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Abstract. Deep learning algorithms have shown incredible potential in many applications. The success of these data-hungry
methods is largely associated with the availability of large-scale data sets, as millions of observations are often required to
achieve acceptable performance levels. Recently, there has been an increased interest in applying deep learning methods to
geophysical applications where electromagnetic methods are used to map the subsurface geology by observing variations in
the electrical resistivity of the subsurface materials. To date, there are no standardized datasets for electromagnetic methods,
which hinders the progress, evaluation, benchmarking, and evolution of deep learning algorithms due to data inconsistency.
Therefore, we present a large-scale electrical resistivity model database with a wide variety of geologically plausible and
geophysically resolvable subsurface structures for the commonly deployed ground-based and airborne electromagnetic
systems. Potentially, the presented database can be used to build surrogate models of well-known processes and to aid in labour
intensive tasks. The geophysically constrained property of this database will not only achieve enhanced performance and
improved generalization but, more importantly, it will incorporate consistency and credibility in deep learning models. We
show the effectiveness of the presented database by surrogating the forward modelling process, and we urge the geophysical
community interested in deep learning for electromagnetic methods to utilize the presented database. The dataset is publically

available at https://doi.org/10.5281/zenodo.7260886 (Asif et al., 2022a).

1 Introduction

Recent years have witnessed the success of many deep learning (DL) applications. Although, DL emerged in 1982 in the form
of neural networks (Hopfield, 1982), it started to gain attention in 2012 due to its notable performance for image classification

tasks (Krizhevsky et al., 2017, 2012). Since then, it has been applied successfully to many applications including object
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detection (Asif et al., 2019; Redmon et al., 2016; Ren et al., 2015), image super-resolution (Dong et al., 2016; Zhang et al.,
2018), speech recognition (Zhang et al., 2017), and stock market predictions (Pang et al., 2020). The revival of DL was mainly
influenced by the availability of cheap computing resources, deeper network architectures and large-scale publically available
datasets. Deeper network architectures and an increased number of samples in the training datasets are key factors for improved

performance and better generalization of DL models (Wang et al., 2016).

Geophysics is a branch of earth sciences, and geophysical methods are often used to infer information about the subsurface
geology by mapping physical properties. The integration of neural networks in geophysics started several decades ago and has
covered many domains of geophysics (Baan and Jutten, 2000; Dramsch, 2020) including seismic (R6th and Tarantola, 1994;
Zhang et al., 2020), magneto-telluric (Conway et al., 2019; Liu et al., 2020; Zhang and Paulson, 1997) geo-mechanical (Feng
and Seto, 1998; Khatibi and Aghajanpour, 2020), and electromagnetics (Birken and Poulton, 1999; Birken et al., 1999; Bording
et al., 2021; Kwan et al., 2015; Poulton et al., 1992; Zhu et al., 2012). Interestingly, the last few years have seen a significant
increase of interest in applying DL to electromagnetic (EM) methods (see Table 1), where the artificially generated EM fields
are used to map variations in the electrical resistivity properties of the subsurface. For more details regarding the EM methods,
readers are referred to literature, e.g. (Kirsch, 2006). The increasing interest in applying DL to EM methods is mainly
influenced by the increased ability of the EM methods to collect huge data sets in short amounts of time, which makes the
subsequent processes extremely laborious and time consuming. Therefore, a DL method could be beneficial in surrogating
well-known EM processes, e.g. forward modelling where the propagation of the EM fields are simulated resulting in the
forward responses (Xue et al., 2020), and inverse modelling (inversion) where the electrical resistivity properties of the
subsurface are deduced from observed EM data (Zhdanov, 2015). DL methods can also assist with manual tasks, which may
require considerable time when performed manually, such as anomaly detection in EM data. Further opportunities may lie in

other tasks, e.g. data de-noising.

To apply a DL algorithm to EM methods for various applications, subsurface resistivity models and/or the corresponding EM
responses are often required. To achieve optimal performance, a DL method should be trained on a large number of
geologically realistic subsurface models. Evident from Table 1, the recently developed DL methods either uses subsurface
resistivity models acquired from field data or generate the models randomly or in a pseudorandom manner for training.
However, a method trained on random models, where the resistivity of each geological layer is chosen from a probability
distribution, would not result in optimal performance, as many of the training samples would be geologically unrealistic. A
good solution is either to use resistivity models inverted from field data or pseudorandom resistivity models where the
resistivity of the training models is based on some prior geological information to reflect various characteristics of field data
(Bai et al., 2020). However, a DL method trained on such training samples would only be effective for specific geological

conditions and would result in an unsatisfactory performance for significantly different geological settings (Bording et al.,
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2021), as bias in the training data can affect generalizability substantially. Additionally, the unavailability of a standard
benchmark database hinders the progress, evaluation, benchmarking, and evolution of DL algorithms due to data inconsistency

(Bergen et al., 2019; Reichstein et al., 2019).

Table 1: Recent publications (2019-2021) of DL applications in EM which shows the number of training samples and type of training
dataset (random, pseudorandom or field data)

No. of samples

Reference . - Training Observation type Application
in training set

Wu et al. (2021a) 80,000 Pseudorandom resistivity models and forward responses Inversion
Colombo et al. (2021a) 5,000 Pseudorandom resistivity models and forward responses Inversion
Colombo et al. (2021b) 20,000 Random resistivity models and forward responses Inversion

Wau et al. (2021b) 16,800 Forward responses of random resistivity models De-noising
Bording et al. (2021) 93,500 Field data and inversion models Forward modelling
Puzyrev and Swidinsky (2021) 5,12,000 Random resistivity models and forward responses Inversion
Asif et al. (2021a) 100,000 Field data and inversion models Forward modelling
Moghadas et al. (2020) 20,000 Random resistivity models and forward responses Forward modelling
Bai et al. (2020) 12,000 Pseudorandom resistivity models and forward responses Inversion

Li et al. (2020) 1,000,000 Pseudorandom resistivity models and forward responses Inversion
Bang et al. (2020) 25,173 Pseudorandom resistivity models and forward responses Inversion
Noh et al. (2020) 20,000 Random resistivity models and forward responses Inversion
Moghadas (2020) 20,000 Random resistivity models and forward responses Inversion
Colombo et al. (2020a) 2,35,620 Pseudorandom resistivity models and forward responses Inversion
Colombo et al. (2020b) 88 Pseudorandom resistivity models and forward responses Inversion

Lin et al. (2019) 2,400 Field data and inverted model forward responses De-noising
Guo et al. (2019) 10,000 Pseudorandom resistivity models and forward responses Inversion
Puzyrev (2019) 20,000 Pseudorandom resistivity models and forward responses Inversion

Qin et al. (2019) 50,000 Random resistivity models and forward responses Inversion

To have an inclusive DL solution for various applications in EM, we present a physics-driven large-scale model database (~1
million) of geologically plausible and EM resolvable 1-D sub-surface resistivity models spanning the resistivity range from 1
Qm to 2000 Qm and to a depth of 500 m. This model database is suitable for ground-based and airborne EM systems in a DL
context. We use broad-banded von Kérman covariance functions to generate geologically constrained resistivity models.
Geophysical constraints are imposed by calculating the EM forward data of the initial resistivity models followed by inversion
of the EM forward to obtain the final resistivity models. This allows us to create a comprehensive resistivity model database
(RMD) that may not only improve performance and generalization, but would also incorporate consistency and reliability in
the DL models. We believe that the presented RMD will be a valuable resource to accelerate the inter- and trans-disciplinary
research of Earth and data sciences. The presented DL-RMD will also provide uniformity in training and benchmarking for

DL methods in EM. Therefore, we urge the geophysical community interested in DL for EM methods to use the DL-RMD.
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The rest of this paper is organized as follows: Section 2 describes the general methodology of generating the sub-surface
resistivity models, while specific settings for the DL-RMD for the three EM system categories are specified in section 3.
Section 4 provides details for training a DL method to surrogate the forward modelling problem and shows the effectiveness

of the DL-RMD. Discussion, code and data availability, and concluding remarks are given in section 5, 6, and 7 respectively.

2 Methodology

Geological processes do not result in random structures, nor are the subsurface resistivity structures random, as some spatial
correlation is generally present (Tacher et al., 2006). Therefore, it is reasonable that the training of a DL method is based on
subsurface structures that are geologically plausible and, in an EM context, over all resolvable by the EM method. Additionally,
the scale of the resistivity structure in the models should reflect the resolution capability of the EM methods, as training a DL
method to resolve structures that are not evident in the input data is not possible. EM methods are diffusive methods with
significantly decreasing resolution with depth and the electrical conductivity contrast plays an important role for the resolution
capability; hence, a metric number for a given EM method’s resolution capability and the depth of investigation can not be

given.

To obtain geologically realistic models, we use the broad-banded von Kérman covariance functions (Meller et al., 2001) to
generate geologically plausible models (von Karman models). The suite of von Karméan models consists of fine geological
structures and contain some resistivity variations and patterns that are unlikely to be resolved, due to the resolution limitation
of the EM method. To replicate the resolution capability of the EM method, we generate EM forward responses of the initially
over-detailed von Kédrman models and invert these forward responses to obtain the final resistivity models. Since we aim at
generating 1-D resistivity models, we are only concerned about the resistivity (p) variations in the vertical direction (z) from

surface to some depth in our model generation.

Initially, we base the spatial variation character of (z, logio(p)) for our von Karman models on the broad-banded von Karman

covariance functions (Christiansen and Auken, 2003; Mgller et al., 2001).

C(z,4,v) = A%C, (f)v K, (f) : (1

where A becomes the amplitude of the logarithmic resistivity, Cy is a scaling constant, z the spatial (vertical) distance, L
characterizes the maximum correlation length accounted for, and K, is the modified Bessel function of second kind and order
v. In the model generation, L is fixed to a high number (1800 m) which gives us strong correlation for z<<L (Maurer et al.,
1998). By using combinations of v, Cy, and resistivity, and compiling several realizations of the stochastic von Karman process,

we generate a variety of resistivity models on multiple scales. Table 2 summarizes the L, v, Cy, and resistivity values used.

4



105

110

115

Table 2: Parameters used in all combinations to generate the initial von Karman resistivity models.

Parameter Values

Resistivity 1 to 2000 Qm, log spaced,
20 values per decade

L Fixed: 1800 m

v [0.6,0.7,0.8,0.9, 1.0]

Cy [0.5,1,2,4]

# sharp boundaries [1,2,3,4,5]

Examples of this are shown in Figure 1(a-c) where the von Karman models (in black curves) are generated with a combination
of the extreme values of v, Cy for an initial resistivity value of 30 Qm. Low v and high Cy produce models with fine and large-
scale variations (Figure 1a), while high v and high Cj values produce a relatively smooth model (Figure 1b) but still with
resistivity variations spanning 2-3 decades of resistivity. The combination of low v and Cy values ensure that the simple and

close to half-space models are also represented (Figure 1c).

Sharp layering in the subsurface is plausible, and large resistivity amplitudes and short correlation lengths in the von Karman
functions will form layering in the models. To include more models with a sharp layering, we stitch 2-6 randomly selected
depth intervals of the initially generated von Karman models from a uniform distribution. An example of a stitched model is

shown in Figure 1(d). These stitched models also ensure that different combinations of v, Cy, are represented within one model.

a) v=0.6,Cy=4 b) v=1,Cyp=4 c) v=0.6,C;=0.5 d) Layered
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Figure 1: Examples of von Kiarman models and the result after the forward and inversion process, where black curves shows von
Karman models (re-discretized to 90 layer) and the red curve shows the final model. (a-c) for the combination of v, Cy stated in the
title, (d) a stitched layered model (green arrows marks the imposed sharp layer boundaries). The red curves show the obtained
model from inversion of the forward response of the black model.

Prior to the EM forward calculation, the von Karméan models are re-discretized to 90-layers for faster forward computation

and easier handling. The top layer thickness and depth to the last layer boundary for the re-discretized layers have been detailed
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in Table 3 for three generic EM systems with different depths of investigations (see Section 3 for further details). For the
forward calculation, the geometric mean of the last 5 meters of the re-discretized von Karman models is assigned to the last
model layer that continues to infinity depth. In order to avoid making assumptions on the acquisition conditions, specific
instrument setups, etc., the calculated forward data are pragmatically assigned a uniform uncertainty of 5% to take noise into
account and is inverted with a 30-layer model with a minimum structure (smooth) regularization scheme (Viezzoli et al., 2008).
The layer thicknesses for the 30-layer models are fixed and have also been listed in Table 3. The red model curves in Figure 1
are the resistivity models after the forward and inversion process, and are the models that enter the DL-RMD. As seen from
Figure 1, the von Karman models hold structures that are not resolved by the inverted resistivity models, so the models obtained
after the forward and inversion process result in structures resolvable by the EM method. A total of ~95% of the inverted
resistivity models explain (fit) the forward data within the assumed data uncertainty. In other words, the inverted models are

explaining the more complex von Karman models to a very high degree.

The forward and inverse modelling is carried out for three different generic time-domain EM (TEM) systems spanning different
depth ranges using the AarhusInv modelling code (Auken et al., 2015). The specific DL-RMD settings for different TEM

systems are summarized in section 3.

3 Deep learning resistivity model database (DL-RMD)

EM systems for subsurface exploration have existed since the 1950s, and nowadays a large variety of airborne and ground-
based time-domain electromagnetic (TEM) and frequency-domain electromagnetic (FEM) systems exist. Both TEM and FEM
methods map the electrical resistivity of the subsurface by inducing EM fields. TEM methods record the decay of the secondary
EM-field in the absence of the transmitted EM-field in the time-domain, while FEM methods record the secondary EM-field
in the frequency-domain in the presence of the transmitted EM-field (Christiansen et al., 2006). TEM and FEM methods also
differ in resolution and depth of investigation, depending on the TEM-system configuration, e.g. transmitter turn-off time,
transmitter moment, airborne/ground-based. For the DL-RMD to be compatible for different TEM systems, we have compiled
three model databases with ~1 million models in each for three generic TEM-systems with a different depth of investigation
as their primary differences. We refer to the three DL-RMD as shallow, intermediate, and deep, with the acronyms S-RMD,
I-RMD, D-RMD respectively. S-RMD mimics a shallow focusing ground based TEM system, initiated by a short transmitter
turn-off time. For S-RMD, the models are discretized down to 125 m with a top layer thickness of 0.5 m. I-RMD and D-RMD
mimics airborne TEM with different depth of investigations, hence discretized down to a depth of 350 and 500 m and with a

top layer thickness of 3 and 5 m respectively. The calculation of depth of investigation follows Christiansen and Auken (2012).

The model discretization for three DL-RMD for the initial von Kdrman models and for the final resistivity models entering the

RMD are summarized in Table 3. Table 3 also holds the key specifications of the three generic TEM systems. The settings for
6
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the generation of the von Karman models have been specified in Table 2 and are common for the three DL-RMD. Each of the
three DL-RMD holds ~1 million models spanning the resistivity interval 1-2000 Qm, where 1/6 of the models originate from

the initially generated von Karman models and 5/6 of the models come from the stitched layered von Karman models.

Table 3: Model discretization and key specifications of the generic TEM systems for three resistivity model databases. The generic
TEM system are all central loop configurations. *Gate start/end times has zero-time reference at begin of turn-off time.

Type Parameter S-RMD I-RMD D-RMD
Max depth (m) 125 355 505 m
o Discretization (m) 0.1 0.1 0.1
von armin models Re-discretization (m) 0.2-120 m, 1-350 m, 2-500 m,
90 layer log-spaced 90 layer log-spaced 90 layer log-spaced
Database resistivity Model Discretization 0.5-120 m, 3-350 m, 5-500 m,
models 30 layer log-spaced 30 layer log-spaced 30 layer log-spaced
Turn off time (us) 4 12 40
Generic TEM *Gate time start (pLs) 5 13 50
configuration *QGate time end (ms) 1 10 32
Modelling height (m) 0 — Ground-based 40 - Airborne 40 - Airborne

Some insights on the three DL-RMD are given in Figure 2, where Figure 2(a-c) shows the layer resistivity distribution of the
three DL-RMD. The resistivity distributions of the von Karman models were generated uniformly, but the forward and
inversion process makes the resistivity distribution slightly skewed towards the lower resistivity end, due to the lower
sensitivity/resolution in the high resistivity end for the EM method (Christiansen et al., 2006; Jorgensen et al., 2005). The
larger start and end bins compared to the neighboring bins in Figure 2(a-c) are due to the 1 Qm and 2000 Qm resistivity
truncation. The estimated depths of investigation for the three DL-RMD are shown in Figure 2(d-f). We observe that
approximately 70% of the models have depth of investigation less than the bottom to last layer boundary of the given DL-
RMD. Especially, a thick conductive layer near the surface will significantly limit the depth of investigation for a given TEM
configuration. The uneven and in some cases limited depth of investigation does not pose a problem for a deep learning
algorithm, as the EM method will compromise a similar depth of investigation limitation for the given resistivity model (see

discussion section for more details).
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Figure 2: Statistical insights on the DL-RMD. (a-c) Resistivity distribution of the S-RMD, I-RMD, and D-RMD respectively. (d-f)
Distribution of depth of investigation of models in the S-RMD, I-RMD, and D-RMD respectively, plotted as cumulative sum.

4 Example of an EM application using DL-RMD

EM methods can benefit from the presented DL-RMD in many ways. For example, the DL-RMD can be used to surrogate the
computationally expensive numerical forward modelling by using a computationally efficient DL method, which would speed
up the whole inversion process. It can also be used to develop a DL algorithm to replace the calculation of the partial derivatives
in deterministic inversion methods, where the subsurface resistivity model is updated iteratively by using the partial derivatives
of the model parameters. Detecting anomalies in the EM data by using a DL approach using the DL-RMD can significantly
speed-up the EM data processing and limit the involvement of human-centric manual workflows. Additionally, EM data de-

noising also becomes plausible.

As an example in this paper, we use the DL-RMD to surrogate the forward modelling problem for a ground-based TEM system
using a fast DL method, since a significant number of forward calculations are required during the inversion process, when

either deterministic or stochastic inversion methods are used. By replacing the computationally expensive numerical forward
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modelling approach, the whole inversion process may be accelerated without further modification to a standard inversion
workflow (Asif et al., 2021b). However, it is crucial that the performance of the DL method balances the numerical precision
and increased speed of computation. If the prediction accuracy is not sufficiently high, the application in an inversion
framework may result in spurious subsurface features and erroneous geological interpretations of the geophysical EM mapping

results.

4.1 Deep learning (DL) setup

We design the surrogate model for the tTEM system (Auken et al., 2018). The tTEM system is a ground-based towed TEM
system with a maximum depth of investigation of 120 m based on the data time interval from ~5 ps to ~1 ms, which matches

the specification of S-RMD, therefore, we use it to train our DL method.

The input to the DL algorithm becomes the 30-layer resistivity model m in S-RMD, where the layer thickness of each resistivity
layer is fixed. The target outputs are the numerical TEM forward responses, i.e. dB/ dt’ for the corresponding inputs. A

standard EM modelling code (Auken et al., 2015) is used to generate the TEM forward responses for the resistivity models m
with fixed layer thicknesses. We generate the responses from ~1 ns to ~10 ms by exponentially increasing gate-widths sampled

at 14 gates/decade.

Prior to the training of a DL method, inputs and the corresponding target outputs are normalized. Each resistivity model m is

normalized, where the logarithmic variations in the model parameters can take both positive and negative values.

ullogio(Mmax) +10g10 Mmin)] (2)

m,, = log;o(m) — 5 >

where my,;, and m,,,, are the minimum and maximum resistivity values in the training data set of S-RMD, and u is the mean.
h ;o dB li .
The target outputs, i.e. “°/ ., are normalized by:

aBy _ B/~ u[?B/4e)

at o[™Bg] (€)

where p is the mean and o is the standard deviation of each data point in the training data set.

We use a simple DL method where a fully-connected feed-forward neural network is utilized with two hidden layers, each
having 384 neurons. The hyperbolic tangent function is used as an activation function between the hidden layers, and the full-
batch scaled conjugate algorithm is used for backpropagation. The loss function for training is the sum of squared errors with

a regularization term consisting of the mean of sum of squares of the network weights and biases. The network configuration

9
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used here is based on our previous results (Asif et al., 2021b; Asif et al., 2022b). We also apply an early stopping criterion to
ensure that the training stops when the validation loss starts to increase. The validation set for the early stopping criteria
comprises of 70,000 models from S-RMD, which are excluded from the training set. Once the network is trained, it can be
used for evaluation purposes. The evaluation metric for our baselines is the percentage relative error, RLp, defined in Eq. (3),

which effectively deals with the large dynamic range and patterns of TEM data.

_ (dB/dt)DL_ (dB/dt)
RLP - (dB/dt)N

N % 100% , (3)

where (dB/dt)DL is the output of the DL method and (dB/dt)N is the numerically computed forward response.

4.2 Surrogate forward modelling results

To test the performance of our DL method trained on S-RMD, we use 697 resistivity models inverted from field data from a
survey conducted in Seften, a region in Denmark. The data processing and inversion of the field data follows the method
developed by Auken et al. (2018), which covers averaging, anomaly detection, manual inspection, etc. on the data. The
minimum and maximum resistivity values in the test dataset are 3.9 Qm and 127.1 Qm respectively. The forward responses
of the field inverted resistivity models are calculated numerically to compare them with the output of our DL method. Since
the output of our DL algorithm is the normalized forward response, it is de-normalized to raw data values by manipulating Eq.
(3). For arelative comparison, we train another DL network with the same configuration using the initial von Karman resistivity
models. The comparison to the initial von Karman resistivity models also allows us to examine the effect of the
forward/inversion process, as described in section 2, in the generation of the DL-RMD. We also train an additional network
using the random resistivity models similar to several DL studies (Colombo et al., 2021b; Moghadas, 2020; Moghadas et al.,
2020; Noh et al., 2020; Puzyrev and Swidinsky, 2021; Qin et al., 2019; Wu et al., 2021b) as mentioned in Table 1. To have
the same level of complexity, the number of layers, depth discretization and the number of random resistivity models are kept
the same as used to train other two networks for a fair comparison, and the resistivity of each layer is chosen randomly from a
log-uniform distribution to take into account the non-linearity of the forward responses with the resistivity values. As such, a
resistivity change from 1 Qm to 10 Qm would affect the forward data more than a change from 100 Qm to 110 Qm (Asif et
al., 2021a).

Figure 3 shows the performance comparison of the trained networks based on the evaluation metric in Eq. (3) against the
forward responses of 697 resistivity models from the Seften survey. Figure 3(a) shows the distribution of RLp of the DL
network trained on S-RMD. We also show the accuracy performance of the DL networks trained on von Karman and the
random resistivity models. It is evident that the network trained on S-RMD results in lower errors as compared to the network

trained on von Karman resistivity models. On the other hand, the network trained on random resistivity models results in a

10
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poor accuracy performance. In quantitative terms, 71% of the data points are evaluated to be within half a percent relative error
for the network trained on S-RMD. In comparison to S-RMD, the network trained on von Karman resistivity models results in
65% of data points within half a percent relative error. The network trained on random resistivity models performs the worst

and only 34% of the data points are calculated to be within half a percent relative error.

a) Performance comparison (error distribution) b) Performance comparison (cumulative density)
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Figure 3: Performance of the networks trained on S-RMD, von Kirman and random resistivity models. (a) RLp distribution. (b)
Cumulative distribution of RLp.

We also show the cumulative distribution of the RLp for the networks trained on S-RMD, von Karman and random models in
Figure 3(b). A maximum of 9% improvement in accuracy is achieved for the network trained on the S-RMD as compared to
the von Karman models. In comparison to the network trained on random resistivity models, an improvement of 43% is
achieved when S-RMD is used for training. The increase in accuracy is achieved only by using an appropriate dataset for
training. The prediction accuracy can be improved with different data pre-processing, network configurations, loss functions,
etc. while using the same training dataset to allow consistency in benchmarking of DL algorithms. It is also important that a
balance between the prediction performance and computational efficiency is maintained. As such, the computational time for

the forward pass of the proposed network configuration can serve as a baseline for time comparison.

Figure 4 shows a visual comparison of a numerical forward response against the forward response from the trained networks
for one of the resistivity models from the Seften survey. It is evident from Figure 4 that the forward response from the network
trained on S-RMD is the most accurate and has a maximum relative error of 1.4% for the data point at ~72 ps (see Figure 4a).
The highest error for the forward response from the network trained on von Karman models is observed to be 2.5% for the
data point at ~160 ps as shown in Figure 4(b). The forward response from the network trained on random models results in

the worst accuracy performance and results in a maximum error of 22.3% for the data point at 100 us (see Figure 4c).
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Figure 4: Comparison of performance of the networks trained on S-RMD, von Kiarman and random resistivity models with a
numerical forward response from the test set. The forward responses are shown only within the time range of tTEM data, and the
inset shows the forward response from 16 us to 20 ps (a) Numerical forward response vs. the forward response from the network
trained on S-RMD. (b) Numerical forward response vs. the forward response from the network trained on von Karman models. (c)
Numerical forward response vs. the forward response from the network trained on random resistivity models.

5 Discussion

The network trained on random resistivity models results in a poor accuracy performance as many of the resistivity models in
the training dataset are geologically unrealistic. The complex unrealistic resistivity structures in the randomly generated
training models would result in forward responses similar to the ones obtained from simpler resistivity models, which further
decreases the quality of the training dataset. The von Karman models may be considered as pseudorandom resistivity models
where the resistivity structure of the models have a geologically realistic nature as it considers multiple correlation lengths
with stochastic nature resembling geological processes. Due to the geological nature of the von Karman models, the network
trained on such models results in a decent performance accuracy. However, the network trained on von Karman models has a
lower accuracy performance as compared to the network trained on S-RMD, where the resolution capability of the EM method
has been taken into account resulting in resistivity structures resolvable by the EM method.
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The resolution capability and the depth of investigation for a given TEM system strongly depends on the underlying resistivity
model. Therefore, stating a single depth of investigation value for a given TEM system is not appropriate. A single exploration
depth, depth of investigation, or a similar value stated by the instrument manufacturers will often be an optimistic one. For
TEM systems with short transmitter current turn-off, the early time data points provide the near surface resolution, while the
late time data points strongly control the depth of investigation for a given resistivity model. The transmitter moment and the
background noise level also influence the depth of investigation, but these factors are not considered in our case, since we have
assumed a uniform data uncertainty in the forward and inversion process. The three DL-RMD span different TEM systems
and resolutions. Therefore, for a particular TEM system, one should pick the DL-RMD that has a similar resolution as the
underlying generic TEM system. This is best evaluated by matching the time interval of the data for the particular TEM system

to the data time interval (data time start/end in Table 3) for the generic TEM system.

In Table 4, we list some examples of the compatibility of our DL-RMD with some well-known TEM systems. Despite the I-
RMD and D-RMD being compiled for a generic airborne-system, the I-RMD and D-RMD are also appropriate for ground-

based TEM systems since the simulated flight altitude of 40 m does not lead to a drastic change in the vertical resolution.

Table 4: Examples of DL-RMD compatibility for some TEM systems.

Resistivity model database

System
S-RMD I-RMD D-RMD

EQUATOR
(Karshakov et al., 2017)
tTEM

(Auken et al., 2018)
MEGATEM

(Smith et al., 2003)
AEROTEM

(Balch et al., 2003)
SkyTEM

(Serensen and Auken, v v
2004)

GEOTEM

(Smith, 2010)
SPECTREMPYS
(Leggatt et al., 2000)

v
v

v v
v

Since FEM and TEM systems follow the same laws of physics, the DL-RMD is also applicable for many FEM systems, despite
the generic EM system in the forward/inversion process mimicking the TEM systems. In general, the FEM systems have a
shallower depth of investigation than that of the TEM systems, hence, the S-RMD is best suited for FEM systems. An
alternative to the DL-RMD is to generate the resistivity model realizations by following the described methodology for the
specific EM system by using the von Karman models provided (Asif et al., 2022a). This will ensure a 100% match between

resolution, depth of investigation, etc. in the model domain compared to sensitivity in the EM data domain.
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Despite the initial von Karman models with super-imposed layering, the resistivity models in the DL-RMD have a pronounced
vertical smooth behavior due to the minimum structure (smooth) regularization scheme (Viezzoli et al., 2008) used in the
inversion phase. Applying another regularization scheme in the inversion phase, e.g., the minimum support norm (Vignoli et
al., 2015) or using a few layer model discretization with no vertical regularization, one could compile a resistivity model
database with different appearances. For our DL-RMD, we chose the minimum structure regularization scheme, since it is
commonly used for inverting airborne and ground-based EM data. It is important to point out that a TEM data curve itself does
not hold information about whether subsurface boundaries are smooth or sharp. As such, both the smooth and a sharp-layered
model will explain the recorded data equally well in most cases. With our approach of compiling resistivity models, we have
tried to avoid the inclusion of models with different smooth/sharp behavior that result in identical or close to identical forward

data responses (equivalent models).

The DL-RMD is generated in the resistivity range of 1-2000 Qm which covers most of the geological settings, taking into
account the EM mapping capability in the high resistivity range. The resistivity limit of 2000 Qm was chosen since EM
methods have no or very little sensitivity in the high resistivity range, since high resistivity materials (e.g. granite, basalt,
glacier ice, etc.) produce an EM signal below the detection level. Despite the 2000 Qm limit, the resistivity distribution of the
models in the DL-RMD is slightly skewed towards lower resistivities due to the limited sensitivity of the EM method to high
resistivity values. A slight bias towards lower resistivity values may affect the performance of a DL method for high resistive
models. However, even if an actual subsurface model is represented by a high resistive model, it is expected that any TEM
method would have difficulty in resolving such a model. The RMD also has a limitation in the low resistivity end, e.g., in

settings with seawater and saltwater intrusion, which may result in subsurface materials with resistivity values below 1 Qm.

Since the 1-D models of the DL-RMD hold resistivity variations in one dimension (vertical) only, they cannot be used for
calculating 2-D or 3-D EM-responses. Examples of geological settings where a 1-D approach would be inappropriate include
steep dipping geological structures, thin sheets mineralization, mapping close to or on the shoreline, or areas with strong
topographical variations. However, one could apply the same methodology to compile a 2-D or 3-D resistivity database. In
this case, one would generate the initial von Karman models as 2-D section or 3-D volumes, and use a 2-D or 3-D forward and
inversion process, which of course would be much more computationally expensive compared to the 1-D case. However, the
DL-RMD provided in this study opens the possibility of exploring more deep learning frameworks, and have reliability and

consistency in performance comparisons for 1-D models.
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6 Code and data availability

The DL-RMD is freely available at https://doi.org/10.5281/zenodo.7260886 (Asif et al., 2022a) and a ready to run demo code
in Python Jupyter Notebook that uses the network trained on S-RMD and reproduces the results of this paper is available at
https://github.com/rizwanasif/DL-RMD.

The EM modelling code “AarhusInv” (Auken et al., 2015) used to generate EM forward responses in this study is freely

available to researchers for non-commercial activities. The details are available at https://hgg.au.dk/software/aarhusinv.

7 Conclusion

We have presented a methodology for compiling a geophysically constrained subsurface resistivity model database for
applications related to electromagnetic data. We generated three 1-D resistivity databases, discretized to depths of 120 m, 350
m, and 500 m in the resistivity range of 1-2000 Qm, hence covering various ground-based and airborne frequency-domain and
time-domain electromagnetic systems and most of the geological settings. The upper resistivity limit of the model database is
satisfactory as the electromagnetic methods have limitations for high resistivity, however, the model database has limitations
in the low resistivity for subsurface materials below 1 Qm that may occur in some cases. Additionally, the database holds 1-

D models and therefore inherits the limitations of 1-D electromagnetic modelling.

The example included using the proposed resistivity model database and deep learning for surrogating TEM forward modelling
showing that high accuracy can be obtained with our resistivity model database. Furthermore, the example shows that the
forward/inversion steps in the generation of the database lead to a significantly increased performance in the forward

modelling.

Despite some limitations, the generated resistivity model database is a well-organized database, which empowers the
geoscience community to have consistency and credibility in the development of deep learning methods for many tasks
including surrogating forward modelling, inverse modelling, data de-noising, automatic data processing, etc. Therefore, we
urge the geophysical community to utilize the presented database to develop and investigate different network configurations,
data pre-processing strategies, loss functions, etc. while using the presented model database to allow consistency in
benchmarking deep learning algorithms. The resistivity model database has already proven valuable in significantly improving

the accuracy of neural networks for the forward modelling of electromagnetic data.
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