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Dear editor, topical editor, and reviewers, 
 
The authors would like to thank you for your valuable time and constructive comments for the 
paper under consideration. As per the suggestions of the reviewers, we have carefully revised the 
manuscript and made changes where necessary.  
 
The point-by-point reply to the comments is found on the following pages. The reproduced text 
from the manuscript is highlighted in gray and the changes made are marked in red. 
 
 
On behalf of the authors 
 
 
  



Anonymous Referee #1 

General comments: 

This manuscript proposed a standardized dataset for deep learning-based electromagnetic 
methods. The database is geophysically constrained, which produces good accuracy 
performance and satisfactory generalization and consistency. Overall the paper is very well 
written, and the data shows its high readiness for the community. I would recommend it 
get published before some of my concerns are addressed. 

In response of general comments: 

The authors would like to thank you for your valuable time and positive evaluation of the paper 

under consideration. We have carefully revised the manuscript to address the raised concerns. The point-

by-point reply to the comments and the reproduced text from the revised manuscript is found on the 

following pages. The reproduced text from the revised manuscript is highlighted in gray and the changes 

made in the manuscript are marked in red. 

 
Specific comments: 

1a. Evaluation (section 4): This study mainly employed the proposed dataset to train 
a deep-learning (DL) model and surrogate the forward modeling process and 
demonstrated that this dataset shows its great performance. The assessment method 
is rational; however, this section needs additional result comparison with previous 
relevant DL-based studies. By comparing this proposed data with other DL studies 
that used limited input data, the authors may demonstrate this proposed database 
can be treated as the benchmark. Otherwise, it is only another DL experiment for 
improving the computation efficiency. 

 In response of comment 1a: 

We generate random resistivity models similar to the data set generation approach used in several 

deep learning studies (Colombo et al., 2021b; Moghadas, 2020; Moghadas et al., 2020; Noh et al., 2020; 

Puzyrev and Swidinsky, 2021; Qin et al., 2019; Wu et al., 2021b) mentioned in Table 1. The data set 

generation approach for each of the above-mentioned deep learning studies differ from each other, however, 

the commonality in all the above-mentioned methods is that the resistivity values for each layer is chosen 

randomly. For example, Colombo et al. (2021b) generate 5-layer resistivity models with a random 

combination of resistivity and thickness; Moghadas (2020) generates 12-layer resistivity models with fixed 

layer thicknesses increasing logarithmically down to 6 meters; Moghadas et al. (2020) generate subsurface 

models having 12 layers with logarithmically increasing thickness down to 10 m depth; Noh et al. (2020) 

used 1 to 3 layer models; Puzyrev and Swidinsky (2021) generate resistivity models having 50 layers; and 



Wu et al. (2021b) generated resistivity models with number of layers randomly set between 1 and 20 with 

the bottom depth at 1000 m.  

Therefore, to keep the network configuration same and to have same level of modelling complexity 

for a fair comparison; the number of layers, depth discretization, and the number of models have been kept 

the same as used to train other networks in our study. However, the resistivity values for each layer are 

picked randomly from a log-uniform distribution to compare with the deep learning studies that employ 

random resistivity models. The relevant text has been revised and Figure 3 and Figure 4 have been updated 

after obtaining the results from random resistivity models. In essence, whole of Section 4.2: Surrogate 

forward modelling results has been modified, and is reproduced below: 
To test the performance of our DL method trained on S-RMD, we use 697 resistivity models inverted from field 

data from a survey conducted in Søften, a region in Denmark. The data processing and inversion of the field data 
follows Auken et al. (2018), which covers averaging, anomaly detection, manual inspection, etc. on the data. The 
minimum and maximum resistivity values in the test dataset are 3.9 Ωm and 127.1 Ωm respectively. The forward 
responses of the field inverted resistivity models are calculated numerically to compare it with the output of our DL 
method. Since the output of our DL algorithm are the normalized forward responses, it is de-normalized to raw data 
values by manipulating Eq. (3). For a relative comparison, we train another network with the same configuration using 
the initial von Kármán resistivity models. The comparison to the initial von Kármán resistivity models also allow us 
to examine the effect of the forward/inversion process, as described in section 2, in the generation of the DL-RMD. 
We also train an additional network using the random resistivity models similar to several DL studies (Colombo et 
al., 2021b; Moghadas, 2020; Moghadas et al., 2020; Noh et al., 2020; Puzyrev and Swidinsky, 2021; Qin et al., 2019; 
Wu et al., 2021b) as mentioned in Table 1. To have the same level of complexity, the number of layers, depth 
discretization and the number of random resistivity models are kept the same as used to train other two networks for 
a fair comparison, and the resistivity of each layer is chosen randomly from a log-uniform distribution to take into 
account non-linearity of the forward responses with the resistivity values. As such, a resistivity change from 1 Ωm to 
10 Ωm would affect the forward data more than a change from 100 Ωm to 110 Ωm (Asif et al., 2021a). 

Figure 3 shows the performance comparison of the trained networks based on the evaluation metric in Eq. (3) 
against the forward responses of 697 resistivity models from the Søften survey. Figure 3(a) shows the distribution of 
RLP of the network trained on S-RMD. We also show the accuracy performance of the networks trained on von 
Kármán and the random resistivity models. It is evident that the network trained on S-RMD results in lower errors as 
compared to the network trained on von Kármán resistivity models. On the other hand, the network trained on random 
resistivity models results in poor accuracy performance. In quantitative terms, 71% of the data points are evaluated to 
be within half a percent relative error for the network trained on S-RMD. In comparison to S-RMD, the network 
trained on von Kármán resistivity models results in 65% of data points within half a percent relative error. The network 
trained on random resistivity models performs the worst and only 34% of the data points are calculated to be within 
half a percent relative error.  



   

 Figure 1: Performance of the networks trained on S-RMD, von Kármán and random resistivity models. (a) RLP 
distribution. (b) Cumulative distribution of RLP. 

We also show the cumulative distribution of the RLP for the networks trained on S-RMD, von Kármán and random 
models in Figure 3(b). A maximum of 9% improvement in accuracy is achieved for the network trained on the S-
RMD as compared to the von Kármán models. In comparison to the network trained on random resistivity models, an 
improvement of 43% is achieved when S-RMD is used for training. The increase in accuracy is achieved only by 
using an appropriate dataset for training. The prediction accuracy can be improved with different data pre-processing, 
network configurations, loss functions, etc. while using the same training dataset to allow consistency in benchmarking 
of DL algorithms. It is also important that a balance between the prediction performance and computational efficiency 
is maintained. As such, the computational time for the forward pass of the proposed network configuration can serve 
as a baseline for time comparison. 

Figure 4 show a visual comparison of a numerical forward response against the forward response from the trained 
networks for one of the resistivity models from the Søften survey. It is evident from Figure 4 that the forward response 
from the network trained on S-RMD is the most accurate and has a maximum relative error of 1.4% for the data point 
at ~72 µs (see Figure 4a). The highest error for the forward response from the network trained on von Kármán models 
is observed to be 2.5% for the data point at ~160 µs as shown in Figure 4(b). The forward response from the network 
trained on random models results in the worst accuracy performance and results in a maximum error of 22.3% for the 
data point at 100 µs (see Figure 4c). 



 

 Figure 2: Comparison of performance of the networks trained on S-RMD, von Kármán and random resistivity models 
with a numerical forward response from the test set. The forward responses are shown only within the time range of tTEM 
data, and the inset shows the forward response from 16 µs to 20 µs (a) Numerical forward response vs. the forward response 
from the network trained on S-RMD. (b) Numerical forward response vs. the forward response from the network trained 
on von Kármán models. (c) Numerical forward response vs. the forward response from the network trained on random 
resistivity models. 

1b. Besides, please try to find some weaknesses in the training data utilized by 
previous DL studies and demonstrate your progress on it after comparison. For 
example, the introduction is well written but those training sets are not involved after 
then. Benchmark is a strong word that requires more comprehensive assessment and 
evidence. 

In response of comment 1b: 

Some of the weaknesses in the training dataset utilized by other methods is now discussed in the 

first paragraph of Section 5: Discussion. In the same paragraph, we also discuss the similarity of von 

Kármán models to the methods that uses pseudorandom resistivity models in some other deep learning 

studies and give the rationale behind improved performance using the proposed database. The revised 

paragraph is reproduced below: 
The network trained on random resistivity models results in poor accuracy performance as many of the resistivity 

models in the training dataset are geologically unrealistic. The complex unrealistic resistivity structures in the 
randomly generated training models would result in forward responses similar to the ones obtained from simpler 
resistivity models which further decreases the quality of the training dataset. The von Kármán models may be 



considered as pseudorandom resistivity models where the resistivity structure of the models have geological realistic 
nature as it considers multiple correlation lengths with stochastic nature resembling geological processes. Due to the 
geological nature of the von Kármán models, the network trained on such models result in decent performance 
accuracy. However, the network trained on von Kármán models has lower accuracy performance as compared to the 
network trained on S-RMD where the resolution capability of the EM method has been taken into account which 
results in resistivity structures resolvable by the EM method.  
 

1c. The assessment section (section 4) needs to provide additional quantified 
comparisons and descriptions for the figures rather than just some summaries. 

 In response of comment 1c: 

The description of the figures and additional quantitative comparison has now been included in 

Section 4.2: Surrogate forward modelling results. Please see the author’s response to comment 1a in the 

above pages. 

 
2. References in Table 1 should be Qin et al. (2019) rather than (Qin et al. 2019), and 
generally, the table caption is above the table.  

In response of comment 2: 

References in Table 1 have been formatted as mentioned and the captions for the tables have been 

moved above for all the tables in the manuscript. 

3. The dataset is formatted as txt, which caused the code reading speed very slow.  

In response of comment 3: 

We have chosen to use the txt format as it is easily readable. As the data from the txt file needs to 

be read only once for a particular algorithm, the authors are of the opinion to keep it as it is.  

 

  



Anonymous Referee #2 

General comments: 

This paper submitted by Asif et al. describes a geophysically constrained subsurface 
resistivity model database for electromagnetic systems in a deep learning context. Such 
datasets and associated analyses are valuable in applying deep learning methods to 
geophysical applications. So the paper and associated database should be of interest to 
engineers and those interested in applying deep learning to electromagnetic methods. The 
manuscript is overall well organized and written, but there are still some shortcomings that 
need to be addressed before it can be accepted for publication. 

In response of general comment: 

The authors would like to thank you for your valuable time and positive evaluation of the paper 

under consideration. We have revised the manuscript to address the issues raised. The point-by-point reply 

to the comments is found on the following pages. The reproduced text from the manuscript is highlighted 

in gray and the changes made are marked in red. 

 
Specific comments: 

1. Please enhance the description of data processing in the revised manuscript. This 
will be important for a full understanding of this dataset.  

In response of comment 1: 

It is a bit unclear which part of the manuscript the reviewer is pointing at. Therefore, we have 

expanded the manuscript where ever some data is processed, which is either processing of the EM forward 

data for inversion to obtain EM resolvable models, or the processing of field data which is used for 

comparison. 

The paragraph discussing the processing of the EM forward data for inversion to obtain EM 

resolvable models in Section 2: Methodology has been revised and is reproduced below: 
Prior to the EM forward calculation, the von Kármán models are re-discretized to 90-layers for faster forward 

computation and easier handling. The top layer thickness and depth to the last layer boundary for the re-discretized 
layers have been detailed in Table 3 for three generic EM systems having different depth of investigations (see Section 
3 for further details). For the forward calculation, the geometric mean of the last 5 meters of the re-discretized von 
Kármán models is assigned to the last model layer that continues to infinity depth. In order to avoid making 
assumptions on the acquisition conditions, specific instrument setup, etc., the calculated forward data are 
pragmatically assigned a uniform uncertainty of 5% to take noise into account and is inverted with a 30-layer model 
with a minimum structure (smooth) regularization scheme (Viezzoli et al., 2008). The layer thicknesses for the 30-
layer models are fixed and have also been listed in Table 3. The red model curves in Figure 1 are the resistivity models 
after the forward and inversion process, and are the models that enter the DL-RMD. As seen from Figure 1, the von 
Kármán models hold structures that are not resolved by the inverted resistivity models, so the models obtained after 
the forward and inversion process results in structures resolvable by the EM method. A total of ~95% of the inverted 



resistivity models explain (fits) the forward data within the assumed data uncertainty. In other words, the inverted 
models are explaining the more complex von Kármán models to a very high degree.  
 

Additionally, the text discussing the processing and inversion of field data used for comparison in 

Section 4.2: Surrogate forward modelling results has been modified, and is reproduced below: 
To test the performance of our DL method trained on S-RMD, we use 697 resistivity models inverted from field 

data from a survey conducted in Søften, a region in Denmark. The data processing and inversion of the field data 
follows Auken et al. (2018), which covers averaging, anomaly detection, manual inspection, etc. on the data. The 
minimum and maximum resistivity values in the test dataset are 3.9 Ωm and 127.1 Ωm respectively. The forward 
responses of the field inverted resistivity models are calculated numerically to compare it with the output of our DL 
method.  

 

2. My main suggestion relates to Section 4 of this paper. As you stated, the deep 
learning resistivity model database (DL-RMD) presented in this paper can provide 
uniformity in benchmarking for DL methods in EM. But Section 4 doesn’t really 
provide a clear description of the great performance of this dataset. It would be better 
to compare it with other DL studies that have been published and listed in the 
Introduction.  

In response of comment 2: 

We generate random resistivity models similar to the data set generation approach used in several 

deep learning studies (Colombo et al., 2021b; Moghadas, 2020; Moghadas et al., 2020; Noh et al., 2020; 

Puzyrev and Swidinsky, 2021; Qin et al., 2019; Wu et al., 2021b) mentioned in Table 1. The data set 

generation approach for each of the above-mentioned deep learning studies differ from each other, however, 

the commonality in all the above-mentioned methods is that the resistivity values for each layer is chosen 

randomly. For example, Colombo et al. (2021b) generate 5-layer resistivity models with a random 

combination of resistivity and thickness; Moghadas (2020) generates 12-layer resistivity models with fixed 

layer thicknesses increasing logarithmically down to 6 meters; Moghadas et al. (2020) generate subsurface 

models having 12 layers with logarithmically increasing thickness down to 10 m depth; Noh et al. (2020) 

used 1 to 3 layer models; Puzyrev and Swidinsky (2021) generate resistivity models having 50 layers; and 

Wu et al. (2021b) generated resistivity models with number of layers randomly set between 1 and 20 with 

the bottom depth at 1000 m.  

Therefore, to keep the network configuration same and to have same level of modelling complexity 

for a fair comparison; the number of layers, depth discretization, and the number of models have been kept 

the same as used to train other networks in our study. However, the resistivity values for each layer are 

picked randomly from a log-uniform distribution to compare with the deep learning studies that employ 

random resistivity models. The relevant text has been revised and Figure 3 and Figure 4 have been updated 



after obtaining the results from random resistivity models. In essence, whole of Section 4.2: Surrogate 

forward modelling results has been modified, and is reproduced below: 
To test the performance of our DL method trained on S-RMD, we use 697 resistivity models inverted from field 

data from a survey conducted in Søften, a region in Denmark. The data processing and inversion of the field data 
follows Auken et al. (2018), which covers averaging, anomaly detection, manual inspection, etc. on the data. The 
minimum and maximum resistivity values in the test dataset are 3.9 Ωm and 127.1 Ωm respectively. The forward 
responses of the field inverted resistivity models are calculated numerically to compare it with the output of our DL 
method. Since the output of our DL algorithm are the normalized forward responses, it is de-normalized to raw data 
values by manipulating Eq. (3). For a relative comparison, we train another network with the same configuration using 
the initial von Kármán resistivity models. The comparison to the initial von Kármán resistivity models also allow us 
to examine the effect of the forward/inversion process, as described in section 2, in the generation of the DL-RMD. 
We also train an additional network using the random resistivity models similar to several DL studies (Colombo et 
al., 2021b; Moghadas, 2020; Moghadas et al., 2020; Noh et al., 2020; Puzyrev and Swidinsky, 2021; Qin et al., 2019; 
Wu et al., 2021b) as mentioned in Table 1. To have the same level of complexity, the number of layers, depth 
discretization and the number of random resistivity models are kept the same as used to train other two networks for 
a fair comparison, and the resistivity of each layer is chosen randomly from a log-uniform distribution to take into 
account non-linearity of the forward responses with the resistivity values. As such, a resistivity change from 1 Ωm to 
10 Ωm would affect the forward data more than a change from 100 Ωm to 110 Ωm (Asif et al., 2021a). 

Figure 3 shows the performance comparison of the trained networks based on the evaluation metric in Eq. (3) 
against the forward responses of 697 resistivity models from the Søften survey. Figure 3(a) shows the distribution of 
RLP of the network trained on S-RMD. We also show the accuracy performance of the networks trained on von 
Kármán and the random resistivity models. It is evident that the network trained on S-RMD results in lower errors as 
compared to the network trained on von Kármán resistivity models. On the other hand, the network trained on random 
resistivity models results in poor accuracy performance. In quantitative terms, 71% of the data points are evaluated to 
be within half a percent relative error for the network trained on S-RMD. In comparison to S-RMD, the network 
trained on von Kármán resistivity models results in 65% of data points within half a percent relative error. The network 
trained on random resistivity models performs the worst and only 34% of the data points are calculated to be within 
half a percent relative error.  

   

 Figure 3: Performance of the networks trained on S-RMD, von Kármán and random resistivity models. (a) RLP 
distribution. (b) Cumulative distribution of RLP. 

We also show the cumulative distribution of the RLP for the networks trained on S-RMD, von Kármán and random 
models in Figure 3(b). A maximum of 9% improvement in accuracy is achieved for the network trained on the S-
RMD as compared to the von Kármán models. In comparison to the network trained on random resistivity models, an 
improvement of 43% is achieved when S-RMD is used for training. The increase in accuracy is achieved only by 
using an appropriate dataset for training. The prediction accuracy can be improved with different data pre-processing, 
network configurations, loss functions, etc. while using the same training dataset to allow consistency in benchmarking 



of DL algorithms. It is also important that a balance between the prediction performance and computational efficiency 
is maintained. As such, the computational time for the forward pass of the proposed network configuration can serve 
as a baseline for time comparison. 

Figure 4 show a visual comparison of a numerical forward response against the forward response from the trained 
networks for one of the resistivity models from the Søften survey. It is evident from Figure 4 that the forward response 
from the network trained on S-RMD is the most accurate and has a maximum relative error of 1.4% for the data point 
at ~72 µs (see Figure 4a). The highest error for the forward response from the network trained on von Kármán models 
is observed to be 2.5% for the data point at ~160 µs as shown in Figure 4(b). The forward response from the network 
trained on random models results in the worst accuracy performance and results in a maximum error of 22.3% for the 
data point at 100 µs (see Figure 4c). 

 

 Figure 4: Comparison of performance of the networks trained on S-RMD, von Kármán and random resistivity models 
with a numerical forward response from the test set. The forward responses are shown only within the time range of tTEM 
data, and the inset shows the forward response from 16 µs to 20 µs (a) Numerical forward response vs. the forward response 
from the network trained on S-RMD. (b) Numerical forward response vs. the forward response from the network trained 
on von Kármán models. (c) Numerical forward response vs. the forward response from the network trained on random 
resistivity models. 

3. Table 1 – It needs to be greatly improved. The table caption is generally above the 
table. The references in the Table should be changed to “ Wu et al. (2021a) ”. The 
table caption should be concise but descriptive.  

In response of comment 3: 

References in Table 1 have been formatted as mentioned and the captions for the tables have been 

moved above for all the tables in the manuscript. The caption was Table 1 has also been revised to be 

concise. 



4. Equations – Please check the writing form (e.g. C0). Equation 2 – Suggest revising 
“log10” to “lg”.  

In response of comment 4: 

The equations have been checked and corrected wherever necessary, e.g. Equation 2. However, 

due to some issues with MS Word equation tools, the writing form C0 can not be corrected in this version. 

However, the authors will keep it in mind during the proof-read to ensure that it is corrected.  

Additionally, “lg” is not a commonly used term and could create confusion among the readers. 

Therefore, the authors are of the opinion to keep “log10” for clarity. 

 

5. Figure 4 – Poor quality. It would be better to provide additional descriptions for 
the figures rather than just summaries. For this figure, only one sentence was used to 
describe.  

In response of comment 5: 

Figure 4 has been updated and additional descriptions have been included for Figure 3 and Figure 

4 in Section 4.2: Surrogate forward modelling results. Please see the authors’ response to comment 4 for 

the updated text. 

 

6. There are lots of abbreviations used in this manuscript, it would be better to add 
an Appendix. Abbreviations in the title should be avoided. The phrase “depth of 
investigation” is abbreviated as the “DOI”, this abbreviation is not recommended. 

In response of comment 6: 

We have revised the manuscript and replaced the abbreviations of depth of investigation (DOI) to 

its full forms throughout the manuscript for clarity. Based on editor’s suggestion, we retain the abbreviation 

DL for deep learning. Now, there remains only eight abbreviations used in the manuscript, i.e. EM, TEM, 

FEM, DL-RMD, S-RMD, I-RMD, D-RMD and DL. Therefore, the authors are of the opinion not to add an 

Appendix. 

 


