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Abstract. A historical dataset of river chemistry and discharge is presented for 140 monitoring sites along the United States 

East Coast, the Gulf of Mexico, and the West Coast from 1950 to 2020. The dataset, referred to here as River Chemistry for 15 

the U.S. Coast (RC4USCoast), is mostly derived from the Water Quality Database of the U.S. Geological Survey (USGS), but 

also includes river discharge from the USGS’s Surface-Water Monthly Statistics for the Nation and the U.S. Army Corps of 

Engineers. RC4USCoast provides monthly time series as well as long-term averaged monthly climatological patterns for 

twenty variables including alkalinity and dissolved inorganic carbon concentration. It is mainly intended as a data product for 

regional ocean biogeochemical models and carbon chemistry studies in the U.S. coastal regions. Here we present the method 20 

to derive RC4USCoast and briefly describe the river's carbonate chemistry patterns.  

1 Introduction 

Riverine fluxes of water, nutrients, alkalinity, and carbon exert a significant impact on the coastal ocean margins, modulating 

patterns in primary production, dissolved oxygen, calcium carbonate saturation, bottom acidification, and air-sea carbon fluxes 

(e.g., Rabouille et al., 2008; Cai et al., 2013; Siedlecki et al. 2017; Moore-Maley et al., 2018; Xie et al., 2020; Liu et al., 2021). 25 

During the last decade or so, there has been an increasing interest in better understanding and quantifying the influence of river 

inputs on the coastal ecosystems of the United States. This is reflected in a growing number of ocean biogeochemical (BGC) 

modeling studies addressing river-induced ocean patterns (e.g., Fennel et al, 2011; 2013; Laurent et al., 2017; Siedlecki et al. 
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2017; 2021; Hood et al., 2021; Gomez et al., 2021). Ocean BGC models need realistic inputs of river-water properties to 

properly simulate coastal ecosystem responses to river runoff, but the availability of these inputs is usually limited (e.g., 30 

Kearney et al., 2021). A few existing data products contain estimates of riverine carbon and/or nutrients based on empirical or 

dynamic river export models (e.g., Mayorga et al., 2010; Li et al., 2017; 2019; Lacroix et al., 2021; Regnier et al., 2022). These 

products were mainly developed for global budget analysis, and consequently they often lack sufficient spatial resolution to 

allow the study of ecosystem dynamics at a regional scale or have significant regional biases. Motivated by the necessity of 

high-resolution river chemistry data for regional ocean BGC models, here we present the River Chemistry for the U.S. Coast 35 

(RC4USCoast) database, a compilation of historical river chemistry and discharge records derived from the U.S. Geological 

Survey (USGS). 

2 Dataset 

The RC4USCoast database contains historical river chemistry records from 140 USGS monitoring stations retrieved from the 

Water Quality Database of the National Water Information System (Alexander et al., 1998; 40 

https://nwis.waterdata.usgs.gov/usa/nwis/qwdata). We use a set of stations similar to those used in Stets and Striegl (2012), 

who selected stations based on the availability of water quality records and proximity to river mouths. These monitoring 

stations correspond to 52 rivers in the US East Coast, 53 rivers in the Gulf of Mexico, and 35 rivers in the US West Coast (Fig. 

1; Table S1 in the Supplement). It is worth noting that Stets and Striegl (2012) reported average inorganic and organic carbon 

flux (g C yr-1) and yield (g C m-2 yr-1) for the selected USGS stations, but they did not provide a dataset with the riverine 45 

concentration of carbon. Therefore, RC4USCoast advances providing integrated information on river DIC and alkalinity 

concentration (Sect. 2.1) and, where available, additional inorganic and organic nutrients relevant for coastal water quality 

(Sect. 2.2) for those stations.   

 
 50 

Figure 1. USGS stations used to derive river chemistry patterns. Green, red, and blue dots correspond to river discharging to 

the East, Gulf of Mexico, and West Coast, respectively.   
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2.1 Carbon chemistry 

RC4USCoast includes a river carbon chemistry dataset with monthly series and climatological data for alkalinity, pH field, pH 

laboratory, DIC, and dissolved organic carbon (DOC) (Table 1). To this effect, we processed more than 61,000 records of 55 

calcium carbonate (CaCO3) and bicarbonate (HCO3), 56,000 pH field and laboratory records, and 8,000 DOC records. Due to 

the substantially smaller number of DIC measurements (~1,800) compared to those of alkalinity and pH, we derived DIC from 

alkalinity, pH, and water temperature using the CO2SYS program for CO2 System Calculations (van Heuven et al., 2011). 

Following Stets and Striegl (2012), we assumed that (i) particulate inorganic carbon is small; thus, filtered and unfiltered 

measurements of alkalinity are nearly the same, and (ii) inorganic carbon represents the major fraction of river alkalinity. A 60 

comparison between filtered and unfiltered measurements of alkalinity does not show significant differences (Fig. 2a); thus, 

biases associated with the first assumption are negligible. The second assumption implies that DIC estimates do not account 

for non-carbonate alkalinity, which may lead to DIC overestimation. This is especially true in low alkalinity rivers with high 

concentration of organic matter, as the latter contains anionic functional groups that can contribute to alkalinity (Hunt et al., 

2011). Stets and Striegl (2012) discussed this issue further and showed that ignoring the non-carbonate alkalinity usually led 65 

to an overestimation of DIC <10%. Consistently, a comparison between measured DIC and the calculated DIC reveals a good 

agreement, with no evident bias in the residuals of the least square model (Fig. 2b).  

 

 
 70 

Figure 2. Data comparison: (a) Filtered vs. unfiltered alkalinity; (b) measured vs. calculated DIC. Calculated DIC was derived 

from alkalinity, pH, and temperature measurements.  
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Table 1. Carbon system variables in the RC4USCoast dataset. 
 

Variable Units 
USGS 
parameter 
code 

Description Original USGS 
units 

Water 
chemistry 
measurements 

Alkalinity meq m-3 00410 Acid neutralizing capacity, unfiltered, 
fixed endpoint titration, field mg CaCO3 liter-1 20,427 

  00419 Acid neutralizing capacity, unfiltered, 
inflection-point titration, field mg CaCO3 liter-1 378 

  29801 Alkalinity, filtered, fixed endpoint 
titration, laboratory mg CaCO3 liter-1 2,839 

  39036 Alkalinity, filtered, fixed endpoint 
titration, field mg CaCO3 liter-1 587 

  39086 Alkalinity, filtered, inflection-point 
titration, field mg CaCO3 liter-1 6,428 

  90410 Acid neutralizing capacity, unfiltered, 
fixed endpoint titration, laboratory mg CaCO3 liter-1 8,581 

  00440 Bicarbonate, unfiltered, fixed endpoint 
titration, field mg HCO3 liter-1 16,121 

  00453 Bicarbonate, filtered, fixed endpoint 
titration, field mg HCO3 liter-1 6,330 

pH field standard units 00400 pH, unfiltered, field standard units 43,432 

pH lab standard units 00403 pH, unfiltered, laboratory standard units 13,354 

 DOC mmol C m-3 00681 Organic carbon, filtered mg C liter-1 8,114 

 DIC mmol C m-3  DIC derived from alkalinity, pH, and 
temperature   

 75 

2.2 Other chemistry variables 

The RC4USCoast database also contains a set of variables that describe the runoff of nitrogen, phosphorus, and silica (Table 

2), including monthly time series of nitrate (NO3), nitrate plus nitrite (NO3 plus NO2), ammonia (NH4), organic nitrogen plus 

ammonia (orgN), dissolved organic nitrogen (DON), total nitrogen (TN), phosphate (PO4), total phosphorus (TP), and silicon 

dioxide (SiO2). For orgN, TN, and TP, we generated two independent datasets for unfiltered and filtered water samples (the 80 

former containing both dissolved and particulate material, and the latter only dissolved material). For NO3, NO3 plus NO2, 

NH4, and PO4 we considered the USGS parameters for filtered water samples. In addition to these inorganic and organic 

nutrients, we also included dissolved oxygen (DO) and water temperature in the database.  
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Table 2. Additional variables in the RC4USCoast dataset. 85 
 

Variable Units 
USGS 
parameter 
code 

Description Original USGS 
units 

Water 
chemistry 
measurements 

NO3  mmol N m-3 00618 Nitrate, filtered mg N liter-1 23,692 

   71851 Nitrate, filtered mg NO3 liter-1 23,593 

NO3 plus NO2  mmol N m-3 00631 Nitrate plus nitrite, filtered mg N liter-1 19,939 

NH4  mmol N m-3 71846 Ammonia (NH3 + NH4+), filtered mg NH4 liter-1 20,091 

   00608 Ammonia (NH3 + NH4+), filtered mg N liter-1 19,836 

Organic nitrogen 
unfiltered mmol N m-3 00625 Organic nitrogen plus ammonia, 

unfiltered mg N liter-1 21,139 

Organic nitrogen 
filtered mmol N m-3 00623 Organic nitrogen plus ammonia, 

filtered mg N liter-1 10,932 

DON  mmol N m-3 00607 Dissolved organic nitrogen, filtered mg N liter-1 10,250 

TN unfiltered mmol N m-3 00600 Total nitrogen [inorganic + organic 
nitrogen], unfiltered mg N liter-1 23,161 

TN filtered mmol N m-3 00602 Total nitrogen [inorganic + organic 
nitrogen], filtered mg N liter-1 10,864 

PO4  mmol P m-3 00660 Orthophosphate, filtered mg PO4 liter-1 20,280 

   00671 Orthophosphate, filtered mg P liter-1 18,733 

TP unfiltered mmol P m-3 00665 Total phosphorous [organic + 
inorganic phosphorous], unfiltered mg P liter-1 26,608 

TP filtered mmol P m-3 00666 Total phosphorous [organic + 
inorganic phosphorous], filtered 

mg P liter-1 19,239 

Silica  mmol Si m-3 00955 Silica, filtered mg SiO2 liter-1 31,940 

Dissolved oxygen mmol O2 m-3 00300 Dissolved oxygen, water, unfiltered mg O2 liter-1 34,379 

Temperature °C 00010 Water temperature °C 50,442 

Discharge m3 s-1 00060 Mean discharge(a) ft3 s-1  

 m3 s-1 00061 Instantaneous discharge(b) ft3 s-1  

(a) Averaged discharge from the USGS Surface-Water Monthly Statistics was used for all rivers excepting the Mississippi-Atchafalaya 
(U.S. Army Corps of Engineers) and those listed in b  

(b) Instantaneous discharge from the USGS Water Quality Database was used for the Charles, James, Weeki Washee, and Rio Grande 
rivers.   90 

https://doi.org/10.5194/essd-2022-341
Preprint. Discussion started: 28 October 2022
c© Author(s) 2022. CC BY 4.0 License.



6 
 

2.3 River discharge 

To provide a longer set of river discharge records than those available in the USGS Water Quality Database, we used monthly 

average data from the USGS Surface-Water Monthly Statistics for the Nation database 

(https://waterdata.usgs.gov/nwis/monthly). Similarly, for the Mississippi and Atchafalaya rivers, we used records from the 

U.S. Army Corps of Engineers (USACE). Specifically, we used the Mississippi discharge at the USACE’s station 01100 95 

(Tarbert Landing), and the Atchafalaya discharge at station 03045 (Simmesport). Those records were obtained from the 

discharge dataset in the Gulf of Mexico Coastal Ocean Observing System (GCOOS, https://geo.gcoos.org/river_discharge/). 

For a few rivers (Charles, James, Weeki Washee, and Rio Grande) where monthly discharge was not available in the USGS 

Surface-Monthly Statistics database or the USACE records, we used discharge from the USGS Water Quality Database. 

2.4 Database generation 100 

Information for the selected river stations includes the RC4USCoast river ID, the original USGS site ID, the USGS site’s 

longitude and latitude, and an approximate longitude and latitude for the river mouth (Fig. S1). A few rivers flow to other 

larger rivers, as described in Table S1. The assigned mouth location in those cases corresponds to the mouth of the major 

stream discharging to the ocean. For example, the dataset contains the Alabama and Tombigbee rivers, which converge to the 

Mobile River, so the associated river mouth for those two rivers is the Mobile mouth (30.7°N and 88.0°W).  105 

To the extent it was possible given data availability, we calculated monthly times series for all variables and all river sites over 

the period 1950–2020. Temporal data gaps were kept unfilled. In the Water Quality Database, river properties are characterized 

by a set of parameters, each associated with a specific measurement type. As indicated in Tables 1 and 2, we used eight 

parameters to derive alkalinity, two parameters to derive NO3, NH4 and PO4, and one parameter for the remaining variables: 

pH field, pH laboratory, DOC, NO3 plus NO2, SiO2, DO, temperature, and the filtered and unfiltered concentration of orgN, 110 

TN, and TP. Conversion factors were applied to present alkalinity in milliequivalent m-3 (meq m-3), the carbon-based variables 

(DIC, DOC) in mmol C m-3, the nitrogen-based variables (NO3, NO3 plus NO2, NH4, orgN, TN) in mmol of N m-3, the 

phosphorous-based variables (PO4 and TP) in mmol of P m-3, silica in mmol of SiO2 m-3, and dissolved oxygen in mmol of O2 

m-3. To ensure data quality, outliers, defined here as river chemistry values above and below 3.5 standard deviations from the 

median were removed. Maximum alkalinity (DIC) values were limited to 8,000 meq (mmol) m-3. pH records below 3.5 or 115 

above 10 units were discarded. Additionally, an upper threshold of 3.5 was used for the DIC to alkalinity ratio (DIC:Alk ratio), 

based on values reported by Moore-Maley et al. (2018). DIC records linked to DIC:Alk ratios greater than 3.5 were also 

removed.  
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 120 
Figure 3. Number of monthly records (NMR) in the dataset time series (1950-2020). The colorbar range may vary 

between panels. Variable description is in Tables 1 and 2.  
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Figure 3 (continued). 
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Except for river discharge, which had average temporal coverage of 85%, the USGS time series had significant data gaps 

because the parameter’s monitoring had a limited number of years, and/or the parameter’s measurements were not performed 

at a regular frequency. Figure 3 displays the number of records (data density) in the monthly time series for each site, indicating 

large differences among rivers and variables. Monitoring stations with the most complete chemistry records were linked to 

rivers flowing to the Mid Atlantic Bight, the Mississippi and Atchafalaya, and a limited number of major rivers on the West 130 

Coast and Texas coast. The greatest data density was for pH field, water temperature, and alkalinity, with a median of 162, 

164, and 139 records (over the 140 sites), respectively, whereas the lowest data density was for DON and DOC, with a median 

of 21 and 14 records, respectively.  

To complement the time series and provide a ready to use dataset for ocean biogeochemical model applications with no data 

gaps, we generated monthly climatologies using all data during 1950–2020. We also generated climatologies for the 1950–135 

1989 and 1990–2020 periods, as a way to represent temporal variation in the climatological pattern. We considered those 

multidecadal periods, as the temporal coverage in the river chemistry dataset did not resolve well decadal variability for all 

sites. To ensure a minimum number of observations to derive the monthly climatologies, for each variable and station we 

calculated the number of records per calendar month. If the median value of this record count (over the 12 months) was less 

than five, or any month had no data, then the monthly climatology was substituted by the long-term annual average. 140 

A brief description of the carbon system variables in the RC4USCoast database is provided in the following section. Mean 

patterns for other variables are shown in the Supplement (Figs. S2). 

3 Main carbon system patterns  

The site-averaged alkalinity concentration ranges from 40 meq m-3 (Black water) to 5,605 meq m-3 (Santa Clara). The 

frequency distribution for this variable displays a positive skewness with a median of 662 meq m-3 and 42% of the values 145 

lower than 500 meq m-3 (Fig. 4a). The largest fraction of low alkalinity (<500 meq m-3) rivers is on the East Coast, especially 

for rivers flowing to the Gulf of Maine and South Atlantic Bight (Fig. 5a). On the other hand, the largest fraction of high 

alkalinity (>2,000 meq m-3) rivers is in the Gulf of Mexico (Fig. 4a), mainly clustered over the Texas and West Florida coasts 

(Fig. 5a). Along the West Coast, there is a clear meridional gradient in river alkalinity, with the highest values in Southern 

California and the lowest in Oregon and Washington (Fig. 5a).  150 
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Figure 4. Frequency histogram derived from the long-term site-averaged (a) alkalinity and (b) DIC to alkalinity (DIC:Alk) 

ratio for all rivers (All), and river discharging at the East Coast, Gulf of Mexico, and West Coast. 
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155 

 
 
Figure 5. Long-term mean (colored dots and squares) of the river (a) alkalinity and (b) DIC to alkalinity ratio. Squares (dots) 

represent river stations with a mean discharge greater (smaller) than 500 m3 s-1. Colorbar in (a) is in logscale. 

  160 
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The average river DIC concentration shows a very similar spatial pattern to the average river alkalinity, as both variables are 

highly correlated (r = 0.99; Fig. S3 in the Supplement). However, DIC tends to be greater than alkalinity, which is reflected in 

an average DIC:Alk ratio of 1.33 over the 140 stations. Like alkalinity, the frequency distribution of the site averaged DIC:Alk 

ratios has a positively skewed distribution (Fig. 4b), with a median of 1.17, and minimum and maximum values of 0.92 (Los 

Angeles) and 3.08 (Shoal), respectively. Rivers with the lowest DIC:Alk ratios are in the West Coast, where DIC is on average 165 

8% greater than alkalinity (Fig. 5b). Large DIC:Alk ratios are mainly associated with low alkalinity rivers, and the opposite is 

true for high alkalinity rivers. Indeed, the relationship between these two variables has a clear linear pattern for alkalinities 

below ~500 meq m-3, where the mean DIC:Alk ratio decreases 0.247 units per every 100 meq alkalinity increase (Fig. 6a). 

Moreover, we found that the standard deviation of the DIC:Alk ratio (SDDIC:Alk) is inversely linked to the mean alkalinity (Fig. 

6b). Most rivers with a mean alkalinity below 200 meq m-3 have a SDDIC:Alk greater than 0.4, whereas most rivers with a mean 170 

alkalinity above 1,000 meq m-3 have a SDDIC:Alk lower than 0.2.  

 

 

Figure 6. Between river variability in the DIC to alkalinity (DIC:Alk) ratio as a function of alkalinity: (a) mean DIC:Alk ratio 

vs. mean alkalinity; b) standard deviation of the DIC:Alk ratio vs. mean alkalinity. Each dot represents one of 140 rivers in the 175 

dataset. Green, red, and blue dots depict the rivers flowing to the East, Gulf of Mexico, and West Coasts, respectively.  
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To further investigate the river carbon chemistry variability, we examined monthly records for the stations with the largest 

data density. Those stations are associated with six rivers in the East Coast (Connecticut, Delaware, Schuylkill, Choptank, 180 

Susquehanna, and Neuse), two rivers in the Gulf of Mexico (Mississippi and Atchafalaya) and four rivers in the West Coast 

(Santa Ana, Sacramento, Eel, and Klamath). A strong positive relationship between the monthly alkalinity and DIC records is 

evident for all of the 12 stations (Fig. 7a). The coefficients of determination (R2) for the linear regression of DIC against 

alkalinity average to 0.91, ranging from 0.57 (Neuse) to 0.99 (Eel) (Table S2 in the Supplement). Like the patterns in Figure 

6, the monthly records show an inverse relationship between the DIC:Alk ratio and alkalinity (i.e., an increased variability in 185 

the DIC: Alk ratio at low alkalinity values, and vice versa at high alkalinity values) (Fig.7b). The Choptank and Neuse rivers, 

in the lower end of the alkalinity concentration, show the largest dispersion in the DIC:Alk ratio, with values ranging from ~1 

to higher than 2.5. In contrast, the high alkalinity Santa Ana River displays a much smaller variability, with the maximum 

DIC:Alk ratio around 1.1. Seasonal patterns for alkalinity (and DIC) tend to show enhanced values during summer and fall, 

and minimum values during winter and spring (Fig. 7c), concurrent with low and high discharge periods, respectively. This 190 

pattern is consistent with multiple studies conducted in specific river basins suggesting dilution of carbon chemistry variables 

during high discharge conditions (e.g., Cai, 2003; Guo et al., 2008; Joesoef et al., 2017). Indeed, a linear relationship between 

the logarithm of discharge (logDisc) and alkalinity is evident for each of the 12 stations (Fig. 7d). The adjusted linear regression 

models for these rivers are all significant, with linear regression coefficients ranging from 0.34 (Sacramento) to 0.69 (Eel) 

(Table S2).  195 

The inverse relationship between logDisc and alkalinity in Figure 7d can be extended to other rivers in the database. Figure 8 

shows the regression coefficient (slope) and R2 for the stations where the regression was significant, explained at least 20% of 

the alkalinity variance, and include at least 30 observations (77 out of 140 rivers). The sensitivity of river alkalinity to changes 

in discharge, reflected in the magnitude of the regression coefficient, is greater in the high alkalinity rivers flowing to the Gulf 

of Mexico, Southern California, and East Florida coasts, and smaller in the low alkalinity rivers flowing to the Northwest and 200 

East Coasts (Fig. 8a). This determines a significant negative correlation between the regression coefficient and the site-

averaged alkalinity (r = -0.83). The R2 coefficient pattern shows an important spatial variability (Fig. 8b), which is not linked 

to river alkalinity or discharge. The largest R2 values (>0.5) characterize rivers flowing to the Northwest Coast, Florida 

Panhandle, and South Atlantic Bight. Similar patterns were found for the relationship between logDisc and DIC (not shown).  

  205 
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Figure 7. Carbon system patterns for 12 selected rivers: (a) DIC vs. alkalinity, and (b) DIC:Alk ratio vs. alkalinity; (c) monthly 

climatological patterns of alkalinity; and (d) alkalinity vs. logarithm of discharge. All patterns were derived for the 12 rivers 

with the largest number of records in the database: Connecticut (ID=11), Delaware (23), Schuylkill (24), Choptank (25), 

Susquehanna (26), Neuse (35), Mississippi (86), Atchafalaya (88), Santa Ana (107), Sacramento (113), Eel (117), and Klamath 210 

(119). 
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 215 

Figure 8. (a) Regression coefficient and (b) coefficient of determination (R2) for the adjusted linear regressions between 

alkalinity and the logarithm of discharge (colored dots and squares). Patterns are shown only for the stations that have a 

significant regression coefficient, an R2 greater than 0.2, and more than 30 observations (76 out of 140 stations). Squares (dots) 

represent river stations with a mean discharge greater (smaller) than 500 m3 s-1. 
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4 Data availability 

The river chemistry data product is available in netCDF format at NOAA/NCEI with a DOI of  

https://doi.org/10.25921/9jfw-ph50 and NCEI accession number 0260455 (Gomez et al., 2022). For each of the selected river 

stations, we provide monthly time series and climatologies for each variable. Excel spreadsheets reporting the USGS 

parameters used to generate the dataset, the station and river mouth locations (latitude/longitude), the number of records in the 225 

series, and the first and last year in the series, are also provided in the dataset.  

5 Summary and conclusion 

Retrieving data from the USGS Water Quality database has complexities, such as identifying nearshore sites for coastal studies 

(USGS contains more than 2,400 sites across the United States, many in inland waters that are not directly relevant to coastal 

ocean analyses), or integrating water quality parameters to characterize biogeochemical properties (water properties are usually 230 

described by more than one USGS parameter). Thus, a user not familiar with the USGS database may require considerable 

time and effort identifying river sites and parameters. We facilitate this task, providing an integrated river chemistry and 

discharge dataset for 140 USGS nearshore sites, which contains relevant variables to characterize biogeochemical and water 

fluxes (land-to-ocean) along the U.S. West, East and Gulf of Mexico coasts. RC4USCoast includes data for alkalinity, pH, 

nutrients, and novel estimates of river DIC. River mouth location (longitude, latitude) is reported for each USGS sites, which 235 

expedites the data integration in coastal biogeochemical studies. The main goal is to fill a gap for river carbonate chemistry 

products, as necessary inputs for regional model simulations that include ocean biogeochemistry. We also note the utility of 

this product for skill assessment of hydrologic and riverine chemistry models estimating discharge and nutrient loading patterns 

resulting from climate and land use activities (e.g., Lee et al., 2019). Patterns in RC4USCoast show distinct regional features 

for alkalinity and DIC. The average and standard deviation of the DIC:Alk ratio increased in low alkalinity rivers, and both 240 

alkalinity and DIC concentration were inversely related to river discharge. Our results revealed a significant spatiotemporal 

variability in carbon chemistry, which can play a significant role on coastal biogeochemical dynamics.  
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