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Abstract. Deep learning algorithms have shown incredible potential in many applications. The success of these data-hungry 

methods is largely associated with the availability of large-scale data sets, as millions of observations are often required to 

achieve acceptable performance levels. Recently, there has been an increased interest in applying deep learning methods to 

geophysical applications where electromagnetic methods are used to map the subsurface geology by observing variations in 

the electrical resistivity of the subsurface materials. To date, there are no standardized datasets for electromagnetic methods, 15 

which hinders the progress, evaluation, benchmarking, and evolution of deep learning algorithms due to data inconsistency. 

Therefore, we present a large-scale electrical resistivity model database of a wide variety of geologically plausible and 

geophysically resolvable subsurface structures for the commonly deployed ground-based and airborne electromagnetic 

systems. The presented database can potentially be used to build surrogate models of well-known processes and aid in labour 

intensive tasks. The geophysically constrained property of this database will not only achieve enhanced performance and 20 

improved generalization but, more importantly, it will incorporate consistency and credibility in deep learning models. We 

show the effectiveness of the presented database by surrogating the forward modelling process, and urge the geophysical 

community interested in deep learning for electromagnetic methods to utilize the presented database. The dataset is publically 

available at https://doi.org/10.5281/zenodo.7260886 (Asif et al., 2022a).  

1 Introduction 25 

Recent years have witnessed the success of many deep learning (DL) applications. Although, DL emerged in 1982 in the form 

of neural networks (Hopfield, 1982), it started to gain attention in 2012 due to its notable performance for image classification 

tasks (Krizhevsky et al., 2017, 2012). Since then, it has been successfully applied for many applications including object 
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detection (Asif et al., 2019; Redmon et al., 2016; Ren et al., 2015), image super-resolution (Dong et al., 2016; Zhang et al., 

2018), speech recognition (Zhang et al., 2017), and stock market predictions (Pang et al., 2020). The revival of DL was mainly 30 

influenced by the availability of cheap computing resources, deeper network architectures and large-scale publically available 

datasets. Deeper network architectures and increased number of samples in the training datasets are key factors for improved 

performance and better generalization of DL models (Wang et al., 2016).  

Geophysics is a branch of Earth sciences, and geophysical methods are often used to infer information about the subsurface 

geology by mapping physical properties. The integration of neural networks in geophysics started several decades ago and has 35 

covered many domains of geophysics (Baan and Jutten, 2000; Dramsch, 2020) including seismic (Röth and Tarantola, 1994; 

Zhang et al., 2020), magneto-telluric (Conway et al., 2019; Liu et al., 2020; Zhang and Paulson, 1997) geo-mechanical (Feng 

and Seto, 1998; Khatibi and Aghajanpour, 2020) and electromagnetics (Birken and Poulton, 1999; Birken et al., 1999; Bording 

et al., 2021; Kwan et al., 2015; Poulton et al., 1992; Zhu et al., 2012). Interestingly, the last few years have seen a significant 

increase of interest in applying DL to electromagnetic (EM) methods (see Table 1), where the artificially generated EM fields 40 

are used to map variations in the electrical resistivity properties of the subsurface. For more details regarding the EM methods, 

the readers are referred to literature, e.g. (Kirsch, 2006). The increasing interest in applying DL to EM methods is mainly 

influenced by the increased ability of the EM methods to collect huge data sets in short amounts of time, which makes the 

subsequent processes extremely laborious and time consuming. Therefore, a DL method could be beneficial in surrogating 

well-known EM processes, e.g. forward modelling where the propagation of the EM fields are simulated resulting in the 45 

forward responses (Xue et al., 2020), and inverse modelling (inversion) where the electrical resistivity properties of the 

subsurface are deduced from observed EM data (Zhdanov, 2015). DL methods can also assist in manual tasks, which may 

require considerable time when performed manually, such as anomaly detection in EM data. Further opportunities may lie in 

other tasks, e.g. data de-noising. 

To apply a DL algorithm to EM methods for various applications, subsurface resistivity models and/or the corresponding EM 50 

responses are often required. To achieve optimal performance, a DL method should be trained on a large number of 

geologically realistic subsurface models. Evident from Table 1, the recently developed DL methods either uses subsurface 

resistivity models acquired from field data or generate the models randomly or in a pseudorandom manner for training. 

However, a method trained on random models, where the resistivity of each geological layer is chosen from a probability 

distribution, would not result in optimal performance as many of the training samples would be geologically unrealistic. A 55 

good solution is either using resistivity models inverted from field data or pseudorandom resistivity models where the 

resistivity of the training models are based on some prior geological information to reflect various characteristics of field data 

(Bai et al., 2020). However, a DL method trained on such training samples would only be effective for specific geological 

conditions and may result in unsatisfactory performance for significantly different geological settings, as bias in the training 
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data can substantially affect generalizability. Additionally, the unavailability of standard benchmark database hinders the 60 

progress, evaluation, benchmarking, and evolution of DL algorithms due to data inconsistency (Bergen et al., 2019; Reichstein 

et al., 2019).  

Reference 
No. of samples 

in training set Training Observation type Application 

(Wu et al., 2021a) 80,000 Pseudorandom resistivity models and forward responses Inversion 

(Colombo et al., 2021a) 5,000 Pseudorandom resistivity models and forward responses Inversion 

(Colombo et al., 2021b) 20,000 Random resistivity models and forward responses Inversion 

(Wu et al., 2021b) 16,800 Forward responses of random resistivity models De-noising 

(Bording et al., 2021) 93,500 Field data and inversion models Forward modelling 

(Puzyrev and Swidinsky, 2021) 5,12,000 Random resistivity models and forward responses Inversion 

(Asif et al., 2021a) 100,000 Field data and inversion models Forward modelling 

(Moghadas et al., 2020) 20,000 Random resistivity models and forward responses Forward modelling 

(Bai et al., 2020) 12,000 Pseudorandom resistivity models and forward responses Inversion 

(Li et al., 2020) 1,000,000 Pseudorandom resistivity models and forward responses Inversion 

(Bang et al., 2020) 25,173 Pseudorandom resistivity models and forward responses Inversion 

(Noh et al., 2020) 20,000 Random resistivity models and forward responses Inversion 

(Moghadas, 2020) 20,000 Random resistivity models and forward responses Inversion 

(Colombo et al., 2020a) 2,35,620 Pseudorandom resistivity models and forward responses Inversion 

(Colombo et al., 2020b) 88 Pseudorandom resistivity models and forward responses Inversion 

(Lin et al., 2019) 2,400 Field data and inverted model forward responses De-noising 

(Guo et al., 2019) 10,000 Pseudorandom resistivity models and forward responses Inversion 

(Puzyrev, 2019) 20,000 Pseudorandom resistivity models and forward responses Inversion 

(Qin et al., 2019) 50,000 Random resistivity models and forward responses Inversion 

Table 1: Recent publications (2019-2021) of DL in EM which shows the number of models and/or forward responses in the training 
dataset and the type of training dataset which are either random, pseudorandom or models inverted from field data 

To have an inclusive DL solution for various applications in EM, we present a physics-driven large-scale model database (~1 65 

million) of geologically plausible and EM resolvable 1-D sub-surface resistivity models spanning the resistivity range from 1 

Ωm to 2000 Ωm and to a depth of 500 m. This model database is suitable for ground-based and airborne EM systems in a DL 

context. We use broad-banded von Kármán covariance functions to generate geologically constrained resistivity models. 

Geophysical constraints are imposed by calculating the EM forward data of the initial resistivity models followed by inversion 

of the EM forward to obtain the final resistivity models. This allows us to create a comprehensive resistivity model database 70 

(RMD) that may not only improve performance and generalization, but would also incorporate consistency and reliability in 

the DL models. We believe that the presented RMD will be a valuable resource to accelerate the inter- and trans-disciplinary 

research of Earth and data sciences. The presented DL-RMD will also provide uniformity in training and benchmarking for 

DL methods in EM. Therefore, we urge the geophysical community interested in DL for EM methods to use the DL-RMD. 
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This rest of the paper is organized as follows: Section 2 describe the general methodology of generating the sub-surface 75 

resistivity models, while specific settings for the DL-RMD for the three EM system categories is specified in section 3. Section 

4 provide details for training a DL method to surrogate the forward modelling problem and show the effectiveness of the DL-

RMD. Discussion, code and data availability, and concluding remarks are given in section 5, 6, and 7 respectively. 

2 Methodology 

Geological processes do not result in random structures, nor are the subsurface resistivity structures random, as some spatial 80 

correlation is generally present (Tacher et al., 2006). Therefore, it is reasonable that the training of a DL method is based on 

subsurface structures that are geologically plausible and in an EM context, over all resolvable by the EM method. Additionally, 

the scale of the resistivity structure in the models should reflect the resolution capability of the EM methods, as training a DL 

method to resolve structures that are not evident in the input data is not possible. EM method are diffusive methods with 

significantly decreasing resolution with depth and the electrical conductivity contrast plays an important role for the resolution 85 

capability; hence, a metric number for a given EM method’s resolution capability and the depth of investigation can not be 

given.  

To obtain geologically realistic models, we use the broad-banded von Kármán covariance functions (Møller et al., 2001) to 

generate geologically plausible models (von Kármán models). The suite of von Kármán models consist of fine geological 

structures, and contain some resistivity variations and patterns that are unlikely to be resolved due to the resolution limitation 90 

of the EM method. To replicate the resolution capability of the EM method, we generate EM forward responses of the initially 

over-detailed von Kármán models and invert these forward responses to obtain the final resistivity models. Since we aim at 

generating 1-D resistivity models, we are only concerned about the resistivity (ρ) variations in the vertical direction (z) from 

surface to some depth in our model generation. 

Initially, we base the spatial variation character of (z, log(ρ)) for our von Kármán models on the broad-banded von Kármán 95 

covariance functions (Christiansen and Auken, 2003; Møller et al., 2001). 

𝐶𝐶(𝑧𝑧,𝐴𝐴, 𝑣𝑣) = 𝐴𝐴2𝐶𝐶0 �
𝑧𝑧
𝐿𝐿
�
𝜈𝜈
𝐾𝐾𝜈𝜈 �

𝑧𝑧
𝐿𝐿
� ,           (1) 

where A becomes the amplitude of the logarithmic resistivity, C0 is a scaling constant, Z the spatial (vertical) distance, L     

characterizes the maximum correlation length accounted for, and Kν is the modified Bessel function of second kind and order 

ν. In the model generation, L is fixed to a high number (1800 m) which gives us strong correlation for z<<L (Maurer et al., 100 

1998). By using combinations of ν, C0, and resistivity, and compiling several realizations of the stochastic von Kármán process, 

we generate a variety of resistivity models on multiple scales. Table 2 summarizes the L, ν, C0, and resistivity values used. 
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Parameter Values 
Resistivity 1 to 2000 Ωm, log spaced,  

20 values per decade 
L Fixed: 1800 m 
v [0.6, 0.7, 0.8, 0.9, 1.0] 
C0 [0.5, 1, 2, 4] 
# sharp boundaries [1, 2, 3, 4, 5] 

Table 2: Parameters used in all combinations to generate the initial von Kármán resistivity models. 

Examples of this are shown in Figure 1(a-c) where the von Kármán models (in black curves) are generated with a combination 

of the extreme values of ν, C0 for an initial resistivity value of 30 Ωm. Low ν and high C0 produce models with fine and large-105 

scale variations (Figure 1a), while high ν and high C0 values produce a relatively smooth model (Figure 1b) but still with 

resistivity variations spanning 2-3 decades of resistivity. The combination of low ν and C0 values ensure that the simple and 

close to half-space models are also represented (Figure 1c). 

Sharp layering in subsurface are plausible, and large resistivity amplitudes and short correlation lengths in the von Kármán 

functions will form layering in the models. To include more models with sharp layering, we stitch 2-6 randomly selected depth 110 

intervals of the initial generated von Kármán models from a uniform distribution. An example of a stitched model is shown in 

Figure 1(d). These stitched models also ensure that different combination of ν, C0, are represented within one model.  

 

 

Figure 1: Examples of von Kármán models and the result after the forward and inversion process, where black curves shows von 115 
Kármán models (re-discretized to 90 layer) and red curve shows the final model. (a-c) for the combination of ν, C0 stated in the title, 
(d) a stitched layered model (green arrows marks the imposed sharp layer boundaries). The red curves show the obtained model 
from inversion of the forward response of the black model. 
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Prior to the EM forward calculation, the von Kármán models are re-discretized to 90-layers for faster forward computation 120 

and easier handling. For the forward calculation, the geometric mean of the last 5 meters of the von Kármán models is assigned 

to the last model layer that continues to infinity depth. The calculated forward data are assigned a uniform uncertainty of 5% 

and is inverted with a 30-layer model with a minimum structure (smooth) regularization scheme (Viezzoli et al., 2008). The 

red model curves in Figure 1 are the resistivity models after the forward and inversion process, and are the models that enter 

the DL-RMD. As seen from Figure 1, the von Kármán models hold structures that are not resolved by the inverted resistivity 125 

models, so the models obtained after the forward and inversion process results in structures resolvable by the EM method. A 

total of ~95% of the inverted resistivity models explain (fits) the forward data within the assumed data uncertainty.  

The forward and inverse modelling is carried out for three different generic time-domain EM (TEM) systems spanning different 

depth range using the AarhusInv modelling code (Auken et al., 2015). The specific RMD settings for different TEM systems 

are summarized in section 3. 130 

3 Deep learning resistivity model database (DL-RMD) 

EM systems for subsurface exploration have existed since the 1950s, and nowadays a large variety of airborne and ground-

based time-domain electromagnetic (TEM) and frequency-domain electromagnetic (FEM) systems exist. Both TEM and FEM 

methods map the electrical resistivity of the subsurface by inducing EM fields. TEM methods records the decay of the 

secondary EM-field, in the absence of the transmitted EM-field in time-domain, while FEM methods records the secondary 135 

EM-field in frequency-domain in the presence of the transmitted EM-field (Christiansen et al., 2006). TEM and FEM methods 

also differ in resolution and depth of investigation (DOI), depending on the TEM-system configuration, e.g. transmitter turn-

off time, transmitter moment, airborne/ground-based. For the RMD to be compatible for different TEM systems, we have 

compiled three model databases with ~1 million models in each for three generic TEM-systems with different DOI as their 

primary differences. We refer to the three RMD as shallow, intermediate, and deep, with the acronyms S-RMD, I-RMD, D-140 

RMD respectively.  S-RMD mimics a shallow focusing ground based TEM system, initiated by a short transmitter turn-off 

time. For S-RMD, the models are discretized down to 125 m with a top layer thickness of 0.5 m. I-RMD and D-RMD mimics 

airborne TEM with different DOIs, hence discretized down to a depth of 350 and 500 m and with a top layer thickness of 3 

and 5 m respectively.The calculation of DOI follows (Christiansen and Auken, 2012). 

The model discretization for three RMD for the initial von Kármán models and for the final resistivity models entering the 145 

RMD are summarized in Table 3. Table 3 also hold the key specifications of the three generic TEM systems. The settings for 

the generation of the von Kármán models have been specified in Table 2 and are common for the three RMD. Each of the three 

RMD holds ~1 million models spanning the resistivity interval 1-2000 Ωm, where 1/6 of the models originate from the initial 

generated von Kármán models and 5/6 of the models come from the stitched layered von Kármán models. 

https://doi.org/10.5194/essd-2022-345
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

Type Parameter S-RMD I-RMD S-RMD 

von Kármán 
models 

Max depth (m) 125 355 505 m 
Discretization (m) 0.1 0.1 0.1 

Re-discretization (m) 0.2-120 m, 
90 layer log-spaced 

1-350 m, 
90 layer log-spaced 

2-500 m, 
90 layer log-spaced 

Database resistivity 
Models Model Discretization 0.5-120 m, 

30 layer log-spaced 
3-350 m, 

30 layer log-spaced 
5-500 m, 

30 layer log-spaced 

Generic TEM  
configuration 

Turn off time (µs) 4 12 40 
*Gate time start (µs) 5 13 50 
*Gate time end (ms) 1 10 32 
Modelling high (m) 0 – Ground-based 40 - Airborne 40 - Airborne 

Table 3: Model discretization and key specifications of the generic TEM systems for three resistivity model databases. The generic 150 
TEM system are all central loop configurations. *Gate start/end times has zero-time reference at begin of turn-off time. 

Some insights on the three RMD are given in Figure 2, where Figure 2(a-c) shows the layer resistivity distribution of the three 

RMD. The resistivity distribution of the von Kármán models were generated uniformly, but the forward and inversion process 

makes the resistivity distribution slightly skewed towards the lower resistivity end, due to the lower sensitivity/resolution in 

the high resistivity end for the EM method (Christiansen et al., 2006; Jørgensen et al., 2005). The larger start and end bins 155 

compared to the neighboring bins in Figure 2(a-c) are due to the 1 Ωm and 2000 Ωm resistivity truncation. The estimated DOI 

for the three RMD are shown in Figure 2(d-f). We observe that approximately 70% of the models have DOI less than the 

bottom to last layer boundary of the given RMD. Especially, a thick conductive layer near the surface will significantly limit 

the DOI for a given TEM configuration. The uneven and, in some cases, limited DOI does not pose a problem for a DL 

algorithm, as the EM method will compromise a similar DOI limitation for the given resistivity model (see discussion section 160 

for more details). 
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Figure 2: Statistical insights on the DL-RMD. (a-c) Resistivity distribution of the S-RMD, I-RMD, and D-RMD respectively. (d-f) 
Distribution of depth of investigation of models in the S-RMD, I-RMD, and D-RMD respectively, plotted as cumulative sum. 165 

4 Example of an EM application using RMD 

EM methods can benefit from the presented RMD in many ways. For example, the RMD can be used to surrogate the 

computationally expensive numerical forward modelling by using a computationally efficient DL method which would speed 

up the whole inversion process. It can also be used to develop a DL algorithm to replace the calculation of the partial derivatives 

in deterministic inversion methods where the subsurface resistivity model is updated iteratively by using the partial derivatives 170 

of the model parameters. Detecting anomalies in the EM data by using a DL approach using the RMD can significantly speed-

up the EM data processing and limit the involvement of human-centric manual workflows. Additionally, EM data de-noising 

also becomes plausible. 

As an example in this paper, we use the RMD to surrogate the forward modelling problem for a ground-based TEM system 

using a fast DL method since a significant number of forward calculations are required during the inversion process, when 175 

either deterministic or stochastic inversion methods are used. By replacing the computationally expensive numerical forward 
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modelling approach, the whole inversion process may be accelerated without further modification to a standard inversion 

workflow (Asif et al., 2021b). However, it is crucial that the performance of the network balances the numerical precision and 

increased speed of computation. If the prediction accuracy is not sufficiently high, the application in an inversion framework 

may result in spurious subsurface features and erroneous geological interpretations of the geophysical EM mapping results. 180 

4.1 Deep learning (DL) setup 

We design the surrogate model for the tTEM system (Auken et al., 2018). The tTEM system is a ground-based towed TEM 

system with a maximum depth of investigation of 120 m based on the data time interval from ~5 µs to ~1 ms, which matches 

the specification of S-RMD, therefore, we use it to train our DL method.  

The input to the DL algorithm becomes the 30-layer resistivity model m in S-RMD, where the layer thickness of each resistivity 185 

layer is fixed. The target outputs are the numerical TEM forward responses, i.e. 𝑑𝑑𝐁𝐁 𝑑𝑑t� , for the corresponding inputs. A standard 

EM modelling code (Auken et al., 2015) is used to generate the TEM forward responses for the resistivity models m with fixed 

layer thicknesses. We generate the responses from ~1 ns to ~10 ms with exponentially increasing gate-widths sampled at 14 

gates/decade.  

Prior to the training of a DL method, inputs and the corresponding target outputs are normalized. Each resistivity model m is 190 

normalized, where the logarithmic variations in the model parameters can take both positive and negative values. 

𝐦𝐦𝑛𝑛 = log10(𝐦𝐦) −  𝜇𝜇[log10(𝑚𝑚max)+log10(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)]
2

 ,        (2) 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum resistivity values in the training data set of S-RMD, and 𝜇𝜇 is the mean. 

The target outputs, i.e. 𝑑𝑑𝐁𝐁 𝑑𝑑t� , are normalized by: 

𝑑𝑑𝐁𝐁𝑚𝑚
𝑑𝑑𝐭𝐭

=
 𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� − 𝜇𝜇�𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �)

𝜎𝜎�𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �
 ,           (3) 195 

where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation of each data point in the training data set. 

We use a simple DL method where a fully-connected feed-forward neural network is utilized with two hidden layers having 

384 neurons each. The hyperbolic tangent function is used as an activation function between the hidden layers and the full-

batch scaled conjugate algorithm is used for backpropagation. The loss function for training is the sum of squared errors with 

a regularization term consisting of the mean of sum of squares of the network weights and biases. The network configuration 200 

used here is based on our previous results (Asif et al., 2021b; Asif et al., 2022b). We also apply an early stopping criterion to 
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ensure that the training stops when validation loss starts to increase. The validation set for the early stopping criteria comprises 

of 70,000 models from S-RMD, which are excluded from the training set. Once the network is trained, it can be used for 

evaluation purposes. The evaluation metric for our baselines is the percentage relative error, RLP, defined in Eq. (3), which 

effectively deals with the large dynamic range and patterns of TEM data. 205 

𝑅𝑅𝑅𝑅𝑃𝑃 =
 �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �

𝐷𝐷𝐷𝐷
− �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �

𝑁𝑁
�𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �

𝑁𝑁
× 100% ,         (3) 

where  �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �
𝐷𝐷𝐿𝐿

 is the output of the DL method and  �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �
𝑁𝑁

 is the numerically computed forward response.  

4.2 Surrogate forward modelling results 

To test the performance of our DL method trained on S-RMD, we use 697 resistivity models inverted from field data from a 

survey conducted in Søften, a region in Denmark. The minimum and maximum resistivity values in the test dataset are 3.9 Ωm 210 

and 127.1 Ωm respectively. The forward responses of the field inverted resistivity models are calculated numerically to 

compare it with the output of our DL method. Since the output of our DL algorithm are the normalized forward responses, it 

is de-normalized to raw data values by manipulating Eq. (3). For a relative comparison, we train another DL network with the 

same configuration using the initial von Kármán resistivity models. The comparison to the initial von Kármán resistivity 

models also allow us to examine the effect of the forward/inversion process, as described in section 2, in the generation of the 215 

RMD. 

Figure 3 shows the performance comparison of the trained DL networks based on the evaluation metric in Eq. (3) against the 

forward responses of 697 resistivity models from the Søften survey. Figure 3(a) shows the distribution of RLP of the DL 

network trained on S-RMD. We also show the accuracy performance of the DL network trained on von Kármán resistivity 

models. It is evident that the network trained on S-RMD results in lower errors as compared to the network trained on von 220 

Kármán resistivity models. An improvement of 6% is achieved for the data points within half a percent relative error. 

We also show the cumulative distribution of the RLP for the network trained on S-RMD and on von Kármán models in Figure 

3(b). A maximum of 9% improvement in accuracy is achieved for the network is trained on the S-RMD as compared to the 

von Kármán models. The increased accuracy is achieved only by using an appropriate dataset for training. The prediction 

accuracy can be improved with different data pre-processing, network configurations, loss functions, etc. while using the same 225 

training dataset to allow consistency in benchmarking of DL algorithms. It is also important that a balance between the 

prediction performance and computational efficiency is maintained. As such, the computational time for the forward pass of 

the proposed network configuration can serve as a baseline for time comparison. 
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  230 

 Figure 3: Performance of the networks trained on S-RMD and von Kármán resistivity models. (a) RLP distribution. (b) Cumulative 
distribution of RLP. 

Figure 4 show a visual comparison of a numerical forward response against the forward response from our DL networks for a 

resistivity model. It is evident from Figure 4 that the forward response from the network trained on S-RMD is more accurate 

than the network trained on von Kármán models. 235 

   

 Figure 4: Comparison of performance of the networks trained on S-RMD and von Kármán resistivity models with a numerical 
forward response from the test set. The forward responses are shown only within the time range of tTEM data., and the inset shows 
the forward response from 20 µs to 25 µs (a) Numerical forward response vs. the forward response from the network trained on S-
RMD. (b) Numerical forward response vs. the forward response from the network trained on von Kármán models.  240 
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5 Discussion 

The DOI for a given TEM system strongly depends on the underlying resistivity model. Therefore, stating a single DOI value 

for a given TEM system is not appropriate. A single exploration depth, depth of investigation or a similar value stated by the 

instrument manufacturers will often be an optimistic one. For TEM systems with short transmitter current turn-off, the early 

time data points provide the near surface resolution, while the late time data points strongly control the DOI for a given 245 

resistivity model. The transmitter moment and the background noise level also influence the DOI, but these factors are not 

considered in our case, since we have assumed a uniform data uncertainty in the forward and inversion process. The three 

RMD spans different TEM systems and resolutions. Therefore, for a particular TEM system, one should pick the RMD that 

has a similar resolution as the underlying generic TEM system. This is best evaluated by matching the time interval of the data 

for the particular TEM system to the data time interval (data time start/end in Table 3) for the generic TEM system.  250 

In Table 4, we list some examples of the compatibility of our RMD with some well-known TEM systems. Despite the I-RMD 

and D-RMD are compiled for generic airborne-system, the I-RMD and D-RMD are also appropriate for ground-based TEM 

systems since the simulated flight altitude of 40 m does not lead to a drastic change in the vertical resolution.  

System 
Resistivity model database 

S-RMD I-RMD D-RMD 

EQUATOR 
(Karshakov et al., 2017) ✓   

tTEM 
(Auken et al., 2018) ✓   

MEGATEM 
(Smith et al., 2003)  ✓  

AEROTEM 
(Balch et al., 2003)  ✓  

SkyTEM 
(Sørensen and Auken, 
2004) 

 ✓ ✓ 

GEOTEM 
(Smith, 2010)  ✓ ✓ 
SPECTREMPLUS 

(Leggatt et al., 2000)   ✓ 

Table 4: Examples of RMD compatibility for some TEM systems. 

Since FEM and TEM systems follow the same laws of physics, the RMD is also applicable for many FEM systems, despite 255 

the generic EM system in the forward/inversion process mimics the TEM systems. In general, the FEM systems have a 

shallower DOI than that of the TEM systems, hence, the S-RMD is best suited for FEM systems. An alternative to the DL-

RMD is to generate the resistivity model realizations by following the described methodology for the specific EM system by 

using the von Kármán models provided (ref to database). This will ensure a 100% match between resolution, DOI, etc. in the 

model domain compared to sensitivity in the EM data domain. 260 
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Despite the initial von Kármán models with super-imposed layering, the resistivity models in the RMD have a pronounced 

vertical smooth behavior due to the minimum structure (smooth) regularization scheme (Viezzoli et al., 2008) used in the 

inversion phase. Applying another regularization scheme in the inversion phase, e.g., minimum support norm (Vignoli et al., 

2015) or using a few layer model discretization with no vertical regularization, one could compile a resistivity model database 

with different appearances. For our RMD, we chose the minimum structure regularization scheme, since it is commonly used 265 

for inverting airborne and ground-based EM data. It is important to point out that a TEM data curve itself does not hold 

information about whether subsurface boundaries are smooth or sharp. As such, both smooth and a sharp-layered model will 

explain the recorded data equally good in most cases. With our approach of compiling resistivity models, we have tried to 

avoid the inclusion of models with different smooth/sharp behavior that results in identical or close to identical forward data 

responses (equivalent models). 270 

The RMD is generated in the resistivity range of 1-2000 Ωm which covers most of the geological settings taking into account 

the EM mapping capability in high resistivity range. The resistivity limit of 2000 Ωm was chosen since EM methods have no 

or very little sensitivity in the high resistivity range, since high resistivity materials (e.g. granite, basalt, glacier ice, etc.) 

produces EM signal below the detection level. Despite the 2000 Ωm limit, the resistivity distribution of the models in the RMD 

is slightly skewed towards lower resistivities due to the limited sensitivity of the EM method to high resistivity values. A slight 275 

bias towards lower resistivity values may affect the performance of a DL method for high resistive models. However, even if 

an actual subsurface model is represented by a high resistive model, it is expected that any TEM method would have difficulty 

in resolving such a model. The RMD also has a limitation in the low resistivity end, e.g., in settings with seawater and saltwater 

intrusion, which can result in subsurface materials with resistivity values below 1 Ωm. 

Since the 1-D models of the RMD hold resistivity variations in one dimension (vertical) only, they cannot be used for 280 

calculating 2-D or 3-D EM-responses. Examples of geological settings where 1-D approach would be inappropriate include 

steep dipping geological structures, thin sheets mineralization, mapping close to or on the shoreline, or areas with strong 

topographical variations. However, one could apply the same methodology to compile a 2-D or 3-D resistivity database. In 

this case, one would generate the initial von Kármán models as 2-D section or 3-D volumes, and use a 2D or 3D forward and 

inversion process, which of course would be much more computationally expensive compared to the 1-D case. 285 

A network trained on random models may result in lower accuracy performance as compared to the network trained on von 

Kármán models. Due to the geological plausible nature of the von Kármán models, the network trained on such models still 

result in decent performance accuracy. However, a substantial improvement in accuracy is achieved when the geophysically 

resolvable models are employed for the network training. The accuracy performance of the DL methods can be further 

improved by employing e.g. state-of-the-art convolutional neural networks. Such networks can learn complex patterns from 290 
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simple features. However, the RMD provided in this study opens up the possibility to explore more DL frameworks, and have 

reliability and consistency in performance comparisons. 

6 Code and data availability  

The DL-RMD is freely available at https://doi.org/10.5281/zenodo.7260886 (Asif et al., 2022a) and a ready to run demo code 

in python jupyter notebook that uses the network trained on S-RMD and reproduce the results of this paper is available at 295 

https://github.com/rizwanasif/DL-RMD. 

The EM modelling code “AarhusInv” (Auken et al., 2015) used in this study to generate EM forward responses is freely 

available to researchers for non-commercial activities. The details are available at https://hgg.au.dk/software/aarhusinv. 

7 Conclusion 

We have presented at methodology for compiling a geophysically constrained subsurface resistivity model database for 300 

applications related to electromagnetic data. We generated three 1-D resistivity databases, discretized to depths of 120 m, 350 

m, and 500 m in the resistivity range of 1-2000 Ωm, hence covering various ground-based and airborne frequency-domain and 

time-domain electromagnetic systems and most of the geological settings. The upper resistivity limit of the model database is 

satisfactory as the electromagnetic methods have limitations for high resistivity, however, the model database has limitations 

in the low resistivity for subsurface materials below 1 Ωm that may occur in some cases. Additionally, the database holds 1-305 

D models and therefore inherit the limitations of 1-D electromagnetic modelling.  

The example included using the RMD and DL for surrogating TEM forward modelling shows that high accuracy can be 

obtained with the RMD. Furthermore, the example shows that the forward/inversion steps in the generation of the RMD leads 

to a significantly increased performance in the forward modelling. 

Despite some limitations, the generated resistivity model database is a well-organized database, which empowers the 310 

geoscience community to have consistency and credibility in the development of deep learning methods for many tasks 

including surrogating forward modelling, inverse modelling, data de-noising, automatic data processing, etc. Therefore, we 

urge the geophysical community to utilize the presented database to develop and investigate different network configurations, 

data pre-processing strategies, loss functions, etc. while using the presented model database to allow consistency in 

benchmarking deep learning algorithms. The RMD has already proven valuable in significantly improving the accuracy of 315 

neural networks for the forward modelling of electromagnetic data. 
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