and rescaled from 0 to 1 for this visualization. River area was obtained from BasinAtlas 

(Linke et al. 2019). (b) Representativeness (dimensionless) of the database based on a wide array of biological, physical, hydrological 

and land cover variables (see Sect. 2.4 for details). Values close to 1 indicate a high representativeness, with only 4% of the global 375 
river surface below a threshold of 0.9. See Fig. S2 for data distribution resolved by CH4 flux type. 
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Figure 87: Number of sites with concentration (a, btop) or diffusive flux (c, dbottom) observations as a function of stream order (a, 

cleft) and basin size (b, dright) for the subset of sites with channel order and/or basin size information. 380 
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Figure 98: Number of observations of concentration (left) and flux (right) by month for 10˚ latitude bands. 
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3.3 CH4 flux methodology 385 

Records of CH4 flux are dominated by diffusive flux measurements, which represent 85% of all flux values in the database, 

with ebullition (8%) and total flux (7%) accounting for the remaining entries (Fig. 109).  Not surprisingly, a variety of methods 

have been used to quantify each flux type, although diffusive flux methods are dominated by calculations based on dissolved 

gas concentration and a gas exchange coefficient (k) (74% of all observations), while chamber-based methods are most 

common for quantifying total flux (93% of all observations). Similarly, the gas exchange coefficient k is most commonly 390 

estimated via physical models (n = 31883,188). Several models have been employed for this calculation, as indicated by >25 

different references for k model sources listed in GRiMeDB.   

 

 

 395 
Fig. Figure 109: Counts of methane (CH4) flux observations by type (left), by major methodological categories for each pathway 

(middle), and for method type used to estimate the gas exchange coefficient k (right). For clarity, the chamber category includes all 

chamber types and patterns of gas increase in the chamber unless specified; more resolved methodological data are presented in the 

GRiMeDB FluxFluxes Table. See Table A4 for further details about category definitions. 

 400 

3.4 Overview of concentration and flux data 

Concentrations and fluxes of all three gases are characterized by log-normal distributions that vary overrange across several 

orders of magnitude (Fig. 1110) and large coefficients of variation (CVs) for CH4 and especially N2O (Table 2). The vast 

majority (~95%) of CH4 and CO2 concentrations appear to be supersaturated, in contrast to N2O concentrations within which 

67% of observations were above this threshold. Reports of concentrations below detection are scarce for all gases, including 405 

N2O (Table 2). For fluxes,  
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 410 

Figure 1110: Histograms of gas concentrations and fluxes in GRiMeDB, excluding values reported as below detection or zero; 

counts of these values are reported in Table 3. Dashed vertical lines in the concentration histograms indicate the 100% saturation 

concentration based on the median estimated elevation (250 m) and water temperature (12.5) for all sites and atmospheric 

concentrations of 1.83, 400, and 0.325 ppm for methane (CH4), carbon dioxide (, CO2),, and nitrous oxide (N2O),, respectively. 
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Thethe fraction of observations with zero, below detection, or negative fluxes (5%,, 5%,, and 19% for diffusive CH4, CO2, and 415 

N2O fluxes, respectively), were similar to). corresponded reasonably well with the frequency of subsaturated concentrations. 

At the other extreme, the highest CH4 concentrations (> 200 µmol L-1) paradoxically occur in either anthropogenically -

influenced large rivers of the warm tropics (e.g., Amazon basin: Kemenes et al., 2007; Ganges, Mekong: Begum et al., 2021) 

or in small boreal headwater streams (e.g., Campeau et al., 2018; Wallin et al, 2018). 

There were no meaningful univariate relationships between variables that may be used for upscaling (latitude, basin area, and 420 

stream order) and mean site concentration or flux (Fig. 1211, Table S3). LinearAlthough regressions indicated that were 

significant for latitude and flux, latitude accounted for a very small percent of the variation in both concentration (R2 = 0.006 

and 0.002, respectively0025) and flux (R2 = 0.036 and 0.055004) among sites. Similarly, concentration and flux among stream 

orders suggested possible differences were significantly different for concentration (Kruskal-Wallis tests: Kruskal-Wallis χ2 = 

47.165, df = 846.072, P <0.001) and marginally different for flux (χ2 = 14.777, df =8, 796, P = 0.07006). However, results of  425 

corrected pairwise comparisons (using the method of Benjamini and Hochberg, 1995) revealed no significant differences 

among orders were ambiguous, suggesting no for flux, and differences among orders for flux. For concentration, these 

comparisons indicated possible differences in distributions(P <0.05) only between 7th order channels and all other orders, and 

between 6th vs 1st order sites for concentration. Collectively, these results indicate a lack, indicating an absence of a consistent 

change in CH4 magnitude across channel orders for flux.. In contrast, variability decreased with increasing order and basin 430 

size, although this pattern is likely influenced by the accompanying decrease in sample size across this gradient.   

 

Table 2. Summary statistics for methane (CH4), carbon dioxide (, CO2),, and nitrous oxide (N2O) concentrations and fluxes. The 

%BDL (below detection level) column reports the percent of all observations that are below detection limits (including values 

reported as zero) for concentration. See Table S2 for counts and Table S3 for statistical summaries for all other variables. Standard 435 
deviation (SD) and coefficient of variation (CV). 

Metric

Gas 

Gas (and 

type)Variable 

Mean Median Max Min SD CV %BDL  

Concentration (µmol L-1)        

 CH4 1.49 0.20 456 0 10.69 718 3.2 

 CO2 135 81.7 5,479 0 174.8 130 0.05 

 N2O 0.058 0.017 32.9 0 0.602 1,042 0.59 

 

Flux (mmol m-2 d-1)        

 CH4-diffusive  7.31 0.44 4,057 -136 86.4 1,182  

 CH4-ebullitive 5.424.65 0.2826 366 0 24.0222.75 443490  

 CH4- total 8.717.62 0.6362 366 -0.05 31.9028.5 366375  

Formatted Table



 

27 

 

 CO2 319 128 23,749 -1625 770 242  

 N2O 0.082 0.008 31.3 -11.3 0.981 1,199  

 

 

Figure 1211: Site-average methane (CH4) concentrations (a-c) and flux (d-f) as function of latitude, basin area, and Strahler stream 

order. For boxplots, the upper and lower edges of each box are the 25th and 75th percentiles and whiskers are drawn up to 1.5 times 440 
the interquartile range. 

 

As with relationships between CH4 and physical site attributes, relationships between CH4 concentration or flux and water 

chemistry parameters are also characterized by substantial variability. Representative examples indicate increasing, decreasing, 

and ambiguous relationships between CH4 concentrations and fluxes and selected chemical constituents (Fig. 1312). One 445 

source of the variation in the relationship shown in Fig. 13 may12 can be attributed to differences among sites, as is illustrated 

for the case of CH4 concentration versus discharge. (Fig. 13). The cluster of all points in this plot (Fig. 14a)by itself does not 

suggest an obvious linear relationship between concentration and discharge; however, resolving the data to the site level for 
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sites with multiple observations reveals several significant trends (Fig. 14b).. Among 57 sites with >30 observations, 42 had 

significant relationships (P < 0.05) between concentration and discharge and 30 of these 42 trends were negative.  450 

 

Median site concentrations and fluxes for most categories of targeted channels (Fig. 15) differed from 14) were significantly 

different than “normal” (NORM) sites (Kruskal-Wallis test χ2 = 460.1, df = 12, P < 0.0001 after dropping channel types with 

<10 observations to improve test reliabilty).). Pairwise Wilcoxon comparisons adjusted to account for multiple comparisons 

(Benjamini and Hochberg, 1995) indicated that springs (SP) and delta channels (DC) were similar to did not differ from NORM 455 

sites (P > 0.4) and impoundment-influence (IMP) sites were marginally different (P = 0.053). Concentrations in channels at 

glacial termini (GT) and floodplain backwaters (FP) were lower (P < 0.0001), whereas all other site types had significantly 

higher site average CH4 concentrations than NORM sites. Fluxes also varied among channel type were also significantly 

different (Kruskal-Wallis test χ2 = 126.4143.8, df = 812, P < 0.0001 after dropping channel types with <10 observations), and 

similar to concentration, fluxes in delta channels (DC) and channelized sites (CH), permafrost-influenced channels (PI), and 460 

springs were similar to NORM channels while all other channel types considered had. Pairwise comparisons indicated that all 

other site types differed from NORM sites. Further, fluxes at floodplain sites were significantly higher median fluxes(P < 0.02) 

than NORM sites, in contrast to the significantly lower concentrations for this site type. However, sample sizes were very 

small for FP, PI, as well as GT sites (in addition to an absence of flux data for TH sites), so comparisons for these sites should 

be viewed very cautiously.  465 
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 470 

 

Figure 13: Methane (12: CH4) concentration (a-dtop row) and diffusive flux (e-hbottom row) versus concurrent measures of 

dissolved oxygen (O2; n = 8,529 and 2,316 for concentration and flux, respectively), dissolved organic carbon (DOC; n = 14,441 and 

1,901), total nitrogen (Total N; n = 8,378 and 467) and total phosphorus (Total P; n = 6,904 and 240). Three outliers were excluded 

from the DOC plots, and because of the log scale for CH4, negative and zero values have been omitted. For concentration plots, 475 
colours represent number of observations per polygon, varying from 1 (dark blue) to 30 (yellow).   
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Figure 14: Methane (13: CH4) concentration versus concurrent measures of discharge for (a) all sites with discharge data and (b) 480 
sites with >30 observations (57 sites) with trend lines denoting within-site relationships between concentration and discharge. Each 

site is represented by a separate colour. Because of the log scale for CH4, negative and zero values are omitted.  
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Fig. Figure 1514: Boxplots of site-averaged Methane (CH4) concentration (a) and diffusive flux (b) for channel type categories. 

Channel categories are defined in Table 1, but briefly are as follows: NORM- non-targeted sites; CAN-canals; CH- channelized 

streams; DC-river delta channels; DD- downstream of dams; DIT- ditches; FP- floodplain backwaters; GT- glacial outflows; IMP- 

impounded reaches; PI- permafrost (thermokarst) influenced; PS- point source influenced; SP- springs; TH- thermogenic CH4 490 
inputs; WS- wetland streams. Number of sites per channel type are listed on the right side of each plot. The vertical black line 

denotes the median concentration and flux for non-targeted (NORM) sites. Because a log-scale is used in these plots, zeros and 

negative values were excluded. The actual median for non-targeted sites represented by the vertical line is therefore slightly different 

than the median displayed in the corresponding box plot because of this exclusion. The upper and lower edges of each box are the 

25th and 75th percentiles, whiskers are drawn up to 1.5 times the interquartile range, and points are plotted if beyond the whiskers. 495 
 

 

 

Formatted: Font: 10 pt, Not Bold



 

33 

 

 

4. Discussion 500 

The rapid increase in availability of aquatic CH4 (as well as CO2 and N2O) data over the past 5-10 years has been remarkable 

and creates new opportunities for examining patterns and drivers of these gases in lotic ecosystems across broad spatial scales. 

in lotic ecosystems. Similarly, constructing GRiMeDB provided us with an unprecedented opportunity to identify tendencies 

in when, where, and how CH4 has been sampled in streams and rivers. Examination of such data collection tendencies can 

reveal important biases and gaps within a field (Stanley et al. 2019, Gomez-Gener et al. 2021b) and thus points to future 505 

research needs and opportunities. Below, we discuss the distribution of sampling efforts and methodological issues, 

preliminary data analyses, and consider questions that GRiMeDB can help to answer. 

 

4.1 When and where: sampling effort considerations  

The growth of GHG studies in flowing water systems in the past decade includes a geographic expansion beyond the large 510 

body of historic and current work in temperate regions of North America and Europe. In particular, recent research in Africa, 

Australia, and especially southeast Asia has greatly improved the global coverage of available data. However, studies in arid 

drainages remain scarce- even beyond what would be expected given their small river surface area. A possible explanation for 

the limited study of CH4 in these systems may be the pervasive focus on the contribution of streams and rivers to the global 

atmospheric CH4 pool, and the corresponding assumption that aridlandarid land systems play a minor role in this context. Yet 515 

we suggest that limited study in arid and semi-arid drainages represents a missed opportunity to understand metabolism and 

carbon cycling in a set of streams and rivers that drain nearly half of the global land surface, are increasingly stressed by 

growing human water demands (e.g., Sabo et al., 2010; Lian et al., 2021; Stringer et al., 2022), and support ecosystem process 

rates that are amplified by warm temperatures and highly variable flow regimes (Fisher et al., 1982; Ran et al., 2021). Beyond 

arid and semi-arid basins, further research emphasis in tropical and high-latitude regions would also be beneficial even given 520 

recent improvements in data availability and geographic representation of both areas. Existing data for tropical forests and 

grasslands are dominated by studies of African rivers (especially the Congo drainage) and the Amazon River system. In fact, 

observations from tropical areas of the Indomalayan and northern Australasian region represent <3% of all sites, and Central 

America is represented by a single study. Tropical drainages are frequently characterized by high CH4 concentrations and 

fluxes, along with rapid changes in land use and river regulation that are affecting C cycling and GHG dynamics (Park et al., 525 

2018; Flecker et al. 2022). However, understanding or detecting the magnitude and consequences of these anthropogenic 

changes on fluvial CH4 is constrained by these current sampling limitations. Finally, while high latitude regions (north of the 

Arctic Circle) are well represented in GriMeDB with >3,600 concentration observations, more than 80% of these values are 

derived from studies in the vicinity of the Toolik Field Station in Alaska, USA, and thus do not capture the full biophysical 

diversity of Arctic biomes (Metcalfe et al. 2018).  Given that climate change at high latitudes is progressing faster than 530 

elsewhere on the planet (IPCC, 2021in press), and that the global north stores massive quantities of C in soils (Hugelius et al., 

2014), more extensive coverage of CH4 across Arctic drainage systems is warranted.  
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Although the spatial coverage of CH4 data has improved markedly over the past decade, expansion across temporal dimensions 

has lagged. The predominant mode of sample collection has been and continues to be through surveys that yield one or a few 535 

observations from individual sites (e.g., Bouillon et al., 2012; Kuhn et al., 2017; Jin et al., 2018; Ho et al., 2022),) and studies 

characterizing seasonal dynamics or responses to a site-specific environmental change are limited. Indeed, long-term (>5 years) 

CH4 datasets in general are extremely rare (Leng et al., 2021); no such data are currently available for fluxes and most long-

term concentration records are derived from just a few clustered locations. Determining the consequences of changes in land 

use or habitat attributes on fluvial CH4 dynamics have instead relied on space-for-time substitutions (e.g., Smith et al., 2017; 540 

Gatti et al., 2018; Woda et al. 2020) rather than on direct observations of change over time. Although this strategy has been 

successful in revealing variation in GHG dynamics among different site types, current knowledge about how gases vary over 

time and respond to perturbations is poorly developed because of these data limitations. This deficit may be particularly 

consequential in the case of climate change, as the broad scope of this phenomenon will inevitably limit the effectiveness of 

spatial sampling approaches.  545 

 

The discussion above regarding the ‘when’ and ‘where’ of sampling emphasizes large spatial and relatively long temporal 

scales, consistent with the extent of GRiMeDB. However, another current deficit in our understanding relates to the degree of 

heterogeneity of this gas at fine spatial and temporal scales, and thus if current sampling strategies are missing meaningful 

variation. Recent studies of CO2 provide a cautionary tale in this context, as failure to account for diurnal variation in this gas 550 

results in a consistent under-estimation of fluvial emissions that is quantifiable at regional (Attermeyer et al., 2021) and global 

(Gómez-Gener et al., 2021b) scales. Similar questions may arise for spatial variation; that is, what is the minimum grain size 

or appropriate spatial scale for sampling of CH4 in running waters (Crawford et al., 2017; Lupon et al., 2019)? The potential 

to examine very short-term variation is not possible using GRiMeDB data because of our decision to average of within-day 

measurements given the current small number (ca. 20) of these temporally -detailed studies. Assessment of fine-scale spatial 555 

variation is also limited because of limited fine-scale sampling in general, as well as by decisions made both by investigators 

and during database construction. For example, geomorphologically distinct units (e.g., an individual riffle or pool) are often 

used as a basic sampling unit and results are presented as averages of replicates collected at different points within the study 

reach (e.g., Hlaváčová et al., 2006; Smith et al., 2017). In general, information about replication was frequently omitted, or if 

reported, information about variability among replicates was frequently absent. In addition to this limitation, our decision to 560 

combine replicates taken at different points in a channel cross-section and within individual channel units that had hundreds 

to thousands of datapoints to avoid  ambiguities for site delineation and data analysis also constrains the opportunity to examine 

variation at fine spatial scales. However, we anticipate that this situation will change over the next few several years, as in situ 

sensors or other devices capable of collecting high-frequency/high density gas measurements become more widely available. 

Recent papers signal this new frontier and have highlighted the presence (e.g., Lamarche-Gagnon et al., 2019; Smith and 565 

Bohlke, 2019; Chen et al., 2021; Taillardat et al., 2022) and absence (e.g., Castro-Morales et al., Chen et al., 2021; 2022; 
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Rovelli et al., 2022; Zhang et al., 2021) of predictable diel variation in CH4 concentrations and fluxes, and varying degrees of 

within-reach spatial variability (Crawford et al., 2016; 2017; Call et al., 2018; Bussman et al., 2022). 

 

 570 

 

4.2 How: methodological considerations 

Measuring dissolved GHG concentrations or fluxes involves multiple steps and calculations. Field and laboratory protocols 

vary widely in the literature, and methodological variety is particularly conspicuous for flux determination. Ironically, even 

though many studies of lotic CH4 dynamics are framed in terms of understanding the contribution of these ecosystems to the 575 

rapidly increasing atmospheric CH4 pool, flux measurements lag far behind those of concentration, and the vast majority (ca. 

85%) of observations are of flux data quantify only the diffusive pathway alone. Further, the most common method for 

estimating this pathway involve combining dissolved CH4 concentration with k, the gas exchange coefficient. Quantifying k is 

notoriously challenging (Hall and Ulseth, 2019) and the large number of approaches for calculating k used among data 

providers is concerning and undoubtedly introduces substantial uncertainty. A more in-depth consideration of the 580 

consequences of different models or strategies for arriving at a k value was beyond the scope of this paper, but inclusion of 

methodological information should be useful for such an analysis in the future. 

. Ebullition measurements are notably scarce despite the potential of this pathway to account for a large fraction of total 

emissions in some streams (e.g., from 30-9890% of total CH4 emissions, as shown in; Baulch et al., 2011; Crawford et al., 

2014; Chen et al., 2021). The conventional approach to quantifying ebullition involves a combination of capturing bubbles 585 

just below the water surface to determine the area and time-specific rate of bubble volume reaching the surface and measuring 

CH4 content of recently-erupted bubbles. The episodic nature and extreme spatial heterogeneity of ebullition (Crawford et al., 

2014; Spawn et al., 2015; ChenRobison et al., 2021; Robison et al., 2021) require multiple ) requires good replication of bubble 

trap replicatestraps that need to be deployed over severalmultiple days to generate reliable measurementsmeasurement. Given 

the logistic challenges and labour-intensive work involved, indirect approaches are becoming more common. These approaches 590 

typically use the difference between a chamber-based measurement of flux, which is assumed to represent total flux (diffusion 

+ ebullition) and diffusion calculated from dissolved CH4 and k (i.e., the ‘chamber – [concentration + k]’ method in Fig. 109) 

to estimate ebullition (e.g., Campeau et al., 2014; Zhang et al., 2020; Ran et al., 2021). We suggest that this approach should 

be used cautiously, however. ThisFor example, this strategy is arguably inappropriate for situations in which the chamber gas 

content within a chamber increases in a linear fashion during the measurement period, consistent with the occurrence of 595 

diffusive flux alone. Second, it is not clear if it is reasonable to assume that chamber-based measurements capture both 

diffusion and ebullition, even if a chamber-based flux value is greater than that calculated from dissolved CH4 concentration. 

RelativelyFurther, relatively short chamber deployments are likely to miss or incompletely capture bubble releases, while long-

term deployments are vulnerable to sampling artefacts associated with altered concentration gradients within, and/or turbulence 
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around the chamber (Sawakuchi et al., 2014; Lorke et al., 2015). Given these challenges, it is not altogether surprising that 600 

comparisons between direct and indirect measurements of ebullition can yield substantially different results (e.g., Yang et al., 

2012; Bednařík et al., 2017; Chen et al., 2021).   

The final and most profound knowledge gap in the collection of flux data is the absence of measurements of plant-mediated 

emissions. Plant-mediated fluxes can account for a substantial fraction of total emissions from wetlands and shallow lake 

habitats (Bodmer et al., 2021),) but the contribution of this pathway is unknown in fluvial systems. Indeed, we did not include 605 

plant mediated fluxes in GRiMeDBGRiMe DB because we encountered only two papers that had explicitly quantified this 

pathway in streams (Sanders et al., 2007; Wilcock and Sorrell, 2008). Although aquatic macrophytes are sparse or absent from 

many streams and rivers, they can be abundant in low-gradient, low-disturbance environments (Riis and Biggs, 2003; Gurnell 

et al., 2010) where diffusive fluxes would be constrained by low gas exchange rates. Sediment trapping and venting by 

macrophytes enhances both methanogenesis and methane emission in these systems (Sanders et al., 2007), but the significance 610 

of such processes and the contribution of plant-mediated fluxes at larger spatial scales remain to be determined for fluvial 

systems (Bodmer et al., 2021).   

 

4.3 Concentration and flux patterns 

Not surprisingly, the massive increase in data availability hashave led to differences in averages and measures of variability 615 

for CH4 concentrations and fluxes compared to our previous efforts. Median values for all three CH4 flux pathways in 

GRiMeDB are 1.2-2.2 times lower than those reported by Stanley et al. (2016), as well as those from Rosentreter et al. (2021). 

Conversely, measures of variability (SD, CV) in GRiMeDB are almost 3-fold greater than previous estimates, undoubtedly 

due to the far larger number of observations, the associated expansion of geographic scope and channel types, and the 

inclusionhigher temporal resolution of temporally resolved data.the data. For any sampling effort, the standard deviation 620 

increases with increasing sample size, but eventually reaches a plateau that indicates a sample size sufficient to capture the 

true population variability. It is not yet clear if the sample sizes are sufficient to capture the true global-scale variability of 

fluvial concentrations and fluxes, and future database updates couldshould be used to examine this possibilityrelationship.  

 

Despite the slight lowering of median values compared to previous estimates, supersaturated concentrations and positive fluxes 625 

are the norm for CH4 as well as for CO2 and N2O. However, it is likely that CH4 concentrations and fluxes below detection 

limits (BDLs) are under-reported, as is common with environmental data in general (Stow et al., 2018), so these latest 

estimatescurrent averages may still be slight overestimations of true population medians. Even given the modest number of 

zero or undetectable CH4 concentrations in GriMeDB (<2.5%), decisions about handling BDLs can have a small but detectable 

effect on the estimation of global averages. For example, if these observations are excluded, median CH4 concentrations for 630 

all other observations increases from 1.49 to 1.51 µmol L-1. If we keep all of these observations and assign them a value of 

zero (an unlikely scenario, but used here to provide a lower limit for this example), then the overall median declines to 1.46 
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µmol L-1. Although these differences arethis difference is relatively small, it would likely be consequential for upscaling 

estimates. At a minimum, we urge GRiMeDB users to be aware of how these values are handled and encourage future 

researchers to determine and report detection limits and include samples that fall below these limits in their results. 635 

 

A goal of assembling GRiMeDB was to centralize CH4 data to foster future research efforts. To this end, we also included 

information about habitat conditions that allows the exploration of relationships between CH4 and potential explanatory 

variables and covariates. To demonstrate this opportunity, we provided a limited number of graphic examples of CH4 versus 

variables that have been identified as potential predictors or drivers of CH4 production, concentration, or flux (Figs. 12-1411-640 

13), and these plots suggest both the presence and absence of relationships. For example, increasing CH4 concentrations have 

been associated with low or decreasing dissolved oxygen and/or increasing organic carbon (e.g., Borges et al., 2018; Jin et al. 

2018; Begum et al., 2021) and these relationships are recognizable for concentration but ambiguous for flux across the entirety 

of the GRiMeDB dataset. Similarly, increased CH4 production and emissions tend to be elevated in nutrient-rich 

(eutrophication) lakes (DelSontro et al., 2018) and polluted rivers (Rajkumar et al. 2008; Ho et al., 2022), consistent with 645 

positive relationships between CH4 flux and TN and TP. However, nutrient enrichment in rivers often occurs concurrently 

with fine sediment and organic matter input; thus it remains to be determined if positive relationships in Figs. 13g and 13h are 

correlative or reflect a causal mechanism. Finallydata. Similarly, increases in discharge have been linked to declines in gas 

concentration, likely due to source limitation (i.e., dilution) of terrestrial supply (Aho et al., 2021; Gómez- Gómez-Gener et 

al., 2021a) and/or greater water turbulence, which increases gas exchange and thus reducesin turn can reduce supersaturated 650 

CH4 stocks (Billett and Harvey, 2013; Kokic et al. 2018).  This relationship is not obvious when all data were considered en 

masse, but became more apparent when examining within-site dynamics. In contrast to these three confirmatory examples, 

although latitude and channel size have also been identified as determinants of CH4 concentrations or used to extrapolate site-

specific gas measurements to larger (even global) scales (e.g., Bastviken et al., 2011; Li et al., 2020; Rosentreter et al., 2021), 

evidence for such relationships is absentnot apparent from our analysis. Further, even for the former examples that indicated 655 

relationships between CH4 concentration and DO, DOC, or discharge, there is substantial variability present in these 

relationships, the strength of these predictors is likely to vary across scales, and they explainexplains little of the variability 

for diffusive fluxes. In short, substantial opportunities exist to identify multivariate relationships between different predictors 

and CH4 concentrations and fluxes across different scales, and pursuit of these opportunities should be improved by the 

substantial increase in data for both gases and potential predictor variables. 660 

  

The disproportionate contribution of streams and rivers to atmospheric inputs together with the utility of CH4 as an indicator 

of anthropogenic influences on drainage systems have inspired several studies that focus on fluvial habitats that are expected 

to have high concentrations and fluxes. Many of these ‘methane hunting’ studies have demonstrated significant increases in 

CH4 concentrations and/or fluxes associated with phenomena such as point source inputs (Alshboul et al., 2016), ditch and 665 

canal construction (Peacock et al., 2021),, oil and gas extraction (Woda et al. 2020),, or passage through wetlands (Taillardat 
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et al., 2022).. Such signals persist at the global scale (Fig. 1514), highlighting widespread human enhancement of CH4 

emissions from lotic ecosystems. Not all targeted sites are CH4-rich however.  Low concentrations in glacial outflows (GT) 

likely reflect the effects of cold temperatures and/or low organic carbon availability (Crawford et al., 2015; Burns et al., 2018) 

while low values at floodplain (FP) sites may be attributable to their more characteristically lentic conditions, which 670 

favorallows higher rates of CH4 oxidation in the water column. Indeed, oxidation has been shown to represent a significant 

CH4 sink in floodplain lakes associated with the Amazon River (Barbosa et al., 2018) and most of the FP sites in GRiMeDB 

are part of the Amazon system.  

As noted in Sect. 3.4, the availability of supporting information is inconsistent, as, for example, only ~25% of data sources 

provided datainformation on channel order or basin size. However, the growing availability of open-access regional and global 675 

geospatial datasets that provide information about site characteristics (e.g., Linke et al., 2019;, Yang et al., 2020) havehas 

increased rapidly in the past decade, to the benefit of analyses seeking to link landscape attributes to CH4 distribution aming 

sites.. Recent upscaling efforts analyses (Rosentreter et al., 2021; Liu et al., 2022; Rocher-Ros et al., in review) have, for 

example, capitalized onbenefited from improved estimates of the surface area of world streams and rivers (Allen and Pavelsky, 

2018; Yang et al., 2020), while the diverse datasets in HydroSHEDS (Linke et al., 2019) allowed us to evaluate the global 680 

representativeness of GRiMeDB sites. As new global-scale datasets become available and become more spatially resolved, we 

anticipate that their pairing with GRiMeDB data will result in significant improvements in the strength and certainty of data 

assimilation models, regional to continental and global-scale analyses ofmodels explaining CH4 distribution and drivers, and 

quantification ofquantifying fluvial emissions to the atmosphere.  

 685 

 

5. Data and code availability 

 

GRiMeDB and its associated metadata are available from the the Environmental Data Initiative (Stanley et al., 2023):2022):  

https://doi.org/10.6073/pasta/f48cdb77282598052349e969920356ef. 690 

https://doi.org/10.6073/pasta/b7d1fba4f9a3e365c9861ac3b58b4a90  

Code used for unit conversions, spatial analyses, and general data analysis and visualization will be available from 

EDI. 

 

 695 

6. Conclusion 

The data gathered in GRiMeDB highlighthighlights many new opportunities, both through analysis of CH4 and supporting 

data in the database, and by revealing gaps that currently exist across fluvial CH4 studies. The most conspicuous data limitations 

include deficits in measurements of non-diffusive flux pathways and underrepresentation of sites fromin underrepresented 

arid, tropical, and arctic biomes. Challenges associated with quantifying ebullition discussed earlierabove also emphasize the 700 
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need for more intercomparisons among the various flux methodologies.methods. Regardless of pathway, flux is a difficult 

process to quantify and can be highly sensitive to methods or gas exchange model choices, yet and there are few methodological 

comparisons (such as available to inform these decisions (Raymond et al., 2012; Lorke et al., 2015) available to inform these 

decisions.). Finally, we highlight that the expansion of GHG data world streams and rivers over the past decade has proceeded 

largely across spatial rather than temporal dimensions. While this expansion has vastly improved the geographic 705 

representativeness of the data, long-term datasets are rare despite their power for generating ecological understanding and 

informing policy/management in the face of environmental change (Hughes et al., 2017). GHG´sUnfortunately, GHG´s, 

particularly CH4 and N2O, are rarely included as routine components of water quality monitoring programs. Thus, we 

emphasize the compelling need to establish such sampling efforts and perpetuate those few that do exist.   

Given the rapid growth in both research interest and data in fluvial GHG dynamics, we imagine future updates and expansion 710 

of GRiMeDB and we welcome datasets and associated research products (e.g., theses, journal publications, reports, etc.). To 

facilitate the data acquisition and updating process, a dowloadable spreadsheet template and detailed information about its use 

and submission are available at https://stanley.limnology.wisc.edu/GRiMe. Regardless of database updates, we recommend 

that the minimum basic information to collect along with GHG data that would be most valuable for later analyses include: 

well-resolved site location data (latitude and longitude); information about site size (Strahler order and/or basin size at the 715 

sampling site), disturbance or modification relevant to GHGs (e.g., categories listed in Table 1); specific sample dates and 

times; discharge, dissolved oxygen, and temperature at the time of sample collection; and clear information about units and 

method(s) used to measure gas flux. Finally, we strongly encourage data package (sensu Gries et al., 2022) publication in a 

trustworthy public data repository such as the Environmental Data Initiative that requires  metadata to meet FAIR data 

principles and increase data findability, accessibility, and re-use (Wilkinson et al., 2016). 720 

Despite highlighting these areas of data limitation in the field, it is important to underscore the opportunities that the growth 

in GHG data availability- especially of CH4 data- now provide. Assembly of GRiMeDB was motivated by the goal of having 

a centralized, standardized resource to facilitate further studies of CH4 pattern and process in flowing water systems. Our 

strategy in developing this database was to maximize opportunities for identifying patterns and relationships involving this gas 

in future analyses. Past difficulties with such efforts may well be a product of the common practice of averaging values over 725 

time or among sites and/or of including non-fluvial sites in analyses. Thus, we carefully documented the data and resolved 

observations to individual sites and dates whenever possible to match the pronounced spatial and temporal variance of this 

gas. Similarly, while we included a range of habitat types in GRiMeDB, unconventional or targeted sites are easily identifiable. 

Further, we carefully examined sites to ensure that they were not subject to impounding effects of a dam or were not situated 

within reservoirs/impoundments orin estuaries where distinct processes such as methane oxidation, tidal cycles, or and elevated 730 

sulphate reductionsconcentrations may obscure or overtake relationships present in inland flowing water systems. Thus, we 

are optimistic that analysis of GriMeDB data by itself, or in concert with other complementary datasets, will provide new and 

https://stanley.limnology.wisc.edu/GRiMe
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unprecedented opportunities to examine relationships between CH4 and environmental drivers or correlates, as well as 

providing broad contextual information for site-based studies of fluvial carbon and GHG dynamics.  

 735 
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Appendix A. GRiMeDB tables and variables 

Table A1. Column titles and description of their content for the GRiMeDB Sources Table. 

Column Title Description 

Title Title of data source.  

Author Lead author last name 

Source Identity of the outlet for the data (e.g., journal, data repository, agency that presented the data). 

For titles with published papers paired with published datasets, the journal is listed in this 

column 

Pub_year Year of publication, data release, or acquisition of an unpublished dataset 

Source_ID Unique data source identifier 

Additional_data “Yes” in this column indicates that additional data were acquired directly from the author for 

any field. Additions are described in the Comments field 

Comments Additional information or clarification about the data source 

Paper_DOI DOI or hyperlink for journal article or other publication based on the CH4 data 

Data_DOI_primary DOI or hyperlink for CH4 data posted in a data repository 

Data_DOI_supporting DOI or hyperlink for separate datasets providing supporting data  
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Table A2. Column titles and content description for the GRiMeDB Sites Table.  745 

Column Title Definition 

Source_ID Unique data source identifier from the Sources Table 

Site_ID Unique site identifier  

Site_Name Unique site name 

Stream_Name Stream or river name; taken or modified from the data source or generated de novo when a 

name was not specified in the data source 

Aggregated Yes or No; “Yes” if CH4 data entered are averages from >1 site 

N_sites_aggregated Number of sites that were averaged for aggregated sites 

Basin_Region Name of the larger drainage basin or region that contains the site. This information is 

included to facilitate site grouping during data analysis 

Latitude Decimal degrees, WGS84 ensemble: EPSG:4326 coordinate system 

Longitude Decimal degrees, WGS84 ensemble: EPSG:4326 coordinate system 

Elevation_m Reported meters above sea level 

Slope_m_per_m Reported channel slope expressed as m m-1 

Strahler_order Reported Strahler stream order  

Basin_size_km2 Reported basin size in square kilometers 

Channel_type Codes denoting distinct site or channel attributes or presence of specified conditions. See 

Table 1 for categories and their definitions 

Latitude_snapped Latitude in decimal degrees for site location after snapping to the closest channel for elevation 

determination 

Longitude_snapped Longitude in decimal degrees for site location after snapping to the closest channel for 

elevation determination 

Elevation_estimated_m Elevation (meters above sea level) calculated from the DEM. See Sect. 2.2 for details 

Comments Additional information or clarification about the site source 
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Table A3. Column titles and definitions for the GRiMeDB Concentration Table  750 

Column Title Definition 

Source_ID Unique paper identifier from the Sources Table 

Site_ID Unique sitepaper identifier from the Sites Table 

Site_Name Unique site name from the Sites Table 

Conc_Name Unique name for the sampling event at the site; same as Flux_Name in the FluxFluxes Table if 

both concentration and flux data for the same site-date combination are available 

Date_start First sampling date 

Date_end Last sampling date; this is the same date as the Date_start if data are not aggregated over time 

Aggregated_Space Yes or No; “Yes” if CH4 data entered are averages from >1 site  

Aggregated_Time Yes or No; “Yes: if CH4 data entered are averages from >1 date 

FluxYesNo Yes or No; “Yes” if there is a corresponding flux measurement associated with this site-date 

combination 

SampleCount Number of samples or observations corresponding to the mean or median concentration 

CH4min Minimum measured CH4 concentration in µmol L-1 if data are aggregated spatially or 

temporally, has multiple within-day measurements (e.g., a diel study), or are from a data-

dense spatial study 

CH4max Maximum measured CH4 concentration in µmol L-1 if data are aggregated spatially or 

temporally, has multiple within-day measurements (e.g., a diel study), or are from a data-

dense spatial study 

CH4mean Mean or sole reported CH4 concentration in µmol L-1 for the sampling event  

CH4_SD Standard deviation of the mean CH4 concentration 

CH4median Median CH4 concentration in µmol L-1 

CO2min Minimum measured CO2 concentration in µmol L-1 if data are aggregated spatially or 

temporally, has multiple within-day measurements (e.g., a diel study), or are from a data-

dense spatial study  

CO2max Maximum measured CO2 concentration in µmol L-1 if data are aggregated spatially or 

temporally, has multiple within-day measurements (e.g., a diel study), or are from a data-

dense spatial study  

CO2mean Mean or sole reported CO2 concentration in µmol L-1 for the sampling event 

CO2_SD Standard deviation of the mean concentration 
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CO2medianTable A3. 

Continued 

Median CO2 concentration 

N2OminCO2median Minimum measured N2O concentration if data are aggregated or temporally, has multiple within-

day measurements (e.g., a diel study), or are from a data-dense spatial study Median CO2 

concentration in µmol L-1 

Table A3. 

ContinuedN2Omin 

Minimum measured N2O concentration in µmol L-1 if data are aggregated spatially or 

temporally, has multiple within-day measurements (e.g., a diel study), or are from a data-

dense spatial study  

N2Omax Maximum measured N2O concentration in µmol L-1 if data are aggregated spatially or 

temporally, has multiple within-day measurements (e.g., a diel study), or are from a data-

dense spatial study 

N2Omean Mean or sole reported N2O concentration in µmol L-1 for the concentration for the sampling 

event 

N2O_SD Standard deviation of the mean N2O concentration 

N2Omedian Median N2O concentration in µmol L-1   

WaterTemp_degC Water temperature in degrees C measured concurrently with CH4 

WaterTemp_degC 

_estimated 

Estimated water temperature in degrees C. This field was populated only for cases in which 

temperature was needed for gas unit conversion. Most estimates were based on temperatures 

from adjacent sites, averaging temperatures from prior and proceeding sample dates, or from 

an adjacent day of the year but from another year. 

Cond_uScm Specific conductance in μS cm-1 

pH pH 

DO_mgL Dissolved oxygen in mg L-1 

DO_percentsat Percent saturation of dissolved oxygen 

Q Discharge in m3 s-1 measured at the time of sample collection  

NO3 NO3 or NO2+NO3 concentration in µmol L-1 measured concurrently with CH4  

NH4 NH4 concentration in µmol L-1 measured concurrently with CH4  

TN TN or TDN concentration in µmol L-1 measured concurrently with CH4   

SRP SRP or PO4 concentration in µmol L-1 measured concurrently with CH4   

TP TP or TDP concentration in µmol L-1 measured concurrently with CH4   

DOC DOC or TOC concentration in µmol L-1 measured concurrently with CH4  

Comments Any additional relevant information regarding data  
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new_CH4_unit Current common units for all CH4 concentrations 

Table A3. Continued  

new_CO2_unit Current common units for all CO2 concentrations 

new_N2O_unit Current common units for all N2O concentrations 

new_NO3_unit Current common units for all NO3 or NO2+NO3 concentrations 

new_NH4_unit Current common units for all NH4 concentrations 

new_TN_unit Current common units for all TN or TDN concentrations 

Table A3. Continued  

new_SRP_unit Current common units for all SRP or PO4 concentrations 

new_TP_unit Current common units for all TP or TDP concentrations 

new_DOC_unit Current common units for all DOC or TOC concentrations 

new_Q_unit Current common units for all discharge measurements 

orig_CH4_unit Original units for CH4 concentration  

orig_CO2_unit Original units for CO2 concentration 

orig_N2O_unit Original units for N2O concentration 

orig_NO3_unit Original units for NO3 or NO2+NO3 concentration 

orig_NH4_unit Original units for NH4 concentration 

orig_TN_unit Original units for TN concentration 

orig_SRP_unit Original units for SRP or PO4 concentration 

orig_TP_unit Original units for TP concentration 

orig_DOC_unit Original units for DOC concentration 

orig_Q_unit Original units of discharge 
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Table A4. Column titles and definitions for the GRiMeDB Flux Table 

Column Title Definition 

Source_ID Unique paper identifier from the Sources Table 

Site_ID Unique sitepaper identifier from the Sites Table 

Site_Name Unique site name from the Sites Table 

Flux_Name Unique name for the sampling event at the site; same as Conc_Name in the 

ConcentrationConcentrations Table if both concentration and flux data for the same 

site-date combination are available 

Date_start First sampling date 

Date_end Last sampling date; this is the same date as the Date_start if data are not aggregated 

over time 

Aggregated_Space Yes or No; “Yes” if CH4 data entered are averages from >1 site  

Aggregated_Time Yes or No; “Yes: if CH4 data entered are averages from >1 date 

Diffusive_CH4_Flux_Min Minimum measured CH4 diffusive flux in mm m-2 d-1 if data are aggregated or are 

from diel or data-dense spatial studies 

Diffusive_CH4_Flux_Max Maximum measured CH4 diffusive flux in mm m-2 d-1 if data are aggregated or are 

from diel or data-dense spatial studies 

Diffusive_CH4_Flux_Mean Mean or sole reported CH4 diffusive flux in mm m-2 d-1 for the sampling event  

Diffusive_CH4_Flux_SD Standard deviation of the mean CH4 diffusive flux 

Diffusive_CH4_Flux_Median Median CH4 diffusive flux in mm m-2 d-1 

SampleCount_Diffusive Number of samples or observations corresponding to the mean or median diffusive 

CH4 flux 

Diff_Method 

 

Methodological category used to measure diffusive gas flux. Categories (with brief 

explanations in italics) are: 
 

chamber (unspecified)- unspecified response  

use of an unspecified type of chamber (suspended, tethered, or free-floating) 

and pattern of change gas concentration over time during flux measurements 

is also not specified 
 

chamber (unspecified)- linear response 

unspecified type of chamber with a linear increase in chamber gas 

concentration over time or use of a linear model to calculate flux 
 

suspended/tethered chamber-unspecified response 

 

Table A4. Continued  

 chamber is restrained to maintain its position and not float downstream 

during flux measurement 

 

 

suspended/tethered chamber- linear response 

floating chamber- unspecified response 

chamber is unrestrained and is able to float downstream during flux 

measurement 
 

floating chamber- linear response 

conc+k 

diffusive flux calculated using the equation:  

flux = k(Cw-Ceq), where  
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k = gas exchange coefficient 

Cw = CH4 concentration measured in water 

Ceq = CH4 concentration in water in equilibrium with the atmosphere 
 

other  

methods other than those described above 

Table A4. Continued.  

 Ceq = CH4 concentration in water in equilibrium with the atmosphere 

other  

methods other than those described above 

Eb_CH4_Flux_Min Minimum measured CH4 ebullitive flux in mm m-2 d-1 if data are aggregated or are 

from diel or data-dense spatial studies 

Eb_CH4_Flux_Max Maximum measured CH4 ebullitive flux in mm m-2 d-1 if data are aggregated or are 

from diel or data-dense spatial studies 

Eb_CH4_Flux_Mean Mean or sole reported CH4 ebullitive flux in mm m-2 d-1 for the sampling event  

Eb_CH4_Flux_SD Standard deviation of the mean CH4 ebullitive flux 

Eb_CH4_Flux_Median Median CH4 ebullition flux in mm m-2 d-1 

SampleCount_Eb Number of samples or observations corresponding to the mean or median ebullitive 

CH4 flux 

Eb_Method Methodological category used to measure ebullitive gas flux. Categories (with brief 

explanations in italics) are: 
 

chamber minus conc+k  

ebullition calculated as chamber-measured flux (assumed to be total CH4 

flux) minus diffusive flux calculated from the ‘conc+k’ method 
 

bubble trap + bubble analysis  

gas released by ebullition captured in traps to quantify total gas volume; 

volume data combined with measurement of CH4 content of recently 

collected bubbles 

 

 

 

Table A4. Continued 

 

 

 echosounder + bubble analysis  

gas bubble volume determined using echosounder and combined with CH4 

content of recently collected bubbles  

 departure from linear increase during measurement 

non-linear change in gas concentrations during chamber-based flux 

measurements taken as evidence of ebullition; various approaches used to 

quantify ebullition from these departures 
 

other  

methods other than those described above 

Total_CH4_Flux_Min Minimum measured total CH4 flux in mm m-2 d-1 

Total_CH4_Flux_Max Maximum measured total CH4 flux in mm m-2 d-1 

Total_CH4_Flux_Mean Mean or sole reported total CH4 flux for the sampling event in mm m-2 d-1 

Total_CH4_Flux_SD Standard deviation of the mean total CH4 flux 

Total_CH4_Flux_Median Median measured total CH4 flux in mm m-2 d-1 
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Total_Method Methodological category used to measure total CH4 flux. Categories (with brief 

explanations in italics) are: 
 

conc+k and ebullition 

total flux calculated as the sum of separate measurements of diffusion 

determined by the conc+k method plus ebullition determined from the 

bubble trap or echosounder approach combined with bubble CH4 analysis 
 

floating chamber 

free-floating chamber is assumed to capture diffusive flux and ebullitive flux 

(if present) 
 

suspended/tethered chamber 

suspended or tethered chamber is assumed to capture diffusive flux and 

ebullitive flux (if present) 
 

chamber and ebullition 

total flux calculated as the sum of separate measurements of diffusion 

determined using a floating or suspended/tethered chamber plus ebullition 

determined from the bubble trap or echosounder approach combined with 

bubble CH4 analysis 
 

mass balance 

total flux represents the difference between all measured inputs to a reach 

(e.g., dissolved CH4 from upstream flow, groundwater discharge, and 

methanogenesis) minus all outputs other than efflux to the atmosphere (e.g., 

downstream export, methane oxidation) 

 

 

Table A4. Continued  

 mass balance 

total flux represents the difference between all measured inputs to a reach 

(e.g., dissolved CH4 from upstream flow, groundwater discharge, and 

methanogenesis) minus all outputs other than efflux to the atmosphere (e.g., 

downstream export, methane oxidation) 

other 

methods other than those described above 

CO2_Flux_Min Minimum measured CO2 flux in mm m-2 d-1 if data are aggregated or are from diel or 

data-dense spatial studies 

CO2_Flux_Max Maximum measured CO2 flux in mm m-2 d-1 if data are aggregated or are from diel or 

data-dense spatial studies 

CO2_Flux_Mean Mean or sole reported CO2 diffusive flux in mm m-2 d-1 for the sampling event 

CO2_Flux_SD Standard deviation of the mean CO2 flux 

CO2_Flux_Median Median CO2 flux in mm m-2 d-1 

N2O_Flux_Min Minimum measured N2O flux in mm m-2 d-1 if data are aggregated or are from diel or 

data-dense spatial studies 

N2O_Flux_Max Maximum measured N2O flux in mm m-2 d-1 if data are aggregated or are from diel or 

data-dense spatial studies 

N2O_Flux_Mean Mean or sole reported N2O diffusive flux in mm m-2 d-1 for the sampling event 

N2O_Flux_Stddev Standard deviation of the mean N2O flux 

N2O_Flux_Median Median N2O flux in mm m-2 d-1 
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k_Method Methodological category used for estimating the gas exchange coefficient, k, 

Categories (with brief explanations in italics) are: 
 

physical model  

k calculated using equations based on physical variables such as channel 

slope, water velocity, etc. 
 

chamber + conc  

k determined by chamber-based measurements of flux, dissolved gas 

concentration, and re-arrangement of the flux equation 

 flux = k(Cw-Ceq)  

to solve for k. Typically, these measurements are made for CO2, and then 

kCO2 is converted to kCH4  
 

tracer addition  

paired conservative and gas tracer additions used to calculate k from 

concentration declines along a stream reach 
 

assigned k value  

use of k values from other dates or sites in the same study or k values 

considered to be characteristic of the site 
 

other 

methods other than those described above 

Table A4. Continued  

 unknown 

method to determine k is not described 

k_ref k method citation reported in the data source 

Comments Any additional relevant information regarding data entered in this row 

new_Diffusive_Flux_unit Current common units for all diffusive CH4 flux data 

new_Eb_CH4_Flux_unit Current common units for all ebullitive CH4 flux data 

Table A4. Continued.  

new_Total_Flux_unit Current common units for all total CH4 flux data 

new_CO2_Flux_unit Current common units for all CO2 flux data 

new_N2O_Flux_unit Current common units for all N2O flux data 

orig_Diffusive_Flux_unit Original units for diffusive CH4 flux  

orig_Eb_CH4_Flux_unit Original units for ebullitive CH4 flux used  

orig_Total_Flux_unit Original units for total CH4 flux  

orig_CO2_Flux_unit Original units for CO2 flux  

orig_N2O_Flux_unit Original units for N2O flux  

 755 

 

  

Formatted Table

Formatted Table



 

52 

 

Appendix B. Citations for data sources in GRiMeDB, including citations . Citations are not provided for unpublished 

datasets. Dates for unpublished dataset correspond to the year the data were provided by data authors.  

Abbott, B. and Jones, J.: Soil respiration, water chemistry, and soil gas data for thermokarst features and undisturbed tundra 760 

on the North Slope of Alaska, Arctic Data Center, https://doi.org/10.18739/A23T9D71C, 2013. 

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., and Bowden, W. B.: Patterns and persistence of hydrologic carbon 

and nutrient export from collapsing upland permafrost, Biogeosciences, 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-

2015, 2015. 

Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., Dos Santos, M. A., and 765 

Matvienko, B.: Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, 

French Guiana), Global Biogeochem. Cycles, 19, GB4007, https://doi.org/10.1029/2005GB002457, 2005. 
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