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Abstract: Annual forest maps at a high spatial resolution are necessary for forest management and conservation. 

Large uncertainties remain among the existing forest maps, because of different forest definitions, satellite datasets, 

in-situ training datasets, and mapping algorithms. In this study, we generated annual forest maps and evergreen forest 25 

maps at a 30-m resolution in the Contiguous United States (CONUS) during 2015-2017 by integrating microwave 

data (Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)) and optical data (Landsat) using  Knowledge-

based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major 

forest datasets in the CONUS: (1) the Landsat tree canopy cover from Global Forest Watch datasets (GFW-Forest), 

(2) the Landsat Vegetation Continuous Field datasets (Landsat VCF-Forest), (3) the National Land Cover Database 30 

2016 (NLCD-Forest), (4) the Japan Aerospace Exploration Agency (JAXA) forest maps (JAXA-Forest), and (5) the 

Forest Inventory and Analysis (FIA) data from the USDA Forest Service (FIA-Forest). The forest structure data (tree 

canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System 

(GLAS) onboard of NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest 

datasets derived from satellite images. Using the forest definition by the Food and Agricultural Organization (FAO) 35 

of the United Nations, more forest pixels from the PL-Forest maps meet the FAO’s forest definitions than the GFW-, 

Landsat VCF-, and JAXA-Forest datasets. Forest area estimates from the PL-Forest were close to those from the FIA-

Forest statistics but higher than the GFW-Forest, NLCD-Forest and lower than the Landsat VCF-Forest, which 

highlights the potential of using both PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources 

Assessment. Furthermore, the PL-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable 40 

consistency with the NLCD product. Together with our previous work in South America and monsoon Asia, this study 

further demonstrates the potential of integrating PALSAR and Landsat images for developing annual forest maps and 

forest-type maps at high spatial resolution across the scales from region to the globe, which could be used to support 

FAO Global Forest Resources Assessments.  The PL-Forest and PL-Evergreen Forest datasets are publicly available 

at https://doi.org/10.6084/m9.figshare.21270261 (Wang et al., 2022). 45 
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1 Introduction 

Forests cover approximately 30% of the land surface and have played major roles on regulating terrestrial carbon 

and water cycles (D'Almeida et al. 2007; Harris et al. 2012), influencing climate (Bonan 2008; Peng et al. 2014), 50 

conserving biodiversity (Betts et al. 2017; Seto et al. 2012), and supplying forest products to humankinds (Foley et al. 

2005; Smith et al. 2018). The United States of America is covered by 310 million hectares of forests, which is the 

fourth largest forest country in the world (Global Forest Resources Assessment 2020). The forest inventory and 

analysis (FIA) program, managed by the USDA Forest Service, reported that the national forest area totals remain 

stable, but substantial changes occurred at regional and local scales (Oswalt; et al. 2019). In addition, extensive impacts 55 

of disturbance (e.g., wildfires, harvests, insect outbreaks) and climate factors have been increasingly changing the 

forest structure, function, and species composition (Mekonnen et al. 2019; Sexton et al. 2016). To identify the forest 

dynamics and assessing the associated impacts more effectively, it is critical to generate timely and accurate annual 

forest maps at a high spatial resolution to support policy decisions and relevant research (Sexton et al. 2015).  

Remote sensing technology offers large-area and high-frequency observations that have been widely used for 60 

continental and global forest mapping. For example, the optical-based regional and global forest maps are generated 

at the coarse (thousands of meters) and moderate (hundreds of meters) spatial resolutions using the 1-km Advanced 

Very High Resolution Radiometer (AVHRR) (Achard et al. 2001; Hansen and DeFries 2004), 1-km  Satellite Pour 

I’Observation de Ia Terre 4 (SPOT-4) VEGETATION (Souza et al. 2003; Stibig and Malingreau 2003; Stibig et al. 

2004),  and 250-m and 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) (DiMiceli et al. 2017; Friedl 65 

et al. 2010; Hansen et al. 2003). The characteristics and comparison of several major forest cover products at the 

moderate spatial resolution have been shown in detail in one of our previous studies, including image data sources, 

forest definition, algorithms, accuracy and other relevant information (Qin et al. 2017).  

The Landsat images have been used to generate forest or other land cover products at a high spatial resolution 

(tens of meters) (Chen et al. 2015; Hansen et al. 2013a; Jin et al. 2013a). The major Landsat-based products for the 70 

CONUS include the Global Forest Watch (GFW) program of the World Resources Institute (2013b), the forest cover 

fraction (VCF) product from the Global Land Cover Facility Data Center (GLCF) at the University of Maryland 

(Sexton et al. 2013b), and the National Land Cover Database (NLCD) from USGS (Jin et al. 2013b). In the United 

States, FIA and NLCD are the primary databases used by managers, researchers, and policymakers to assess land use 

and track land management (Domke et al. 2021; Hoover et al. 2020). FIA is a field survey of forest plots and reports 75 
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information on the status and trends of forests in the United States (Burrill et al. 2021; Hoover et al. 2020). Additionally, 

the annual global forest maps have been published by JAXA over the years of 2007-2010 and 2015-2018, which are 

generated using PALSAR and PALSAR-2 images at 25-m and 50-m spatial resolutions (Shimada et al. 2014). The 

main characteristics of these high-spatial-resolution forest maps covering the CONUS are summarized in Table 1. It 

is noticed that the high-spatial-resolution forest maps are relatively few for the years after 2010.  80 

Due to the differences in forest definitions, satellite data, in-situ training data, and mapping algorithms, the 

previous forest maps have large discrepancies on forest area estimates (Qin et al. 2017; Sexton et al. 2016; Smith et 

al. 2018). The major challenge of the optical remote sensing approach is to collect good-quality observation data 

without cloud cover (Reiche et al. 2015). The PALSAR-based forest maps often have commission errors caused by 

buildings, rocks, and high biomass crops (Qin et al. 2017). The combination of the optical and microwave data could 85 

take advantage of the optical remote sensing sensors that capture the light and forest canopy interaction and microwave 

sensors that capture the microwave and forest structure (tree trunk and branch) interaction without cloud contamination. 

Forest maps have been generated in a number of studies by using integrated PALSAR and Landsat data(Lehmann et 

al. 2015; Reiche et al. 2015; Thapa et al. 2014), and PALSAR and MODIS data (Qin et al. 2016a; Zhang et al. 2019). 

To date, no study has combined PALSAR and Landsat images during 2015-2017 to map annual forest distributions 90 

in the CONUS.   

In addition to annual forest maps, information on evergreen forests and deciduous forests is also important for 

forest management and conservation. Many studies showed that the spatial distributions of evergreen and deciduous 

forests have been changing and will continue to change in the future, driven by multiple stressors involving climate 

change, forest disturbance, land-use change, and invasive species (Knott et al. 2019; Mekonnen et al. 2019; Soh et al. 95 

2019). Accurate distribution information of evergreen and deciduous forests types is also needed to reduce the 

uncertainty in the carbon budgets (Deb Burman et al. 2021). With the development of Earth observation technology, 

some efforts have been carried out to produce forest type datasets based on multiple spaceborne or/and airborne images 

(Kushwaha 1990; Laurin et al. 2016). As an example, for the study at the national or continental scale, the NLCD 

dataset provides the nationwide distribution of deciduous, evergreen, and mixed forests in the U.S. at 30-m spatial 100 

resolution for the years of 2001, 2006, 2011, and 2016. The 50-m evergreen and deciduous forest map in 2010 was 

generated across the monsoon Asia using PALSAR and time series MODIS images (Qin et al. 2016b). As the NLCD 

used multi-temporal Landsat images to identify evergreen and deciduous forests, there is a need to explore the potential 
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of time series Landsat images for improving discrimination and classification of evergreen and deciduous forests, 

which could support the annual analyses in the scientific research and policy making on forest ecosystems.   105 

The United Nations Food and Agriculture Organization (FAO) Global Forest Resources Assessment (FRA) 

provides essential information for understanding the world’s forest resources, management and uses every five years 

since 1990 by assembling the forest data from individual countries (Keenan et al. 2015). In an effort to improve annual 

forest maps at a national scale for supporting the FAO FRA program, this study had three objectives. The first objective 

was to develop annual forest maps and annual evergreen forest maps in the CONUS by using both PALSAR-2 and 110 

Landsat images during 2015-2017. The second objective was to assess and compare the resultant PALSAR-2/Landsat-

based forest maps with the major satellite-based forest cover datasets by using the forest structure data (tree height 

and tree canopy coverage), which were derived from the observations of the Geoscience Laser Altimetry System 

(GLAS) onboard of NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1). This comparison with a large amount 

of LiDAR data will help understand the differences of the forest datasets under the forest definition used by the FAO. 115 

The FAO defines forest as natural forest area larger than 0.5ha with tree cover over 10% and tree height greater than 

5-m (FAO 2012). The third objective was to report the PALSAR-2/Landsat-based forest maps at two administration 

levels (state and CONUS) and compare them with the forest area estimates from the Forest Inventory Assessment by 

the USDA Forest Service, which are the primary data sources provided by the USA government for the FAO Global 

Forest Resources Assessment. This comparison will help us to investigate the capability of combining the PALSAR-120 

2/Landsat approach and the FIA approach for support of the Global Forest Resource Assessment at the national scale.    

Table 1. Characteristics of the main forest cover datasets at a high spatial resolution (tens of meters) for the 

Contiguous United States.  

Sensors Datasets Forest 

definition 

Major data 

source 

Methods Spatial 

resolutio

ns 

Periods References 

Statistic

s 

FIA  Tree 

cover≥10% 

Inventory 

data 

Sampling  State Annual 

sampling 

design after 

1998 

Burrill et al. 

(2021) 

Optical NLCD Tree 

cover≥ 20%, 

tree height ≥ 5-

m 

Landsat 

images 

Decision 

tree 

30-m circa 1992, 

2001, 2006, 

2011, 2016, 

2019 

Jin et al. 

(2019) 

Landsat 

VCF 

tree height ≥ 5-

m 

MODIS 

VCF, 

Landsat 

images  

Regression 

tree 

30-m 2000, 2005, 

2010, 2015 

Sexton et al. 

(2013a) 

GFW tree height ≥ 5-

m 

Landsat 

images 

Decision 

tree 

30-m 2000, 2010 Hansen et 

al. (2013a) 
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SAR JAXA Tree cover 

≥ 10%, tree 

height ≥ 5-m 

PALSAR/P

ALSAR-2 

images  

Decision 

tree 

25-m 2007-2010, 

2015-2018 

 

Shimada et 

al. (2014) 

SAR/Op

tical 

PL-

Forests 

Tree cover 

≥ 10%, tree 

height ≥ 5-m 

25-m 

PALSAR-2 

and 30-m 

Landsat 

images in 

2015-2017 

Decision 

tree 

30-m 2015-2017 This study 

 

2 Materials and Methods 125 

The workflow in Fig. 1 presents the three major study sections and the detailed processes of each section in this 

study. First, we generated the annual forest maps, annual evergreen and deciduous forest maps at 30-m spatial 

resolution during 2015-2017 by integrating PALSAR-2 and Landsat time-series NDVI data. Second, we compared 

the resultant PALSAR-2/Landsat forest maps with other major satellite-based forest datasets in the study period of 

2015-2017. We assessed these forest maps following the FAO's forest definition using the tree height and canopy 130 

coverage data from the ICESat-1 LiDAR-based products. Third, we examined the performance all the satellite-based 

forest maps on forest area estimates by comparison with the FIA statistic data at the state and national administration 

levels.   

 

Figure 1: The workflow of this study. It includes three major study sections and the detailed processes of each section in 135 
this study.  

2.1 Study area 

Our study area is the CONUS with an area of about 8.08×106 km2, including the 48 states and Washington, DC. 

About 50% of the CONUS land cover change has involved forests since 2001(Homer et al. 2020). The CONUS has 
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large topographical variation from the eastern USA to the western USA as shown by the spatial distribution of 140 

topography in the CONUS (Fig. 2).  

 

Figure 2: The spatial distributions of (a) the topography of the CONUS using the digital elevation model (DEM). (b, c, d) 

the acquisition dates of PALSAR-2 images in a year during 2015 - 2017. 

2.2 PALSAR-2 data in 2015-2017 145 

The annual 25-m ALOS-2 PALSAR-2 mosaic data from 2015 to 2017 were collected at the Google Earth Engine 

(GEE) platform (https://developers.google.com/earth-

engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR, last access: 18 March 2022). The PALSAR-2 HH 

and HV polarization bands, provided by the Earth Observation Research Center, Japan Aerospace Exploration Agency 

(JAXA), are slope corrected, radiometrically calibrated, and ortho-rectified backscatters with a geometric accuracy of 150 

around 12 meters (Reiche et al. 2018). Fig. 2 shows the acquisition dates of the PALSAR-2 mosaic images over the 

CONUS and most images were acquired during May to October. The HH and HV bands were converted from the 
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amplitude valuesinto gamma-naught backscattering coefficients in decibels (γ°) using a calibration factor (CF) of -83 

(γ°=10×lnDN2 + CF). Two composite layers, i.e., the difference (HH-HV) and the ratio (HH/HV), were calculated as 

input data for forest mapping.  155 

2.3 Landsat data in 2015-2017 

We used all the Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8 Operational Land Imager (OLI) 

surface reflectance (SR) images from 2015 to 2017 to construct a time series image data cube in GEE 

(https://developers.google.com/earth-engine/datasets/catalog/LANDSAT, last access: 18 March 2022). This dataset 

provides multi-spectral images at 30-m resolution and the SR data were derived from TOA reflectance by the 160 

atmospheric correction codes (Vermote et al. 2016). The bad-quality observations with clouds, cloud shadows, 

snow/ice, and scan-line-off strips were identified as NODATA following the quality band (pixel_qa). The remaining 

good-quality observations were used to calculate the vegetation indices of NDVI, EVI, and LSWI for each image in 

the data cube. Fig. 3 shows the spatial distribution of annual total good-quality observation numbers (GOBs) for 

individual pixels over the CONUS from 2015 to 2017.  165 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑
 (1) 

𝐸𝑉𝐼 = 2.5 ×
𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅+6×𝜌𝑅𝑒𝑑−7.5×𝜌𝐵𝑙𝑢𝑒+1
  (2) 

𝐿𝑆𝑊𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑆𝑊𝐼𝑅

𝜌𝑁𝐼𝑅+𝜌𝑆𝑊𝐼𝑅
                                                                                                                                                                (3) 

where𝜌𝐵𝑙𝑢𝑒, 𝜌𝑅𝑒𝑑  𝜌𝑁𝐼𝑅    and 𝜌𝑆𝑊𝐼𝑅   are the surface reflectance values of blue (450-520nm), red (630-690nm), near-

infrared (760-900nm), and shortwave-infrared bands (1550-1750nm). 170 
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Figure 3: The summary of the good-quality observation (GOBs) numbers for individual pixels in a year over the CONUS 

using all Landsat images in a year during 2015-2017.  

2.4 Sample data for accuracy assessment of forest maps 

The accuracy of the PALSAR-2/Landsat annual forest maps were assessed based on the global validation sample 175 

set released by researchers from Tsinghua University, China (http://data.ess.tsinghua.edu.cn/, last access: 20 February 

2022) (Gong et al. 2013). This validation dataset was generated using a random sampling strategy for the Finer 

Resolution Observation and Monitoring-Global Land Cover (FROM-GLC) (Gong et al. 2013). The samples with land 

cover changes were identified and removed out according to the Google Earth images during 2015-2017. A total 

number of 1,958 points were used for the validation of the resultant forest maps, which includes 652 forests, 285 180 

croplands, 431 grasslands, 205 shrublands, 95 water bodies and wetlands, 46 impervious surfaces, 244 barren lands 

(Fig. 4).   
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Figure 4: The land cover samples for accuracy assessment in this study. These samples were from the global validation 

sample set released by the third-party researchers from Tsinghua University, China (http://data.ess.tsinghua.edu.cn/) 185 
(Gong et al. 2013). They were revised by excluding the samples with land cover change according to the Google Earth 

images.   

2.5 Canopy height and canopy coverage data from ICESat LiDAR 

To assess the PALSAR-2/Landsat forest maps and other forest maps in terms of forest structure features (canopy 

height, canopy coverage) that are used in forest definition by FAO, we used the ICESat global canopy coverage and 190 

height dataset to generate the samples of (1) forest canopy height (meter) and (2) forest canopy coverage (%). This 

ICESat dataset was derived based on the observations from the Geoscience Laser Altimetry System (GLAS) on board 

of NASA’s Ice, Cloud, and land Elevation Satellite (ICESat-1) with a footprint of about 65-m in diameter (Tang et al. 

2019). The ICESat mission acquired LiDAR data over the globe during 2003-2009. The ICESat-based tree canopy 

cover products provide improved information to characterize biome-level gradients and canopy cover almost without 195 

bias at the foot print level (Tang et al. 2019). There are more than 550,000 laser spots from ICESat-1 over the CONUS 

(Fig. 5). We recognize the time difference between the ICESat data (2003-2009) and the PALSAR-2 data (2015-2017), 

which may affect the assessment, dependent upon the land use change. A pixel has three scenarios in terms of forest 

in one time-period: (1) as forest in both 2003-2009 and 2015-2017, (2) as forest in 2003-2009 but not in 2015-2017 
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(forest loss due to deforestation), and (3) as forest in 2015-2017 but not in 2003-2009 (forest gain due reforestation or 200 

afforestation). For those pixels that were forest in 2003-2009 and 2015-2017 (Scenario #1), as the canopy height and 

canopy coverage of a forest stand are likely to increase over years, there is no effect of time differences (2003-2009 

vs 2015-2017) on the assessment. For those pixels with the scenario #2 and #3, the time differences could have small 

effect on the assessment.   

 205 

Figure 5: The ICESat samples in the CONUS, (a) Spatial distribution of ICESat-1samples. (b) the histogram of canopy 

height (m) and canopy coverage (%) for the ICESat-1 samples.   

2.6 Five forest cover data products for inter-comparison 

We used four forest cover products derived from analyses of satellite images at a high spatial resolution (≤30-m) 

for inter-comparison with our PALSAR-2/Landsat forest maps:  the GFW product in 2010, the Landsat VCF product 210 

in 2015, the NLCD product in 2016 (NLCD2016), and JAXA product in 2015-2017 (Fig. 6). The GFW tree canopy 

cover product in 2010 at 30-m resolution was generated by using decision tree algorithms and multi-temporal Landsat 

images (https://www.glad.umd.edu/dataset/global-2010-tree-cover-30-m, last access: 1 May 2021) (Hansen et al. 

2013a). The Landsat VCF product in 2015 is a global tree cover percentage dataset  and can be downloaded from the 

Land-Cover and Land-Use Change Program (https://lcluc.umd.edu/metadata/global-30m-landsat-tree-canopy-215 

version-4, last access: 5 May 2021). It is generated by using a regression tree model to rescale the 250-m MODIS 

VCF tree cover layer into 30-m (Sexton et al. 2013a).  The Landsat-based NLCD2016 provides land cover information 

at 30-m resolution over the CONUS with an accuracy of 83% (https://www.mrlc.gov/data/nlcd-2016-land-cover-

conus, last access: 9 May 2021) (Homer et al. 2020). This product has three forest types: deciduous forest, evergreen 

forest, and mixed forest (Homer et al. 2020). The 25-m annual global forest maps from 2015 to 2017 from JAXA were 220 

produced by using thePALSAR-2 mosaic data and a decision tree method (JAXA forest maps), which are available at 
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https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.html, with last access of 12 May 2021 (Shimada et al. 2014). 

JAXA forest used the FAO forest definition. So, similarly, for the tree cover products of Landsat VCF and GFW, we 

selected the pixels with tree canopy coverage greater than 10% as forests.  

The forest area statistical data for year 2017 at the county scale was also used for comparison analysis. This 225 

statistical dataset comes from the USDA Forest Service (FS) Forest Inventory and Analysis (FIA) program 

(https://www.srs.fs.usda.gov/pubs/57903, last access: 10 May 2021) and is widely used in the studies of forests in the 

CONUS (Burrill et al. 2021; Domke et al. 2021; Hoover et al. 2020). It is the critical data source provided by the US 

government for the FAO's Global Forest Resources Assessment, and for resources managers and the public to manage 

and utilize the forest resources in the United States.    230 
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Figure 6: Forest distribution in the CONUS from four forest data products, (a, b, c) Landsat-based and (d, e, f) PALSAR-

2-based forest products during 2015-2017. 

2.7 PALSAR-2/Landsat forest mapping approach  

The advantages of L-band ALSO-2 PALSAR-2 data in penetrating tree canopy to interact with tree branches and 235 

trunks lead to higher volume backscatter signals from forests than from other land cover types (e.g., grasslands, 

shrublands, croplands, and water bodies). However, some natural surfaces (e.g., rocky lands) or artificial structures 

(e.g., buildings) also have high backscatter signals, which could easily cause commission errors in the 
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PALSAR/PALSAR-2-based forest signature analysis (Qin et al. 2017). As these land cover types have low NDVI 

values, they can be tracked and identified by optical images. According to these knowledges, we developed a two-240 

step forest mapping approach by integration of PALSAR or PALSAR-2 and optical (e.g. MODIS, Landsat) images in 

our previous studies such as in South America (Qin et al. 2017), Asia (Qin et al. 2016b), and Australia (Qin et al. 

2021). However, these previous studies were mainly conducted at a lower spatial resolution (e.g., 50-m by PALSAR 

and MODIS) or attempted for limited spatial scales using PALSAR/PALSAR-2 and Landsat images. It is still unclear 

that the performance of the integrated datasets for monitoring the annual dynamics of forest distribution and forest 245 

functional types over the temperate regions.        

In this study, we used the same workflow  to identify and map forest cover in CONUS (Qin et al. 2016a). First, 

we identified forest pixels by using 25-m PALSAR-2 images and the threshold-based algorithm. A pixel is classified 

to be pixel forest, if its PALSAR-2 data meets -19 ≤ HV ≤ -7.5, 0 ≤ Difference ≤ 9.5, 0.2 ≤ Ratio ≤ 0.95. The thresholds 

for the 25-m PALSAR-2 images had been slightly adjusted from those for the 25-m PALSAR data (Qin et al. 2016a). 250 

A 5 × 5 window median filter was applied to decrease the potential noise (e.g., salt-and pepper noise) on the PALSAR-

based forest and non-forest (F/NF) maps. These resultant 25-m F/NF maps were resampled to 30-m to match the 

spatial resolution of Landsat images. Forests usually have a high leaf area index (larger than 3 m2/m2), but rocky lands, 

barren lands, and built-up surfaces have no or little green vegetation in a year. Due to LAI and NDVI are closely 

related to each other, the value of NDVI with 0.7 or so usually represents the range of 1 to 2 m2/m2 of LAI dependent 255 

upon the vegetation types, which can be used to identify forest and eliminate the commission errors in the 

PALSAR/PALSAR-2 based forest maps (Qin et al. 2016a). Here we generated the maximum NDVI layers from all 

the available Landsat images in each year (January to December) during 2015-2017 and applied the threshold of 

NDVImax > 0.7 into the layers to generate the NDVImax masks to extract the pixels covered by green vegetation. The 

annual 30-m forest map was produced by overlaying the PALSAR-2-based forest maps and the Landsat-based 260 

NDVImax mask layers.  

In post-classification, a temporal and logical consistency check was performed on this three-year forest and non-

forest (F/NF) maps to reduce the noise or misclassification in the F/NF sequence. For each pixel in annual F/NF time 

series maps from 2015 to 2017, the reasonable forest dynamics were NNN, FNN, NNF, FFF, NFF, and FFN (N 

denotes non-forest and F indicates forest). The NFN and FNF sequences were considered as "not reasonable sequence" 265 

and re-processed as sequences of NNN and FFF, respectively. This 3-year consistency check during 2015-2017 makes 
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the annual forest map in 2016 with higher confidence, and we will use it for inter-comparison and forest area estimates 

at county, state, and CONUS scales. The resultant PALSAR-2/Landsat (PL-) annual forest maps are called as "PL-

Forest maps" in this study.  

2.8 PALSAR-2/Landsat-based annual evergreen forest maps in 2015-2017 270 

Evergreen trees have green leaves all the year round, but deciduous trees usually shed their leaves in winter or 

dry season. These leaf phenological profiles can be captured by the satellite-based vegetation indices (e.g., NDVI, 

EVI and LSWI) to distinguish evergreen and deciduous forests (Prabakaran et al. 2013; Qin et al. 2016b). Based on 

the characteristics of forest canopy phenology and vegetation indices, we have developed a simple and robust 

algorithms to map evergreen forests by analyzing the time series water-related index (LSWI) and greenness-related 275 

indices (EVI, NDVI), and the algorithm has been documented in details in our previous publications (Qin et al. 2016b). 

We used the same approach and generated annual maps of evergreen vegetation by using the decision thresholds 

(FQLSWI≥0 = 100% and EVImin ≥ 0.2). Here, the FQLSWI≥0 was the observation frequency with LSWI≥0 (N LSWI≥0) over 

all the good-quality observations (NGOBs) in a year for individual pixels (EQ. 4), and EVImin was the minimum EVI 

values in a year. Finally, we overlaid our annual 30-m PALSAR-2/Landsat-based forest/non-forest map with the 280 

evergreen vegetation layers to identify evergreen forests.  

𝐹𝑄𝐿𝑆𝑊𝐼≥0 =
𝑁𝐿𝑆𝑊𝐼≥0

𝑁𝐺𝑂𝐵𝑠
× 100                                                                                                                                 (4)  

2.9 Validation  

The resultant PL-Forest maps (forest and non-forest) in 2015-2017 were validated by the validation samples 

generated by the third party (Fig.4). We overlayed the samples and the resultant PL-Forest maps to calculate the 285 

confusion matrix and assess the user’s, producer’s, and overall accuracies.  

2.10 Cross-comparison between forest-related products 

We selected five popular forest cover data products at 25-m or 30-m spatial resolution to perform the inter-

comparison analysis from two aspects of (1) describing the forest structures and (2) assessing the forest resource areas 

at different statistic levels.  290 

First, to understand the differences in terms of forest structure measurements in the PALSAR-2-based, Landsat-

based, and PALSAR-2/Landsat-based forest maps, we overlaid the ICESat-1 samples and individual forest products 
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to identify those forest pixels that geographically correspond to the ICESat-1 samples and gather their information on 

the attributes of forest canopy height and canopy coverage. In this process, all the forest products have been resampled 

into 70-m to match the footprint size of ICESat-1. Then, the distributions of forest pixels were analyzed with the 295 

canopy height and canopy coverage for individual forest maps by using 1-D histogram and 2-D histogram graphs.  

Secondly, we compared our PL-based forest maps with the selected five forest datasets in terms of forest areas 

at state and CONUS scales. All the forest maps were re-projected into equal-area projection before the forest areas 

were calculated from individual maps. The linear regression approach was used to show the relationships in forest 

areas between these forest datasets at the state level. The forest area estimates at the national level were directly 300 

compared among them.   

3 Results 

3.1 Annual forest and evergreen forest maps in 2015-2017 

The PALSAR-2/Landsat forest maps showed the annual forest distribution in CONUS during 2015 to 2017 

(Fig.7a, b, c). At the pixel level, we calculated the frequency of individual pixels covered by forest in 2015-305 

2017(Fig.7d). 79% of the forest pixels have consistent forest cover during 2015 to 2017 with a frequency of three, 

which is much larger than the proportions of forest pixels with one year (11%) or two years (10%) forest cover.  

Based on the third-party validation samples (Fig.4), the accuracies of the PALSAR-2/Landsat forests were high 

and varied slightly for the years of 2015 to 2017, the overall accuracies of ~93%, the user's accuracies of 87.6% to 

95.8%, and producer's accuracies of 90.6% to 91.9% (Table 2). The forest map in 2016 had slightly higher accuracy 310 

than 2015 and 2017, which was expected because the temporal and logical consistency check was implemented on 

the resultant map of 2016 to reduce the noise or misclassification in the F/NF sequence of 2015 to 2017 (see Section 

2.7).  
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Figure 7: Annual forest maps in 2015-2017 based on PALSAR-2 and Landsat images, (a) PL-Forest in 2015, (b) PL-Forest 315 
in 2016, and (c) PL-Forest in 2017. (d) the forest frequency map generated based on the PL-Forest maps in 2015-2017.   

 

Table 2. Accuracy assessment of annual PALSAR-2/Landsat forest maps in 2015-2017 (PL-Forests) based on the 

third-party validation samples (Fig.4). The User's (UA), Producer's (PA) and Overall (OA) accuracy are shown.  

PL-Forests 

Classification 

Reference UA PA OA 

Forests Non-Forests  Total 

2015 

Forests 596 84 680 87.6% 91.4% 92.8% 

Nonforests 56 1222  1278 95.6% 93.5%  

Total  652 1306 1958      

2016 

Forests 599 81 680 88.1% 91.9% 93.2% 

Nonforests 53 1225 1278 95.8% 93.8%   

Total  652 1306 1958    

2017 

Forests 591 84 675 87.6% 90.6% 92.6% 

Nonforests 61 1222 1283 95.2% 93.5%  

Total  652 1306 1958    

 320 

Based on the PALSAR-2/Landsat forest maps, we further identified annual evergreen forests in CONUS during 

2015-2017 (Fig. 8a, b, c). These resultant evergreen forest maps have similar spatial patterns with the evergreen forests 
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in the NLCD-2016 dataset (Fig. 8d). Evergreen forests show obvious regional characteristics and are mainly 

distributed in the western, southeastern, and northeastern regions of the CONUS. The evergreen forest area estimated 

from the PALSAR-2/Landsat map in 2016 was 1.08×106 km2, which is higher than the evergreen forests of 0.92×106 325 

km2 but lower than the total area of evergreen forests and mixed forests of 1.22×106 km2 from the NLCD-2016 (Fig. 

8a-d). The spatial comparison between these two products was carried out at the pixel scale (Fig. 8e). The noticeable 

discrepancies were in the southwestern regions (e.g., Nevada, Utah, Arizona), the south Florida, and some regions in 

the northeastern CONUS. In the southwestern regions, the differences were mainly from the detection of evergreen 

and non-evergreen forests between these two products. For the eastern regions (e.g., south Florida, New England 330 

states), the differences of these two products were mostly caused by the detection of forests, as most of the evergreen 

forest pixels in the PALSAR-2/Landsat evergreen forest map were shown as non-forest in the NLCD map (Fig. 8e). 

At the state scale, the PALSAR-2/Landsat evergreen forest map in 2016 had a good linear relationship with the 

evergreen forests in NLCD 2016, with a slope of 0.8 and R2 of 0.54 (Fig. 8f). A stronger relationship was found 

between the evergreen forest areas from the PL-Evergreen forest maps and the sum of evergreen forest and mixed 335 

forests from the NLCD-2016 at the state scale, with a slope of 0.98 and R2 of 0.69 (Fig. 8f).  
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Figure 8: Spatial distributions of evergreen forests in the CONUS.  (a, b, c) Annual evergreen and non-evergreen forest 

maps in 2015-2017. (d) The forest type map from the NLCD 2016 dataset. (d) shows the consistency between the PALSAR-

2/Landsat evergreen forest (PL-Evergreen) in 2016 and the NLCD evergreen forest in 2016 (NLCD-Evergreen). (f) shows 340 
the comparison between PL- and NLCD-Evergreen forests at the state scale using the linear regression analysis.   

3.2 A comparison of five satellite-based forest maps at the pixel scale  

  At the pixel scale, we compared the PALSAR-2/Landsat forests and the JAXA forests in 2016 in terms of forest 

area identification (Fig. 9). These two products have about 75% pixels in agreement, 11% pixels only identified in the 
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JAXA forests, and 14% pixels only in the PALSAR-2/Landsat forest product. Comparison through zoom-in random 345 

samples showed that JAXA forests identified the pixels with obvious background of barren lands or rocks, which were 

excluded in the PALSAR-2/Landsat forests. However, JAXA forests missed more pixels with dense tree cover, which 

were identified in the PALSAR-2/Landsat forests (Fig.9). 

We further compared the five studied satellite-based forest data products in terms of their forest definitions of 

canopy (tree) height (CH) and canopy coverage (CC). The frequency distributions of the forest pixels with CH and 350 

CC were extracted from different forest products using ICESat-1 observations (Fig. 10). The comparison result 

showed that the proportion of forest pixels with CH larger than 5-m and CC larger than 10% was 85% for NLCD-

2016, ~82% for PALSAR-2/Landsat, 81% for JAXA, 80% for GFW 2010 (79.98%), and 77% for Landsat VCF 2015.  

 
Figure 9: A comparison between PL-forest in 2016 and JAXA forest in 2016 at the pixel scale. Six random areas denoted as 355 
a to f were selected from the disagreement regions, which were used to show the zoom-in landscapes from the Google Earth 

high resolution images.  The images were acquired from Google Earth Pro (© Google Earth Pro 2020) 
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Figure 10: The frequency distributions of the forest pixels with tree canopy height (CH) and canopy cover (CC) features. 

The forest pixels were from the five satellite-based forest products, respectively. The CH and CC data were extracted from 360 
the ICESat-1 observations. 

3.3 A comparison of forest area estimates from six forest datasets at state and CONUS scales  

The forest areas were estimated at the state and the CONUS scales from the six forest datasets, including five 

satellite-based forest maps in 2010-2017 and a FIA statistic data in 2017 (Fig. 11). At the state scale, the PALSAR-

2/Landsat forest maps have good linear relationships with other satellite-based datasets for each year during 2015 to 365 

2017, with the slope ranging from 0.65 to 1.15, R2 within 0.87 to 0.96 (Fig. 11a, b, c). In terms of forest area estimates 

at the state scale, the PL- and JAXA forest maps showed higher agreements with the FIA forest dataset than do GFW 

2010, Landsat VCF 2015, and NLCD 2016 forest maps (Fig. 11d). The forest area estimates from the Landsat VCF 
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in 2015 was higher than the FIA forest area estimates (slope of 1.19), while the forest area estimates from the GFW 

2010 and NLCD 2016 were lower than the FIA forest area estimates (slopes of 0.89 and 0.71) (Fig. 11d). The forest 370 

area estimates from the PL-Forest  and JAXA forest maps were very close to the numbers from the FIA (a slope of 

0.98).  

At the CONUS scale, the forest area estimates from the PALSAR-2/Landsat forest maps for years of 2015 to 

2017 were 2.73×106 km2, 2.79×106 km2 and 2.66×106 km2, respectively, which were similar to the areas of JAXA 

forests of 2.79×106 km2, 2.68×106 km2 and 2.62×106 km2 (Fig. 11e). The FIA dataset reported the forest area of 375 

2.57×106 km2 in 2017, which was very close to the value of 2.66×106 km2 from the PL-Forest map in 2017, a difference 

of 3.5%.  

 

Figure 11: The comparisons of forest area estimates between satellite-based forest products and the FIA statistics at the 

state and national scales.  380 
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4 Discussion 

4.1 Improved annual forest maps at high spatial resolution  

To improve the accuracy of forest cover maps, several efforts have examined the likely factors causing the 

uncertainties of the resultant products (Qin et al. 2016b; Sexton et al. 2016; Sexton et al. 2013a; Tchuenté et al. 2011). 

These factors include (1) the diverse forest-cover definitions, (2) input image datasets, (3) training samples, and (4) 385 

algorithms (Qin et al. 2021; Tchuenté et al. 2011). For example, the forest definitions use different criteria of tree 

coverage (from 10% to 60%) and tree height (from 2-m to 5-m), as well as the parcel size  (Qin et al. 2016b; Sexton 

et al. 2016). To reduce the uncertainty of forest maps in the perspective of forest definition, a solution was proposed 

by Sexton et al. (2016) to focus on the measurable ecological characteristics of tree cover, canopy height, biomass, 

and composition of vegetation. According to the FAO forest definition and the Lidar-based comparison between forest 390 

datasets, the PL-Forest had slightly higher percentage of pixels than JAXA-Forest, GFW 2010, and Landsat VCF 2015 

in the criteria of tree height larger than 5-m and/or canopy cover larger than 10%. In this criterion, the NLCD forest 

2016 had the highest pixel proportion, but this dataset used the tree canopy cover larger than 20% as the forest 

threshold and resulted in the lowest forest area estimate (Fig. 11e). This comparison results based on the PALSAR-

2/Landsat forests agree well with our recent study on the forest mapping in Australia, which demonstrated that 395 

PALSAR/MODIS forest maps had more forest pixels satisfied with the FAO’s forest definition than the GFW and 

JAXA forest maps (Qin et al. 2021).       

Forest area data products have been generated based on the optical images (e.g., MODIS, Landsat), microwave 

images (e.g. PALSAR, PALSAR-2), or the integration of microwave and optical images (e.g. PALSAR/MODIS, 

PALSAR/Landsat). On the forest area estimates, under a consistent tree canopy cover definition (10%), the PALSAR-400 

2/Landsat products had close results to the PALSAR-2-based forest maps for years of 2015 to 2017 at both state and 

national scales (Fig. 11). The forest area estimates in 2017 from the PL-Forest dataset was very close to the result 

from the FIA dataset, which indicates that the PL-Forest dataset is more accurate than the forest area estimates from 

the other optical satellite-based forest products (Fig. 11e). Our previous studies also showed the similar forest area 

estimates from the PALSAR/MODIS or PALSAR/Landsat forest products and the JAXA forest maps in several 405 

regions like monsoon Asia (Qin et al. 2016b), and South America (Qin et al. 2017). For example, in the South America, 

forest area estimates from the 30-m GFW-2010 dataset were higher than those from the 50-m PALSAR/MODIS forest 

products (Qin et al. 2017).  
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The results mentioned above also suggested that PL-Forests had a slightly better performance than the other four 

forest products, according to the potential of forest tree height and tree canopy cover monitoring, and forest area 410 

estimates. This result corroborates the previous claims for integrating microwave and optical images to improve the 

forest cover maps (Lehmann et al. 2015; Reiche et al. 2015; Thapa et al. 2014). These forest mapping approaches take 

advantage of (1) the sensitivity of microwave signals to forest structures without weather interference (Næsset et al. 

2016; Qin et al. 2016b), and (2) the optical signals to reduce the ground objects with similar backscatter values as 

forests, such as rocky lands and buildings (Lehmann et al. 2015; Reiche et al. 2015) (Fig.9). The integration of 415 

PALSAR and MODIS images has been demonstrated to generate improved forest maps in tropical, temperate, and 

boreal forests (Qin et al. 2016b; Qin et al. 2017; Zhang et al. 2019). This study suggested that the approach based on 

PALSAR-2 and Landsat observations has the potential to monitor the annual dynamics of forest distribution and 

functional types at a high spatial resolution for national or larger scales across the temperate regions.   

4.2 Evergreen forest mapping algorithms  420 

Evergreen forests show different functional traits from deciduous forests, such as water use efficiency (Soh et al. 

2019), high ecosystem stability in carbon sink under extreme climates (Huang and Xia 2019). Driven by climate 

change and diverse human activities, the expansion of evergreen forests has been reported in many regions over the 

word (Saintilan and Rogers 2015; Twidwell et al. 2016). Various mapping algorithms have been developed to identify 

evergreen and non-evergreen forests, which could provide the accurate information on evergreen forests for science 425 

and policy users  (Qin et al. 2016b). These evergreen forest mapping algorithms can be grouped as (1) NDVI-based 

and (2) LSWI-based algorithms. Evergreen plants keep green leaves in winter season or dry season and yield high 

NDVI values in contrast to senescent plants. Following this phenological feature, evergreen plants and forests have 

been successfully separated from non-evergreen plants based on the seasonal dynamics of NDVI, for example using 

mean or median NDVI values of winter season (Qin et al. 2016b; Soudani et al. 2012). Evergreen forests have LSWI 430 

values of above zero throughout the year, which has been used to map evergreen forest for tropical regions (Grogan 

et al. 2016; Qin et al. 2016b). In this study, the LSWI-based algorithm was used to identify the evergreen forests in 

CONUS and the results have reasonable consistency with the NLCD-2016 evergreen forest product (Fig. 8). It 

demonstrated the potential of the LSWI-based algorithm for the evergreen forest identification over the temperate 

regions based on Landsat datasets.  435 
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The moderate discrepancy of the evergreen forest products between the PL-Forest maps and the NLCD-2016 

dataset could be attributed in part to the differences in the algorithms and image data. The NLCD products were 

generated using the decision tree algorithm and multi-temporal images (Jin et al. 2019). The classification algorithm 

is based on the spatial statistics of images (image-based spatial statistics) and training samples to generate 

classification rule. Therefore, the resultant forest maps are affected by the quantity and quality of the training samples. 440 

In comparison, we used the LSWI-based algorithm and time series images in a year to identify forests for individual 

pixels, which used the pixel-based time series statistics. Our method used all the images in a year, which is more than 

multi-temporal images used in the image-based spatial statistic approach. A challenge for the LSWI-base algorithm is 

to acquire sufficient number of good quality observations throughout the year, in particular, during the winter season. 

As Landsat acquires images at 16-day revisit cycle, the missing data issue could cause some uncertainties in the 445 

PALSAR-2/Landsat evergreen forest maps. However, this data issue could be improved by combining multi-source 

remote sensing images like Sentinle-2, Landsat-8 and Landsat-9 in the future. To improve the evergreen forest 

mapping, development of a hybrid approach of both LSWI- and NDVI-based algorithms is another promising way, 

which will be examined in our following works for discrimination of evergreen and deciduous trees, shrubs, and 

grasses.   450 

Data availability 

The data are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang et al., 2022).  

Conclusions 

This study integrated microwave (PALSAR-2) and optical (Landsat) images and produced annual 30-m forest 

maps in 2015-2017 for the CONUS. We compared the PL-based forest maps with the four widely-used satellite-based 455 

forest maps in terms of (1) forest area estimates and (2) forest definition by forest structure metrics (tree height and 

canopy coverage) from the ICESat LiDAR tree structure datasets. The good performance of PL-based forest maps 

shows the strong potential of the PALSAR-2/Landsat integrated mapping approach for generating accurate high-

resolution forest products at the national or larger scales. Furthermore, we generated the annual 30-m evergreen forest 

maps in the CONUS, which can be used to investigate how climate change and human activities affect these forest 460 

types in the CONUS. The investigation on the satellite-based forest mapping approaches and the FIA forest products 
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also suggested the potential of integrating FIA data and PALSAR and Landsat images to support the FAO's Global 

Forest Resources Assessment at the national scale.  
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