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Abstract. Deep learning algorithms have shown incredible potential in many applications. The success of these data-hungry 

methods is largely associated with the availability of large-scale data sets, as millions of observations are often required to 

achieve acceptable performance levels. Recently, there has been an increased interest in applying deep learning methods to 

geophysical applications where electromagnetic methods are used to map the subsurface geology by observing variations in 

the electrical resistivity of the subsurface materials. To date, there are no standardized datasets for electromagnetic methods, 15 

which hinders the progress, evaluation, benchmarking, and evolution of deep learning algorithms due to data inconsistency. 

Therefore, we present a large-scale electrical resistivity model database with a wide variety of geologically plausible and 

geophysically resolvable subsurface structures for the commonly deployed ground-based and airborne electromagnetic 

systems. Potentially, the presented database can be used to build surrogate models of well-known processes and to aid in labour 

intensive tasks. The geophysically constrained property of this database will not only achieve enhanced performance and 20 

improved generalization but, more importantly, it will incorporate consistency and credibility in deep learning models. We 

show the effectiveness of the presented database by surrogating the forward modelling process, and we urge the geophysical 

community interested in deep learning for electromagnetic methods to utilize the presented database. The dataset is publically 

available at https://doi.org/10.5281/zenodo.7260886 (Asif et al., 2022a).  

1 Introduction 25 

Recent years have witnessed the success of many deep learning (DL) applications. Although, DL emerged in 1982 in the form 

of neural networks (Hopfield, 1982), it started to gain attention in 2012 due to its notable performance for image classification 

tasks (Krizhevsky et al., 2017, 2012). Since then, it has been applied successfully to many applications including object 
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detection (Asif et al., 2019; Redmon et al., 2016; Ren et al., 2015), image super-resolution (Dong et al., 2016; Zhang et al., 

2018), speech recognition (Zhang et al., 2017), and stock market predictions (Pang et al., 2020). The revival of DL was mainly 30 

influenced by the availability of cheap computing resources, deeper network architectures and large-scale publically available 

datasets. Deeper network architectures and an increased number of samples in the training datasets are key factors for improved 

performance and better generalization of DL models (Wang et al., 2016).  

Geophysics is a branch of earth sciences, and geophysical methods are often used to infer information about the subsurface 

geology by mapping physical properties. The integration of neural networks in geophysics started several decades ago and has 35 

covered many domains of geophysics (Baan and Jutten, 2000; Dramsch, 2020) including seismic (Röth and Tarantola, 1994; 

Zhang et al., 2020), magneto-telluric (Conway et al., 2019; Liu et al., 2020; Zhang and Paulson, 1997) geo-mechanical (Feng 

and Seto, 1998; Khatibi and Aghajanpour, 2020), and electromagnetics (Birken and Poulton, 1999; Birken et al., 1999; Bording 

et al., 2021; Kwan et al., 2015; Poulton et al., 1992; Zhu et al., 2012). Interestingly, the last few years have seen a significant 

increase of interest in applying DL to electromagnetic (EM) methods (see Table 1), where the artificially generated EM fields 40 

are used to map variations in the electrical resistivity properties of the subsurface. For more details regarding the EM methods, 

readers are referred to literature, e.g. (Kirsch, 2006). The increasing interest in applying DL to EM methods is mainly 

influenced by the increased ability of the EM methods to collect huge data sets in short amounts of time, which makes the 

subsequent processes extremely laborious and time consuming. Therefore, a DL method could be beneficial in surrogating 

well-known EM processes, e.g. forward modelling where the propagation of the EM fields are simulated resulting in the 45 

forward responses (Xue et al., 2020), and inverse modelling (inversion) where the electrical resistivity properties of the 

subsurface are deduced from observed EM data (Zhdanov, 2015). DL methods can also assist with manual tasks, which may 

require considerable time when performed manually, such as anomaly detection in EM data. Further opportunities may lie in 

other tasks, e.g. data de-noising. 

To apply a DL algorithm to EM methods for various applications, subsurface resistivity models and/or the corresponding EM 50 

responses are often required. To achieve optimal performance, a DL method should be trained on a large number of 

geologically realistic subsurface models. Evident from Table 1, the recently developed DL methods either uses subsurface 

resistivity models acquired from field data or generate the models randomly or in a pseudorandom manner for training. 

However, a method trained on random models, where the resistivity of each geological layer is chosen from a probability 

distribution, would not result in optimal performance, as many of the training samples would be geologically unrealistic. A 55 

good solution is either to use resistivity models inverted from field data or pseudorandom resistivity models where the 

resistivity of the training models is based on some prior geological information to reflect various characteristics of field data 

(Bai et al., 2020). However, a DL method trained on such training samples would only be effective for specific geological 

conditions and would result in an unsatisfactory performance for significantly different geological settings (Bording et al., 
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2021), as bias in the training data can affect generalizability substantially. Additionally, the unavailability of a standard 60 

benchmark database hinders the progress, evaluation, benchmarking, and evolution of DL algorithms due to data inconsistency 

(Bergen et al., 2019; Reichstein et al., 2019).  

Table 1: Recent publications (2019-2021) of DL applications in EM which shows the number of training samples and type of training 
dataset (random, pseudorandom or field data)  

Reference 
No. of samples 

in training set Training Observation type Application 

Wu et al. (2021a) 80,000 Pseudorandom resistivity models and forward responses Inversion 

Colombo et al. (2021a) 5,000 Pseudorandom resistivity models and forward responses Inversion 

Colombo et al. (2021b) 20,000 Random resistivity models and forward responses Inversion 

Wu et al. (2021b) 16,800 Forward responses of random resistivity models De-noising 

Bording et al. (2021) 93,500 Field data and inversion models Forward modelling 

Puzyrev and Swidinsky (2021) 5,12,000 Random resistivity models and forward responses Inversion 

Asif et al. (2021a) 100,000 Field data and inversion models Forward modelling 

Moghadas et al. (2020) 20,000 Random resistivity models and forward responses Forward modelling 

Bai et al. (2020) 12,000 Pseudorandom resistivity models and forward responses Inversion 

Li et al. (2020) 1,000,000 Pseudorandom resistivity models and forward responses Inversion 

Bang et al. (2020) 25,173 Pseudorandom resistivity models and forward responses Inversion 

Noh et al. (2020) 20,000 Random resistivity models and forward responses Inversion 

Moghadas (2020) 20,000 Random resistivity models and forward responses Inversion 

Colombo et al. (2020a) 2,35,620 Pseudorandom resistivity models and forward responses Inversion 

Colombo et al. (2020b) 88 Pseudorandom resistivity models and forward responses Inversion 

Lin et al. (2019) 2,400 Field data and inverted model forward responses De-noising 

Guo et al. (2019) 10,000 Pseudorandom resistivity models and forward responses Inversion 

Puzyrev (2019) 20,000 Pseudorandom resistivity models and forward responses Inversion 

Qin et al. (2019) 50,000 Random resistivity models and forward responses Inversion 

To have an inclusive DL solution for various applications in EM, we present a physics-driven large-scale model database (~1 65 

million) of geologically plausible and EM resolvable 1-D sub-surface resistivity models spanning the resistivity range from 1 

Ωm to 2000 Ωm and to a depth of 500 m. This model database is suitable for ground-based and airborne EM systems in a DL 

context. We use broad-banded von Kármán covariance functions to generate geologically constrained resistivity models. 

Geophysical constraints are imposed by calculating the EM forward data of the initial resistivity models followed by inversion 

of the EM forward to obtain the final resistivity models. This allows us to create a comprehensive resistivity model database 70 

(RMD) that may not only improve performance and generalization, but would also incorporate consistency and reliability in 

the DL models. We believe that the presented RMD will be a valuable resource to accelerate the inter- and trans-disciplinary 

research of Earth and data sciences. The presented DL-RMD will also provide uniformity in training and benchmarking for 

DL methods in EM. Therefore, we urge the geophysical community interested in DL for EM methods to use the DL-RMD. 
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The rest of this paper is organized as follows: Section 2 describes the general methodology of generating the sub-surface 75 

resistivity models, while specific settings for the DL-RMD for the three EM system categories are specified in section 3. 

Section 4 provides details for training a DL method to surrogate the forward modelling problem and shows the effectiveness 

of the DL-RMD. Discussion, code and data availability, and concluding remarks are given in section 5, 6, and 7 respectively. 

2 Methodology 

Geological processes do not result in random structures, nor are the subsurface resistivity structures random, as some spatial 80 

correlation is generally present (Tacher et al., 2006). Therefore, it is reasonable that the training of a DL method is based on 

subsurface structures that are geologically plausible and, in an EM context, over all resolvable by the EM method. Additionally, 

the scale of the resistivity structure in the models should reflect the resolution capability of the EM methods, as training a DL 

method to resolve structures that are not evident in the input data is not possible. EM methods are diffusive methods with 

significantly decreasing resolution with depth and the electrical conductivity contrast plays an important role for the resolution 85 

capability; hence, a metric number for a given EM method’s resolution capability and the depth of investigation can not be 

given.  

To obtain geologically realistic models, we use the broad-banded von Kármán covariance functions (Møller et al., 2001) to 

generate geologically plausible models (von Kármán models). The suite of von Kármán models consists of fine geological 

structures and contain some resistivity variations and patterns that are unlikely to be resolved, due to the resolution limitation 90 

of the EM method. To replicate the resolution capability of the EM method, we generate EM forward responses of the initially 

over-detailed von Kármán models and invert these forward responses to obtain the final resistivity models. Since we aim at 

generating 1-D resistivity models, we are only concerned about the resistivity (ρ) variations in the vertical direction (z) from 

surface to some depth in our model generation. 

Initially, we base the spatial variation character of (z, log10(ρ)) for our von Kármán models on the broad-banded von Kármán 95 

covariance functions (Christiansen and Auken, 2003; Møller et al., 2001). 

𝐶𝐶(𝑧𝑧,𝐴𝐴, 𝑣𝑣) = 𝐴𝐴2𝐶𝐶0 �
𝑧𝑧
𝐿𝐿
�
𝜈𝜈
𝐾𝐾𝜈𝜈 �

𝑧𝑧
𝐿𝐿
� ,           (1) 

where A becomes the amplitude of the logarithmic resistivity, C0 is a scaling constant, z the spatial (vertical) distance, L     

characterizes the maximum correlation length accounted for, and Kν is the modified Bessel function of second kind and order 

ν. In the model generation, L is fixed to a high number (1800 m) which gives us strong correlation for z<<L (Maurer et al., 100 

1998). By using combinations of ν, C0, and resistivity, and compiling several realizations of the stochastic von Kármán process, 

we generate a variety of resistivity models on multiple scales. Table 2 summarizes the L, ν, C0, and resistivity values used. 
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Table 2: Parameters used in all combinations to generate the initial von Kármán resistivity models. 

Parameter Values 
Resistivity 1 to 2000 Ωm, log spaced,  

20 values per decade 
L Fixed: 1800 m 
v [0.6, 0.7, 0.8, 0.9, 1.0] 
C0 [0.5, 1, 2, 4] 
# sharp boundaries [1, 2, 3, 4, 5] 

Examples of this are shown in Figure 1(a-c) where the von Kármán models (in black curves) are generated with a combination 

of the extreme values of ν, C0 for an initial resistivity value of 30 Ωm. Low ν and high C0 produce models with fine and large-105 

scale variations (Figure 1a), while high ν and high C0 values produce a relatively smooth model (Figure 1b) but still with 

resistivity variations spanning 2-3 decades of resistivity. The combination of low ν and C0 values ensure that the simple and 

close to half-space models are also represented (Figure 1c). 

Sharp layering in the subsurface is plausible, and large resistivity amplitudes and short correlation lengths in the von Kármán 

functions will form layering in the models. To include more models with a sharp layering, we stitch 2-6 randomly selected 110 

depth intervals of the initially generated von Kármán models from a uniform distribution. An example of a stitched model is 

shown in Figure 1(d). These stitched models also ensure that different combinations of ν, C0, are represented within one model.  

 

Figure 1: Examples of von Kármán models and the result after the forward and inversion process, where black curves shows von 
Kármán models (re-discretized to 90 layer) and the red curve shows the final model. (a-c) for the combination of ν, C0 stated in the 115 
title, (d) a stitched layered model (green arrows marks the imposed sharp layer boundaries). The red curves show the obtained 
model from inversion of the forward response of the black model. 

Prior to the EM forward calculation, the von Kármán models are re-discretized to 90-layers for faster forward computation 

and easier handling. The top layer thickness and depth to the last layer boundary for the re-discretized layers have been detailed 
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in Table 3 for three generic EM systems with different depths of investigations (see Section 3 for further details). For the 120 

forward calculation, the geometric mean of the last 5 meters of the re-discretized von Kármán models is assigned to the last 

model layer that continues to infinity depth. In order to avoid making assumptions on the acquisition conditions, specific 

instrument setups, etc., the calculated forward data are pragmatically assigned a uniform uncertainty of 5% to take noise into 

account and is inverted with a 30-layer model with a minimum structure (smooth) regularization scheme (Viezzoli et al., 2008). 

The layer thicknesses for the 30-layer models are fixed and have also been listed in Table 3. The red model curves in Figure 1 125 

are the resistivity models after the forward and inversion process, and are the models that enter the DL-RMD. As seen from 

Figure 1, the von Kármán models hold structures that are not resolved by the inverted resistivity models, so the models obtained 

after the forward and inversion process result in structures resolvable by the EM method. A total of ~95% of the inverted 

resistivity models explain (fit) the forward data within the assumed data uncertainty. In other words, the inverted models are 

explaining the more complex von Kármán models to a very high degree. 130 

The forward and inverse modelling is carried out for three different generic time-domain EM (TEM) systems spanning different 

depth ranges using the AarhusInv modelling code (Auken et al., 2015). The specific DL-RMD settings for different TEM 

systems are summarized in section 3. 

3 Deep learning resistivity model database (DL-RMD) 

EM systems for subsurface exploration have existed since the 1950s, and nowadays a large variety of airborne and ground-135 

based time-domain electromagnetic (TEM) and frequency-domain electromagnetic (FEM) systems exist. Both TEM and FEM 

methods map the electrical resistivity of the subsurface by inducing EM fields. TEM methods record the decay of the secondary 

EM-field in the absence of the transmitted EM-field in the time-domain, while FEM methods record the secondary EM-field 

in the frequency-domain in the presence of the transmitted EM-field (Christiansen et al., 2006). TEM and FEM methods also 

differ in resolution and depth of investigation, depending on the TEM-system configuration, e.g. transmitter turn-off time, 140 

transmitter moment, airborne/ground-based. For the DL-RMD to be compatible for different TEM systems, we have compiled 

three model databases with ~1 million models in each for three generic TEM-systems with a different depth of investigation 

as their primary differences. We refer to the three DL-RMD as shallow, intermediate, and deep, with the acronyms S-RMD, 

I-RMD, D-RMD respectively. S-RMD mimics a shallow focusing ground based TEM system, initiated by a short transmitter 

turn-off time. For S-RMD, the models are discretized down to 125 m with a top layer thickness of 0.5 m. I-RMD and D-RMD 145 

mimics airborne TEM with different depth of investigations, hence discretized down to a depth of 350 and 500 m and with a 

top layer thickness of 3 and 5 m respectively. The calculation of depth of investigation follows Christiansen and Auken (2012). 

The model discretization for three DL-RMD for the initial von Kármán models and for the final resistivity models entering the 

RMD are summarized in Table 3. Table 3 also holds the key specifications of the three generic TEM systems. The settings for 
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the generation of the von Kármán models have been specified in Table 2 and are common for the three DL-RMD. Each of the 150 

three DL-RMD holds ~1 million models spanning the resistivity interval 1-2000 Ωm, where 1/6 of the models originate from 

the initially generated von Kármán models and 5/6 of the models come from the stitched layered von Kármán models. 

Table 3: Model discretization and key specifications of the generic TEM systems for three resistivity model databases. The generic 
TEM system are all central loop configurations. *Gate start/end times has zero-time reference at begin of turn-off time. 

Type Parameter S-RMD I-RMD D-RMD 

von Kármán models 

Max depth (m) 125 355 505 m 
Discretization (m) 0.1 0.1 0.1 

Re-discretization (m) 0.2-120 m, 
90 layer log-spaced 

1-350 m, 
90 layer log-spaced 

2-500 m, 
90 layer log-spaced 

Database resistivity 
models Model Discretization 0.5-120 m, 

30 layer log-spaced 
3-350 m, 

30 layer log-spaced 
5-500 m, 

30 layer log-spaced 

Generic TEM  
configuration 

Turn off time (µs) 4 12 40 
*Gate time start (µs) 5 13 50 
*Gate time end (ms) 1 10 32 
Modelling height (m) 0 – Ground-based 40 - Airborne 40 - Airborne 

Some insights on the three DL-RMD are given in Figure 2, where Figure 2(a-c) shows the layer resistivity distribution of the 155 

three DL-RMD. The resistivity distributions of the von Kármán models were generated uniformly, but the forward and 

inversion process makes the resistivity distribution slightly skewed towards the lower resistivity end, due to the lower 

sensitivity/resolution in the high resistivity end for the EM method (Christiansen et al., 2006; Jørgensen et al., 2005). The 

larger start and end bins compared to the neighboring bins in Figure 2(a-c) are due to the 1 Ωm and 2000 Ωm resistivity 

truncation. The estimated depths of investigation for the three DL-RMD are shown in Figure 2(d-f). We observe that 160 

approximately 70% of the models have depth of investigation less than the bottom to last layer boundary of the given DL-

RMD. Especially, a thick conductive layer near the surface will significantly limit the depth of investigation for a given TEM 

configuration. The uneven and in some cases limited depth of investigation does not pose a problem for a deep learning 

algorithm, as the EM method will compromise a similar depth of investigation limitation for the given resistivity model (see 

discussion section for more details). 165 
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Figure 2: Statistical insights on the DL-RMD. (a-c) Resistivity distribution of the S-RMD, I-RMD, and D-RMD respectively. (d-f) 
Distribution of depth of investigation of models in the S-RMD, I-RMD, and D-RMD respectively, plotted as cumulative sum. 

4 Example of an EM application using DL-RMD 170 

EM methods can benefit from the presented DL-RMD in many ways. For example, the DL-RMD can be used to surrogate the 

computationally expensive numerical forward modelling by using a computationally efficient DL method, which would speed 

up the whole inversion process. It can also be used to develop a DL algorithm to replace the calculation of the partial derivatives 

in deterministic inversion methods, where the subsurface resistivity model is updated iteratively by using the partial derivatives 

of the model parameters. Detecting anomalies in the EM data by using a DL approach using the DL-RMD can significantly 175 

speed-up the EM data processing and limit the involvement of human-centric manual workflows. Additionally, EM data de-

noising also becomes plausible. 

As an example in this paper, we use the DL-RMD to surrogate the forward modelling problem for a ground-based TEM system 

using a fast DL method, since a significant number of forward calculations are required during the inversion process, when 

either deterministic or stochastic inversion methods are used. By replacing the computationally expensive numerical forward 180 
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modelling approach, the whole inversion process may be accelerated without further modification to a standard inversion 

workflow (Asif et al., 2021b). However, it is crucial that the performance of the DL method balances the numerical precision 

and increased speed of computation. If the prediction accuracy is not sufficiently high, the application in an inversion 

framework may result in spurious subsurface features and erroneous geological interpretations of the geophysical EM mapping 

results. 185 

4.1 Deep learning (DL) setup 

We design the surrogate model for the tTEM system (Auken et al., 2018). The tTEM system is a ground-based towed TEM 

system with a maximum depth of investigation of 120 m based on the data time interval from ~5 µs to ~1 ms, which matches 

the specification of S-RMD, therefore, we use it to train our DL method.  

The input to the DL algorithm becomes the 30-layer resistivity model m in S-RMD, where the layer thickness of each resistivity 190 

layer is fixed. The target outputs are the numerical TEM forward responses, i.e. 𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� , for the corresponding inputs. A 

standard EM modelling code (Auken et al., 2015) is used to generate the TEM forward responses for the resistivity models m 

with fixed layer thicknesses. We generate the responses from ~1 ns to ~10 ms by exponentially increasing gate-widths sampled 

at 14 gates/decade.  

Prior to the training of a DL method, inputs and the corresponding target outputs are normalized. Each resistivity model m is 195 

normalized, where the logarithmic variations in the model parameters can take both positive and negative values. 

𝐦𝐦𝑛𝑛 = log10(𝐦𝐦) −  𝜇𝜇[log10(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)+log10(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)]
2

 ,        (2) 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum resistivity values in the training data set of S-RMD, and 𝜇𝜇 is the mean. 

The target outputs, i.e. 𝑑𝑑𝐁𝐁 𝑑𝑑t� , are normalized by: 

𝑑𝑑𝐁𝐁𝑛𝑛
𝑑𝑑𝑑𝑑

=
 𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� − 𝜇𝜇�𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �)

𝜎𝜎�𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �
 ,           (3) 200 

where 𝜇𝜇 is the mean and 𝜎𝜎 is the standard deviation of each data point in the training data set. 

We use a simple DL method where a fully-connected feed-forward neural network is utilized with two hidden layers, each 

having 384 neurons. The hyperbolic tangent function is used as an activation function between the hidden layers, and the full-

batch scaled conjugate algorithm is used for backpropagation. The loss function for training is the sum of squared errors with 

a regularization term consisting of the mean of sum of squares of the network weights and biases. The network configuration 205 



10 

 

used here is based on our previous results (Asif et al., 2021b; Asif et al., 2022b). We also apply an early stopping criterion to 

ensure that the training stops when the validation loss starts to increase. The validation set for the early stopping criteria 

comprises of 70,000 models from S-RMD, which are excluded from the training set. Once the network is trained, it can be 

used for evaluation purposes. The evaluation metric for our baselines is the percentage relative error, RLP, defined in Eq. (3), 

which effectively deals with the large dynamic range and patterns of TEM data. 210 

𝑅𝑅𝑅𝑅𝑃𝑃 =
 �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �

𝐷𝐷𝐷𝐷
− �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �

𝑁𝑁
�𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �

𝑁𝑁
× 100% ,         (3) 

where  �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �
𝐷𝐷𝐷𝐷

 is the output of the DL method and  �𝑑𝑑𝐁𝐁 𝑑𝑑𝑑𝑑� �
𝑁𝑁

 is the numerically computed forward response.  

4.2 Surrogate forward modelling results 

To test the performance of our DL method trained on S-RMD, we use 697 resistivity models inverted from field data from a 

survey conducted in Søften, a region in Denmark. The data processing and inversion of the field data follows the method 215 

developed by Auken et al. (2018), which covers averaging, anomaly detection, manual inspection, etc. on the data. The 

minimum and maximum resistivity values in the test dataset are 3.9 Ωm and 127.1 Ωm respectively. The forward responses 

of the field inverted resistivity models are calculated numerically to compare them with the output of our DL method. Since 

the output of our DL algorithm is the normalized forward response, it is de-normalized to raw data values by manipulating Eq. 

(3). For a relative comparison, we train another DL network with the same configuration using the initial von Kármán resistivity 220 

models. The comparison to the initial von Kármán resistivity models also allows us to examine the effect of the 

forward/inversion process, as described in section 2, in the generation of the DL-RMD. We also train an additional network 

using the random resistivity models similar to several DL studies (Colombo et al., 2021b; Moghadas, 2020; Moghadas et al., 

2020; Noh et al., 2020; Puzyrev and Swidinsky, 2021; Qin et al., 2019; Wu et al., 2021b) as mentioned in Table 1. To have 

the same level of complexity, the number of layers, depth discretization and the number of random resistivity models are kept 225 

the same as used to train other two networks for a fair comparison, and the resistivity of each layer is chosen randomly from a 

log-uniform distribution to take into account the non-linearity of the forward responses with the resistivity values. As such, a 

resistivity change from 1 Ωm to 10 Ωm would affect the forward data more than a change from 100 Ωm to 110 Ωm (Asif et 

al., 2021a). 

Figure 3 shows the performance comparison of the trained networks based on the evaluation metric in Eq. (3) against the 230 

forward responses of 697 resistivity models from the Søften survey. Figure 3(a) shows the distribution of RLP of the DL 

network trained on S-RMD. We also show the accuracy performance of the DL networks trained on von Kármán and the 

random resistivity models. It is evident that the network trained on S-RMD results in lower errors as compared to the network 

trained on von Kármán resistivity models. On the other hand, the network trained on random resistivity models results in a 
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poor accuracy performance. In quantitative terms, 71% of the data points are evaluated to be within half a percent relative error 235 

for the network trained on S-RMD. In comparison to S-RMD, the network trained on von Kármán resistivity models results in 

65% of data points within half a percent relative error. The network trained on random resistivity models performs the worst 

and only 34% of the data points are calculated to be within half a percent relative error.  

   

 Figure 3: Performance of the networks trained on S-RMD, von Kármán and random resistivity models. (a) RLP distribution. (b) 240 
Cumulative distribution of RLP. 

We also show the cumulative distribution of the RLP for the networks trained on S-RMD, von Kármán and random models in 

Figure 3(b). A maximum of 9% improvement in accuracy is achieved for the network trained on the S-RMD as compared to 

the von Kármán models. In comparison to the network trained on random resistivity models, an improvement of 43% is 

achieved when S-RMD is used for training. The increase in accuracy is achieved only by using an appropriate dataset for 245 

training. The prediction accuracy can be improved with different data pre-processing, network configurations, loss functions, 

etc. while using the same training dataset to allow consistency in benchmarking of DL algorithms. It is also important that a 

balance between the prediction performance and computational efficiency is maintained. As such, the computational time for 

the forward pass of the proposed network configuration can serve as a baseline for time comparison. 

Figure 4 shows a visual comparison of a numerical forward response against the forward response from the trained networks 250 

for one of the resistivity models from the Søften survey. It is evident from Figure 4 that the forward response from the network 

trained on S-RMD is the most accurate and has a maximum relative error of 1.4% for the data point at ~72 µs (see Figure 4a). 

The highest error for the forward response from the network trained on von Kármán models is observed to be 2.5% for the 

data point at ~160 µs as shown in Figure 4(b). The forward response from the network trained on random models results in 

the worst accuracy performance and results in a maximum error of 22.3% for the data point at 100 µs (see Figure 4c).  255 
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 Figure 4: Comparison of performance of the networks trained on S-RMD, von Kármán and random resistivity models with a 
numerical forward response from the test set. The forward responses are shown only within the time range of tTEM data, and the 
inset shows the forward response from 16 µs to 20 µs (a) Numerical forward response vs. the forward response from the network 
trained on S-RMD. (b) Numerical forward response vs. the forward response from the network trained on von Kármán models. (c) 260 
Numerical forward response vs. the forward response from the network trained on random resistivity models. 

5 Discussion 

The network trained on random resistivity models results in a poor accuracy performance as many of the resistivity models in 

the training dataset are geologically unrealistic. The complex unrealistic resistivity structures in the randomly generated 

training models would result in forward responses similar to the ones obtained from simpler resistivity models, which further 265 

decreases the quality of the training dataset. The von Kármán models may be considered as pseudorandom resistivity models 

where the resistivity structure of the models have a geologically realistic nature as it considers multiple correlation lengths 

with stochastic nature resembling geological processes. Due to the geological nature of the von Kármán models, the network 

trained on such models results in a decent performance accuracy. However, the network trained on von Kármán models has a 

lower accuracy performance as compared to the network trained on S-RMD, where the resolution capability of the EM method 270 

has been taken into account resulting in resistivity structures resolvable by the EM method. 
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The resolution capability and the depth of investigation for a given TEM system strongly depends on the underlying resistivity 

model. Therefore, stating a single depth of investigation value for a given TEM system is not appropriate. A single exploration 

depth, depth of investigation, or a similar value stated by the instrument manufacturers will often be an optimistic one. For 

TEM systems with short transmitter current turn-off, the early time data points provide the near surface resolution, while the 275 

late time data points strongly control the depth of investigation for a given resistivity model. The transmitter moment and the 

background noise level also influence the depth of investigation, but these factors are not considered in our case, since we have 

assumed a uniform data uncertainty in the forward and inversion process. The three DL-RMD span different TEM systems 

and resolutions. Therefore, for a particular TEM system, one should pick the DL-RMD that has a similar resolution as the 

underlying generic TEM system. This is best evaluated by matching the time interval of the data for the particular TEM system 280 

to the data time interval (data time start/end in Table 3) for the generic TEM system.  

In Table 4, we list some examples of the compatibility of our DL-RMD with some well-known TEM systems. Despite the I-

RMD and D-RMD being compiled for a generic airborne-system, the I-RMD and D-RMD are also appropriate for ground-

based TEM systems since the simulated flight altitude of 40 m does not lead to a drastic change in the vertical resolution.  

Table 4: Examples of DL-RMD compatibility for some TEM systems. 285 

System 
Resistivity model database 

S-RMD I-RMD D-RMD 

EQUATOR 
(Karshakov et al., 2017) ✓   

tTEM 
(Auken et al., 2018) ✓   

MEGATEM 
(Smith et al., 2003)  ✓  

AEROTEM 
(Balch et al., 2003)  ✓  

SkyTEM 
(Sørensen and Auken, 
2004) 

 ✓ ✓ 

GEOTEM 
(Smith, 2010)  ✓ ✓ 
SPECTREMPLUS 

(Leggatt et al., 2000)   ✓ 

Since FEM and TEM systems follow the same laws of physics, the DL-RMD is also applicable for many FEM systems, despite 

the generic EM system in the forward/inversion process mimicking the TEM systems. In general, the FEM systems have a 

shallower depth of investigation than that of the TEM systems, hence, the S-RMD is best suited for FEM systems. An 

alternative to the DL-RMD is to generate the resistivity model realizations by following the described methodology for the 

specific EM system by using the von Kármán models provided (Asif et al., 2022a). This will ensure a 100% match between 290 

resolution, depth of investigation, etc. in the model domain compared to sensitivity in the EM data domain. 
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Despite the initial von Kármán models with super-imposed layering, the resistivity models in the DL-RMD have a pronounced 

vertical smooth behavior due to the minimum structure (smooth) regularization scheme (Viezzoli et al., 2008) used in the 

inversion phase. Applying another regularization scheme in the inversion phase, e.g., the minimum support norm (Vignoli et 

al., 2015) or using a few layer model discretization with no vertical regularization, one could compile a resistivity model 295 

database with different appearances. For our DL-RMD, we chose the minimum structure regularization scheme, since it is 

commonly used for inverting airborne and ground-based EM data. It is important to point out that a TEM data curve itself does 

not hold information about whether subsurface boundaries are smooth or sharp. As such, both the smooth and a sharp-layered 

model will explain the recorded data equally well in most cases. With our approach of compiling resistivity models, we have 

tried to avoid the inclusion of models with different smooth/sharp behavior that result in identical or close to identical forward 300 

data responses (equivalent models). 

The DL-RMD is generated in the resistivity range of 1-2000 Ωm which covers most of the geological settings, taking into 

account the EM mapping capability in the high resistivity range. The resistivity limit of 2000 Ωm was chosen since EM 

methods have no or very little sensitivity in the high resistivity range, since high resistivity materials (e.g. granite, basalt, 

glacier ice, etc.) produce an EM signal below the detection level. Despite the 2000 Ωm limit, the resistivity distribution of the 305 

models in the DL-RMD is slightly skewed towards lower resistivities due to the limited sensitivity of the EM method to high 

resistivity values. A slight bias towards lower resistivity values may affect the performance of a DL method for high resistive 

models. However, even if an actual subsurface model is represented by a high resistive model, it is expected that any TEM 

method would have difficulty in resolving such a model. The RMD also has a limitation in the low resistivity end, e.g., in 

settings with seawater and saltwater intrusion, which may result in subsurface materials with resistivity values below 1 Ωm. 310 

Since the 1-D models of the DL-RMD hold resistivity variations in one dimension (vertical) only, they cannot be used for 

calculating 2-D or 3-D EM-responses. Examples of geological settings where a 1-D approach would be inappropriate include 

steep dipping geological structures, thin sheets mineralization, mapping close to or on the shoreline, or areas with strong 

topographical variations. However, one could apply the same methodology to compile a 2-D or 3-D resistivity database. In 

this case, one would generate the initial von Kármán models as 2-D section or 3-D volumes, and use a 2-D or 3-D forward and 315 

inversion process, which of course would be much more computationally expensive compared to the 1-D case. However, the 

DL-RMD provided in this study opens the possibility of exploring more deep learning frameworks, and have reliability and 

consistency in performance comparisons for 1-D models. 
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6 Code and data availability  

The DL-RMD is freely available at https://doi.org/10.5281/zenodo.7260886 (Asif et al., 2022a) and a ready to run demo code 320 

in Python Jupyter Notebook that uses the network trained on S-RMD and reproduces the results of this paper is available at 

https://github.com/rizwanasif/DL-RMD. 

The EM modelling code “AarhusInv” (Auken et al., 2015) used to generate EM forward responses in this study is freely 

available to researchers for non-commercial activities. The details are available at https://hgg.au.dk/software/aarhusinv. 

7 Conclusion 325 

We have presented a methodology for compiling a geophysically constrained subsurface resistivity model database for 

applications related to electromagnetic data. We generated three 1-D resistivity databases, discretized to depths of 120 m, 350 

m, and 500 m in the resistivity range of 1-2000 Ωm, hence covering various ground-based and airborne frequency-domain and 

time-domain electromagnetic systems and most of the geological settings. The upper resistivity limit of the model database is 

satisfactory as the electromagnetic methods have limitations for high resistivity, however, the model database has limitations 330 

in the low resistivity for subsurface materials below 1 Ωm that may occur in some cases. Additionally, the database holds 1-

D models and therefore inherits the limitations of 1-D electromagnetic modelling.  

The example included using the proposed resistivity model database and deep learning for surrogating TEM forward modelling 

showing that high accuracy can be obtained with our resistivity model database. Furthermore, the example shows that the 

forward/inversion steps in the generation of the database lead to a significantly increased performance in the forward 335 

modelling. 

Despite some limitations, the generated resistivity model database is a well-organized database, which empowers the 

geoscience community to have consistency and credibility in the development of deep learning methods for many tasks 

including surrogating forward modelling, inverse modelling, data de-noising, automatic data processing, etc. Therefore, we 

urge the geophysical community to utilize the presented database to develop and investigate different network configurations, 340 

data pre-processing strategies, loss functions, etc. while using the presented model database to allow consistency in 

benchmarking deep learning algorithms. The resistivity model database has already proven valuable in significantly improving 

the accuracy of neural networks for the forward modelling of electromagnetic data. 
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